2.3.2. Particulate Matter Emission

17. Particulate Matter (PM) emission in the CFG-3 plant will be from prill tower in the form of urea dust. Comparison of PM emissions from prill tower stack has been presented in **Table 2.3** for both initial assessment and with revised capacities:

Table 2.3: PM Emissions

Stack	Particular	Unit	Initial Assessment	Revised	Percentage Increase
Prill Tower	Production	MTPD	3500	4000	14%
	Flue Gas	Nm3/hr	1,320,000	1,450,000	10%
	PM Emission	kg/hr	66	72.5	10%
		mg/Nm3	50	50	
		kg/MT Urea	0.45	0.44^{2}	

2.3.3. Ammonia Emission

18. Ammonia emission in the CFG-3 plant will be from prill tower. Comparison of ammonia emissions from prill tower stack has been presented in **Table 2.4** for both initial assessment and with revised capacities:

Table 2.4: Ammonia Emissions *

Stack	Particular	Unit	Initial Assessment	Revised	Percentage Increase
Prill Tower	Production	MTPD	3500	4000	14%
	Flue Gas	Nm3/hr	1,320,000	1,450,000	10%
	PM Emission	kg/hr	66	72.5	10%
		mg/Nm3	50	50	
		kg/MT Urea	0.45	0.44^{3}	

^{*} Ammonia emissions are on adhoc / current basis and in future legistation, if any shall be complied with

2.3.4. Impact on Air Quality

19. To assess the impact in air quality due to stack emissions in the proposed CFG-3 project with the initial capacities as well as revised capacities, mathematical modelling was conducted with the help of ISC-AERMOD View software. The stack emission details used in the model for both the cases has been presented in **Table 2.5** and **Table 2.6**, respectively: The meteorological data was taken same as reported in the EIA study. Predicted ground level concentrations (GLC) for both the cases has been presented in **Table 2.5** and **Table 2.6**, respectively. Isopleths of NOx, PM and Ammonia based on initial assessment has been presented in **Figure 2.4**, **Figure 2.5**, and **Figure 2.6**, respectively. Isopleths of NOx, PM and Ammonia based on revised capacities has been presented in **Figure 2.7**, **Figure 2.8**, and **Figure 2.9**, respectively.

³ No increase in emissions per ton of product

 $^{^{\}mathbf{2}}$ No increase in emissions per ton of product

Table 2.5 : Stack Emission Details (Initial Assessment)

					Stack I	Stack Emission (g/s)	(s/b) u
Stack	Height (m)	Diameter (m)	Exit Velocity (m/s)	ght (m) Diameter (m) Exit Velocity (m/s) Exit Temperature (K)	×ON	P	NH3
Prilling Tower G-III	120	26	0.63	321		18.3 18.3	18.3
Reformer Stack G-III	40	4.1	12.1	416	16.4		
HRSG - III	30	3	18.5	466	20.7		

Table 2.6 : Stack Emission Details (Revised Capacity)

					Stack I	Stack Emission (g/s)	n (g/s)
Stack	Height (m)	Diameter (m)	Exit Velocity (m/s)	ight (m) Diameter (m) Exit Velocity (m/s) Exit Temperature (K)	×ON	PM	H H E
Prilling Tower G-III	130	28	0.85	321		20.1	20.1
Reformer Stack G-III	40	4.1	12.1	416	18.0		
HRSG - III	30	က	18.5	466	20.7		

Table 2.7: Contribution to GLC from CFG-3 Stacks (Initial Assessment)

Description	Maxim	Maximum Ground Level Concentration (µg/m3)	/m/gr
	NOX	PM	Ammonia
Primary Reformer - III	9.49	5.8	5.8
HRSG - III			
Prill Tower - III			
Distance of Occurrence (km)	10.3	1.8	1.8
Direction of Occurrence (km)	NW	WNW	WNW

Table 2.8: Contribution to GLC from CFG-3 Stacks (Revised Assessment)

Description	Maxin	Maximum Ground Level Concentration (µg/m3)	hg/m3)
	XON	PM	Ammonia
Primary Reformer - III HRSG - III Prill Tower - III	96'6	4.3	4.3
Distance of Occurrence (km)	10.1	2.1	2.1
Direction of Occurrence (km)	NM	WNW	WNW

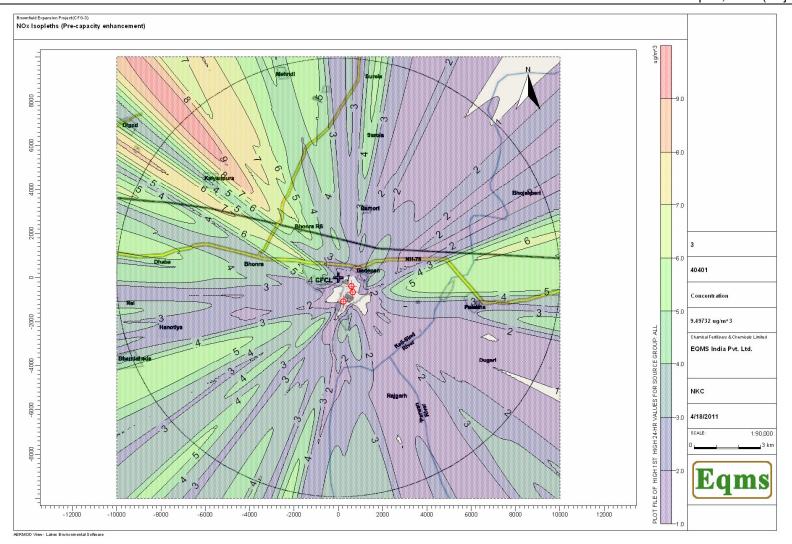


Figure 2.4 : NOx Isopleths (Initial Assessment)

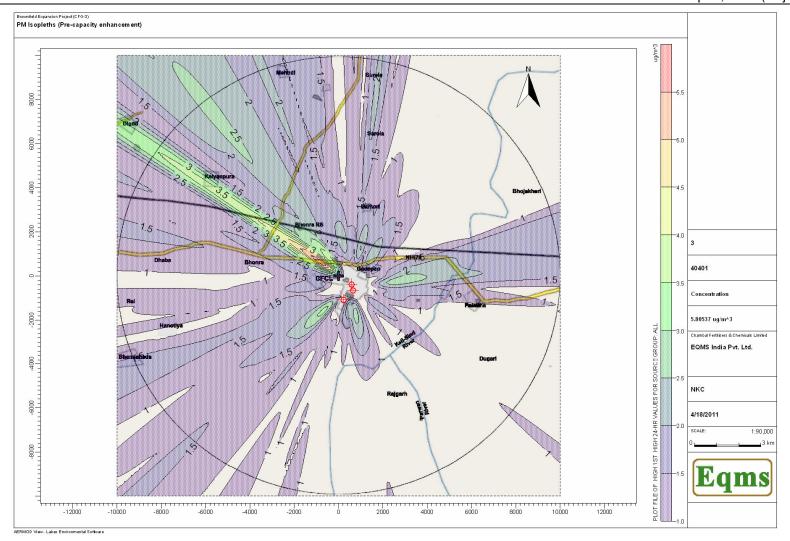


Figure 2.5 : PM Isopleths (Initial Assessment)

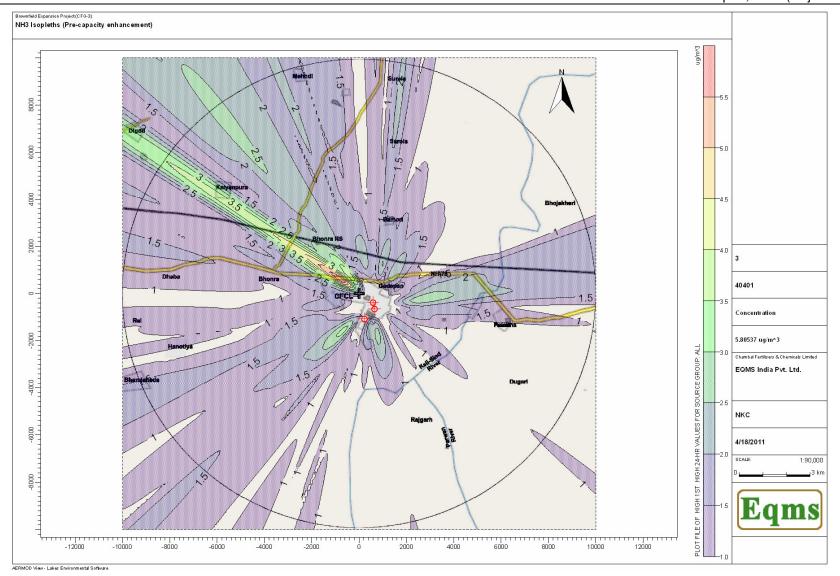


Figure 2.6 : Ammonia Isopleths (Initial Assessment)

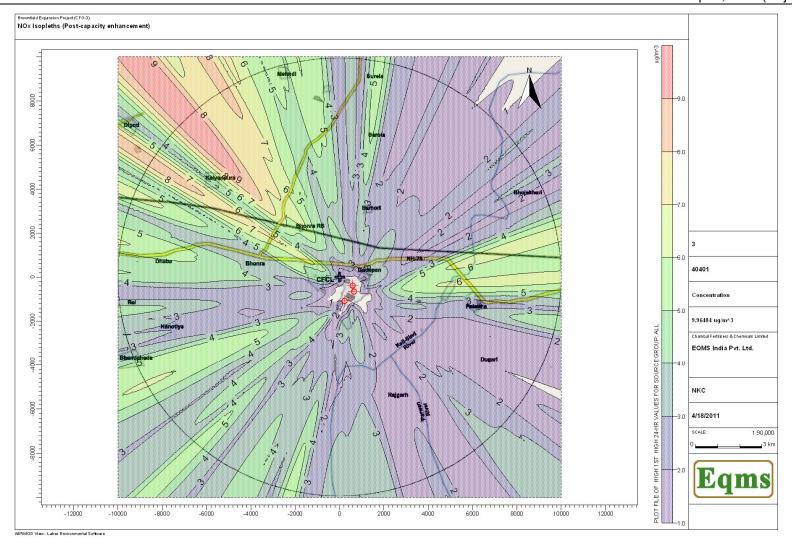


Figure 2.7 : NOx Isopleths (Revised Assessment)

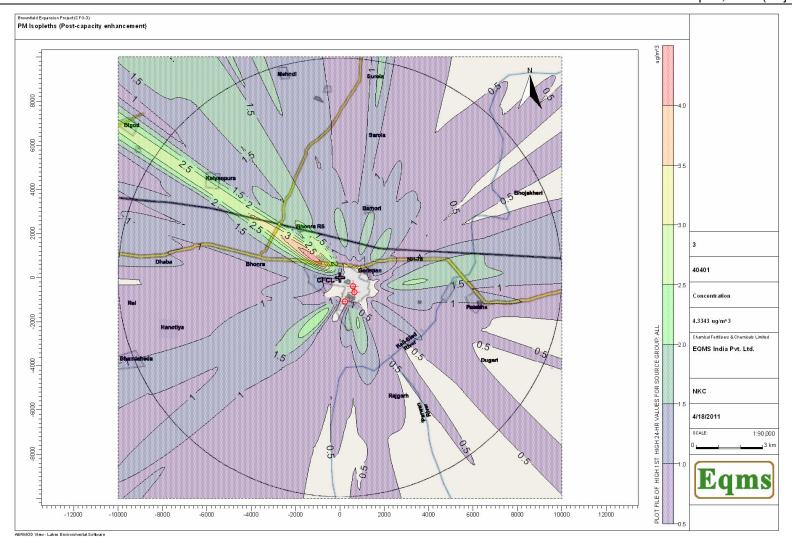


Figure 2.8 : PM Isopleths (Revised Assessment)

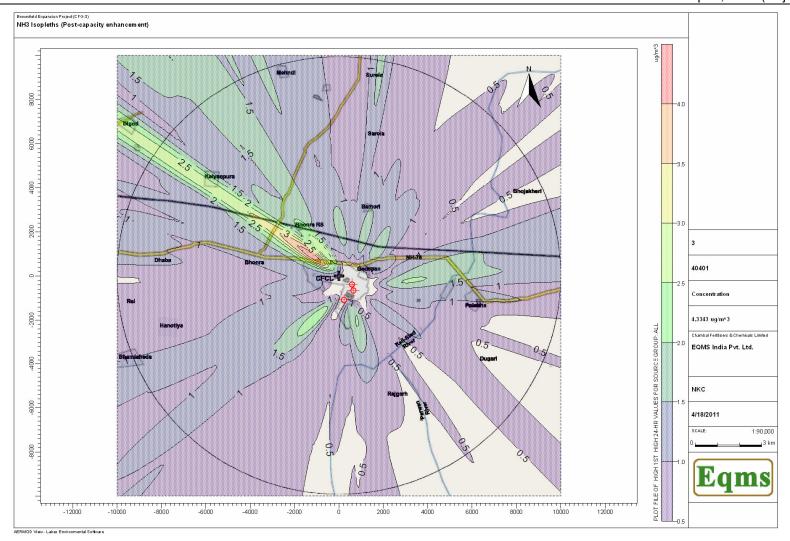


Figure 2.9 : Ammonia Isopleths (Revised Assessment)

20. During the baseline monitoring study conduted in winter season for the CFG-3 project, baseline air quality with respect to NOx, PM and Ammonia was monitored at 6 locations. To assess the cumulative impact after commissioning of CFG-3 project, a comparison has been made with respect to the National Ambient Air Quality Standards with measured maximum baseline concentration + maximum predicted ground level concentration for initial as well as revised assessment and the same is presented below:

		Maximum		Cumulati	ve Impact
Pollutant	NAAQS (μg/m³)	Baseline Concentration	Location	Initial Assessment	Revised Assessment
	(μ9/111 /	(μg/m³)		(μg/m³)	(μg/m³)
NOx	80	42.3	Palaytha	51.79	52.26
PM	100	92.5	CFCL	98.3	96.8
Ammonia	100	57.3	Simaliya	63.1	61.6

2.3.5. Conclusion

21. It is evident from the comparison of the dispersion modelling results that due to higher stack of prill tower in the capacity enhancement, PM and Ammonia ground level concentrations are decreasing even after increase of pollution load. Only there is marginal increase in NOx ground level concentration (~0.5 μg/m3) due to capacity increase. Also, the cumulative impact shows that the air quality will be well within the National Ambient Air Quality Standards.

