

MINERA LOS PELAMBRES

ESTUDIO DE IMPACTO AMBIENTAL PROYECTO INFRAESTRUCTURA COMPLEMENTARIA

LÍNEA DE BASE. SECCIÓN IIIb

ESTUDIO DE IMPACTO AMBIENTAL PROYECTO INFRAESTRUCTURA COMPLEMENTARIA

LÍNEA DE BASE SECCIÓN IIIb

ÍNDICE DE CONTENIDOS

7. ECOSISTEMAS MARINOS1
7.1. Ecosistemas marinos1
7.1.1. Objetivos
7.1.1.1. Objetivo general6
7.1.1.2. Objetivos Específicos7
7.1.2. Área de Influencia7
7.1.2.1. Criterios generales7
7.1.2.2. Aplicabilidad de criterios7
7.1.3. Metodología General10
7.1.4. Resultados
7.1.4.1. Caracterización física (oceanografía física)12
7.1.4.1.1 Corrientes marinas14
7.1.4.1.2 Vientos
7.1.4.1.3 Mareas
7.1.4.1.4Correlación cruzada283
7.1.4.1.5 Mediciones locales de olas
7.1.4.1.6Síntesis general de los resultados de la caracterización oceanográfica física

ÍNDICE DE ANEXOS

Anexo EM-1:	Permisos
Anexo EM-2:	Informes de laboratorio
Anexo EM-3:	Determinación planctónica 2012
Anexo EM-4:	Dinámica del plancton en la bahía Conchalí
Anexo EM-5:	Reporte de datos, archivos digitales. campañas de monitoreo medio marino, bahía Conchalí, Los Vilos, región de Coquimbo

ÍNDICE DE TABLAS

Tabla EM-1:	Resumen de los componentes y subcomponentes analizados en las distintas campañas de muestreo realizadas durante el 2012, 2014 y 201511
Tabla EM-2:	Capas de medición estudio de corrientes con ADCP14
Tabla EM-3:	Frecuencia de incidencia y excedencia de corrientes. Capa superficial 16
Tabla EM-4:	Estadísticas de series ortogonales. Capa superficial17
Tabla EM-5:	Frecuencia de incidencia y excedencia de corrientes. Capa intermedia 20
Tabla EM-6:	Estadísticas de series ortogonales. Capa intermedia21
Tabla EM-7:	Frecuencia de incidencia y excedencia de corrientes. Capa fondo23
Tabla EM-8:	Estadísticas de series ortogonales. Capa fondo24
Tabla EM-9:	Capas de medición estudio de corrientes con ADCP26
Tabla EM-10:	Frecuencia de incidencia y excedencia de corrientes. Capa superficial 28
Tabla EM-11:	Estadísticas de series ortogonales. Capa superficial29
Tabla EM-12:	Frecuencia de incidencia y excedencia de corrientes. Capa intermedia 32
Tabla EM-13:	Estadísticas de series ortogonales. Capa intermedia
Tabla EM-14:	Frecuencia de incidencia y excedencia de corrientes. Capa fondo35
Tabla EM-15:	Estadísticas de series ortogonales. Capa fondo36
Tabla EM-16:	Capas de medición estudio de corrientes con ADCP
Tabla EM-17:	Frecuencia de incidencia y excedencia de corrientes. Capa superficial 41
Tabla EM-18:	Estadísticas de series ortogonales. Capa superficial42
Tabla EM-19:	Frecuencia de incidencia y excedencia de corrientes. Capa intermedia 44
Tabla EM-20:	Estadísticas de series ortogonales. Capa intermedia45
Tabla EM-21:	Frecuencia de incidencia y excedencia de corrientes. Capa fondo48
Tabla EM-22:	Estadísticas de series ortogonales. Capa fondo49
Tabla EM-23:	Capas de medición estudio de corrientes con ADCP51
Tabla EM-24:	Frecuencia de incidencia y excedencia de corrientes. Capa superficial 53
Tabla EM-25:	Estadísticas de series ortogonales. Capa superficial54
Tabla EM-26:	Frecuencia de incidencia y excedencia de corrientes. Capa intermedia 57
Tabla EM-27:	Estadísticas de series ortogonales. Capa intermedia58
Tabla EM-28:	Frecuencia de incidencia y excedencia de corrientes. Capa fondo61
Tabla EM-29:	Estadísticas de series ortogonales. Capa fondo62
Tabla EM-30:	Capas de medición estudio de corrientes con ADCP64
Tabla EM-31:	Frecuencia de incidencia y excedencia de corrientes. Capa superficial 67

Tabla EM-32:	Estadísticas de series ortogonales. Capa superficial68
Tabla EM-33:	Frecuencia de incidencia y excedencia de corrientes. Capa intermedia 71
Tabla EM-34:	Estadísticas de series ortogonales. Capa intermedia72
Tabla EM-35:	Frecuencia de incidencia y excedencia de corrientes. Capa fondo75
Tabla EM-36:	Estadísticas de series ortogonales. Capa fondo76
Tabla EM-37:	Capas de medición estudio de corrientes con ADCP78
Tabla EM-38:	Frecuencia de incidencia y excedencia de corrientes. Capa superficial 80
Tabla EM 39:	Estadísticas de series ortogonales. Capa superficial81
Tabla EM-40:	Frecuencia de incidencia y excedencia de corrientes. Capa intermedia 84
Tabla EM-41:	Estadísticas de series ortogonales. Capa intermedia
Tabla EM-42:	Frecuencia de incidencia y excedencia de corrientes. Capa fondo88
Tabla EM-43:	Estadísticas de series ortogonales. Capa fondo89
Tabla EM-44:	Capas de medición estudio de corrientes con ADCP91
Tabla EM-45:	Frecuencia de incidencia y excedencia de corrientes. Capa superficial 93
Tabla EM-46:	Estadísticas de series ortogonales. Capa superficial94
Tabla EM-47:	Frecuencia de incidencia y excedencia de corrientes. Capa intermedia 97
Tabla EM-48:	Estadísticas de series ortogonales. Capa intermedia
Tabla EM-49:	Frecuencia de incidencia y excedencia de corrientes. Capa fondo 100
Tabla EM-50:	Estadísticas de series ortogonales. Capa fondo101
Tabla EM-51:	Capas de medición estudio de corrientes con ADCP103
Tabla EM-52:	Frecuencia de incidencia y excedencia de corrientes. Capa superficial105
Tabla EM-53:	Estadísticas de series ortogonales. Capa superficial106
Tabla EM-54:	Frecuencia de incidencia y excedencia de corrientes. Capa intermedia109
Tabla EM-55:	Estadísticas de series ortogonales. Capa intermedio110
Tabla EM-56:	Frecuencia de incidencia y excedencia de corrientes. Capa fondo 112
Tabla EM-57:	Estadísticas de series ortogonales. Capa fondo113
Tabla EM-58:	Capas de medición estudio de corrientes con ADCP116
Tabla EM-59:	Frecuencia de incidencia y excedencia de corrientes. Capa superficial118
Tabla EM-60:	Estadísticas de series ortogonales. Capa superficial119
Tabla EM-61:	Frecuencia de incidencia y excedencia de corrientes. Capa intermedia121
Tabla EM-62:	Estadísticas de series ortogonales. Capa intermedia122

Tabla EM-63:	Frecuencia de incidencia y excedencia de corrientes. Capa fondo 125
Tabla EM-64:	Estadísticas de series ortogonales. Capa fondo126
Tabla EM-65:	Capas de medición estudio de corrientes con ADCP128
Tabla EM-66:	Frecuencia de incidencia y excedencia de corrientes. Capa superficial130
Tabla EM-67:	Estadísticas de series ortogonales. Capa superficial131
Tabla EM-68:	Frecuencia de incidencia y excedencia de corrientes. Capa intermedia133
Tabla EM-69:	Estadísticas de series ortogonales. Capa intermedia134
Tabla EM-70:	Frecuencia de incidencia y excedencia de corrientes. Capa fondo 137
Tabla EM-71:	Estadísticas de series ortogonales. Capa fondo138
Tabla EM-72:	Resumen de las corrientes eularianas146
Tabla EM-73:	Dirección y rapidez de derivadores. Condición lunar de sicigia148
Tabla EM-74:	Dirección y rapidez de derivadores. Condición lunar de cuadratura 151
Tabla EM-75:	Dirección y rapidez de derivadores. Condición lunar de sicigia
Tabla EM-76:	Dirección y rapidez de derivadores. Condición lunar de Sicigia157
Tabla EM-77:	Dirección y rapidez de derivadores. Condición lunar de cuadratura 160
Tabla EM-78:	Dirección y rapidez de derivadores. Condición lunar de Cuadratura 164
Tabla EM-79:	Dirección y rapidez de derivadores. Condición lunar de cuadratura 167
Tabla EM-80:	Dirección y rapidez de derivadores. Condición lunar de Sicigia171
Tabla EM-81:	Dirección y rapidez de derivadores. Condición lunar de cuadratura 174
Tabla EM-82:	Dirección y rapidez de derivadores. Condición lunar de sicigia
Tabla EM-83:	Dirección y rapidez de derivadores. Condición lunar de cuadratura 180
Tabla EM-84:	Dirección y rapidez de derivadores. Condición lunar de sicigia
Tabla EM-85:	Dirección y rapidez de derivadores. Condición lunar de cuadratura 187
Tabla EM-86:	Dirección y rapidez de derivadores. Condición lunar de sicigia
Tabla EM-87:	Deriva litoral, condición lunar de sicigia194
Tabla EM-88:	Deriva litoral, condición lunar de cuadratura195
Tabla EM-89:	Deriva litoral, condición lunar de Cuadratura196
Tabla EM-90:	Deriva litoral, condición lunar de Sicigia196
Tabla EM-91:	Deriva litoral, condición lunar de Sicigia197
Tabla EM-92:	Deriva litoral, condición lunar de Cuadratura197
Tabla EM-93:	Deriva litoral, condición lunar de Cuadratura198
Tabla EM-94:	Deriva litoral, condición lunar de Sicigia199
Tabla EM-95:	Deriva litoral, condición lunar de cuadratura

Tabla EM-96:	Deriva litoral, condición lunar de sicigia	200
Tabla EM-97:	Deriva litoral, condición lunar de cuadratura	201
Tabla EM-98:	Deriva litoral, condición lunar de sicigia	201
Tabla EM-99:	Deriva litoral, condición lunar de sicigia	202
Tabla EM-100:	Deriva litoral, condición lunar de cuadratura	202
Tabla EM- 101:	Caracterización de condiciones de lances de rodamina WT	203
Tabla EM-102:	Coeficientes de dispersión Ka calculados	213
Tabla EM-103:	Comparación con otros estudios	213
Tabla EM-104:	Caracterización de condiciones de lances de rodamina WT	214
Tabla EM-105:	Coeficientes de dispersión Ka calculados	215
Tabla EM-106:	Comparación con otros estudios	216
Tabla EM-107:	Caracterización de condiciones de lances de rodamina WT	220
Tabla EM-108:	Coeficientes de dispersión Ka calculados	221
Tabla EM-109:	Comparación con otros estudios	221
Tabla EM-110:	Caracterización de condiciones de lances de rodamina WT	226
Tabla EM-111:	Coeficientes de dispersión Ka calculados	227
Tabla EM-112:	Comparación con otros estudios	228
Tabla EM-113:	Caracterización de condiciones de lances de rodamina WT	232
Tabla EM-114:	Coeficientes de dispersión Ka calculados	233
Tabla EM-115:	Comparación con otros estudios	234
Tabla EM-116:	Caracterización de condiciones de lances de rodamina WT	237
Tabla EM-117:	Coeficientes de dispersión Ka calculados	238
Tabla EM-118:	Comparación con otros estudios	238
Tabla EM-119:	Caracterización de condiciones de lances de rodamina WT	242
Tabla EM-120:	Coeficientes de dispersión Ka calculados	243
Tabla EM-121:	Comparación con otros estudios	243
Tabla EM-122:	Frecuencia de incidencia y excedencia de viento	248
Tabla EM-123:	Frecuencia de incidencia y excedencia de viento	251
Tabla EM-124:	Frecuencia de incidencia y excedencia de viento	255
Tabla EM-125:	Frecuencia de incidencia y excedencia de viento	258
Tabla EM-126:	Frecuencia de incidencia y excedencia de viento	262
Tabla EM-127:	Frecuencia de incidencia y excedencia de viento	265
Tabla EM-128:	Frecuencia de incidencia y excedencia de viento	269
Tabla EM-129:	Resumen de vientos	272

Tabla EM-130:	Coordenadas (Datum WGS84) y duración mareografó OTT273
Tabla EM-131:	Valores armónicos de la marea, verano 2012275
Tabla EM-132:	Valores no armónicos de la marea, verano 2012276
Tabla EM-133:	Correlación cruzada Viento - Corriente
Tabla EM-134:	Correlación cruzada Marea – Corriente
Tabla EM-135:	Correlación cruzada Viento - Corriente
Tabla EM-136:	Correlación cruzada Marea – Corriente
Tabla EM-137:	Correlación cruzada Viento - Corriente
Tabla EM-138:	Correlación cruzada Marea – Corriente
Tabla EM-139:	Correlación cruzada Viento - Corriente291
Tabla EM-140:	Correlación cruzada Marea – Corriente
Tabla EM-141:	Correlación cruzada Viento - Corriente Punto 1294
Tabla EM-142:	Correlación cruzada Marea – Corriente Punto 1
Tabla EM-143:	Correlación cruzada Viento - Corriente Punto 2
Tabla EM-144:	Correlación cruzada Marea – Corriente Punto 2
Tabla EM-145:	Correlación cruzada Viento – Corriente Punto 1
Tabla EM-146:	Correlación cruzada Marea – Corriente Punto 1
Tabla EM-147:	Correlación cruzada Viento - Corriente Punto 2
Tabla EM-148:	Correlación cruzada Marea – Corriente Punto 2
Tabla EM-149:	Correlación cruzada Viento - Corriente Punto 1
Tabla EM-150:	Correlación cruzada Marea – Corriente Punto 1
Tabla EM-151:	Correlación cruzada Viento - Corriente Punto 2
Tabla EM-152:	Correlación cruzada Marea – Corriente Punto 2
Tabla EM-153:	Resumen de correlación cruzada
Tabla EM-154:	Parámetros de configuración del instrumento medidor de olas
Tabla EM-155:	Parámetros de procesamiento de olas
Tabla EM-156:	Distribución conjunta altura significativa (Hs) v/s periodo promedio (Tpro)
Tabla EM-157:	Parámetros de configuración del instrumento medidor de olas
Tabla EM-158:	Parámetros de procesamiento de olas
Tabla EM-159:	Distribución conjunta altura significativa (Hs) v/s periodo promedio (Tpro)
Tabla EM-160:	Parámetros de configuración del instrumento medidor de olas
Tabla EM-161:	Parámetros de procesamiento de olas

Tabla EM-162:	Distribución conjunta altura significativa (Hs) v/s periodo promedio (Tpro)
Tabla EM-163:	Parámetros de configuración del instrumento medidor de olas
Tabla EM-164:	Parámetros de procesamiento de olas321
Tabla EM-165:	Distribución conjunta altura significativa (Hs) v/s periodo promedio (Tpro)
Tabla EM-166:	Parámetros de configuración del instrumento medidor de olas
Tabla EM-167:	Parámetros de procesamiento de olas325
Tabla EM-168:	Distribución conjunta altura significativa (Hs) v/s periodo promedio (Tpro)
Tabla EM-169:	Parámetros de configuración del instrumento medidor de olas
Tabla EM-170:	Parámetros de procesamiento de olas329
Tabla EM-171:	Distribución conjunta altura significativa (Hs) v/s periodo promedio (Tpro)
Tabla EM-172:	Parámetros de configuración del instrumento medidor de olas
Tabla EM-173:	Parámetros de procesamiento de olas
Tabla EM-174:	Distribución conjunta altura significativa (Hs) v/s periodo promedio (Tpro)
Tabla EM-175:	Resumen de la medición de olas locales
Tabla EM-176:	Resumen de magnitud promedio y máximo (cm/s) de los flujos netos de las campañas realizadas el 2012
Tabla EM-177:	Resumen de magnitud promedio y máximo (cm/s) de los flujos netos de las campañas realizadas en primavera 2014, verano e invierno 2015, en los puntos 1 (descarga) y 2 (captación)

ÍNDICE DE FIGURAS

Figura EM-1:	Área de influencia del Proyecto10
Figura EM-2:	Localización de instrumentos científicos de campañas 2012, primavera 2014, verano e invierno 201513
Figura EM-3:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa superficial17
Figura EM-4:	Diagrama de dispersión dirección versus magnitud. Capa superficial 18
Figura EM-5:	Diagrama de vector progresivo. Capa superficial18
Figura EM-6:	Autoespectros de corrientes. Capa superficial19
Figura EM-7:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa intermedia20
Figura EM-8:	Diagrama de dispersión dirección versus magnitud. Capa intermedia21

Figura EM-9:	Diagrama de vector progresivo. Capa intermedia22
Figura EM-10:	Autoespectros de corrientes. Capa intermedia22
Figura EM-11:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa fondo24
Figura EM-12:	Diagrama de dispersión dirección versus magnitud. Capa fondo25
Figura EM-13:	Diagrama de vector progresivo. Capa fondo25
Figura EM-14:	Autoespectros de corrientes. Capa fondo
Figura EM-15:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa superficial
Figura EM-16:	Diagrama de dispersión dirección versus magnitud. Capa superficial30
Figura EM-17:	Diagrama de vector progresivo. Capa superficial
Figura EM-18:	Autoespectros de corrientes. Capa superficial
Figura EM-19:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa intermedia
Figura EM-20:	Diagrama de dispersión dirección versus magnitud. Capa intermedia33
Figura EM-21:	Diagrama de vector progresivo. Capa intermedia
Figura EM-22:	Autoespectros de corrientes. Capa intermedia
Figura EM-23:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa fondo
Figura EM-24:	Diagrama de dispersión dirección versus magnitud. Capa fondo37
Figura EM-25:	Diagrama de vector progresivo. Capa fondo
Figura EM-26:	Autoespectros de corrientes. Capa fondo
Figura EM-27:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa superficial41
Figura EM-28:	Diagrama de dispersión dirección versus magnitud. Capa superficial42
Figura EM-29:	Diagrama de vector progresivo. Capa superficial43
Figura EM-30:	Autoespectros de corrientes. Capa superficial43
Figura EM-31:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa intermedia45
Figura EM-32:	Diagrama de dispersión dirección versus magnitud. Capa intermedia46
Figura EM-33:	Diagrama de vector progresivo. Capa intermedia46
Figura EM-34:	Autoespectros de corrientes. Capa intermedia47
Figura EM-35:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa fondo48
Figura EM-36:	Diagrama de dispersión dirección versus magnitud. Capa fondo49
Figura EM-37:	Diagrama de vector progresivo. Capa fondo

Figura EM-38:	Autoespectros de corrientes. Capa fondo50
Figura EM-39:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa superficial54
Figura EM-40:	Diagrama de dispersión dirección versus magnitud. Capa superficial 55
Figura EM-41:	Diagrama de vector progresivo. Capa superficial
Figura EM-42:	Autoespectros de corrientes. Capa superficial56
Figura EM-43:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa intermedia
Figura EM-44:	Diagrama de dispersión dirección versus magnitud. Capa intermedia59
Figura EM-45:	Diagrama de vector progresivo. Capa intermedia59
Figura EM-46:	Autoespectros de corrientes. Capa intermedia60
Figura EM-47:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa fondo61
Figura EM-48:	Diagrama de dispersión dirección versus magnitud. Capa fondo62
Figura EM-49:	Diagrama de vector progresivo. Capa fondo63
Figura EM-50:	Autoespectros de corrientes. Capa fondo63
Figura EM-51:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa superficial67
Figura EM-52:	Diagrama de dispersión dirección versus magnitud. Capa superficial68
Figura EM- 53:	Diagrama de vector progresivo. Capa superficial69
Figura EM-54:	Autoespectros de corrientes. Capa superficial70
Figura EM-55:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa intermedia72
Figura EM-56:	Diagrama de dispersión dirección versus magnitud. Capa intermedia73
Figura EM-57:	Diagrama de vector progresivo. Capa intermedia73
Figura EM-58:	Autoespectros de corrientes. Capa intermedia74
Figura EM-59:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa fondo75
Figura EM-60:	Diagrama de dispersión dirección versus magnitud. Capa fondo76
Figura EM-61:	Diagrama de vector progresivo. Capa fondo77
Figura EM-62:	Autoespectros de corrientes. Capa fondo77
Figura EM-63:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa superficial80
Figura EM-64:	Diagrama de dispersión dirección versus magnitud. Capa superficial81
Figura EM-65:	Diagrama de vector progresivo. Capa superficial82
Figura EM-66:	Autoespectros de corrientes. Capa superficial83

Figura EM-67:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa intermedia
Figura EM-68:	Diagrama de dispersión dirección versus magnitud. Capa intermedia86
Figura EM-69:	Diagrama de vector progresivo. Capa intermedia86
Figura EM-70:	Autoespectros de corrientes. Capa intermedia87
Figura EM-71:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa fondo
Figura EM-72:	Diagrama de dispersión dirección versus magnitud. Capa fondo89
Figura EM-73:	Diagrama de vector progresivo. Capa fondo90
Figura EM-74:	Autoespectros de corrientes. Capa fondo90
Figura EM-75:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa superficial94
Figura EM-76:	Diagrama de dispersión dirección versus magnitud. Capa superficial 95
Figura EM-77:	Diagrama de vector progresivo. Capa superficial95
Figura EM-78:	Autoespectros de corrientes. Capa superficial96
Figura EM-79:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa intermedia
Figura EM- 80:	Diagrama de dispersión dirección versus magnitud. Capa intermedia98
Figura EM-81:	Diagrama de vector progresivo. Capa intermedia99
Figura EM-82:	Autoespectros de corrientes. Capa intermedia99
Figura EM-83:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa fondo101
Figura EM-84:	Diagrama de dispersión dirección versus magnitud. Capa fondo 102
Figura EM-85:	Diagrama de vector progresivo. Capa fondo102
Figura EM-86:	Autoespectros de corrientes. Capa fondo103
Figura EM-87:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa superficial106
Figura EM-88:	Diagrama de dispersión dirección versus magnitud. Capa superficial.107
Figura EM-89:	Diagrama de vector progresivo. Capa superficial
Figura EM-90:	Autoespectros de corrientes. Capa superficial108
Figura EM-91:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa intermedia
Figura EM-92:	Diagrama de dispersión dirección versus magnitud. Capa intermedia 110
Figura EM-93:	Diagrama de vector progresivo. Capa intermedia111
Figura EM-94:	Autoespectros de corrientes. Capa intermedia111
Figura EM-95:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa fondo

Figura EM-96:	Diagrama de dispersión dirección versus magnitud. Capa fondo 114
Figura EM-97:	Diagrama de vector progresivo. Capa fondo114
Figura EM-98:	Autoespectros de corrientes. Capa fondo115
Figura EM-99:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa superficial118
Figura EM-100:	Diagrama de dispersión dirección versus magnitud. Capa superficial. 119
Figura EM-101:	Diagrama de vector progresivo. Capa superficial
Figura EM-102:	Autoespectros de corrientes. Capa superficial120
Figura EM-103:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa intermedia122
Figura EM-104:	Diagrama de dispersión dirección versus magnitud. Capa intermedia 123
Figura EM-105:	Diagrama de vector progresivo. Capa intermedia123
Figura EM-106:	Autoespectros de corrientes. Capa intermedia124
Figura EM-107:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa fondo125
Figura EM-108:	Diagrama de dispersión dirección versus magnitud. Capa fondo 126
Figura EM-109:	Diagrama de vector progresivo. Capa fondo127
Figura EM-110:	Autoespectros de corrientes. Capa fondo127
Figura EM-111:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa superficial130
Figura EM-112:	Diagrama de dispersión dirección versus magnitud. Capa superficial.131
Figura EM-113:	Diagrama de vector progresivo. Capa superficial
Figura EM-114:	Autoespectros de corrientes. Capa superficial
Figura EM-115:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa intermedia134
Figura EM-116:	Diagrama de dispersión dirección versus magnitud. Capa intermedia 135
Figura EM-117:	Diagrama de vector progresivo. Capa intermedia135
Figura EM-118:	Autoespectros de corrientes. Capa intermedia136
Figura EM-119:	Histograma de frecuencia de dirección y velocidad de corrientes. Capa fondo137
Figura EM-120:	Diagrama de dispersión dirección versus magnitud. Capa fondo 138
Figura EM-121:	Diagrama de vector progresivo. Capa fondo139
Figura EM-122:	Autoespectros de corrientes. Capa fondo139
Figura EM-123:	Comportamiento derivadores. Sicigia lunar, marea llenante149
Figura EM-124:	Comportamiento derivadores. Sicigia lunar, marea vaciante150
Figura EM-125:	Comportamiento derivadores. Cuadratura lunar, marea vaciante 152

Figura EM-126:	Comportamiento derivadores. Cuadratura lunar, marea llenante 153
Figura EM-127:	Comportamiento derivadores. Cuadratura lunar, marea vaciante 155
Figura EM-128:	Comportamiento derivadores. Cuadratura lunar, marea llenante156
Figura EM-129:	Comportamiento derivadores. Sicigia lunar, marea llenante158
Figura EM-130:	Comportamiento derivadores. Sicigia lunar, marea vaciante159
Figura EM-131:	Comportamiento derivadores. Sicigia lunar, marea llenante162
Figura EM-132:	Comportamiento derivadores. Sicigia lunar, marea vaciante163
Figura EM-133:	Comportamiento derivadores. Cuadratura lunar, marea vaciante 165
Figura EM-134:	Comportamiento derivadores. Cuadratura lunar, marea llenante 166
Figura EM-135:	Comportamiento derivadores. Cuadratura lunar, marea vaciante 169
Figura EM-136:	Comportamiento derivadores. Cuadratura lunar, marea llenante 170
Figura EM-137:	Comportamiento derivadores. Sicigia lunar, marea llenante
Figura EM-138:	Comportamiento derivadores. Sicigia lunar, marea vaciante
Figura EM-139:	Comportamiento derivadores. Cuadratura lunar, marea vaciante 175
Figura EM-140:	Comportamiento derivadores. Cuadratura lunar, marea llenante 176
Figura EM-141:	Comportamiento derivadores. Sicigia lunar, marea llenante
Figura EM-142:	Comportamiento derivadores. Sicigia lunar, marea vaciante
Figura EM-143:	Comportamiento derivadores. Cuadratura lunar, marea vaciante 182
Figura EM-144:	Comportamiento derivadores. Cuadratura lunar, marea llenante 183
Figura EM-145:	Comportamiento derivadores. Sicigia lunar, marea llenante
Figura EM-146:	Comportamiento derivadores. Sicigia lunar, marea vaciante
Figura EM-147:	Comportamiento derivadores. Sicigia lunar, marea llenante
Figura EM-148:	Comportamiento derivadores. Sicigia lunar, marea vaciante
Figura EM-149:	Comportamiento derivadores. Cuadratura lunar, marea vaciante 192
Figura EM-150:	Comportamiento derivadores. Cuadratura lunar, marea llenante 193
Figura EM-151:	Desplazamiento y dispersión de mancha de rodamina. Sicigia lunar, marea vaciante
Figura EM-152:	Desplazamiento y dispersión de mancha de rodamina. Sicigia lunar, marea llenante
Figura EM-153:	Desplazamiento y dispersión de mancha de rodamina. Cuadratura lunar, marea vaciante
Figura EM-154:	Desplazamiento y dispersión de mancha de rodamina. Cuadratura lunar, marea llenante
Figura EM-155:	Evolución temporal de círculos de áreas equivalentes. Sicigia, marea vaciante

Figura EM-156:	Evolución temporal de círculos de áreas equivalentes. Sicigia, marea llenante
Figura EM-157:	Evolución temporal de círculos de áreas equivalentes. Cuadratura, marea vaciante
Figura EM-158:	Evolución temporal de círculos de áreas equivalentes. Cuadratura, marea llenante
Figura EM-159:	Desplazamiento y dispersión de mancha de rodamina. Cuadratura lunar, marea vaciante
Figura EM-160:	Desplazamiento y dispersión de mancha de rodamina. Cuadratura lunar, marea llenante
Figura EM-161:	Evolución temporal de círculos de áreas equivalentes. Cuadratura, marea vaciante
Figura EM-162:	Evolución temporal de círculos de áreas equivalentes. Cuadratura, marea llenante
Figura EM-163:	Desplazamiento y dispersión de mancha de rodamina. Cuadratura lunar marea vaciante
Figura EM-164:	Desplazamiento y dispersión de mancha de rodamina. Cuadratura lunar, marea llenante
Figura EM-165:	Evolución temporal de círculos de áreas equivalentes. Cuadratura lunar, marea vaciante
Figura EM-166:	Evolución temporal de círculos de áreas equivalentes. Cuadratura lunar, marea llenante
Figura EM-167:	Desplazamiento y dispersión de mancha de rodamina. Cuadratura lunar, marea vaciante
Figura EM-168:	Desplazamiento y dispersión de mancha de rodamina. Cuadratura lunar, marea llenante
Figura EM-169:	Evolución temporal de círculos de áreas equivalentes. Cuadratura lunar, marea vaciante
Figura EM-170:	Evolución temporal de círculos de áreas equivalentes. Cuadratura lunar, marea llenante
Figura EM-171:	Desplazamiento y dispersión de mancha de rodamina. Cuadratura lunar. Marea vaciante
Figura EM-172:	Desplazamiento y dispersión de mancha de rodamina. Cuadratura lunar. Marea llenante
Figura EM-173:	Evolución temporal de círculos de áreas equivalentes. Cuadratura lunar, marea vaciante
Figura EM-174:	Evolución temporal de círculos de áreas equivalentes. Cuadratura lunar, marea llenante
Figura EM-175:	Desplazamiento y dispersión de mancha de rodamina. Cuadratura lunar. Marea vaciante

Figura EM-176:	Desplazamiento y dispersión de mancha de rodamina. Cuadratura lunar. Marea llenante
Figura EM-177:	Evolución temporal de círculos de áreas equivalentes. Cuadratura lunar, marea vaciante
Figura EM-178:	Evolución temporal de círculos de áreas equivalentes. Cuadratura lunar, marea llenante
Figura EM-179:	Desplazamiento y dispersión de mancha de rodamina. Cuadratura lunar. Marea vaciante
Figura EM-180:	Desplazamiento y dispersión de mancha de rodamina. Cuadratura lunar. Marea llenante
Figura EM-181:	Evolución temporal de círculos de áreas equivalentes. Cuadratura lunar, marea vaciante
Figura EM-182:	Evolución temporal de círculos de áreas equivalentes. Cuadratura lunar, marea llenante
Figura EM-183:	Histograma de frecuencia de dirección y velocidad del viento248
Figura EM-184:	Autoespectros del viento249
Figura EM-185:	Ciclo diario del viento, dirección y magnitud promedio250
Figura EM-186:	Histograma de frecuencia de dirección y velocidad del viento252
Figura EM-187:	Autoespectros del viento253
Figura EM-188:	Ciclo diario del viento, dirección y magnitud promedio253
Figura EM-189:	Histograma de frecuencia de dirección y velocidad del viento255
Figura EM-190:	Autoespectros del viento256
Figura EM-191:	Ciclo diario del viento, dirección y magnitud promedio257
Figura EM-192:	Histograma de frecuencia de dirección y velocidad del viento259
Figura EM-193:	Autoespectros del viento260
Figura EM-194:	Ciclo diario del viento, dirección y magnitud promedio260
Figura EM-195:	Histograma de frecuencia de dirección y velocidad del viento262
Figura EM-196:	Autoespectros del viento263
Figura EM-197:	Ciclo diario del viento, dirección y magnitud promedio264
Figura EM-198:	Histograma de frecuencia de dirección y velocidad del viento266
Figura EM-199:	Autoespectros del viento267
Figura EM-200:	Ciclo diario del viento, dirección y magnitud promedio267
Figura EM-201:	Histograma de frecuencia de dirección y velocidad del viento269
Figura EM-202:	Autoespectros del viento270
Figura EM-203:	Ciclo diario del viento, dirección y magnitud promedio271
Figura EM-204:	Curva de marea observada, verano 2012274

Figura EM-205:	Correlación entre valores de marea observada y pronosticada	276
Figura EM-206:	Curva de marea observada	277
Figura EM-207:	Curva de marea observada	278
Figura EM-208:	Curva de marea observada	279
Figura EM-209:	Curva de marea observada	280
Figura EM-210:	Curva de marea observada	281
Figura EM-211:	Curva de marea observada	282
Figura EM-212:	Histograma de incidencia del oleaje	310
Figura EM-213:	Altura significativa (H_s) del oleaje	311
Figura EM-214:	Periodo promedio T _{pro} del oleaje	312
Figura EM-215:	Histograma de incidencia del oleaje	314
Figura EM-216:	Altura significativa del oleaje	315
Figura EM-217:	Periodo promedio Tpro del oleaje	316
Figura EM-218:	Histograma de incidencia del oleaje	318
Figura EM-219:	Altura significativa del oleaje	319
Figura EM-220:	Periodo promedio Tpro del oleaje	320
Figura EM-221:	Histograma de incidencia del oleaje	322
Figura EM-222:	Altura significativa del oleaje medido	323
Figura EM-223:	Periodo promedio Tpro del oleaje	324
Figura EM-224:	Histograma de incidencia del oleaje	326
Figura EM-225:	Altura significativa del oleaje	327
Figura EM-226:	Periodo promedio Tpro del oleaje	328
Figura EM-227:	Histograma de incidencia del oleaje	330
Figura EM-228:	Altura significativa del oleaje medido	331
Figura EM-229:	Periodo promedio Tpro del oleaje	332
Figura EM-230:	Histograma de incidencia del oleaje	334
Figura EM-231:	Altura significativa del oleaje	335
Figura EM-232:	Periodo promedio Tpro del oleaje	336

LÍNEA DE BASE SECCIÓN IIIb

7. ECOSISTEMAS MARINOS

7.1. Ecosistemas marinos

RESUMEN

El presente documento entrega los resultados de la línea de base de ecosistemas marinos del Proyecto "Infraestructura Complementaria", el cual tiene entre sus objetivos principales recuperar la capacidad de procesamiento histórica de Minera Los Pelambres (MLP), que se ha visto mermada por el aumento en la dureza del mineral, así como asegurar el abastecimiento de agua necesario para poder mantener la tasa de procesamiento aprobada, dentro del marco de escasez hídrica en que se inserta la operación actual de MLP. Para cumplir estos objetivos se considera la construcción de una planta desalinizadora en el sector de Puerto Punta Chungo (incluye además obras marinas, como son la captación de agua de mar y la descarga salmuera al mar) y un sistema de impulsión de agua desalinizada.

De acuerdo al artículo 18, letra e.1 del D.S. 40/2012, del Ministerio de Medio del Ambiente, la realización de un Estudio de Impacto Ambiental, en relación al Medio Físico, que considera la caracterización y análisis de los aspectos asociados a la hidrosfera debe considerar los recursos hídricos marinos como la batimetría, corrientes, mareas, oleaje y calidad de agua y sedimentos. Por su parte, el artículo 18, letra e.4 establece que los ecosistemas marinos requiere la siguiente caracterización: "calidad de aguas, sedimentos marinos y la biota que pertenece a dicho ecosistema. Esta descripción comprenderá, entre otros, la identificación, ubicación, distribución, diversidad y abundancia de las especies que componen los ecosistemas existentes, identificando aquellas especies que se encuentren en alguna categoría de conservación de conformidad a lo señalado en el artículo 37 de la Ley. Asimismo, se incluirán las relaciones existentes con el medio físico y con los ecosistemas terrestres y acuáticos continentales".

La caracterización del ecosistema marino para el proyecto se efectuó considerando un total de nueve campañas de muestreo. Cuatro campañas fueron realizadas durante el año 2012 (campañas de verano, otoño, invierno y primavera) en las cercanías del puerto y las restantes cinco campañas de muestreo se efectuaron durante el año 2014 (otoño, invierno y primavera) y 2015 (verano e invierno). Las últimas campañas constituyen una continuación y profundización del estudio de la línea de base que comenzó el 2012, en las que se incluyeron nuevas estaciones de muestreo para caracterizar de mejor forma el ecosistema marino suscrito en el área de influencia.

Para la presente línea de base se definió como área de influencia el interior de la bahía Conchalí desde superficie a fondo, siguiendo el veril de los 30 metros aproximadamente. Adicionalmente, se levantó información de contexto en dos sectores alejados, al norte y al sur de la bahía, lugares que fueron catalogados como estaciones controles.

De esta forma, desde el año 2012 se cuenta con información estacional bio-oceanográfica al interior de bahía Conchalí, y con estaciones de control fuera de la bahía, lo que permite establecer análisis de la evolución en el tiempo de las condiciones naturales y de las

actividades antrópicas que se desarrollan. A continuación, se entrega un resumen de los resultados obtenidos por componente del ecosistema marino, físico químico y biológico.

Caracterización Física

En el sector marino de Punta Chungo se realizaron mediciones y estudios con el objetivo de describir el régimen oceanográfico local caracterizando corrientes, mareas, olas y vientos. Se utilizaron dos instrumentos oceanográficos ADCP (Acustic Dopler Current Profile) para describir las corrientes eulerianas, mareas y mediciones locales de olas. Adicionalmente se liberaron derivadores para caracterizar las corrientes lagrangianas y deriva litoral y también se realizaron seguimientos de dispersión utilizando rodamina WT. Los vientos fueron medidos por una estación meteorológica con que cuenta MLP en las instalaciones del puerto y por una estación de viento instalada durante la medición de corrientes.

Los resultados obtenidos a lo largo de todas las campañas de muestreos (2012, 2014 y 2015) mostraron un patrón de circulación en el área del sector costero de Punta Chungo en general estable en términos direccionales y forzado de manera importante por los vientos reinantes. En este sentido se observó que los flujos netos superficiales tendieron a avanzar en su gran mayoría hacia el norte y este (N y E) forzados principalmente por el viento, el cual tuvo leves variaciones en su dirección de acuerdo al período estacional del año. La capa intermedia siguió un patrón con flujos netos que avanzaron hacia este (E) con variaciones entre los periodos estacionales tendiendo a virar en dirección sur (S). Por su parte, la capa profunda se desplazó regularmente hacia el suroeste (SO).

En términos de magnitud de las corrientes, éstas se mostraron de mediana intensidad, variando entre cada período estacional. En general las corrientes promedio fueron superiores durante las campañas de verano y primavera (promedio de 10,9 m/s) en comparación con el otoño e invierno (promedio 9,6 m/s). Esta situación también podría ser explicada mediante el forzante viento, el que mostró mayor intensidad y estabilidad (mayor incidencia de la direcciones SO y S) en la época estival y de primavera. En los lugares relevantes para el Proyecto, correspondientes a los puntos considerados para la descarga y captación de agua de mar, las mediciones con estos instrumentos marinos presentaron el mismo patrón, pero con leves diferencias en dirección y magnitud de las corrientes, que se explican de manera importante por la geografía de Punta Chungo.

En cuanto a la correntometría lagrangiana, durante todas las campañas (2012, 2014 y 2015), los derivadores mostraron una baja respuesta al forzante marea. Es más, en estas experiencias el viento (bajo ciertas condiciones de magnitud) aparece como un forzante de importancia dentro del movimiento de las aguas en el sector de Punta Chungo junto con la configuración de la línea de la costa.

La dispersión del trazador químico rodamina WT mostró que en el lugar de liberación (sector costero Punta Chungo) la dispersión fue moderada a baja, dominada principalmente por procesos de transporte de masas más que por procesos difusivos.

Caracterización Química

La columna de agua se caracterizó realizando perfiles oceanográficos con un perfilador CTDO (Conductivity, Temperature, Depth, Oxygene) desde superficie hasta la máxima profundidad. En general la columna de agua mostró patrones normales según la

estacionalidad en las campañas del 2012, 2014 y 2015, con valores típicos para la costa central de Chile.

Las muestras de la calidad de agua fueron obtenidas en dos profundidades (fondo y superficie) y los análisis de los analitos o elementos orgánicos e inorgánicos como también de metales fueron realizados por un laboratorio analítico acreditado. En general, entre las diferentes estaciones evaluadas, la calidad del agua presentó características relativamente homogéneas en casi todos los parámetros (más de 100 parámetros analizados) con niveles que variaron en el rango de concentraciones esperables para el agua de mar. Además, se observaron niveles o concentraciones similares en las estaciones emplazadas al interior de bahía Conchalí en comparación con las estaciones controles ubicadas fuera de la bahía. Sin embargo, algunos parámetros fluctuaron entre campañas, por ejemplo, los sólidos sedimentables totales (SST) que según las condiciones oceanográficas (e.g. marejadas) presentan variaciones de acuerdo a los procesos de resuspensión y movimiento de sedimentos. Otros metales como el arsénico (As) y plomo (Pb) presentaron pequeñas alzas en las concentraciones en campañas puntuales. Lo mismo ocurrió con el cobre (Cu) que en general estuvo presente en bajas concentraciones, solamente en otoño 2014 se observaron mayores niveles al interior de la bahía Conchalí pero de igual forma en la estación control sur. Muchos de los analitos o elementos orgánicos como el sulfato, nitrato, fosfato y carbono orgánico total, son parte de los ciclos biogeoquímicos los que fluctúan según asimilaciones y remineralizaciones en los balances de la columna de agua con el sedimento y la biota presente.

Los resultados de la calidad de los sedimentos submareales dan cuenta que en la bahía Conchalí no existe presencia de contaminantes orgánicos y que los procesos oxidativos de la degradación de la materia orgánica son normales ya que los valores del potencial redox fueron positivos, los niveles de carbono orgánico total (C.O.T.) no superaron el 1% y la materia orgánica total (M.O.T.) fue menor a 1,6% en todas las estaciones de muestreo. Respecto de las concentraciones de metales y considerando los niveles de referencia establecidos por la normativa de Canadá, cabe destacar que el cadmio (Cd), cromo (Cr), níquel (Ni), plomo (Pb) y zinc (Zn) presentaron concentraciones inferiores al nivel umbral ISQG (Interim Sediment Quality Guidelines) y al límite de efectos probables (PEL) sobre la biota marina. Sin embargo, en pocas oportunidades se obtuvieron mavores concentraciones a las referidas por la normativa canadiense, como es el caso del arsénico (As) y el mercurio (Hg). El cobre (Cu) también presentó en algunas ocasiones valores sobre la normativa internacional pero estas fueron menores a las reportadas en la mayoría de los puertos de Chile. Además, se pudo establecer que el tiempo de residencia de los metales es bajo ya que las concentraciones de metales varían de una campaña a otra. De este modo, los procesos oceanográficos específicos a nivel de la bahía modulan el patrón de las concentraciones de los metales presentes en los sedimentos submareales dispersándolos v/o acumulándolos en distintas áreas.

Los resultados de metales en tejidos de biota marina analizados exhibieron en la gran mayoría de las muestras niveles de concentración inferiores a los límites establecidos por las diversas normativas de referencia consultadas (Reglamento Sanitario de los Alimentos, D.S. N°977/96, y normativa internacional de referencia de Europa, México y EEUU). Los metales que sobrepasaron los límites establecidos para el consumo humano en algunos organismos fueron los siguientes: Arsénico (As), donde las concentraciones fueron mayores en casi todas las biotas analizadas tanto en la estación control como en el sector del puerto. Otro metal que obtuvo concentraciones elevadas fue el cadmio (Cd), pero se presenta

naturalmente en la columna de agua en conexión con centros de surgencia. El cromo (Cr) en moluscos filtradores también obtuvo valores sobre la norma internacional, pero este varió en los rangos normales para las aguas chilenas. También el cobre (Cu) presentó altos niveles en los crustáceos, tanto en el sector puerto como en la estación control.

Caracterización Biológica

Comunidades planctónicas

En términos generales las campañas realizadas el 2012 mostraron una visión sinóptica de la comunidad planctónica en la bahía Conchalí, donde se muestreó durante un día de forma vertical la columna de agua, evidenciando un patrón estacional variable en términos de abundancia, riqueza y diversidad de especies tanto para el fitoplancton como para el zooplancton. Patrón similar se obtuvo en las campañas realizadas el 2014 y 2015, con la salvedad que los estudios obtuvieron mayores abundancias, riqueza y diversidad de especies, realizando análisis espaciales (en tres niveles de la columna de agua) y temporales (4 a 5 días, más una noche de muestreo).

De las campañas del 2014 y 2015 se puede indicar que la composición de la comunidad en la bahía Conchalí, si bien estuvo dominada en todas las campañas por los copépodos, presentó cierta variabilidad: en invierno 2015 se observó mayor representatividad de organismos holoplanctónicos y de larvas meroplanctónicas representadas por *Concholepas concholepas* en la capa superficial en comparación con las otras campañas, mientras que invierno 2014 y primavera 2014 se registraron mayores valores de abundancia para larvas de decápodos también en la capa superficial, registrándose diferencias entre las estaciones al interior de la bahía y las estaciones controles.

La comunidad fitoplanctónica en general se concentró dentro de la bahía, donde dominaron las diatomeas durante las tres estaciones analizadas, existiendo una alternancia en la dominancia de especies. Por ejemplo, en periodos de baja productividad, como invierno 2014 e invierno 2015, dominaron las especies *Corethron Criophilum* y *Chaetoceros compressus* respectivamente, mientras que en periodos como primavera 2014 y verano 2015 dominó una especie de diatomea de pequeñas células que forman cadenas llamada *Chaetoceros socialis*.

Los diferentes grupos de organismos zooplanctónicos presentaron patrones de distribución temporal y espacial heterogéneos en el área de influencia. Sin embargo, es posible afirmar que las concentraciones mayores de abundancia de organismos zooplanctónicos se presentaron en el estrato superficial y subsuperficial, sobre los 20 metros de profundidad y en la mayoría de los casos (primavera y verano) sobre los gradientes térmicos detectados.

Intermareal de fondo blando

La metodología consistió en mediciones de la playa (pendiente y longitud) y la toma de muestras en triplicado de arena a tres alturas de la playa (alto, medio y bajo), las cuales fueron analizadas biológicamente por un laboratorio especializado. Los resultados indicaron que la playa de Los Vilos es de tipo disipativa, según el tipo de pendiente y oleaje presente. Los organismos que habitan en la arena se distribuyeron en un patrón de zonación de acuerdo a las diferentes alturas mareales de la playa, regulados especialmente por la humedad de la arena entre los niveles de esta misma. Como norma general se encontró que

la zona superior del intermareal estuvo caracterizada por la presencia de *Orchestoidea tuberculata* y *Excirolana* sp., mientras que en la zona baja dominó *Emerita analoga*. Además, se determinó que la playa de Los Vilos, en términos de abundancia y biomasa, es homogénea, lo que se asemeja a muchas playas de la costa de Chile. Leves diferencias de abundancia y biomasa en las distintas épocas del año se deben a cambios físicos en la zona costera, como mayor oleaje y marejadas.

Intermareal rocoso

Para determinar la composición del intermareal rocoso, este fue dividido en tres niveles (alto, medio y bajo), en cada nivel se midió cobertura y densidad de organismos utilizando cuadratas dispuestas al azar.

El intermareal rocoso en el sector Punta Chungo, analizado en los años 2012, 2014 y 2015, presentó características propias de la zona centro norte de Chile, manteniendo una marcada zonación vertical entre intermareal alto, medio y bajo, donde cada estrato exhibió especies que dominaron en términos de cobertura, además de otras especies móviles que presentaron distintas densidades. Dentro de este patrón hubo variaciones en cada estación del año que están influenciadas por la mayor exposición al oleaje y/o radiación solar, como también por procesos ecológicos como por ejemplo la competencia por sustrato, depredación y reclutamiento.

Aves y mamíferos hidrobiológicos

Se realizaron transectos en bote por las islas al interior de la bahía Conchalí (Sector Insular) y a pie por el borde costero (Borde Costero) cuantificando las observación de especies hidrobiológicas. En todas las campañas realizadas (2012, 2014 y 2015), se registraron las mismas especies hidrobiológicas, estas fueron: *Spheniscus humboldti* (pingüino de humboldt), *Lontra felina* (chungungo), *Otaria flavescens* (lobo marino común) y en forma excepcional en invierno 2015 se observó a *Eubalaena australis* (ballena franca austral). Todas las especies están incluidas en alguna categoría de conservación, una clasificada En Peligro (*E. australis*), dos catalogadas como Vulnerables (*S. humboldti y L. felina*) y otra como Preocupación Menor (*O. flavescens*).

El ambiente del Sector Insular presentó la gran mayoría de especies hidrobiológicas tanto en número como en densidad, en comparación con el ambiente del Borde Costero. En el Sector Insular todas las especies identificadas presentan un patrón de distribución distinto en cada campaña realizada. Por los tanto, estas especies ocuparían de igual forma las tres islas presentes, cambiando sus abundancias debido a comportamientos referentes a períodos reproductivos, ecología y zonas de descanso.

Submareal de fondos blandos

Para determinar las comunidades de fondos blandos en la bahía Conchalí se obtuvieron tres réplicas del fondo arenoso del piso submareal, las cuales fueron analizadas biológicamente por un laboratorio especializado. Las comunidades presentes estuvieron dominadas por crustáceos y poliquetos, con una clara disminución en la riqueza de especies en la época primaveral tanto en el 2012 como el 2014 y 2015. En general, las estaciones al interior de bahía Conchalí presentaron condiciones homogéneas en la mayoría de los términos evaluados (*e.g.* los índices ecológicos, cuevas ABC, análisis de similitud y ordenamiento

espacial). Sin embargo, las estaciones de mayor profundidad presentaron algunas diferencias en términos de riqueza y abundancia de especies, debido probablemente a que el sustrato o ambiente donde se encuentran no es el mismo que el de estaciones más someras.

Submareal de fondos duros

La metodología empleada consistió en la realización de un transecto submareal por buzos profesionales cuantificando la cobertura y densidad de organismos utilizando cuadratas posicionadas sobre el fondo rocoso.

Durante el 2012 el submareal rocoso en punta Chungo presentó características propias de comunidades de fondos blanqueados, y durante el 2014 y 2015 presentó características propias de comunidades de fondos duros dominadas por parches de macroalgas bentónicas (turf), algas calcáreas (corallinales) e invertebrados filtradores (*Phragmatopoma* sp.). Dichas comunidades de organismos variaron estacionalmente. Estos cambios estarían influenciados por factores físicos costeros como corrientes, viento y/o surgencias, como también por procesos ecológicos como por ejemplo competencia por sustrato, depredación, reclutamiento, etc. En sectores de mayor exposición al oleaje predominaron comunidades de macroalgas, grandes formaciones rocosas y turf de macroalgas de mayor complejidad donde se observó una variada riqueza y diversidad de especies. Las componentes estructurales del fondo, así como la exposición al oleaje estarían determinando la composición específica del submareal en el área de estudio.

Comunidad de peces

La cuantificación de la comunidad de peces se realizó por buzos profesionales siguiendo un transecto submareal, en donde se cuantificó las especies visibles.

Las comunidades de peces submareales descritas en el área de influencia durante las campañas realizadas los años 2012, 2014 y 2015 mostraron algunas diferencias en términos de riqueza de especies y abundancia (densidad). Sin embargo, los peces observados correspondieron a aquellos habituales de la costa centro norte de Chile y fueron levemente menores a la riqueza de especies descrita para la latitud del área de influencia. La falta de algas pardas erectas y la homogeneidad del sustrato en el sector alrededor de Punta Chungo, pudo haber incidido en la baja abundancia de especies. A diferencia de sectores de mayor oleaje y heterogeneidades del sustrato, como por ejemplo grandes rocas y cuevas, los cuales presentaron mayores abundancias y riqueza de especies.

7.1.1. Objetivos

7.1.1.1. Objetivo general

El objetivo central de este estudio es elaborar la línea de base de ecosistemas marinos en el área de influencia, describiendo la oceanografía física del ambiente costero, caracterizando la calidad química del agua, sedimentos y de metales en tejidos de biota marina, y determinar los atributos ecológicos de comunidades biológicas presentes en la columna de agua, submareal e intermareal.

7.1.1.2. Objetivos Específicos

- Describir el régimen oceanográfico local de la bahía Conchalí, caracterizando corrientes, viento, marea y olas.
- Cuantificar los componentes químicos orgánicos, inorgánicos y metales presentes en la columna de agua y los sedimentos submareales en el área de influencia.
- Cuantificar la metales en tejidos de biota marina en el área de influencia y en controles.
- Caracterizar la dinámica de las comunidades fitoplanctónicas y zooplanctónicas en el área de influencia.
- Caracterizar las comunidades macrobentónicas sésiles y móviles de ambientes intermareales de sustratos blandos y duros en el área de influencia.
- Caracterizar las comunidades macrobentónicas sésiles y móviles de ambientes submareales de sustratos blandos y duros en el área de influencia.
- Caracterizar la ictiofauna que habita en el área de influencia.

7.1.2. Área de Influencia

7.1.2.1. <u>Criterios generales</u>

Al igual que en los componentes señalados anteriormente, los criterios generales para determinar el área de influencia de este componente se derivan de lo que señala el artículo 6 del D.S. N°40/2012 sobre RSEIA. En específico se consideraron los siguientes:

- Criterio 1 Diseño y características de las obras del Proyecto
- Criterio 2 Características propias del sitio o espacio geográfico donde se desarrollarán las partes, obras y acciones del Proyecto, en especial sus elementos físicos, químicos y biológicos.
- Criterio 3 Naturaleza de las fuentes de emisión
- Criterio 4 Características de las especies que hacen uso del hábitat potencialmente afectado por el Proyecto: Dependiendo de sus atributos poblacionales e individuales, y el grado de plasticidad frente a escenarios desfavorables, además de su valoración biológica patrimonial (estados de conservación, grado de endemismo, entre otras).
- Criterio 5 Cercanía del Proyecto a las Áreas de Manejo y Explotación de Recursos Bentónicos (AMERBs)

7.1.2.2. <u>Aplicabilidad de criterios</u>

• Criterio 1 – Diseño y características de las obras del Proyecto

Frente a Punta Chungo, en la bahía Conchalí, el Proyecto considera la construcción de estructuras submarinas, las que incluyen dos ductos sobre el piso submarino. El primer ducto, transportará agua de mar desde al cajón de captación al borde costero, éste será de un (1) metro de diámetro con una longitud de aproximadamente 730 metros en dirección noroeste desde las obras en tierra y tendrá un cajón de captación a 20 metros de

profundidad con una altura aproximada de 4 metros. El segundo ducto, de 80 cm de diámetro, descargará el rechazo de la planta desalinizadora (salmuera) a través de un emisario con difusores ubicado a 1.100 metros (aproximadamente) hacia el oeste de las obras en tierra y a una profundidad de 26 metros. Ambos ductos estarán separados entre sí en unos 500 metros. Por lo tanto, el área de influencia del Proyecto que incluyen las etapas de construcción y operación, considera las superficies a afectar por las obras marinas más un buffer de 5 metros a cada costado del radio de la tubería en tres dimensiones, abarcando el piso marino y la columna de agua. Cabe señalar que este buffer se determina considerando que en torno a la tubería se presentan especies de baja movilidad que mayoritariamente viven en la infauna (bentos).

• Criterio 2 – Características propias del área o espacio geográfico

El Proyecto contempla el uso de la bahía Conchalí para los procesos de captación agua de mar una campana a 20 metros de profundidad y la descarga del rechazo de la planta desalinizadora (salmuera) a 26 metros en el piso submareal de la bahía. Por lo anterior, el área de influencia considera la columna de agua desde la superficie hasta una profundidad (veril) de 30 metros aproximadamente y, los sedimentos marinos alrededor de las obras marinas en la bahía de Conchalí. Dicho veril, ha sido considerado como criterio conservador aun cuando las obras marinas se emplazarán a una profundidad máxima de 26 m.

• Criterio 3 – Naturaleza de las fuentes de emisión

El cajón de captación cumple con la función de captar agua de mar a una velocidad de entre 0,10 a 0,15 m/s. La presencia de una rejilla de 900 mm impedirá el ingreso de especies marinas de tamaño superior a dicha abertura, sin embargo, organismos planctónicos como el fito y zooplancton de baja movilidad pueden ingresar al sistema y por ende hasta los primeros procesos de pre-filtrado. Este aspecto se minimiza controlando la velocidad de ingreso la cual, y como criterio de diseño considera ser igual a la que presentan las corrientes marinas.

Por otro lado, en el lugar de la descarga de la salmuera, ésta se mantendrá sobre el fondo marino por la mayor densidad que presenta. Según las modelaciones realizadas a nivel local, la concentración salina sobrepasará los niveles normales de salinidad (34 a 36 psu) en un radio de 7 m., la cual se desplazará y será diluida paulatinamente por las corrientes marinas. Este cambio en la salinidad a nivel local modificará el ambiente, tanto en el piso submareal como en la columna de agua circundante a las obras.

Por lo tanto, como la bahía Conchalí es un ambiente abierto y dinámico influenciado por las condiciones oceanográficas de corrientes y vientos, la integración de estos tres fenómenos (captación del plancton, aumento salino en el lugar de la descarga e incorporación de agentes alóctonos), determinan que el área de influencia considera la bahía Conchalí desde el borde costero a aproximadamente los 30 metros de profundidad (veril -30 m).

• Criterio 4 – Características de las especies que hacen uso del hábitat

Según el Ministerio del Medio Ambiente a lo largo de todo Chile, ningún organismo planctónico ni peces marinos se encuentra en categoría de conservación. Sin embargo, cuatro especies hidrobiológicas que habitan los ecosistemas marinos se encuentran en alguna categoría de conservación: el pingüino de humboldt (*Spheniscus humboldti*) y el

chungungo (*Lontra felina*) están catalogadas como Vulnerables, el lobo marino común (*Otaria flavescens*) está catalogado como Preocupación Menor, y la ballena franca austral (*Eubalaena australis*), observada una vez, que está catalogada En Peligro. Estas especies se desplazan por la bahía de Conchalí; no obstante, tienen una distribución a lo largo de Chile.

 Criterio 5 – Cercanía del Proyecto a Áreas de Manejo y Explotación de Recursos Bentónicos (AMERBs)

En la bahía Conchalí existen siete áreas de manejo de recursos bentónicos (AMERBs) pertenecientes a tres organizaciones del sindicato de pescadores. El Proyecto contempla la captación de agua de mar lo que en teoría haría disminuir el potencial número de larvas de especies al interior de las AMERBs. Además, los cambios en la salinidad, por la descarga de salmuera, también pueden afectar a los recursos marinos al interior de las áreas de manejo.

En resumen, de acuerdo a los criterios señalados y justificados previamente, se establece que el área de influencia del Proyecto para el componente de Ecosistemas Marinos abarca la bahía Conchalí, excluyendo las islas Huevo, Verde y Blanca. Sus límites son, por el Oeste (boca de la bahía) hasta la línea que aproximadamente sigue el veril de los 30 m. de profundidad (Figura EM-1). Esta área, abarca unas superficie de 1.768 ha.

Es importante señalar que para contextualizar de forma óptima el comportamiento del ecosistema marino en la bahía Conchalí, se ha incorporado información de dos (2) sectores costeros alejados al área de influencia del Proyecto, uno al norte llamado Los Lilenes y otro al sur llamado Cascabeles (Figura EM-1).

Las estaciones de muestreo ubicadas fuera de la bahía Conchalí son entendidas entonces como información de contexto o estaciones controles, pero no forman parte del área de influencia del Proyecto. Dichas estaciones buscan comparar la situación dentro del área de influencia con sectores o áreas de control alejadas de la zona de Proyecto. Lo anterior, con el propósito de contrastar hallazgos que puedan ser propios o particulares del área bajo potencial intervención y de este modo ser categóricos respecto ciertos cambios en el ambiente marino.

Figura EM-1: Área de influencia del Proyecto

7.1.3. Metodología General

La caracterización de los ecosistemas marinos en el área de influencia se efectuó considerando un total de nueve campañas de muestreo, cuatro de las cuales fueron realizadas durante el año 2012 (campañas de verano, otoño, invierno y primavera), tres campañas de muestreo se efectuaron durante el año 2014 (otoño, invierno y primavera) y dos campañas se realizaron el 2015 (verano e invierno). Las campañas del 2014 y 2015 profundizaron la información de las campañas realizadas el 2012, donde se modificaron e incluyeron nuevas estaciones de muestreo para caracterizar de mejor formar los ecosistemas marinos en la bahía Conchalí y sus alrededores de acuerdo a las obras marinas que contempla el Proyecto.

Las campañas realizadas durante el año 2012 fueron autorizadas por la SUBPESCA mediante Resolución Exenta Nº2961 del 10 de noviembre 2011 y por el SHOA a través de los ordinarios 13270/24/665 del 3 de octubre 2011. Las campañas realizadas el año 2014 y la de varano 2015 fueron autorizadas a Jaime Illanes y Asociados Consultores S.A. mediante Resolución Exenta de la SUBPESCA Nº 1322 del 14 de mayo de 2014 y del SHOA mediante Ordinario SHOA Nº 13270/24/290/VRS de fecha 7 de mayo de 2014. La campaña del invierno del 2015 fue autorizada por la SUBPESCA mediante la Resolución Exenta 2035 del 29 de junio 2015 y por el SHOA a través de los ordinarios 13270/24/426 y 13270/24/424 del 9 de julio 2015 (Anexo EM-1).

En la Tabla EM-1 se entrega un resumen de las campañas realizadas el año 2012, 2014 y 2015 indicando las componentes del ecosistema marino que fueron caracterizadas.

			20	12			2014		20	15
Componentes	Subcomponentes	Verano	Otoño	Invierno	Primavera	Otoño	Invierno	Primavera	Verano	Invierno
	Corrientes	Х	Х	Х	Х			Х	Х	Х
Occonografía	Vientos	Х	Х	Х	Х			Х	Х	Х
Física	Marea	Х	Х	Х	Х			Х	Х	Х
1 13104	Correlación Cruzada	Х	Х	Х	Х			Х	Х	Х
	Mediciones locales de Olas	Х	Х	Х	Х			Х	Х	Х
	Columna de Agua	Х	Х	Х	Х	Х	Х	Х	Х	Х
Oceanografía	Calidad del Agua	Х	Х	Х	Х	Х	Х	Х	Х	Х
Química	Sedimentos Submareales	Х	Х	Х	Х	Х	Х	Х	Х	Х
	Metales en Biota Marina	Х	Х	Х	Х	Х	Х	Х	Х	Х
	Comunidades Planctónicas						-			-
	Determinación Planctónica	Х	Х	Х	Х					
	Dinámica del Plancton					Х	Х	Х	Х	Х
	Comunidades Intermareales						-			-
Occanografía	Fondos Blandos	Х	Х	Х	Х	Х	Х	Х	Х	Х
Biológica	Fondos Rocoso	Х	Х	Х	Х	Х	Х	Х	Х	Х
Diologica	Aves y Mamífero Hidrobiológicos	Х	Х	Х	Х	Х	Х	Х	Х	Х
	Comunidades Submareales						-			-
	Fondo Blando	Х	Х	Х	Х	Х	Х	Х	Х	Х
	Fondo Rocoso	Х	Х	Х	Х	Х	Х	Х	Х	Х
	Peces	Х	Х	Х	Х	Х	Х	Х	Х	Х

Tabla EM-1: Resumen de los componentes y subcomponentes analizados en las distintas campañas de muestreo realizadas durante el 2012, 2014 y 2015

7.1.4. Resultados

7.1.4.1. Caracterización física (oceanografía física)

A continuación se entrega en detalle el catastro histórico y compilado de las campañas realizadas el año 2012 (verano, otoño, invierno y primavera). De igual forma se incorpora información de la campaña de actualización realizada en primavera 2014, verano e invierno 2015 y finalmente se presenta una comparación de las campañas realizadas el 2012, 2014 y 2015.

Al interior de área de influencia del Proyecto, en el sector marino de Punta Chungo, se realizaron las mediciones y estudios oceanográficos (Figura EM-2). Con el objetivo de describir el régimen oceanográfico local, entorno a la captación de agua de mar y la descarga de Proyecto en la bahía Conchalí, caracterizando corrientes, vientos, mareas y olas (Anexo EM-5).

7.1.4.1.1 Corrientes marinas

• Corrientes Eulerianas

El movimiento de las aguas depende de muchos factores, cada uno de los cuales tienen escalas de tiempo definidas, que determinan la dirección y velocidad de un fluido en cualquier momento. Una forma de estimar estos movimientos son las mediciones continuas de corrientes (eulerianas) en un punto geográfico fijo, lo cual permite detectar las variaciones de la intensidad de las corrientes en el tiempo, las que son respuesta a los principales agentes forzantes del movimiento del agua.

- Verano 2012

Materiales y métodos

La campaña de verano 2012 se realizó entre los días 9 de noviembre al 10 de diciembre de 2012 (período de sicigia y cuadratura lunar). Estas mediciones se efectuaron mediante el anclaje (fondeo) de un perfilador de corrientes acústico Doppler ADCP debidamente calibrado, marca RD Instruments, modelo WorkHorse Sentinel 614,4 kHz, en un punto con las siguientes coordenadas (Figura EM-2): 262.679 E; 6.469.215 N (Datum WGS84).

El ADCP fue instalado en el veril de 18,3 metros (app.) con respecto al Nivel de Reducción de Sondas (NRS), y a 0,5 metros sobre el fondo marino. Este instrumento fue programado para medir la dirección y magnitud de las corrientes a través de la columna de agua, determinándose 32 capas de medición (de 0,5 metros de espesor cada una de ellas) (Tabla EM-2).

Cana	Centro de capa desde	Limite superior de la capa				
Capa	el fondo marino (m)	desde el fondo marino (m)				
1	2,11	2,36				
2	2,61	2,86				
3	3,11	3,36				
4	3,61	3,86				
5	4,11	4,36				
6	4,61	4,86				
7	5,11	5,36				
8	5,61	5,86				
9	6,11	6,36				
10	6,61	6,86				
11	7,11	7,36				
12	7,61	7,86				
13	8,11	8,36				
14	8,61	8,86				
15	9,11	9,36				
16	9,61	9,86				
17	10,11	10,36				
18	10,61	10,86				
19	11,11	11,36				
20	11,61	11,86				
21	12,11	12,36				

Tabla EM-2: Capas de medición estudio de corrientes con ADCP

Сара	Centro de capa desde el fondo marino (m)	Límite superior de la capa desde el fondo marino (m)
22	12,61	12,86
23	13,11	13,36
24	13,61	13,86
25	14,11	14,36
26	14,61	14,86
27	15,11	15,36
28	15,61	15,86
29	16,11	16,36
30	16,61	16,86
31	17,11	17,36
32	17,61	17,86

Fuente: consultora Costasur

Transductores desde el fondo marino = 0.5 m

1st. Bin = 1,61 m (centro de 1^a capa desde transductores)

1st. Bin = 2,11 m (centro de 1^a capa desde el fondo marino)

Bin Size	= 0,5 m
----------	---------

El análisis de la información consistió en procesar 3 capas características de la columna de agua (capa superficial, intermedia y de fondo). De esta manera, las capas analizadas fueron las siguientes:

Capa 32 (superficie):	Capa centrada a 17,61 metros desde el fondo
Capa 17 (intermedia):	Capa centrada a 10,11 metros desde el fondo
Capa 1 (fondo):	Capa centrada a 2,11 metros desde el fondo

Los registros de la dirección de las corrientes fueron referidos al norte geográfico, empleándose para tal efecto la corrección de desviación magnética local. Con la información registrada (datos cada 10 minutos), se elaboraron series de tiempo horaria

La información de corrientes fue sometida a un análisis estadístico de frecuencias por rangos de dirección y magnitud para una rosa de 8 direcciones (tabla e histograma). Por su parte, las series horarias fueron sometidas a un análisis de series de tiempo (estadística básica de componentes, dispersión, DVP y espectral).

Resultados

Capa 33 (superficie)

A nivel superficial, las corrientes observadas presentaron un patrón de comportamiento direccional dominado por las direcciones asociadas al 1^{er} cuadrante. Así, las mayores ocurrencias se registraron en las direcciones NE, E y N (23,0%, 20,0% y 16,3%, respectivamente). El resto de las direcciones se agrupó entre 5,1% (dirección SW) y 10,6% (dirección NW, Figura EM-3 y Tabla EM-3).

Las magnitudes medias registradas se agruparon en torno a los 12,8 cm/s ($\pm\pm$ 6,9 cm/s). En particular, la dirección NE mostró la mayor magnitud promedio, con un valor de 15,5 cm/s. Por su parte, las máximas velocidades detectadas fueron de 43,7 cm/s (0,85 nudos), 40,9

cm/s (0,80 nudos) y 37,5 cm/s (0,73 nudos) asociadas a las direcciones NE, E y SW, respectivamente (Tabla EM-3).

La mayor ocurrencia de magnitud se registró en el rango de 9,1 a 13,0 cm/s, con un porcentaje de 23,2%. En tanto que el rango 5,1 cm/s a 9,0 cm/s agrupó un 21,2% de las mediciones (Figura EM-3).

Las corrientes registradas en esta capa se mostraron de mediana a alta intensidad, encontrándose un 5,6% de la información sobre 25,0 cm/s. Por último, se encontró un 0,5% de las mediciones bajo 1,0 cm/s (Figura EM-3).

	FRECUENCIA DE INCIDENCIA DE CORRIENTES								
Velocidad	Direcciones								
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.1	0.5
1,1 - 5,0	1.6	1.6	1.9	1.8	1.1	1.3	0.9	1.6	11.9
5,1 - 9,0	3.3	3.3	3.4	2.5	2.0	1.4	2.1	3.1	21.2
9,1 - 13,0	4.3	4.6	4.4	2.3	2.2	1.1	1.7	2.7	23.2
13,1 - 17,0	3.1	4.7	3.9	1.7	1.6	0.7	1.0	1.8	18.6
17,1 - 21,0	2.2	3.5	3.1	0.8	0.7	0.4	0.4	0.8	12.0
21,1 - 25,0	1.1	2.6	1.8	0.3	0.5	0.1	0.2	0.4	7.0
> 25,0	0.6	2.7	1.4	0.2	0.2	0.2	0.1	0.3	5.6
Total Efectivo	16.3	23.0	20.0	9.6	8.3	5.1	6.5	10.6	99.5
Maximo (cm/s)	33.2	43.7	40.9	37.2	36.0	37.5	31.6	32.8	43.7
Promedio (cm/s)	12.7	15.5	14.0	10.7	11.4	10.0	10.3	11.0	12.8
			FREC	UENCIA DE	EXCEDENCI	A DE CORRIE	INTES		
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.6	2.7	1.4	0.2	0.2	0.2	0.1	0.3	5.6
> 21,0	1.7	5.2	3.3	0.5	0.6	0.3	0.3	0.7	12.6
> 17,0	3.9	8.8	6.4	1.3	1.4	0.7	0.7	1.5	24.6
> 13,0	7.1	13.5	10.3	3.0	2.9	1.4	1.7	3.3	43.2
> 9,0	11.3	18.1	14.7	5.3	5.1	2.5	3.5	6.0	66.4
> 5,0	14.7	21.4	18.1	7.8	7.1	3.9	5.6	9.0	87.7
> 1,0	16.3	23.0	20.0	9.6	8.3	5.1	6.5	10.6	99.5

Tabla EM-3: Frecuencia de incidencia y excedencia de corrientes. Capa superficial

Fuente: consultora Costasur

Figura EM-3: Histograma de frecuencia de dirección y velocidad de corrientes. Capa superficial

Fuente: consultora Costasur

Para el análisis de las corrientes como series de tiempo, éstas fueron reducidas a series horarias, calculándose las respectivas componentes ortogonales. Así, se definieron las componentes U y V de la siguiente manera:

Componente U: Este – Weste, positiva si el flujo va hacia el Este.

Componente V: Norte – Sur, positiva si el flujo va hacia el Norte.

Las series de tiempo de componentes ortogonales, fueron sometidas a un análisis estadístico básico, este análisis fue realizado a todas las series de tiempo informadas en la presente campaña. En la Tabla EM-4 se entregan los resultados de este análisis:

Tabla EM-4: Estadísticas de series orto	ogonales. Capa superficial
---	----------------------------

Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)	
U (este-weste)	-31,4	34,6	4,6	9,7	
V (norte-sur)	-29,6	31,7	3,6	9,2	

Fuente: consultora Costasur

La Figura EM-4 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa una tendencia de las corrientes a agruparse en torno al 1^{er} cuadrante. Los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección NE (componente promedio U positiva y componente promedio V positiva, siendo esta última levemente inferior en términos de magnitud).

Fuente: consultora Costasur

Con el objeto de corroborar lo anterior, y suponiendo que la corriente observada es espacialmente homogénea y presenta similares fluctuaciones temporales en ese espacio, es posible explicar el comportamiento de una partícula de agua a través de un diagrama de vector progresivo (DVP). El diagrama de vector progresivo (Figura EM-5) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el NE (51,9°).

Figura EM-5: Diagrama de vector progresivo. Capa superficial

Por último, y para determinar el comportamiento de la corriente en el dominio de la frecuencia, se aplicó un análisis estadístico de tipo espectral (12 grados de libertad y 95% de confianza). Este análisis permite determinar la cantidad de energía (densidad espectral) que se encuentra asociada a las distintas bandas de frecuencia (período).

Fuente: consultora Costasur

Figura EM-6: Autoespectros de corrientes. Capa superficial

Fuente: consultora Costasur

En los espectros presentados en la Figura EM-6, se observa alto contenido de energía en las componentes U y V en la banda de frecuencia diurna (0,04 cph). Ambas situaciones atribuibles posiblemente al efecto del viento.

Capa 17 (intermedia)

En este nivel, las corrientes observadas presentaron un patrón de comportamiento distinto al detectado en la capa más superficial. A saber, se observó un predominio de las direcciones asociadas al 2^{do} cuadrante: 15,9% (dirección SE), 14,5% (dirección E) y 13,6% (dirección S). El resto de las direcciones se agrupó entre 8,9% (dirección SW) y 11,7% (dirección NW, Figura EM-7 y Tabla EM-5).

Las magnitudes medias registradas se agruparon en torno a los 5,7 cm/s (\pm 3,0 cm/s). En particular, la dirección S mostró la mayor magnitud promedio, con un valor de 6,4 cm/s. Por su parte, las máximas velocidades detectadas fueron de 19,8 cm/s (0,38 nudos) y 19,3 cm/s (0,38 nudos) asociadas a las direcciones S y NE, respectivamente (Tabla EM-5).

Así también, la mayor ocurrencia de magnitud se registró en el rango de 1,1 a 5,0 cm/s, con un porcentaje de 46,6%. En tanto que el rango 5,1 cm/s a 9,0 cm/s agrupó un 36,6% de las mediciones (Figura EM-7). Las corrientes registradas en esta capa se mostraron de mediana intensidad, encontrándose un 0,2% de la información sobre 17,0 cm/s. Por último, se encontró un 3,4% de las mediciones bajo 1,0 cm/s (Tabla EM-5).

Tabla EM-5: Frecuencia de incidencia y excedencia de corrientes. Capa intermedia

	FRECUENCIA DE INCIDENCIA DE CORRIENTES								
Velocidad	Direcciones								
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.5	0.4	0.4	0.3	0.4	0.4	0.4	0.4	3.4
1,1 - 5,0	5.4	5.8	6.7	6.4	5.6	5.4	5.4	5.8	46.6
5,1 - 9,0	3.2	4.0	6.0	6.4	5.2	2.9	4.4	4.4	36.6
9,1 - 13,0	0.8	1.1	1.7	2.5	2.3	0.5	1.1	1.3	11.3
13,1 - 17,0	0.3	0.3	0.1	0.5	0.5	0.0	0.1	0.2	2.0
17,1 - 21,0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.2
21,1 - 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Efectivo	9.8	11.2	14.5	15.9	13.6	8.9	11.0	11.7	96.6
Maximo (cm/s)	17.4	19.3	17.5	17.8	19.8	13.9	14.8	18.7	19.8
Promedio (cm/s)	5.2	5.5	5.7	6.3	6.4	4.8	5.5	5.6	5.7

Velocidad (cm/s)	FRECUENCIA DE EXCEDENCIA DE CORRIENTES								
	Direcciones								
	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 21,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 17,0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.2
> 13,0	0.3	0.3	0.1	0.5	0.5	0.0	0.1	0.2	2.2
> 9,0	1.1	1.4	1.8	3.1	2.8	0.6	1.2	1.5	13.5
> 5,0	4.3	5.4	7.8	9.5	8.0	3.5	5.6	5.9	50.1
> 1,0	9.8	11.2	14.5	15.9	13.6	8.9	11.0	11.7	96.6

Fuente: consultora Costasur

Figura EM-7: Histograma de frecuencia de dirección y velocidad de corrientes. Capa intermedia

Fuente: consultora Costasur

En la Tabla EM-6 se entregan los resultados del análisis estadístico de las series de tiempo.

Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv.St. (cm/s)
U (este-weste)	-13,1	12,8	0,6	4,2
V (norte-sur)	-16,0	13,5	-0,4	4,5

$\mathbf{r}_{\mathbf{a}}$	Tabla I	EM-6:	Estadísticas	de series	ortogonales.	Capa intermedia
---------------------------	---------	-------	---------------------	-----------	--------------	-----------------

Fuente: consultora Costasur

La Figura EM-8 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa una tendencia de las corrientes a agruparse en torno al 2^{do} cuadrante. Los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección SE (componente promedio U positiva y componente promedio V negativa, siendo esta última levemente inferior en términos de magnitud).

Fuente: consultora Costasur

El diagrama de vector progresivo (Figura EM-9) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SE (125,3°). En los espectros presentados en la Figura EM-10, se observó cierto contenido de energía en la banda diurna (componentes U y V). Los máximos diurno pueden ser atribuibles posiblemente al efecto del viento.

Fuente: consultora Costasur

Figura EM-10: Autoespectros de corrientes. Capa intermedia

Capa 1 (fondo)

Las corrientes observadas presentaron un predominio de las direcciones asociadas al 2^{do} cuadrante. De esta manera, las mayores ocurrencias se registraron en las direcciones E y SE (18,2% y 17,2%, respectivamente). El resto de las direcciones se agrupó entre 6,3% (dirección N) y 14,6% (dirección W, Figura EM-11 y Tabla EM-7).

Por lo general, las magnitudes medias registradas se agruparon en torno a los 5,3 cm/s (\pm 2,8 cm/s). En particular, la dirección W mostró la mayor magnitud promedio, con un valor de 6,2 cm/s, respectivamente. Por su parte, las máximas velocidades detectadas fueron de 20,9 cm/s (0,41 nudos) y 17,5 cm/s (0,34 nudos), asociadas a las direcciones W y E, respectivamente (Tabla EM-7).

Así también, la mayor ocurrencia de magnitud se registró en el rango de 1,1 a 5,0 cm/s, con un porcentaje de 51,1%. En tanto que el rango 5,1 cm/s a 9,0 cm/s agrupó un 35,6% de las mediciones (Figura EM-11).

Las corrientes registradas durante este período de mediciones se mostraron de mediana intensidad, encontrándose un 0,1% de la información sobre 17,0 cm/s. Por último, se encontró un 3,7% de las mediciones bajo 1,0 cm/s (Tabla EM-7).

		FRECUENCIA DE INCIDENCIA DE CORRIENTES							
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.4	0.4	0.4	0.7	0.5	0.3	0.5	0.5	3.7
1,1 - 5,0	4.5	5.8	8.7	8.2	6.2	6.4	6.2	5.0	51.1
5,1 - 9,0	1.8	2.7	7.2	7.1	4.3	4.0	5.7	2.8	35.6
9,1 - 13,0	0.1	0.2	1.9	1.7	0.8	0.9	2.2	0.6	8.4
13,1 - 17,0	0.0	0.0	0.2	0.1	0.1	0.2	0.4	0.1	1.1
17,1 - 21,0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1
21,1 - 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Efectivo	6.3	8.8	18.2	17.2	11.3	11.5	14.6	8.5	96.3
Maximo (cm/s)	12.6	16.8	17.5	16.5	15.4	17.0	20.9	13.7	20.9
Promedio (cm/s)	4.0	4.5	5.6	5.6	5.1	5.2	6.2	4.8	5.3

 Tabla EM-7: Frecuencia de incidencia y excedencia de corrientes. Capa fondo

	FRECUENCIA DE EXCEDENCIA DE CORRIENTES								
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 21,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 17,0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1
> 13,0	0.0	0.0	0.3	0.1	0.1	0.2	0.5	0.1	1.3
> 9,0	0.1	0.2	2.2	1.8	0.9	1.1	2.7	0.6	9.6
> 5,0	1.8	3.0	9.4	8.9	5.1	5.1	8.4	3.4	45.2
> 1,0	6.3	8.8	18.2	17.2	11.3	11.5	14.6	8.5	96.3

Fuente: consultora Costasur

Figura EM-11: Histograma de frecuencia de dirección y velocidad de corrientes. Capa fondo

Fuente: consultora Costasur

En la Tabla EM-8 se entregan los resultados del análisis estadístico de las series de tiempo.

Tabla Elli di Editaldidad do donto ontogonaldoi dapa fondo								
Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)				
U (este-weste)	-18,4	17,5	0,3	4,7				
V (norte-sur)	-11,1	9,8	-1,0	3,4				
	-							

Tabla EM-8: Estadísticas de series ortogonales. Capa fondo

Fuente: consultora Costasur

La Figura EM-12 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa cierta tendencia de las corrientes a agruparse en torno a las direcciones asociadas al 2^{do} cuadrante. Por otra parte, los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección SE – S (componente promedio U positiva y componente promedio V negativa, siendo la primera menor en términos de magnitud).

Fuente: consultora Costasur

El diagrama de vector progresivo (Figura EM-13) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SE – S (162,4°). En los espectros presentados en la Figura EM-14, se observa mayor contenido de energía en la componente U respecto de su similar V, en prácticamente todas las bandas de frecuencia. Así también, se detectó máximos energéticos en las bandas de frecuencia diurna y semidiurna.

Fuente: consultora Costasur

Figura EM-14: Autoespectros de corrientes. Capa fondo

- Otoño 2012

Materiales y métodos

La campaña de mediciones de corrientes eulerianas se realizó entre los días 11 de abril al 14 de mayo de 2012 (período de sicigia y cuadratura lunar). Estas mediciones se efectuaron mediante el anclaje (fondeo) de un perfilador de corrientes acústico Doppler ADCP debidamente calibrado, marca RD Instruments, modelo WorkHorse Sentinel 614,4 kHz, en un punto con las siguientes coordenadas (Figura EM-2): 262.691 E; 6.469.230 N (Datum WGS84).

El ADCP fue instalado en el veril de 18,2 metros (app.) con respecto al Nivel de Reducción de Sondas (NRS), y a 0.5 metros sobre el fondo marino. Este instrumento fue programado para medir la dirección y magnitud de las corrientes a través de la columna de agua, determinándose 32 capas de medición (de 0,5 metros de espesor cada una de ellas) (Tabla EM-9).

Сара	Centro de capa desde el fondo marino (m)	Límite superior de la capa desde el fondo marino (m)
1	2,11	2,36
2	2,61	2,86
3	3,11	3,36
4	3,61	3,86
5	4,11	4,36
6	4,61	4,86

Tabla EM-9: Capas de medición estudio de corrientes con ADCP

Cana	Centro de capa	Límite superior de la capa
Capa	(m)	(m)
7	(11)	(11)
1	5,11	5,30
8	5,61	5,86
9	6,11	6,36
10	6,61	6,86
11	7,11	7,36
12	7,61	7,86
13	8,11	8,36
14	8,61	8,86
15	9,11	9,36
16	9,61	9,86
17	10,11	10,36
18	10,61	10,86
19	11,11	11,36
20	11,61	11,86
21	12,11	12,36
22	12,61	12,86
23	13,11	13,36
24	13,61	13,86
25	14,11	14,36
26	14,61	14,86
27	15,11	15,36
28	15,61	15,86
29	16,11	16,36
30	16,61	16,86
31	17,11	17,36
32	17,61	17,86

Fuente: consultora Costasur

Transducto	pres desde el fondo marino = 0,5 m
1st. Bin	= 1,61 m (centro de 1 ^ª capa desde transductores)
1st. Bin	= 2,11 m (centro de 1ª capa desde el fondo marino)
Bin Size	= 0,5 m

El análisis de la información consistió en procesar 3 capas características de la columna de agua (capa superficial, intermedia y de fondo). De esta manera, las capas analizadas fueron las siguientes:

Capa 32 (superficie):	Capa centrada a 17,61 metros desde el fondo
Capa 17 (intermedia):	Capa centrada a 10,11 metros desde el fondo
Capa 1 (fondo):	Capa centrada a 2,11 metros desde el fondo

Como los registros de la dirección de las corrientes son referidos originalmente al norte magnético, éstos fueron referidos al norte geográfico, empleándose para tal efecto la corrección de desviación magnética local. Con la información registrada (datos cada 10 minutos), se elaboró series de tiempo horaria.

La información de corrientes fue sometida a un análisis estadístico de frecuencias por rangos de dirección y magnitud para una rosa de 8 direcciones (tabla e histograma). Por su parte, las series horarias fueron sometidas a un análisis de series de tiempo (estadística básica de

componentes, dispersión, DVP y espectral). Además, se realizó una extrapolación de valores extremos.

Resultados

Capa 32 (superficie)

A nivel superficial, las corrientes observadas presentaron un patrón de comportamiento direccional dominado por las direcciones asociadas al 1er cuadrante. Así, las mayores ocurrencias se registraron en las direcciones E y NE (21,8% y 19,1%, respectivamente), y el resto de las direcciones se agrupó entre 6,8% (dirección SW) y 15,2% (dirección SE, Figura EM-15 y Tabla EM-10).

Las magnitudes medias registradas se agruparon en torno a los 9,6 cm/s (± 5,6 cm/s), en particular la dirección E mostró la mayor magnitud promedio, con un valor de 11,2 cm/s. Por su parte, las máximas velocidades detectadas fueron de 42,2 cm/s (0,82 nudos), 41,4 cm/s (0,80 nudos) y 41,2 cm/s (0,80 nudos) asociadas a las direcciones S, E y NE, respectivamente (Tabla EM-10).

La mayor ocurrencia de magnitud se registró en el rango de 5,1 a 9,0 cm/s, con un porcentaje de 31,3%, en tanto que el rango 9,1 cm/s a 13,0 cm/s agrupó un 24,3% de las mediciones (Figura EM-15). Las corrientes registradas en esta capa se mostraron de mediana a alta intensidad, encontrándose un 1,4% de la información sobre 25,0 cm/s. Por último, se encontró un 0,9% de las mediciones bajo 1,0 cm/s (Tabla EM-10).

	FRECUENCIA DE INCIDENCIA DE CORRIENTES								
Velocidad				Direco	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.9
1,1 - 5,0	2.8	2.7	3.0	3.3	2.4	2.2	2.3	2.5	21.1
5,1 - 9,0	3.6	5.9	5.6	4.6	3.1	2.6	3.0	3.0	31.3
9,1 - 13,0	2.3	5.1	5.8	4.1	2.6	1.2	1.6	1.6	24.3
13,1 - 17,0	0.8	3.0	4.0	1.7	1.5	0.6	0.5	0.5	12.7
17,1 - 21,0	0.2	1.6	2.1	0.9	0.5	0.2	0.2	0.2	5.8
21,1 - 25,0	0.0	0.7	0.9	0.4	0.4	0.0	0.0	0.0	2.4
> 25,0	0.0	0.2	0.5	0.2	0.4	0.0	0.0	0.0	1.4
Total Efectivo	9.7	19.1	21.8	15.2	10.9	6.8	7.7	7.9	99.1
Maximo (cm/s)	22.6	41.2	41.4	39.9	42.2	27.6	26.4	37.0	42.2
Promedio (cm/s)	7.8	10.7	11.2	9.5	10.2	7.6	7.7	7.6	9.6
			FREC	UENCIA DE I	EXCEDENCIA	DE CORRIE	INTES		
Velocidad				Direco	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.0	0.2	0.5	0.2	0.4	0.0	0.0	0.0	1.4
> 21,0	0.0	0.9	1.4	0.6	0.8	0.0	0.0	0.1	3.8
> 17,0	0.3	2.5	3.4	1.5	1.3	0.2	0.3	0.3	9.7
> 13,0	1.0	5.5	7.4	3.2	2.8	0.8	0.8	0.8	22.4
> 9,0	3.3	10.5	13.2	7.3	5.4	2.0	2.4	2.4	46.7
> 5,0	6.9	16.4	18.9	11.9	8.5	4.6	5.4	5.4	78.0
> 1,0	9.7	19.1	21.8	15.2	10.9	6.8	7.7	7.9	99.1

Tabla EM-10: Frecuencia de incidencia y excedencia de corrientes. Capa superficial

Fuente: consultora Costasur

Figura EM-15: Histograma de frecuencia de dirección y velocidad de corrientes. Capa superficial

Fuente: consultora Costasur

Para el análisis de las corrientes como series de tiempo, éstas fueron reducidas a series horarias, calculándose las respectivas componentes ortogonales. Así, se definen las componentes U y V de la siguiente manera:

Componente U	:	Este – Weste, positiva si el flujo va hacia el Este.
Componente V	:	Norte – Sur, positiva si el flujo va hacia el Norte.

Las series de tiempo de componentes ortogonales, fueron sometidas a un análisis estadístico básico, obteniéndose los siguientes resultados (Tabla EM-11):

Tabla EM-11: Estadística	as de series orf	togonales. Capa	superficial

Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)
U (este-weste)	-19,4	30,6	3,8	7,9
V (norte-sur)	-36,3	23,7	-0,1	7,3

Fuente: consultora Costasur

La Figura EM-16 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa una tendencia de las corrientes a agruparse en torno al 1^{er} cuadrante. Los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección E (componente promedio U positiva y componente promedio V negativa y cercana a magnitud cero).

Fuente: consultora Costasur

Con el objeto de corroborar lo anterior, y suponiendo que la corriente observada es espacialmente homogénea y presenta similares fluctuaciones temporales en ese espacio, es posible explicar el comportamiento de una partícula de agua a través de un diagrama de vector progresivo (DVP). El diagrama de vector progresivo (Figura EM-17) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el E (91,5°).

Fuente: consultora Costasur

Por último, y para determinar el comportamiento de la corriente en el dominio de la frecuencia, se aplicó un análisis estadístico de tipo espectral (12 grados de libertad y 95% de confianza). Este análisis permite determinar la cantidad de energía (densidad espectral) que se encuentra asociada a las distintas bandas de frecuencia (período).

Figura EM-18: Autoespectros de corrientes. Capa superficial

Fuente: consultora Costasur

En los espectros presentados en la Figura EM-18, se observa contenido de energía en las componentes V y U en la banda de frecuencia diurna (0,04 cph) y semidiurna (0,08 cph) respectivamente. Ambas situaciones atribuibles posiblemente al efecto del viento y en menor grado la marea.

Capa 17 (intermedia)

En este nivel, las corrientes observadas presentaron un patrón de comportamiento levemente distinto al detectado en la capa más superficial. A saber, se observó un predominio de las direcciones asociadas al 1^{er} y 2^{do} cuadrante: 14,0% (dirección E), 13,7% (dirección NE) y 12,8% (dirección SE), y el resto de las direcciones se agrupó entre 10,4% (dirección SW) y 11,9% (dirección W, Figura EM-19 y Tabla EM-12)

Las magnitudes medias registradas se agruparon en torno a los 5,1 cm/s (\pm 2,7 cm/s). En particular, las direcciones E y S mostraron las mayores magnitudes promedio, con un valor idéntico de 5,4 cm/s, por su parte las máximas velocidades detectadas fueron de 21,7 cm/s (0,42 nudos) y 17,3 cm/s (0,34 nudos) asociadas a las direcciones NW y SW, respectivamente (Tabla EM-12).

La mayor ocurrencia de magnitud se registró en el rango de 1,1 a 5,0 cm/s, con un porcentaje de 52,1%, en tanto que el rango 5,1 cm/s a 9,0 cm/s agrupó un 35,3% de las mediciones (Figura EM-19). Las corrientes registradas en esta capa se mostraron de mediana intensidad, encontrándose un 0,8% de la información sobre 13,0 cm/s. Por último, se encontró un 4,0% de las mediciones bajo 1,0 cm/s (Tabla EM-12).

								Jupu mit	cificala
			FREC	UENCIA DE	INCIDENCIA	DE CORRIE	NIES		
Velocidad				Direc	ciones	•			
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.5	0.5	0.4	0.5	0.6	0.5	0.5	0.5	4.0
1,1 - 5,0	6.5	7.2	6.9	7.1	5.8	5.5	6.4	6.6	52.1
5,1 - 9,0	3.9	5.6	5.7	4.4	3.6	3.7	4.1	4.1	35.3
9,1 - 13,0	0.5	0.8	1.2	1.1	1.2	1.0	1.2	0.9	7.9
13,1 - 17,0	0.1	0.0	0.1	0.1	0.1	0.2	0.1	0.0	0.7
17,1 - 21,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
21,1 - 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Efectivo	10.9	13.7	14.0	12.8	10.8	10.4	11.9	11.6	96.0
Maximo (cm/s)	15.1	14.3	15.0	16.1	16.8	17.3	16.8	21.7	21.7
Promedio (cm/s)	4.7	5.1	5.4	5.2	5.4	5.2	5.3	5.0	5.1
			FREC	UENCIA DE	EXCEDENCI	A DE CORRIE	ENTES		-
Velocidad				Direc	ciones	-			
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 21,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 17,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 13,0	0.1	0.0	0.1	0.1	0.1	0.2	0.1	0.1	0.8
> 9,0	0.5	0.9	1.4	1.3	1.3	1.1	1.3	0.9	8.7
> 5,0	4.4	6.5	7.1	5.7	4.9	4.9	5.4	5.0	43.9
> 1,0	10.9	13.7	14.0	12.8	10.8	10.4	11.9	11.6	96.0

Tabla EM-12: Frecuencia de incidencia y excedencia de corrientes. Capa intermedia

Fuente: consultora Costasur

Figura EM-19: Histograma de frecuencia de dirección y velocidad de corrientes. Capa intermedia

Fuente: consultora Costasur

En la Tabla EM-13 se entregan los resultados del análisis estadístico de las series de tiempo.

Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)						
U (este-weste)	-13,4	12,8	0,4	4,1						
V (norte-sur)	-12,9	11,3	0,0	3,9						
Fuente: consultora Costasur										

	Tabla EM-13: Estadísticas	de series	ortogonales.	Capa	intermedia
--	---------------------------	-----------	--------------	------	------------

La Figura EM-20 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección), no apreciándose una tendencia clara de las corrientes a agruparse en torno a alguna dirección en particular. Los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección E (componente promedio U positiva y componente promedio V cero).

Fuente: consultora Costasur

El diagrama de vector progresivo (Figura EM-21) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el E (86,7°).

En los espectros presentados en la Figura EM-22, se observó cierto contenido de energía en la banda diurna (componentes U y V). Los máximos diurnos pueden ser atribuibles posiblemente al efecto del viento.

Fuente: consultora Costasur

Capa 1 (fondo)

Las corrientes observadas presentaron un predominio de las direcciones asociadas al 3^{er} cuadrante, de esta manera, las mayores ocurrencias se registraron en las direcciones W y SW (20,7% y 13,9%, respectivamente), y el resto de las direcciones se agrupó entre 6,3% (dirección N) y 12,6% (dirección SE, Figura EM-23 y Tabla EM-14).

Las magnitudes medias registradas se agruparon en torno a los 5,1 cm/s (±± 2,6 cm/s), en particular la dirección W mostró la mayor magnitud promedio, con un valor de 6,0 cm/s, respectivamente. Por su parte, las máximas velocidades detectadas fueron de 17.4 cm/s (0,34 nudos) y 14,7 cm/s (0,29 nudos), asociadas a las direcciones W y SE, respectivamente.

La mayor ocurrencia de magnitud se registró en el rango de 1,1 a 5,0 cm/s, con un porcentaje de 53,9%. En tanto que el rango 5,1 cm/s a 9,0 cm/s agrupó un 35,1% de las mediciones (Figura EM-23)

Las corrientes registradas durante este período de mediciones se mostraron de mediana intensidad, encontrándose un 0,6% de la información sobre 13,0 cm/s. Por último, se encontró un 3.5% de las mediciones bajo 1.0 cm/s (Tabla EM-14).

				SOLINCIA DE	INCIDENCIA	DE CORRE	NILS		
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.5	0.4	0.4	0.5	0.5	0.5	0.5	0.3	3.5
1,1 - 5,0	4.8	5.1	6.3	7.2	7.0	8.1	8.9	6.4	53.9
5,1 - 9,0	1.4	3.3	4.8	4.6	4.0	4.9	8.6	3.3	35.1
9,1 - 13,0	0.1	0.6	0.9	0.7	0.4	0.8	2.8	0.6	6.9
13,1 - 17,0	0.0	0.1	0.0	0.0	0.0	0.0	0.4	0.0	0.6
17,1 - 21,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
21,1 - 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Efectivo	6.3	9.1	12.1	12.6	11.4	13.9	20.7	10.3	96.5
Maximo (cm/s)	13.5	14.1	13.8	14.7	12.4	13.8	17.4	13.0	17.4
Promedio (cm/s)	3.9	5.0	5.1	5.0	4.7	4.9	6.0	4.6	5.1
	FRECUENCIA DE EXCEDENCIA DE CORRIENTES								
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 21,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 17,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 13,0	0.0	0.1	0.0	0.0	0.0	0.0	0.4	0.0	0.6
> 9.0	0.1	0.7	1.0	0.7	0.4	0.9	3.2	0.6	7.5

Tabla EM-14: Frecuencia de incidencia y excedencia de corrientes. Capa fondo EDECHENCIA DE INCIDENCIA DE CORDIENTES

12.6 Fuente: consultora Costasur

44

11.4

58

13.9

11 9

20.7

39

10.3

42 6

96.5

53

> 5,0

> 1,0

15

6.3

40

9.1

58

12.1

Figura EM-23: Histograma de frecuencia de dirección y velocidad de corrientes. Capa fondo

Fuente: consultora Costasur

En la Tabla EM-15 se entregan los resultados del análisis estadístico de las series de tiempo.

U (este-weste) -12,5 13,8	-0,6	4,4
V (norte-sur) -11,5 8,3	-0,6	3,3

Fuente: consultora Costasur

La Figura EM-24 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa cierta tendencia de las corrientes a agruparse en torno a las direcciones asociadas al 3^{er} cuadrante. Por otra parte, los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección SW (componente promedio U negativa y componente promedio V negativa, siendo ambas de similar magnitud).

Fuente: consultora Costasur

El diagrama de vector progresivo (Figura EM-25) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SW (223,8°).

Fuente: consultora Costasur

En los espectros presentados en la Figura EM-26, se observa contenido de energía en la componente U y V, en la banda semidiurna. Este máximo podría ser atribuido al efecto forzante de la marea.

- Invierno 2012

Materiales y métodos

La campaña de mediciones de corrientes eulerianas se realizó entre los días 10 de julio al 18 de agosto de 2012 (período de sicigia y cuadratura lunar). Estas mediciones se efectuaron mediante el anclaje (fondeo) de un perfilador de corrientes acústico Doppler ADCP debidamente calibrado, marca RD Instruments, modelo WorkHorse Sentinel 614,4 kHz, en un punto con las siguientes coordenadas (Figura EM-2): 262.662 E; 6.469.217 N (Datum WGS84).

El ADCP fue instalado en el veril de 18,5 metros (app.) con respecto al Nivel de Reducción de Sondas (NRS), y a 0,5 metros sobre el fondo marino. Este instrumento fue programado para medir la dirección y magnitud de las corrientes a través de la columna de agua, determinándose 32 capas de medición (de 0,5 metros de espesor cada una de ellas) (Tabla EM-16).

Tabla EM-16: Capas	de medición estudio	de corrientes con ADCP
--------------------	---------------------	------------------------

	Centro de capa	Límite superior de la capa
Capa	desde el fondo marino	desde el fondo marino
	(m)	(m)
1	2,11	2,36
2	2,61	2,86
3	3,11	3,36
4	3,61	3,86
5	4,11	4,36
6	4,61	4,86
7	5,11	5,36
8	5,61	5,86
9	6,11	6,36
10	6,61	6,86
11	7,11	7,36
12	7,61	7,86
13	8,11	8,36
14	8,61	8,86
15	9,11	9,36
16	9,61	9,86
17	10,11	10,36
18	10,61	10,86
19	11,11	11,36
20	11,61	11,86
21	12,11	12,36
22	12,61	12,86
23	13,11	13,36
24	13,61	13,86
25	14,11	14,36
26	14,61	14,86
27	15,11	15,36
28	15,61	15,86
29	16,11	16,36
30	16,61	16,86
31	17,11	17,36
32	17,61	17,86

Fuente: consultora Costasur

Transductores desde el fondo marino = 0,5 m

1st. Bin = 1,61 m (centro de 1^a capa desde transductores)

= 2,11 m (centro de 1^a capa desde el fondo marino) 1st. Bin

Bin Size = 0,5 m

El análisis de la información consistió en procesar 3 capas características de la columna de agua (capa superficial, intermedia y de fondo). De esta manera, las capas analizadas fueron las siguientes:

Capa 32 (superficie):	Capa centrada a 17,61 metros desde el fondo
Capa 17 (intermedia):	Capa centrada a 10,11 metros desde el fondo
Capa 1 (fondo):	Capa centrada a 2,11 metros desde el fondo

Como los registros de la dirección de las corrientes son referidos originalmente al norte magnético, éstos fueron referidos al norte geográfico, empleándose para tal efecto la corrección de desviación magnética local. Con la información registrada (datos cada 10 minutos), se elaboró series de tiempo horaria.

La información de corrientes fue sometida a un análisis estadístico de frecuencias por rangos de dirección y magnitud para una rosa de 8 direcciones (tabla e histograma). Por su parte, las series horarias fueron sometidas a un análisis de series de tiempo (estadística básica de componentes, dispersión, DVP y espectral).

Resultados

Capa 32 (superficie)

A nivel superficial, las corrientes observadas presentaron un patrón de comportamiento direccional dominado por las direcciones asociadas al 1^{er} y 2^{do} cuadrante. Así, las mayores ocurrencias se registraron en las direcciones E, NE y SE (20,1%, 15,9% y 15,7%, respectivamente). El resto de las direcciones se agrupó entre 7,3% (dirección NW) y 12,2% (dirección S, Figura EM-27 y Tabla EM-17).

Las magnitudes medias registradas se agruparon en torno a los 9,8 cm/s (\pm 5,8 cm/s). En particular, la dirección NE mostró la mayor magnitud promedio, con un valor de 10,9 cm/s. Por su parte, las máximas velocidades detectadas fueron de 39,6 cm/s (0,77 nudos) y 37,1 cm/s (0,72 nudos) asociadas a las direcciones E y NE, respectivamente (Tabla EM-17).

La mayor ocurrencia de magnitud se registró en el rango de 5,1 a 9,0 cm/s, con un porcentaje de 30,0%. En tanto que el rango 9,1 cm/s a 13,0 cm/s agrupó un 22,6% de las mediciones (Figura EM-27). Las corrientes registradas en esta capa se mostraron de mediana a alta intensidad, encontrándose un 1,8% de la información sobre 25,0 cm/s. Por último, se encontró un 1,2% de las mediciones bajo 1,0 cm/s (Tabla EM-17).

Tabla EM-17: Frecuencia de incidencia	y excedencia de corrier	ntes. Capa superficial
---------------------------------------	-------------------------	------------------------

	FRECUENCIA DE INCIDENCIA DE CORRIENTES								
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.2	0.1	0.1	0.2	0.2	0.2	0.1	0.1	1.2
1,1 - 5,0	2.3	2.8	2.9	3.1	2.9	3.3	2.3	2.0	21.7
5,1 - 9,0	3.1	4.6	4.9	4.3	3.7	3.7	3.1	2.6	30.0
9,1 - 13,0	2.2	3.3	4.6	3.9	2.9	2.2	1.8	1.8	22.6
13,1 - 17,0	0.7	2.5	3.3	2.5	1.8	0.9	0.6	0.6	12.9
17,1 - 21,0	0.4	1.5	2.1	1.2	0.7	0.3	0.3	0.2	6.9
21,1 - 25,0	0.1	0.7	1.2	0.5	0.1	0.1	0.2	0.1	3.0
> 25,0	0.0	0.4	1.0	0.1	0.1	0.0	0.0	0.0	1.8
Total Efectivo	8.9	15.9	20.1	15.7	12.2	10.4	8.3	7.3	98.8
Maximo (cm/s)	30.0	37.1	39.6	31.8	28.5	26.3	27.1	24.3	39.6
Promedio (cm/s)	8.4	10.9	12.1	10.3	9.2	7.7	8.2	7.9	9.8
	FRECUENCIA DE EXCEDENCIA DE CORRIENTES								
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25.0	0.0	0.4	10	0.1	0.1	0.0	0.0	0.0	1.8

Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.0	0.4	1.0	0.1	0.1	0.0	0.0	0.0	1.8
> 21,0	0.1	1.2	2.2	0.7	0.2	0.1	0.2	0.1	4.7
> 17,0	0.5	2.7	4.4	1.9	0.9	0.4	0.5	0.3	11.6
> 13,0	1.2	5.3	7.6	4.4	2.7	1.3	1.1	0.9	24.6
> 9,0	3.4	8.6	12.2	8.3	5.6	3.4	2.9	2.7	47.2
> 5,0	6.5	13.1	17.2	12.6	9.3	7.1	6.0	5.3	77.1
> 1,0	8.9	15.9	20.1	15.7	12.2	10.4	8.3	7.3	98.8

Fuente: consultora Costasur

Fuente: consultora Costasur

Para el análisis de las corrientes como series de tiempo, éstas fueron reducidas a series horarias, calculándose las respectivas componentes ortogonales. Así, se definen las componentes U y V de la siguiente manera:

Componente U	:	Este – Weste, positiva si el flujo va hacia el Este.
Componente V	:	Norte – Sur, positiva si el flujo va hacia el Norte.

Las series de tiempo de componentes ortogonales, fueron sometidas a un análisis estadístico básico, obteniéndose los siguientes resultados (Tabla EM-18):

			<u> </u>	
Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)
U (este-weste)	-21,7	38,6	3,2	8,1
V (norte-sur)	-21,8	26,2	-0,6	7,2
		Fuente: consultora Cos	stasur	

Tabla EM-18: Estadísticas de series ortogonales. Capa superficial

La Figura EM-28 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa una tendencia de las corrientes a agruparse en torno al 1^{er} cuadrante. Los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección E (componente promedio U positiva y componente promedio V negativa y de menor magnitud).

Figura EM-28: Diagrama de dispersión dirección versus magnitud. Capa superficial

Fuente: consultora Costasur

Con el objeto de corroborar lo anterior, y suponiendo que la corriente observada es espacialmente homogénea y presenta similares fluctuaciones temporales en ese espacio, es posible explicar el comportamiento de una partícula de agua a través de un diagrama de vector progresivo (DVP). El diagrama de vector progresivo (Figura EM-29) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el E (100,8°).

Fuente: consultora Costasur

Por último, y para determinar el comportamiento de la corriente en el dominio de la frecuencia, se aplicó un análisis estadístico de tipo espectral (12 grados de libertad y 95% de confianza). Este análisis permite determinar la cantidad de energía (densidad espectral) que se encuentra asociada a las distintas bandas de frecuencia (período).

En los espectros presentados en la Figura EM-30, se observa contenido de energía en las componentes V y U en la banda de frecuencia diurna (0,04 cph) y semidiurna (0,08 cph), respectivamente. Ambas situaciones atribuibles posiblemente al efecto del viento y la marea.

Capa 17 (intermedia)

En este nivel, las corrientes observadas presentaron un patrón de comportamiento levemente distinto al detectado en la capa más superficial. A saber, se observó un predominio de las direcciones asociadas al 2^{do} cuadrante: 18,1% (dirección S) y 17,0% (dirección SE). El resto de las direcciones se agrupó entre 7,4% (dirección NW) y 13,8% (dirección E, Figura EM-31 y Tabla EM-19).

Las magnitudes medias registradas se agruparon en torno a los 5,5 cm/s (\pm 3,0 cm/s). En particular, las direcciones S y SE mostraron las mayores magnitudes promedio, con valores de 6,3 cm/s y 6,0 cm/s, respectivamente. Las máximas velocidades detectadas fueron de 20,8 cm/s (0,40 nudos) y 19,0 cm/s (0,37 nudos) asociadas a las direcciones E y S, respectivamente (Tabla EM-19).

La mayor ocurrencia de magnitud se registró en el rango de 1,1 a 5,0 cm/s, con un porcentaje de 48,3%. En tanto que el rango 5,1 cm/s a 9,0 cm/s agrupó un 36,1% de las mediciones (Figura EM-31). Las corrientes registradas en esta capa se mostraron de mediana intensidad, encontrándose un 0,2% de la información sobre 17,0 cm/s. Por último, se encontró un 3,3% de las mediciones bajo 1,0 cm/s (Tabla EM-19).

			FREC	UENCIA DE	INCIDENCIA	DE CORRIE	NTES		
Velocidad				Direco	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.4	0.5	0.4	0.3	0.5	0.5	0.3	0.4	3.3
1,1 - 5,0	4.9	5.9	6.4	7.3	7.5	6.6	5.2	4.4	48.3
5,1 - 9,0	2.6	3.5	5.6	6.9	6.8	4.6	3.4	2.5	36.1
9,1 - 13,0	0.6	0.7	1.4	2.3	2.9	1.5	0.6	0.4	10.3
13,1 - 17,0	0.1	0.0	0.3	0.4	0.7	0.3	0.0	0.1	1.9
17,1 - 21,0	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.2
21,1 - 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Efectivo	8.2	10.2	13.8	17.0	18.1	12.9	9.2	7.4	96.7
Maximo (cm/s)	15.8	15.3	20.8	16.5	19.0	16.8	15.3	15.5	20.8
Promedio (cm/s)	4.8	4.9	5.7	6.0	6.3	5.5	5.0	4.9	5.5

Tabla EM-19: Frecuencia de incidencia y excedencia de corrientes. Capa intermedia

			FREC	UENCIA DE I	EXCEDENCI/	DE CORRIE	INTES		
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 21,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 17,0	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.2
> 13,0	0.1	0.0	0.4	0.4	0.8	0.3	0.0	0.1	2.1
> 9,0	0.6	0.7	1.8	2.8	3.7	1.7	0.6	0.5	12.4
> 5,0	3.2	4.3	7.4	9.7	10.5	6.3	4.0	3.0	48.4
> 1.0	8.2	10.2	13.8	17.0	18.1	12.9	9.2	7.4	96.7

Fuente: consultora Costasur

Figura EM-31: Histograma de frecuencia de dirección y velocidad de corrientes. Capa intermedia

Fuente: consultora Costasur

En la Tabla EM-20 se entregan los resultados del análisis estadístico de las series de tiempo.

14614							
Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)			
U (este-weste)	-12,7	20,4	0,6	4,1			
V (norte-sur)	-17,5	14,7	-1,4	4,3			
			•				

Tabla EM-20: Estadísticas de series ortogonales. Capa intermedia

Fuente: consultora Costasur

La Figura EM-32 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa cierta tendencia de las corrientes a agruparse en torno a las direcciones asociadas al 2^{do} cuadrante. Los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección SE – S (componente promedio U positiva y componente promedio V negativa y de mayor magnitud).

Fuente: consultora Costasur

El diagrama de vector progresivo (Figura EM-33) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SE – S (156,0°).

En los espectros presentados en la Figura EM-34, se observó cierto contenido de energía en la banda diurna (componentes U y V). Los máximos diurnos pueden ser atribuibles posiblemente al efecto del viento.

Figura EM-33: Diagrama de vector progresivo. Capa intermedia

Fuente: consultora Costasur

Capa 1 (fondo)

Las corrientes observadas presentaron un predominio de las direcciones asociadas al 3^{er} cuadrante. Las mayores ocurrencias se registraron en las direcciones W y SW (18,9% y 14,8%, respectivamente). El resto de las direcciones se agrupó entre 7,3% (dirección N) y 13,2% (direcciones SE y S, Figura EM-35 y Tabla EM-21).

Las magnitudes medias registradas se agruparon en torno a los 5,1 cm/s (\pm 2,7 cm/s). En particular, la dirección W mostró la mayor magnitud promedio, con un valor de 5,9 cm/s. Por su parte, las máximas velocidades detectadas fueron de 18,8 cm/s (0,37 nudos) y 18,1 cm/s (0,35 nudos), asociadas a las direcciones W y S, respectivamente (Tabla EM-21).

La mayor ocurrencia de magnitud se registró en el rango de 1,1 a 5,0 cm/s, con un porcentaje de 53,5%. En tanto que el rango 5,1 cm/s a 9,0 cm/s agrupó un 33,6% de las mediciones (Figura EM-35).

Las corrientes registradas durante este período de mediciones se mostraron de mediana intensidad, encontrándose un 0,1% de la información sobre 17,0 cm/s. Por último, se encontró un 3,7% de las mediciones bajo 1,0 cm/s (Tabla EM-21).

		uonoia u	FREC	CUENCIA DE	INCIDENCIA	DE CORRIE	NTES	. oupu	•
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.4	0.4	0.6	0.4	0.5	0.3	0.5	0.5	3.7
1,1 - 5,0	5.1	5.8	6.2	6.8	6.8	7.7	8.9	6.2	53.5
5,1 - 9,0	2.0	2.8	3.8	5.2	4.8	5.4	6.7	2.8	33.6
9,1 - 13,0	0.2	0.4	0.4	1.0	1.3	1.5	2.7	0.4	7.9
13,1 - 17,0	0.0	0.0	0.0	0.1	0.3	0.2	0.5	0.0	1.2
17,1 - 21,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
21,1 - 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Efectivo	7.3	9.0	10.5	13.2	13.2	14.8	18.9	9.4	96.3
Maximo (cm/s)	12.7	13.5	16.6	14.4	18.1	16.2	18.8	12.7	18.8
Promedio (cm/s)	4.3	4.5	4.8	5.2	5.5	5.4	5.9	4.4	5.1
	FRECUENCIA DE EXCEDENCIA DE CORRIENTES								
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 21,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 17,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
> 13,0	0.0	0.0	0.0	0.1	0.4	0.2	0.6	0.0	1.2
> 9,0	0.2	0.4	0.4	1.1	1.7	1.7	3.3	0.4	9.2
> 5,0	2.2	3.2	4.3	6.3	6.4	7.1	9.9	3.2	42.7
> 1,0	7.3	9.0	10.5	13.2	13.2	14.8	18.9	9.4	96.3

Tabla EM-21: Frecuencia de incidencia y excedencia de corrientes. Capa fondo

Fuente: consultora Costasur

Figura EM-35: Histograma de frecuencia de dirección y velocidad de corrientes. Capa fondo

En la Tabla EM-22 se entregan los resultados del análisis estadístico de las series de tiempo.

Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)
U (este-weste)	-15,4	10,5	-0,6	4,3
V (norte-sur)	-17,9	12,5	-0,8	3,6

	Tabla EM-22	2: Estadísticas	de series	ortogonales.	Capa fondo
--	-------------	-----------------	-----------	--------------	------------

Fuente: consultora Costasur

La Figura EM-36 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa cierta tendencia de las corrientes a agruparse en torno a las direcciones asociadas al 3^{er} cuadrante. Por otra parte, los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección SW (componente promedio U negativa y componente promedio V negativa, siendo ambas de similar magnitud).

Figura EM-36: Diagrama de dispersión dirección versus magnitud. Capa fondo

Fuente: consultora Costasur

El diagrama de vector progresivo (Figura EM-37) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SW (214,7°).

Fuente: consultora Costasur

Figura EM-38: Autoespectros de corrientes. Capa fondo

En los espectros presentados en la Figura EM-38, se observa contenido de energía en la componente U y V, en la banda diurna. Este máximo podría ser atribuido al efecto forzante del viento.

- Primavera 2012

Materiales y métodos

La campaña de mediciones de corrientes eulerianas se realizó entre los días 09 de noviembre al 10 de diciembre de 2012 (período de sicigia y cuadratura lunar). Estas mediciones se efectuaron mediante el anclaje (fondeo) de un perfilador de corrientes acústico Doppler ADCP debidamente calibrado, marca RD Instruments, modelo WorkHorse Sentinel 614,4 kHz, en un punto con las siguientes coordenadas (Figura EM-2): 262.679 E; 6.469.215 E (Datum WGS84).

El ADCP fue instalado en el veril de 18,3 metros (app.) con respecto al Nivel de Reducción de Sondas (NRS), y a 0,5 metros sobre el fondo marino. Este instrumento fue programado para medir la dirección y magnitud de las corrientes a través de la columna de agua, determinándose 32 capas de medición (de 0,5 metros de espesor cada una de ellas) (Tabla EM-23).

Сара	Centro de capa desde el fondo marino (m)	capa desde el fondo marino (m)
1	2,11	2,36
2	2,61	2,86
3	3,11	3,36
4	3,61	3,86
5	4,11	4,36
6	4,61	4,86
7	5,11	5,36
8	5,61	5,86
9	6,11	6,36
10	6,61	6,86
11	7,11	7,36
12	7,61	7,86
13	8,11	8,36
14	8,61	8,86
15	9,11	9,36
16	9,61	9,86
17	10,11	10,36
18	10,61	10,86
19	11,11	11,36
20	11,61	11,86
21	12,11	12,36
22	12,61	12,86
23	13,11	13,36
24	13,61	13,86
25	14,11	14,36
26	14,61	14,86

Tabla EM-23: Capas de medición estudio de corrientes con ADCP

Сара	Centro de capa desde el fondo marino (m)	Límite superior de la capa desde el fondo marino (m)
27	15,11	15,36
28	15,61	15,86
29	16,11	16,36
30	16,61	16,86
31	17,11	17,36
32	17,61	17,86

Fuente: consultora Costasur

Transductores desde el fondo marino = 0,5 m

1st. Bin	= 1,61 m (centro de 1 ^ª capa desde transductores)
1st. Bin	= 2,11 m (centro de 1ª capa desde el fondo marino)
Bin Size	= 0,5 m

El análisis de la información consistió en procesar 3 capas características de la columna de agua (capa superficial, intermedia y de fondo). De esta manera, las capas analizadas fueron las siguientes:

Capa 32 (superficie):	Capa centrada a 17,61 metros desde el fondo
Capa 17 (intermedia):	Capa centrada a 10,11 metros desde el fondo
Capa 1 (fondo):	Capa centrada a 2,11 metros desde el fondo

Como los registros de la dirección de las corrientes son referidos originalmente al norte magnético, éstos fueron referidos al norte geográfico, empleándose para tal efecto la corrección de desviación magnética local. Con la información registrada (datos cada 10 minutos), se elaboró series de tiempo horaria.

La información de corrientes fue sometida a un análisis estadístico de frecuencias por rangos de dirección y magnitud para una rosa de 8 direcciones (tabla e histograma). Por su parte, las series horarias fueron sometidas a un análisis de series de tiempo (estadística básica de componentes, dispersión, DVP y espectral).

Resultados

Capa 32 (superficie)

A nivel superficial, las corrientes observadas presentaron un patrón de comportamiento direccional dominado por las direcciones asociadas al 1^{er} y 4^{to} cuadrante. Así, las mayores ocurrencias se registraron en las direcciones NE, NW, N, E y W (19,1%, 13,3%, 13,2%, 13,2% y 13,0%, respectivamente). El resto de las direcciones se agrupó entre 8,4% (dirección SW) y 9,6% (dirección SE, Figura EM-39 y Tabla EM-24).

Las magnitudes medias registradas se agruparon en torno a los 10,1 cm/s (± 5,7 cm/s). En particular, la dirección NE mostró la mayor magnitud promedio, con un valor de 11,5 cm/s. Por su parte, las máximas velocidades detectadas fueron de 39,2 cm/s (0,76 nudos) y 38,1 cm/s (0,74 nudos) asociadas a las direcciones E y S, respectivamente (Tabla EM-24).

La mayor ocurrencia de magnitud se registró en el rango de 5,1 a 9,0 cm/s, con un porcentaje de 30,7%. En tanto que el rango 9,1 cm/s a 13,0 cm/s agrupó un 24,0% de las mediciones (Figura EM-39). Las corrientes registradas en esta capa se mostraron de mediana a alta intensidad, encontrándose un 1,8% de la información sobre 25,0 cm/s. Por último, se encontró un 0,9% de las mediciones bajo 1,0 cm/s (Tabla EM-24).

	FRECUENCIA DE INCIDENCIA DE CORRIENTES								
Velocidad	Direcciones								
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.1	0.1	0.2	0.1	0.1	0.0	0.1	0.2	0.9
1,1 - 5,0	2.3	2.4	2.2	2.5	1.9	1.9	2.4	2.8	18.4
5,1 - 9,0	4.5	5.2	3.9	3.2	3.3	2.8	3.7	4.0	30.7
9,1 - 13,0	3.2	4.7	3.3	2.1	2.0	2.0	3.3	3.3	24.0
13,1 - 17,0	2.0	3.5	2.0	0.9	1.0	0.8	1.8	1.7	13.7
17,1 - 21,0	0.8	2.0	0.9	0.6	0.6	0.5	1.2	0.9	7.5
21,1 - 25,0	0.2	0.9	0.6	0.3	0.2	0.2	0.3	0.3	3.1
> 25,0	0.1	0.4	0.4	0.2	0.2	0.1	0.2	0.2	1.8
Total Efectivo	13.2	19.1	13.2	9.6	9.4	8.4	13.0	13.3	99.1
Maximo (cm/s)	33.7	36.4	39.2	32.4	38.1	35.6	32.8	29.3	39.2
Promedio (cm/s)	9.7	11.5	10.7	9.1	9.6	9.4	10.2	9.7	10.1

Tabla EM-24: Frecuencia de incidencia y excedencia de corrientes. Capa superficial FRECUENCIA DE INCIDENCIA DE CORRIENTES

	FRECUENCIA DE EXCEDENCIA DE CORRIENTES								
Velocidad	Direcciones								
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.1	0.4	0.4	0.2	0.2	0.1	0.2	0.2	1.8
> 21,0	0.3	1.3	1.0	0.4	0.4	0.4	0.5	0.5	4.9
> 17,0	1.1	3.3	1.8	1.0	1.1	0.9	1.7	1.5	12.4
> 13,0	3.2	6.8	3.8	1.9	2.1	1.7	3.5	3.1	26.1
> 9,0	6.4	11.5	7.1	4.0	4.1	3.7	6.8	6.5	50.1
> 5,0	10.9	16.7	11.0	7.1	7.4	6.5	10.6	10.5	80.8
> 1,0	13.2	19.1	13.2	9.6	9.4	8.4	13.0	13.3	99.1

Fuente: consultora Costasur

Figura EM-39: Histograma de frecuencia de dirección y velocidad de corrientes. Capa superficial

Fuente: consultora Costasur

Para el análisis de las corrientes como series de tiempo, éstas fueron reducidas a series horarias, calculándose las respectivas componentes ortogonales. Así, se definen las componentes U y V de la siguiente manera:

Componente U:	Este – Weste, positiva si el flujo va hacia el Este.
Componente V:	Norte – Sur, positiva si el flujo va hacia el Norte.

Las series de tiempo de componentes ortogonales, fueron sometidas a un análisis estadístico básico, obteniéndose los siguientes resultados (Tabla EM-25).

Tabla Em 20. Estadísticas de series ortogonales. Oapa supernola								
Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)				
U (este-weste)	-32,7	38,5	0,7	8,9				
V (norte-sur)	-31,3	31,2	1,7	7,3				

Tabla EM-25: Estadísticas de series ortogonales. Capa superficial

Fuente: consultora Costasur

La Figura EM-40 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa una tendencia de las corrientes a agruparse en torno al 1er cuadrante. Los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección N – NE (componente promedio U positiva y componente promedio V positiva y de mayor magnitud).

Con el objeto de corroborar lo anterior, y suponiendo que la corriente observada es espacialmente homogénea y presenta similares fluctuaciones temporales en ese espacio, es posible explicar el comportamiento de una partícula de agua a través de un diagrama de vector progresivo (DVP). El diagrama de vector progresivo (Figura EM-41) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el N - NE (22,4°).

Fuente: consultora Costasur

Fuente: consultora Costasur

Por último, y para determinar el comportamiento de la corriente en el dominio de la frecuencia, se aplicó un análisis estadístico de tipo espectral (12 grados de libertad y 95% de confianza). Este análisis permite determinar la cantidad de energía (densidad espectral) que se encuentra asociada a las distintas bandas de frecuencia (período).

En los espectros presentados en la Figura EM-42, se observa contenido de energía en las componentes V y U en la banda de frecuencia diurna (0,04 cph) y semidiurna (0,08 cph), respectivamente. Ambas situaciones atribuibles posiblemente al efecto del viento y la marea.

Capa 17 (intermedia)

En este nivel, las corrientes observadas presentaron un patrón de comportamiento distinto al detectado en la capa más superficial. A saber, se observó un predominio de las direcciones asociadas al 2^{do} cuadrante: 19,3% (dirección SE) y 17,6% (dirección S). El resto de las direcciones se agrupó entre 8,9% (dirección NW) y 9,1% (dirección N, Figura EM-43 y Tabla EM-26).

Las magnitudes medias registradas se agruparon en torno a los 5,9 cm/s (\pm 3,2 cm/s). En particular, las direcciones S y SE mostraron las mayores magnitudes promedio, con valores de 6,6 cm/s y 6,5 cm/s, respectivamente. Las máximas velocidades detectadas fueron de 26,4 cm/s (0,51 nudos) y 25,4 cm/s (0,49 nudos) asociadas a las direcciones N y NE, respectivamente (Tabla EM-26).

La mayor ocurrencia de magnitud se registró en el rango de 1,1 a 5,0 cm/s, con un porcentaje de 43,9%. En tanto que el rango 5,1 cm/s a 9,0 cm/s agrupó un 38,4% de las mediciones (Figura EM-43). Las corrientes registradas en esta capa se mostraron de mediana intensidad, encontrándose un 0,1% de la información sobre 25,0 cm/s. Por último, se encontró un 2,6% de las mediciones bajo 1,0 cm/s (Tabla EM-26).

	FRECUENCIA DE INCIDENCIA DE CORRIENTES								
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.5	0.4	0.4	0.3	0.4	0.3	0.2	0.1	2.6
1,1 - 5,0	4.6	4.8	5.4	7.1	6.0	5.4	5.9	4.8	43.9
5,1 - 9,0	3.0	3.6	5.0	8.4	7.8	3.7	3.9	3.2	38.4
9,1 - 13,0	1.0	1.1	1.1	3.4	3.3	0.8	1.0	0.8	12.6
13,1 - 17,0	0.2	0.2	0.0	0.4	0.5	0.1	0.2	0.1	1.7
17,1 - 21,0	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.4
21,1 - 25,0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.2
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Total Efectivo	9.1	9.9	11.6	19.3	17.6	9.9	11.0	8.9	97.4
Maximo (cm/s)	26.4	25.4	16.5	17.4	18.5	16.4	17.7	14.6	26.4
Promedio (cm/s)	6.1	6.0	5.5	6.5	6.6	5.3	5.4	5.3	5.9
			FREC	UENCIA DE I	EXCEDENCI/	A DE CORRIE	INTES		
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
> 21,0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.2
> 17,0	0.3	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.7
> 13,0	0.5	0.5	0.0	0.4	0.5	0.1	0.2	0.1	2.4
> 9,0	1.5	1.6	1.2	3.8	3.9	0.9	1.3	0.9	15.0
> 5,0	4.5	5.2	6.2	12.2	11.6	4.5	5.1	4.1	53.4
> 1.0	9.1	9.9	11.6	19.3	17.6	9.9	11.0	8.9	97.4

Tabla EM-26: Frecuencia de incidencia y excedencia de corrientes. Capa intermedia

Fuente: consultora Costasur

Figura EM-43: Histograma de frecuencia de dirección y velocidad de corrientes. Capa intermedia

Fuente: consultora Costasur

En la Tabla EM-27 se entregan los resultados del análisis estadístico de las series de tiempo.

Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)				
U (este-weste)	-16,6	13,6	0,6	4,2				
V (norte-sur)	-15,8	26,1	-1,2	5,0				
Fuente: consultora Costasur								

Tabla EM-27: Estadísticas de series ortogonales. Capa intermedia

La Figura EM-44 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa cierta tendencia de las corrientes a agruparse en torno a las direcciones asociadas al 2^{do} cuadrante. Los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección SE – S (componente promedio U positiva y componente promedio V negativa y de mayor magnitud).

Fuente: consultora Costasur

El diagrama de vector progresivo (Figura EM-45) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SE – S (152,2°).

En los espectros presentados en la (Figura EM-46), se observó cierto contenido de energía en la banda diurna (componentes U y V). Los máximos diurnos pueden ser atribuibles posiblemente al efecto del viento.

Figura EM-45: Diagrama de vector progresivo. Capa intermedia

Fuente: consultora Costasur

Capa 1 (fondo)

Las corrientes observadas presentaron un predominio de las direcciones asociadas al 3^{er} y 2^{do} cuadrante. Las mayores ocurrencias se registraron en las direcciones W y SE (16,6% y 16,4%, respectivamente). El resto de las direcciones se agrupó entre 6,3% (dirección N) y 14,0% (dirección E, Figura EM-47 y Tabla EM-28).

Las magnitudes medias registradas se agruparon en torno a los 5,6 cm/s (\pm 2,9 cm/s). En particular, la dirección W mostró la mayor magnitud promedio, con un valor de 6,3 cm/s. Por su parte, las máximas velocidades detectadas fueron de 20,9 cm/s (0,41 nudos) y 20,4 cm/s (0,40 nudos), asociadas a las direcciones N y W, respectivamente (Tabla EM-28).

La mayor ocurrencia de magnitud se registró en el rango de 1,1 a 5,0 cm/s, con un porcentaje de 47,2%. En tanto que el rango 5,1 cm/s a 9,0 cm/s agrupó un 38,0% de las mediciones (Figura EM-47).

Las corrientes registradas durante este período de mediciones se mostraron de mediana intensidad, encontrándose un 0,2% de la información sobre 17,0 cm/s. Por último, se encontró un 2,9% de las mediciones bajo 1,0 cm/s (Tabla EM-28).

					, Augusti			. Oupu i	onao
	FRECUENCIA DE INCIDENCIA DE CORRIENTES								
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.4	0.3	0.4	0.3	0.3	0.5	0.2	0.5	2.9
1,1 - 5,0	4.1	5.5	6.2	7.5	6.5	6.1	6.5	4.9	47.2
5,1 - 9,0	1.7	3.3	6.1	6.5	5.1	5.0	7.0	3.3	38.0
9,1 - 13,0	0.2	0.6	1.5	2.2	1.0	1.4	2.7	0.8	10.4
13,1 - 17,0	0.1	0.0	0.2	0.3	0.2	0.0	0.4	0.0	1.3
17,1 - 21,0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
21,1 - 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Efectivo	6.3	9.4	14.0	16.4	12.9	12.5	16.6	9.0	97.1
Maximo (cm/s)	20.9	14.4	14.8	16.4	16.6	13.5	20.4	14.6	20.9
Promedio (cm/s)	4.9	4.9	5.7	5.9	5.4	5.4	6.3	5.1	5.6
			FREC	UENCIA DE I	EXCEDENCI	A DE CORRIE	INTES		
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	s	SW	W	NW	TOTAL
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 21,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 17,0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
> 13,0	0.2	0.0	0.2	0.3	0.2	0.0	0.4	0.0	1.5
> 9,0	0.4	0.6	1.7	2.4	1.3	1.4	3.1	0.8	11.9
> 5,0	2.2	3.9	7.8	8.9	6.4	6.4	10.1	4.1	49.8
> 1,0	6.3	9.4	14.0	16.4	12.9	12.5	16.6	9.0	97.1

Tabla EM-28: Frecuencia de incidencia y excedencia de corrientes. Capa fondo

Fuente: consultora Costasur

Figura EM-47: Histograma de frecuencia de dirección y velocidad de corrientes. Capa fondo

Fuente: consultora Costasur

Las series de tiempo de componentes ortogonales, fueron sometidas a un análisis estadístico básico, obteniéndose los siguientes resultados (Tabla EM-29)

Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv.St. (cm/s)				
U (este-weste)	-13,6	14,2	0,0	4,9				
V (norte-sur)	-16,4	12,7	-0,9	3,8				
Fuente: consultora Costasur								

Tabla FM-2	9. Estadísticas	de series	ortogonales.	Cana fondo
	J. LJIUUJIUUJ		Ultuquilaies.	

La Figura EM-48 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa cierta tendencia de las corrientes a agruparse en torno a las direcciones asociadas al 3^{er} cuadrante. Por otra parte, los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección S (componente promedio U cero y componente promedio V negativa).

Fuente: consultora Costasur

El diagrama de vector progresivo (Figura EM-49) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el S (177,6°).

Figura EM-49: Diagrama de vector progresivo. Capa fondo

Fuente: consultora Costasur

En los espectros presentados en la Figura EM-50, se observa algo de contenido de energía en la componente U, en la banda semidiurna. Este máximo podría ser atribuido al efecto forzante de la marea.

- Primavera 2014

En la campaña de primavera 2014 se instalaron dos instrumentos perfiladores de corrientes (ADCP), ubicadas en el punto de muestreo 1 (correspondiente al punto de descarga de la futura Planta Desalinizadora) y en el punto de muestreo 2 (correspondiente al punto de captación proyectado para la Planta desalinizadora (Figura EM-2).

> ADCP TRDI (Punto de muestreo 1)

Materiales y métodos

La campaña de mediciones de corrientes eulerianas considerada en la presente campaña se realizó entre los días 28 de octubre al 15 de diciembre de 2014 (período de sicigia y cuadratura lunar).

Estas mediciones se efectuaron mediante el anclaje (fondeo) de un perfilador de corrientes acústico Doppler (ADCP, marca RD Instruments, modelo WorkHorse Sentinel 614,4 kHz), en un punto con las siguientes coordenadas (Figura EM-2): 262.151 E; 6.469.638 N (Datum WGS84). Este Punto corresponde al lugar de descarga de salmuera producto la planta desalinizadora.

El ADCP fue instalado en el veril de 26,0 metros (app.) con respecto al Nivel de Reducción de Sondas (NRS), y a 0,5 metros sobre el fondo marino. Este instrumento fue programado para medir la dirección y magnitud de las corrientes a través de la columna de agua, determinándose 46 capas de medición (de 0,5 metros de espesor cada una de ellas). La Tabla EM-30 resume esta información:

Сара	Centro de capa desde el fondo marino (m)	de la capa desde el fondo marino (m)
1	2,11	2,36
2	2,61	2,86
3	3,11	3,36
4	3,61	3,86
5	4,11	4,36
6	4,61	4,86
7	5,11	5,36
8	5,61	5,86
9	6,11	6,36
10	6,61	6,86
11	7,11	7,36
12	7,61	7,86
13	8,11	8,36
14	8,61	8,86

Tabla EM-30: Capas de medición estudio de corrientes con ADCP L ímite superior

Capa	Centro de capa desde el fondo marino (m)	Límite superior de la capa desde el fondo marino (m)
15	9,11	9,36
16	9,61	9,86
17	10,11	10,36
18	10,61	10,86
19	11,11	11,36
20	11,61	11,86
21	12,11	12,36
22	12,61	12,86
23	13,11	13,36
24	13,61	13,86
25	14,11	14,36
26	14,61	14,86
27	15,11	15,36
28	15,61	15,86
29	16,11	16,36
30	16,61	16,86
31	17,11	17,36
32	17,61	17,86
33	18,11	18,36
34	18,61	18,86
35	19,11	19,36
36	19,61	19,86
37	20,11	20,36
38	20,61	20,86
39	21,11	21,36
40	21,61	21,86
41	22,11	22,36
42	22,61	22,86
43	23,11	23,36
44	23,61	23,86
45	24,11	24,36
46	24,61	24,86

Fuente: consultora Costasur

Transductores desde el fondo marino = 0.5 m1st. Bin = 1,61 m (centro de 1^a capa desde transductores) 1st. Bin = 2,11 m (centro de 1^a capa desde el fondo marino) Bin Size = 0.5 m

El análisis de la información consistió en procesar 3 capas características de la columna de agua (capa superficial, intermedia y de fondo). De esta manera, las capas analizadas fueron las siguientes:

Capa 46 (superficie):	Capa centrada a 24,61 metros desde el fondo
Capa 23 (intermedia):	Capa centrada a 13,11 metros desde el fondo
Capa 1 (fondo):	Capa centrada a 2,11 metros desde el fondo

Como los registros de la dirección de las corrientes son referidos originalmente al norte magnético, éstos fueron referidos al norte geográfico, empleándose para tal efecto, la corrección de desviación magnética local (+ 2°). Con la información registrada (datos cada 10 minutos), se elaboró series de tiempo horaria.

La información de corrientes fue sometida a un análisis estadístico de frecuencias por rangos de dirección y magnitud para una rosa de 8 direcciones (tabla e histograma). Por su parte, las series horarias fueron sometidas a un análisis de series de tiempo (estadística básica de componentes, dispersión, DVP y espectral).

En el análisis de frecuencia, las corrientes con magnitudes inferiores a 1 cm/s fueron consideradas calmas, debido a que éstas son muy débiles y poco significativas en los procesos dinámicos del mar.

Finalmente, con el objeto de visualizar las relaciones causa – efecto entre los forzantes vientos y marea, se realizó un análisis de correlación cruzada.

Resultados

Capa 46 (superficie)

A nivel superficial, las corrientes observadas presentaron un patrón de comportamiento direccional dominado por las direcciones asociadas al 4^{to} cuadrante. Así, las mayores ocurrencias se registraron en las direcciones NW, W y N (21,8%, 21,6% y 12,9%, respectivamente). El resto de las direcciones se agrupó entre 6,9% (dirección S) y 9,9% (dirección SW, Figura EM-51 y Tabla EM-31).

Las magnitudes medias registradas se agruparon en torno a los 12,8 cm/s (\pm 6,8 cm/s). En particular, la dirección W mostró la mayor magnitud promedio, con un valor de 14,6 cm/s. Por su parte, las máximas velocidades detectadas fueron de 48,9 cm/s (0,95 nudos) y 42,1 cm/s (0,82 nudos) asociadas a las direcciones W y SW, respectivamente (Tabla EM-76).

La mayor ocurrencia de magnitud se registró en el rango de 9,1 a 13,0 cm/s, con un porcentaje de 22,9%. En tanto que el rango 5,1 cm/s a 9,0 cm/s agrupó un 22,2% de las mediciones (Figura EM-51).

Las corrientes registradas en esta capa se mostraron de mediana a alta intensidad, encontrándose un 5,2% de la información sobre 25,0 cm/s. Por último, se encontró un 0,6% de las mediciones bajo 1,0 cm/s (Tabla EM-31).

	FRECUENCIA DE INCIDENCIA DE CORRIENTES								
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.1	0.1	0.0	0.1	0.1	0.1	0.0	0.1	0.6
1,1 - 5,0	1.5	1.2	1.2	1.5	1.4	1.5	1.6	1.8	11.7
5,1 - 9,0	3.3	2.2	2.3	2.0	2.0	2.6	3.7	4.0	22.2
9,1 - 13,0	3.1	1.8	2.3	2.3	1.4	2.1	4.5	5.3	22.9
13,1 - 17,0	2.0	1.2	1.7	2.1	1.1	1.8	4.2	4.2	18.2
17,1 - 21,0	1.2	0.5	1.2	1.0	0.6	0.9	3.7	3.0	12.2
21,1 - 25,0	0.8	0.2	0.5	0.4	0.2	0.5	2.3	2.0	6.9
> 25,0	0.9	0.1	0.3	0.2	0.1	0.6	1.6	1.4	5.2
Total Efectivo	12.9	7.2	9.6	9.6	6.9	9.9	21.6	21.8	99.4
Maximo (cm/s)	41.9	37.6	35.9	31.3	30.2	42.1	48.9	41.1	48.9
Promedio (cm/s)	12.6	10.4	11.9	11.6	10.2	12.0	14.6	13.8	12.8
			FREC	UENCIA DE I	EXCEDENCI	A DE CORRIE	INTES		
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	s	SW	W	NW	TOTAL
> 25,0	0.9	0.1	0.3	0.2	0.1	0.6	1.6	1.4	5.2
> 21,0	1.7	0.4	0.8	0.7	0.3	1.1	3.9	3.4	12.2
> 17,0	3.0	0.9	2.0	1.6	0.9	2.0	7.6	6.4	24.4
> 13,0	5.0	2.0	3.7	3.7	2.0	3.7	11.8	10.6	42.6
> 9,0	8.1	3.8	6.1	6.0	3.5	5.8	16.3	16.0	65.5
> 5,0	11.4	6.0	8.4	8.0	5.5	8.4	20.0	20.0	87.7
> 1,0	12.9	7.2	9.6	9.6	6.9	9.9	21.6	21.8	99.4

Fuente: consultora Costasur

Fuente: consultora Costasur

Para el análisis de las corrientes como series de tiempo, éstas fueron reducidas a series horarias, calculándose las respectivas componentes ortogonales. Así, se definen las componentes U y V de la siguiente manera:

Componente U:	Este – Weste, positiva si el flujo va hacia el Este.
Componente V:	Norte – Sur, positiva si el flujo va hacia el Norte.

Las series de tiempo de componentes ortogonales, fueron sometidas a un análisis estadístico básico, obteniéndose los siguientes resultados (Tabla EM-32).

Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)					
U (este-weste)	-36,7	27,3	-3,9	10,3					
V (norte-sur)	-29,0	38,4	1,9	8,8					
Fuente: consultora Costasur									

Tabla EM-32: Estadísticas de series ortogonales. Capa superficial

a al diagrama da disporsión da las d

La Figura EM-52 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa una tendencia de las corrientes a agruparse en torno al 4^{to} cuadrante. Los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección W – NW (componente promedio U negativa y componente promedio V positiva y de menor magnitud).

Fuente: consultora Costasur

Con el objeto de corroborar lo anterior, y suponiendo que la corriente observada es espacialmente homogénea y presenta similares fluctuaciones temporales en ese espacio, es posible explicar el comportamiento de una partícula de agua a través de un diagrama de vector progresivo (DVP). El diagrama de vector progresivo (Figura EM-53) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el W – NW (296,2°).

Figura EM- 53: Diagrama de vector progresivo. Capa superficial

Por último, y para determinar el comportamiento de la corriente en el dominio de la frecuencia, se aplicó un análisis estadístico de tipo espectral (12 grados de libertad y 95% de confianza). Este análisis permite determinar la cantidad de energía (densidad espectral) que se encuentra asociada a las distintas bandas de frecuencia (período).

Fuente: consultora Costasur

Figura EM-54: Autoespectros de corrientes. Capa superficial

En los espectros presentados en la Figura EM-54, se observa contenido de energía en las componentes U y V en la banda de frecuencia diurna (0,04 cph) y, en la componente U en la banda de frecuencia semidiurna (0,08 cph), respectivamente. Ambas situaciones atribuibles posiblemente al efecto del viento y la marea.

Capa 23 (intermedia)

En este nivel, las corrientes observadas presentaron un patrón de comportamiento distinto al detectado en la capa más superficial. A saber, se observó un predominio de las direcciones asociadas al 1^{er} cuadrante: 15,3% (dirección N) y 14,3% (dirección NE). El resto de las direcciones se agrupó entre 9,1% (dirección W) y 12,4% (direcciones E y SE, Figura EM-55 y Tabla EM-33).

Las magnitudes medias registradas se agruparon en torno a los 5,4 cm/s (\pm 2,8 cm/s). En particular, las direcciones N y NE, SW mostraron las mayores magnitudes promedio, con valores de 5,7 cm/s y 5,6 cm/s, respectivamente. Las máximas velocidades detectadas fueron de 21,2 cm/s (0,41 nudos) y 19,2 cm/s (0,37 nudos) asociadas a las direcciones SW y S, respectivamente (Tabla EM-33).

La mayor ocurrencia de magnitud se registró en el rango de 1,1 a 5,0 cm/s, con un porcentaje de 50,0%. En tanto que el rango 5,1 cm/s a 9,0 cm/s agrupó un 36,7% de las mediciones (Figura EM-55). Las corrientes registradas en esta capa se mostraron de mediana intensidad, encontrándose un 0,2% de la información sobre 17,0 cm/s. Por último, se encontró un 3,3% de las mediciones bajo 1,0 cm/s (Tabla EM-33).

		FRECUENCIA DE INCIDENCIA DE CORRIENTES							
Velocidad		Direcciones							
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.3	3.3
1,1 - 5,0	7.5	6.9	6.5	6.6	6.2	5.7	5.4	5.2	50.0
5,1 - 9,0	5.7	5.7	4.7	4.8	4.6	4.6	3.1	3.6	36.7
9,1 - 13,0	1.8	1.4	1.1	0.9	0.9	1.1	0.7	0.8	8.6
13,1 - 17,0	0.3	0.2	0.1	0.1	0.1	0.2	0.0	0.1	1.2
17,1 - 21,0	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.2
21,1 - 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Efectivo	15.3	14.3	12.4	12.4	11.9	11.7	9.1	9.7	96.7
Maximo (cm/s)	18.7	17.0	17.8	16.6	19.2	21.2	15.5	16.1	21.2
Promedio (cm/s)	5.7	5.6	5.4	5.2	5.2	5.6	4.9	5.1	5.4

Tabla EM-33: Frecuencia de incidencia y excedencia de corrientes. Capa intermedia

	FRECUENCIA DE EXCEDENCIA DE CORRIENTES								
Velocidad	Direcciones								
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 21,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 17,0	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.2
> 13,0	0.3	0.2	0.1	0.1	0.1	0.3	0.0	0.1	1.4
> 9,0	2.1	1.6	1.2	1.0	1.0	1.4	0.7	0.9	9.9
> 5,0	7.8	7.3	5.9	5.8	5.6	6.0	3.8	4.4	46.7
> 1,0	15.3	14.3	12.4	12.4	11.9	11.7	9.1	9.7	96.7

Fuente: consultora Costasur

Figura EM-55: Histograma de frecuencia de dirección y velocidad de corrientes. Capa intermedia

Fuente: consultora Costasur

Las series de tiempo de componentes ortogonales, fueron sometidas a un análisis estadístico básico, obteniéndose los siguientes resultados (Tabla EM-34)

Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)					
U (este-weste)	-16,6	13,7	0,4	4,0					
V (norte-sur)	-14,5	14,7	0,2	4,4					
	-								

Tabla EM-34: Estadísticas de series ortogonales. Capa intermedia

Fuente: consultora Costasur

La Figura EM-56 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). No se observa alguna tendencia clara de las corrientes a agruparse en torno a alguna dirección en particular. Los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección NE – E (componente promedio U positiva y componente promedio V positiva y de menor magnitud).

El diagrama de vector progresivo (Figura EM-57) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el NE – E ($64,4^{\circ}$).

En los espectros presentados en la Figura EM-58, no se observó contenido de energía en las bandas diurna y semidiurna.

Figura EM-56: Diagrama de dispersión dirección versus magnitud. Capa intermedia

Fuente: consultora Costasur

Figura EM-57: Diagrama de vector progresivo. Capa intermedia

Fuente: consultora Costasur

Capa 1 (fondo)

Las corrientes observadas presentaron un predominio de las direcciones asociadas al 3^{er} cuadrante. Las mayores ocurrencias se registraron en las direcciones SW y S (17,7% y 16,1%, respectivamente). El resto de las direcciones se agrupó entre 8,2% (dirección NW) y 13,1% (dirección NE, Figura EM-59 y Tabla EM-35).

Las magnitudes medias registradas se agruparon en torno a los 5,0 cm/s (\pm 2,8 cm/s). En particular, la dirección SW mostró la mayor magnitud promedio, con un valor de 6,2 cm/s. Por su parte, las máximas velocidades detectadas fueron de 21,4 cm/s (0,42 nudos) y 20,0 cm/s (0,39 nudos), asociadas a las direcciones W y SW, respectivamente (Tabla EM-35).

La mayor ocurrencia de magnitud se registró en el rango de 1,1 a 5,0 cm/s, con un porcentaje de 56,3%. En tanto que el rango 5,1 cm/s a 9,0 cm/s agrupó un 31,2% de las mediciones (Figura EM-59).

Las corrientes registradas durante este período de mediciones se mostraron de mediana intensidad, encontrándose un 0,2% de la información sobre 17,0 cm/s. Por último, se encontró un 4,3% de las mediciones bajo 1,0 cm/s (Tabla EM-35).

	33.1100	uencia c		fillera y e			Jinenies	s. Capa i	Undu
	FRECUENCIA DE INCIDENCIA DE CORRIENTES								
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.6	0.5	0.5	0.5	0.6	0.5	0.4	0.5	4.3
1,1 - 5,0	6.3	8.1	7.3	7.3	8.0	7.9	5.7	5.7	56.3
5,1 - 9,0	3.3	4.1	3.0	3.1	6.2	6.5	2.7	2.3	31.2
9,1 - 13,0	0.4	0.8	0.3	0.2	1.8	2.5	0.8	0.2	6.9
13,1 - 17,0	0.0	0.1	0.0	0.0	0.2	0.6	0.2	0.0	1.1
17,1 - 21,0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.2
21,1 - 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Efectivo	10.0	13.1	10.6	10.6	16.1	17.7	9.3	8.2	95.7
Maximo (cm/s)	13.9	15.3	12.9	12.3	18.2	20.0	21.4	15.3	21.4
Promedio (cm/s)	4.6	4.7	4.3	4.3	5.6	6.2	5.0	4.2	5.0
			FREC	UENCIA DE	EXCEDENCI	A DE CORRIE	ENTES		
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 21,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 17,0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.2
> 13,0	0.0	0.1	0.0	0.0	0.2	0.8	0.2	0.0	1.3
> 9,0	0.4	0.9	0.3	0.2	2.0	3.2	1.0	0.3	8.2
> 5,0	3.7	5.0	3.3	3.3	8.1	9.8	3.7	2.6	39.5
> 1,0	10.0	13.1	10.6	10.6	16.1	17.7	9.3	8.2	95.7

Tabla EM-35: Frecuencia de incidencia y excedencia de corrientes. Capa fondo

Fuente: consultora Costasur

Figura EM-59: Histograma de frecuencia de dirección y velocidad de corrientes. Capa fondo

Las series de tiempo de componentes ortogonales, fueron sometidas a un análisis estadístico básico, obteniéndose los siguientes resultados (Tabla EM-36).

Tabla Elli 50. Estadísticas de series ortogonales, oapa fondo							
Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)			
U (este-weste)	-15,8	11,2	-0,2	3,6			
V (norte-sur)	-15,9	13,9	-0,9	4,1			
		Fuendal especiations Car	1				

Tabla FM-36	Fstadísticas	de series	ortogonales	Cana fondo
	Locaulocidas	ue selles	United under Strates.	

Fuente: consultora Costasur

La Figura EM-60 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa cierta tendencia de las corrientes a agruparse en torno a las direcciones asociadas al 3^{er} cuadrante. Por otra parte, los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección SW – S (componente promedio U negativa y componente promedio V negativa y de mayor magnitud).

Figura EM-60: Diagrama de dispersión dirección versus magnitud. Capa fondo

Fuente: consultora Costasur

El diagrama de vector progresivo (Figura EM-61) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SW - S (195,5°).

En los espectros presentados en la Figura EM-62, se observa contenido de energía en la componente V, en la banda de frecuencia diurna (0,04 cph). Este máximo podría ser atribuido al efecto forzante del viento.

Figura EM- 61: Diagrama de vector progresivo. Capa fondo

Fuente: consultora Costasur

Figura EM-62: Autoespectros de corrientes. Capa fondo

> ADCP NORTEK (Punto de muestreo 2)

Materiales y métodos

La campaña de mediciones de corrientes eulerianas se realizó entre los días 6 de noviembre al 15 de diciembre de 2014 (período de sicigia y cuadratura lunar).

Estas mediciones se efectuaron mediante el anclaje (fondeo) de un perfilador de corrientes acústico Doppler (ADCP, marca NORTEK, modelo Aquadopp profiler), en un punto con las siguientes coordenadas (Figura EM-2): 262.520 E; 6.469.984 N (Datum WGS84). Este punto es el lugar de la captación de agua de mar para el funcionamento de la planta desanizadora.

El ADCP fue instalado en el veril de 22,0 metros (app.) con respecto al Nivel de Reducción de Sondas (NRS), y a 1,0 metros sobre el fondo marino. Este instrumento fue programado para medir la dirección y magnitud de las corrientes a través de la columna de agua, determinándose 17 capas de medición (de 1,0 metros de espesor cada una de ellas) (Tabla EM-37).

Сара	Centro de capa desde el fondo marino (m)	Límite superior de la capa desde el fondo marino (m)
1	2,50	3,00
2	3,50	4,00
3	4,50	5,00
4	5,50	6,00
5	6,50	7,00
6	7,50	8,00
7	8,50	9,00
8	9,50	10,00
9	10,50	11,00
10	11,50	12,00
11	12,50	13,00
12	13,50	14,00
13	14,50	15,00
14	15,50	16,00
15	16,50	17,00
16	17,50	18,00
17	18,50	19,00

Tabla EM-37: Capas de medición estudio de corrientes con ADCP

Fuente: consultora Costasur

Transductores desde el fondo marino = 1,0 m 1st. Bin = 1,50 m (centro de 1^a capa desde transductores) 1st. Bin = 2,50 m (centro de 1^a capa desde el fondo marino) Bin Size = 1,0 m

El análisis de la información consistió en procesar 3 capas características de la columna de agua (capa superficial, intermedia y de fondo). De esta manera, las capas analizadas fueron las siguientes:

Capa 17 (superficie): Capa 9 (intermedia): Capa 1 (fondo): Capa centrada a 18,50 metros desde el fondo Capa centrada a 10,50 metros desde el fondo Capa centrada a 2,50 metros desde el fondo

Como los registros de la dirección de las corrientes son referidos originalmente al norte magnético, éstos fueron referidos al norte geográfico, empleándose para tal efecto, la corrección de desviación magnética local (+ 2°). Con la información registrada (datos cada 10 minutos), se elaboró series de tiempo horaria.

La información de corrientes fue sometida a un análisis estadístico de frecuencias por rangos de dirección y magnitud para una rosa de 8 direcciones (tabla e histograma). Por su parte, las series horarias fueron sometidas a un análisis de series de tiempo (estadística básica de componentes, dispersión, DVP y espectral).

En el análisis de frecuencia, las corrientes con magnitudes inferiores a 1 cm/s fueron consideradas calmas, debido a que éstas son muy débiles y poco significativas en los procesos dinámicos del mar.

Finalmente, con el objeto de visualizar las relaciones causa – efecto entre los forzantes vientos y marea, se realizó un análisis de correlación cruzada.

Resultados

Capa 17 (superficie)

A nivel superficial, las corrientes observadas presentaron un patrón de comportamiento direccional dominado por las direcciones asociadas al 3^{er} cuadrante. Así, las mayores ocurrencias se registraron en las direcciones W y SW (20,8% y 19,3%, respectivamente). El resto de las direcciones se agrupó entre 5,4% (dirección E) y 14,7% (dirección NW, Figura EM-63 y Tabla EM-38).

Las magnitudes medias registradas se agruparon en torno a los 10,6 cm/s (\pm 5,3 cm/s). En particular, la dirección N mostró la mayor magnitud promedio, con un valor de 12,0 cm/s. Por su parte, las máximas velocidades detectadas fueron de 39,1 cm/s (0,76 nudos) y 35,2 cm/s (0,68 nudos) asociadas a las direcciones NW y W, respectivamente (Tabla EM-38).

La mayor ocurrencia de magnitud se registró en el rango de 5,1 a 9,0 cm/s, con un porcentaje de 32,9%. En tanto que el rango 9,1 cm/s a 13,0 cm/s agrupó un 27,5% de las mediciones (Figura EM-63).

Las corrientes registradas en esta capa se mostraron de mediana a alta intensidad, encontrándose un 1,7% de la información sobre 25,0 cm/s. Por último, se encontró un 0,1% de las mediciones bajo 1,0 cm/s (Tabla EM-38).

> 1,0

13.3

7.7

5.4

Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
1,1 - 5,0	1.3	1.4	1.4	1.4	1.7	1.6	2.0	1.6	12.5
5,1 - 9,0	3.8	3.0	2.5	2.6	4.4	6.0	6.1	4.5	32.9
9,1 - 13,0	3.3	1.9	1.1	1.6	3.4	5.9	6.1	4.1	27.5
13,1 - 17,0	2.3	0.9	0.4	0.5	1.9	3.8	3.4	2.1	15.3
17,1 - 21,0	1.4	0.4	0.1	0.1	0.7	1.5	1.9	1.2	7.3
21,1 - 25,0	0.7	0.1	0.0	0.0	0.3	0.4	0.7	0.6	2.8
> 25,0	0.6	0.1	0.0	0.0	0.0	0.1	0.5	0.4	1.7
Total Efectivo	13.3	7.7	5.4	6.3	12.4	19.3	20.8	14.7	99.9
Maximo (cm/s)	32.7	28.1	19.6	21.9	30.9	31.8	35.2	39.1	39.1
Promedio (cm/s)	12.0	9.2	7.7	8.1	9.9	10.9	11.4	11.1	10.6
			FREC	UENCIA DE	EXCEDENCI	A DE CORRIE	INTES		
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.6	0.1	0.0	0.0	0.0	0.1	0.5	0.4	1.7
> 21,0	1.3	0.1	0.0	0.0	0.3	0.5	1.3	1.0	4.5
> 17,0	2.6	0.5	0.1	0.1	1.0	2.1	3.2	2.2	11.8
> 13,0	4.9	1.4	0.5	0.6	2.9	5.8	6.6	4.3	27.0
> 9,0	8.2	3.3	1.6	2.2	6.3	11.7	12.7	8.5	54.5
> 5,0	12.0	6.3	4.0	4.8	10.7	17.7	18.7	13.0	87.4

Tabla EM-38: Frecuencia de incidencia y excedencia de corrientes. Capa superficial

Fuente: consultora Costasur

12.4

19.3

20.8

14.7

99.9

6.3

Figura EM-63: Histograma de frecuencia de dirección y velocidad de corrientes. Capa superficial

Fuente: consultora Costasur

Para el análisis de las corrientes como series de tiempo, éstas fueron reducidas a series horarias, calculándose las respectivas componentes ortogonales. Así, se definen las componentes U y V de la siguiente manera:

Componente U:	Este – Weste, positiva si el flujo va hacia el Este.
Componente V:	Norte – Sur, positiva si el flujo va hacia el Norte.

Las series de tiempo de componentes ortogonales, fueron sometidas a un análisis estadístico básico, obteniéndose los siguientes resultados (Figura EM-64).

Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)						
U (este-weste)	-35,0	18,3	-3,9	7,5						
V (norte-sur) -22,9 28,7 0,0 8,4										
Fuente: consultora Costasur										

Tabla EM 39: Estadísticas de series ortogonales. Capa superficial

La Figura EM-64 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa una tendencia de las corrientes a agruparse en torno a la dirección W. Los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección W (componente promedio U negativa y componente promedio V cero).

Fuente: consultora Costasur

Con el objeto de corroborar lo anterior, y suponiendo que la corriente observada es espacialmente homogénea y presenta similares fluctuaciones temporales en ese espacio, es posible explicar el comportamiento de una partícula de agua a través de un diagrama de vector progresivo (DVP). El diagrama de vector progresivo (Figura EM-65) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el W (269,5°).

Figura EM-65: Diagrama de vector progresivo. Capa superficial

Fuente: consultora Costasur

Por último, y para determinar el comportamiento de la corriente en el dominio de la frecuencia, se aplicó un análisis estadístico de tipo espectral (12 grados de libertad y 95% de confianza). Este análisis permite determinar la cantidad de energía (densidad espectral) que se encuentra asociada a las distintas bandas de frecuencia (período).

En los espectros presentados en la Figura EM-66, se observa contenido de energía en la componente V en la banda de frecuencia diurna (0,04 cph). Esta situación podría ser atribuible posiblemente al efecto del viento.

Capa 9 (intermedia)

En este nivel, las corrientes observadas presentaron un predominio de las direcciones asociadas al 3^{er} cuadrante: 17,1% (dirección S) y 14,3% (dirección SW). El resto de las direcciones se agrupó entre 9,5% (dirección NE) y 13,7% (dirección SE, Figura EM-67 y Tabla EM-40).

Las magnitudes medias registradas se agruparon en torno a los 8,2 cm/s (\pm 3,7 cm/s). En particular, las direcciones S y SW mostraron las mayores magnitudes promedio, con un valor de 8,6 cm/s (ambas direcciones). Las máximas velocidades detectadas fueron de 37,0 cm/s (0,72 nudos) y 36,4 cm/s (0,71 nudos) asociadas a las direcciones NW y E, respectivamente (Tabla EM-40).

La mayor ocurrencia de magnitud se registró en el rango de 5,1 a 9,0 cm/s, con un porcentaje de 42,8%. En tanto que el rango 9,1 cm/s a 13,0 cm/s agrupó un 25,3% de las mediciones (Figura EM-67).

Las corrientes registradas en esta capa se mostraron de mediana a alta intensidad, encontrándose un 0,1% de la información sobre 25,0 cm/s. Por último, se encontró un 0,2% de las mediciones bajo 1,0 cm/s (Tabla EM-40).

Tabla EM-40: Frecuencia de incidencia y excedencia de corrientes. Capa intermedia

	FRECUENCIA DE INCIDENCIA DE CORRIENTES								
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
1,1 - 5,0	2.8	2.4	2.9	2.6	3.2	2.5	2.6	2.4	21.3
5,1 - 9,0	5.1	4.1	5.0	5.6	6.9	6.1	5.1	4.9	42.8
9,1 - 13,0	2.4	2.4	2.6	3.7	4.8	3.8	3.1	2.6	25.3
13,1 - 17,0	0.7	0.5	0.4	1.5	1.9	1.7	1.0	0.9	8.6
17,1 - 21,0	0.1	0.0	0.1	0.3	0.3	0.2	0.2	0.2	1.3
21,1 - 25,0	0.1	0.0	0.0	0.0	0.1	0.0	0.1	0.1	0.4
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1
Total Efectivo	11.1	9.5	10.9	13.7	17.1	14.3	12.1	11.1	99.8
Maximo (cm/s)	28.5	23.0	36.4	21.1	23.8	22.5	31.9	37.0	37.0
Promedio (cm/s)	7.7	7.5	7.4	8.5	8.6	8.6	8.3	8.3	8.2
			FREC	UENCIA DE	EXCEDENCI/	A DE CORRIE	INTES		
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1
> 21,0	0.1	0.0	0.0	0.0	0.1	0.0	0.2	0.1	0.5
> 17,0	0.2	0.0	0.1	0.3	0.3	0.2	0.3	0.3	1.8
> 13,0	0.9	0.5	0.5	1.7	2.2	1.9	1.4	1.2	10.4
> 9,0	3.3	2.9	3.1	5.4	7.0	5.7	4.5	3.8	35.7
> 5,0	8.4	7.1	8.1	11.1	13.9	11.8	9.5	8.7	78.5
> 1.0	11.1	9.5	10.9	13.7	17 1	14.3	12.1	11 1	99.8

Fuente: consultora Costasur

Figura EM-67: Histograma de frecuencia de dirección y velocidad de corrientes. Capa intermedia

Fuente: consultora Costasur

Las series de tiempo de componentes ortogonales, fueron sometidas a un análisis estadístico básico, obteniéndose los siguientes resultados (Tabla EM-41)

Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)					
U (este-weste)	-22,2	36,4	-0,2	6,3					
V (norte-sur)	-21,6	21,0	-1,5	6,5					

Tabla EM-41: Estadísticas de series ortogonales. Capa intermedia

Fuente: consultora Costasur

La Figura EM-68 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa cierta tendencia de las corrientes a agruparse en torno a la dirección S. Los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección S (componente promedio U negativa y componente promedio V negativa y de mayor magnitud).

El diagrama de vector progresivo (Figura EM-69) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el S (189,6°).

En los espectros presentados en la Figura EM-70, no se observó contenido de energía en las bandas diurna y semidiurna.

Fuente: consultora Costasur

Figura EM-69: Diagrama de vector progresivo. Capa intermedia

Fuente: consultora Costasur

Figura EM-70: Autoespectros de corrientes. Capa intermedia

Capa 1 (fondo)

Las corrientes observadas presentaron un predominio de las direcciones asociadas al 3^{er} cuadrante. Las mayores ocurrencias se registraron en las direcciones SW y S (16,8% y 15,0%, respectivamente). El resto de las direcciones se agrupó entre 10,2% (dirección NE) y 13,4% (dirección W, Figura EM-71 y Tabla EM-42).

Las magnitudes medias registradas se agruparon en torno a los 8,5 cm/s ($\pm\pm$ 3,6 cm/s). En particular, la dirección SW mostró la mayor magnitud promedio, con un valor de 9,7 cm/s. Por su parte, las máximas velocidades detectadas fueron de 34,0 cm/s (0,66 nudos) y 25,9 cm/s (0,50 nudos), asociadas a las direcciones N y NE, respectivamente (Tabla EM-42).

La mayor ocurrencia de magnitud se registró en el rango de 5,1 a 9,0 cm/s, con un porcentaje de 45,6%. En tanto que el rango 9,1 cm/s a 13,0 cm/s agrupó un 27,8% de las mediciones (Figura EM-71).

Las corrientes registradas durante este período de mediciones se mostraron de mediana a alta intensidad, encontrándose un 0,1% de la información sobre 25,0 cm/s. Por último, se encontró un 0,1% de las mediciones bajo 1,0 cm/s (Tabla EM-42).

	42.1100				, ocacii			s. oupu i	
FRECUENCIA DE INCIDENCIA DE CORRIENTES									
Velocidad	Direcciones								
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1
1,1 - 5,0	2.1	1.6	2.5	2.1	2.1	1.9	1.8	1.7	15.8
5,1 - 9,0	5.3	5.1	4.9	5.5	6.9	6.6	6.0	5.4	45.6
9,1 - 13,0	3.0	2.7	2.5	3.4	4.2	5.0	4.2	2.9	27.8
13,1 - 17,0	0.9	0.7	0.4	0.8	1.5	2.4	1.1	0.7	8.4
17,1 - 21,0	0.1	0.0	0.1	0.1	0.3	0.9	0.3	0.2	1.9
21,1 - 25,0	0.1	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.3
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Total Efectivo	11.5	10.2	10.3	11.8	15.0	16.8	13.4	10.9	99.9
Maximo (cm/s)	34.0	25.9	23.5	24.8	22.1	25.6	23.9	19.4	34.0
Promedio (cm/s)	8.2	8.0	7.5	8.1	8.7	9.7	8.7	8.2	8.5
	FRECUENCIA DE EXCEDENCIA DE CORRIENTES								
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
> 21,0	0.1	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.3
> 17,0	0.2	0.1	0.1	0.1	0.4	1.0	0.4	0.2	2.3
> 13,0	1.1	0.8	0.5	0.9	1.8	3.3	1.4	0.9	10.7
> 9,0	4.1	3.5	3.0	4.2	6.0	8.4	5.6	3.8	38.5
> 5,0	9.4	8.6	7.9	9.7	12.9	15.0	11.6	9.2	84.2
> 1,0	11.5	10.2	10.3	11.8	15.0	16.8	13.4	10.9	99.9

Tabla EM-42: Frecuencia de incidencia y excedencia de corrientes. Capa fondo

Fuente: consultora Costasur

Figura EM-71: Histograma de frecuencia de dirección y velocidad de corrientes. Capa fondo

Las series de tiempo de componentes ortogonales, fueron sometidas a un análisis estadístico básico, obteniéndose los siguientes resultados (Tabla EM-43).

1 4 6			gonaloor oapa ioi	lao
Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)
U (este-weste)	-18,4	16,9	-1,0	6,2
V (norte-sur)	-21,5	17,1	-0,9	6,6
	Fu	ente: consultora Costas	ur	

Tabla EM-43: Estadísticas de series ortogonales. Capa fondo

La Figura EM-72 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección), se observa cierta tendencia de las corrientes a agruparse en torno a las direcciones asociadas al 3^{er} cuadrante. Por otra parte, los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección SW (componente promedio U negativa y componente promedio V negativa y de similar magnitud).

El diagrama de vector progresivo (Figura EM-73) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SW (228,5°).

En los espectros presentados en la Figura EM-74, no se observa contenido de energía en las componentes U y V.

Fuente: consultora Costasur

Figura EM-73: Diagrama de vector progresivo. Capa fondo

Verano 2015

En la campaña de verano 2015 se instalaron dos instrumentos perfiladores de corrientes (ADCP), ubicadas en el punto de muestreo 1 (correspondiente al punto de descarga de la futura planta desalinizadora) y en el punto de muestreo 2 (correspondiente al punto de captación proyectado para la planta desalinizadora. (Figura EM-2).

> ADCP TRDI (Punto de muestreo 1)

Materiales y métodos

La campaña de mediciones de corrientes eulerianas se realizó entre los días 05 de febrero al 24 de marzo de 2015 (período de sicigia y cuadratura lunar).

Estas mediciones se efectuaron mediante el anclaje (fondeo) de un perfilador de corrientes acústico Doppler (ADCP, marca RD Instruments, modelo WorkHorse Sentinel 614,4 kHz), en un punto con las siguientes coordenadas (Figura EM-2): 262.151 E; 6.469.638 N (Datum WGS84). Este Punto corresponde al lugar de descarga de salmuera producto la planta desalinizadora.

El ADCP fue instalado en el veril de 25,0 metros (app.) con respecto al Nivel de Reducción de Sondas (NRS), y a 0,5 metros sobre el fondo marino. Este instrumento fue programado para medir la dirección y magnitud de las corrientes a través de la columna de agua, determinándose 30 capas de medición (de 0,75 metros de espesor cada una de ellas). La Tabla EM-44 resume esta información:

	Centro de capa	Límite superior			
Capa	fondo marino	desde el fondo marino			
	(m)	(m)			
1	2,37	2,75			
2	3,12	3,5			
3	3,87	4,25			
4	4,62	5			
5	5,37	5,75			
6	6,12	6,5			
7	6,87	7,25			
8	7,62	8			
9	8,37	8,75			
10	9,12	9.,50			
11	9,87	10,25			
12	10,62	11			
13	11,37	11,75			
14	12,12	12,5			
15	12,87	13,25			
16	13,62	14			
17	14,37	14,75			
18	15,12	15,5			
19	15,87	16,25			
20	16,62	17			

Tabla EM-44: Capas de medición estudio de corrientes con ADCP.

Сара	Centro de capa desde el fondo marino (m)	Límite superior de la capa desde el fondo marino (m)
21	17,37	17,75
22	18,12	18,5
23	18,87	19,25
24	19,62	20
25	20,37	20,75
26	21,12	21,5
27	21,87	22,25
28	22,62	23
29	23,37	23,75
30	24,12	24,5

Fuente: consultora Costasur

Transductores desde el fondo marino = 0,5 m1st. Bin = 1,87 m (centro de 1^a capa desde transductores) 1st. Bin = 2,37 m (centro de 1^a capa desde el fondo marino) Bin Size = 0,75 m

El análisis de la información consistió en procesar 3 capas características de la columna de agua (capa superficial, intermedia y de fondo). De esta manera, las capas analizadas fueron las siguientes:

Capa 30 (superficie):
Capa 16 (intermedia):
Capa 1 (fondo):

Capa centrada a 24,12 metros desde el fondo Capa centrada a 13,62 metros desde el fondo Capa centrada a 2,37 metros desde el fondo

Como los registros de la dirección de las corrientes son referidos originalmente al norte magnético, éstos fueron referidos al norte geográfico, empleándose para tal efecto, la corrección de desviación magnética local (+ 2°). Con la información registrada (datos cada 10 minutos), se elaboró series de tiempo horaria.

La información de corrientes fue sometida a un análisis estadístico de frecuencias por rangos de dirección y magnitud para una rosa de 8 direcciones (tabla e histograma). Por su parte, las series horarias fueron sometidas a un análisis de series de tiempo (estadística básica de componentes, dispersión, DVP y espectral).

En el análisis de frecuencia, las corrientes con magnitudes inferiores a 1 cm/s fueron consideradas calmas, debido a que éstas son muy débiles y poco significativas en los procesos dinámicos del mar.

Finalmente, con el objeto de visualizar las relaciones causa – efecto entre los forzantes vientos y marea, se realizó un análisis de correlación cruzada.

Resultados

Capa 30 (superficie)

A nivel superficial, las corrientes observadas presentaron un patrón de comportamiento direccional dominado por la dirección NE (19,4%). El resto de las direcciones se agrupó entre 8,2% (dirección NW) y 13,5% (dirección N, Figura EM-75 y Tabla EM-45).

Las magnitudes medias registradas se agruparon en torno a los 10,3 cm/s (± 5,7 cm/s). En particular, la dirección NE mostró la mayor magnitud promedio, con un valor de 12,2 cm/s. Por su parte, las máximas velocidades detectadas fueron de 52,6 cm/s (1,02 nudos) y 36,0 cm/s (0,70 nudos) asociadas a las direcciones NE y N, respectivamente (Tabla EM-45).

La mayor ocurrencia de magnitud se registró en el rango de 5,1 a 9,0 cm/s, con un porcentaje de 29,2%. En tanto que el rango 9,1 cm/s a 13,0 cm/s agrupó un 24,8% de las mediciones (Figura EM-75).

Las corrientes registradas en esta capa se mostraron de mediana a alta intensidad, encontrándose un 1,7% de la información sobre 25,0 cm/s. Por último, se encontró un 0,8% de las mediciones bajo 1,0 cm/s (Tabla EM-45).

	FRECUENCIA DE INCIDENCIA DE CORRIENTES								
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.0	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.8
1,1 - 5,0	2.2	2.5	2.4	2.5	2.3	2.3	2.0	1.6	17.7
5,1 - 9,0	3.4	4.4	4.1	3.6	4.1	3.7	3.1	2.8	29.2
9,1 - 13,0	3.5	4.6	3.3	2.4	3.6	3.0	2.2	2.1	24.8
13,1 - 17,0	2.2	3.9	2.0	0.8	1.8	2.3	0.9	1.2	15.1
17,1 - 21,0	1.2	2.1	0.9	0.4	0.8	1.2	0.4	0.4	7.4
21,1 - 25,0	0.7	1.1	0.3	0.1	0.3	0.5	0.1	0.1	3.3
> 25,0	0.3	0.8	0.2	0.0	0.1	0.2	0.1	0.0	1.7
Total Efectivo	13.5	19.4	13.1	9.8	13.0	13.3	8.9	8.2	99.2
Maximo (cm/s)	36.0	52.6	31.5	25.5	35.7	32.4	35.7	26.0	52.6
Promedio (cm/s)	11.1	12.2	9.9	8.3	9.9	10.7	9.0	9.0	10.3

Tabla EM-45: Frecuencia de incidencia y excedencia de corrientes. Capa superficial

		FRECUENCIA DE EXCEDENCIA DE CORRIENTES								
Velocidad				Direc	ciones					
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL	
> 25,0	0.3	0.8	0.2	0.0	0.1	0.2	0.1	0.0	1.7	
> 21,0	1.0	1.9	0.5	0.1	0.4	0.7	0.2	0.1	5.0	
> 17,0	2.2	4.0	1.4	0.5	1.2	2.0	0.7	0.4	12.4	
> 13,0	4.4	7.9	3.4	1.3	3.0	4.2	1.6	1.7	27.5	
> 9,0	7.9	12.5	6.7	3.7	6.6	7.3	3.8	3.8	52.3	
> 5,0	11.3	16.9	10.7	7.4	10.7	11.0	6.9	6.6	81.5	
>10	13.5	19.4	13.1	9.8	13.0	13.3	89	82	99.2	

Fuente: consultora Costasur

Figura EM-75: Histograma de frecuencia de dirección y velocidad de corrientes. Capa superficial

Fuente: consultora Costasur

Para el análisis de las corrientes como series de tiempo, éstas fueron reducidas a series horarias, calculándose las respectivas componentes ortogonales. Así, se definen las componentes U y V de la siguiente manera:

Componente U:	Este – Weste, positiva si el flujo va hacia el Este.
Componente V:	Norte – Sur, positiva si el flujo va hacia el Norte.

Las series de tiempo de componentes ortogonales, fueron sometidas a un análisis estadístico básico, obteniéndose los siguientes resultados (Tabla EM-46):

			egenaleel eapa eap	
Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)
U (este-weste)	-25,1	24,3	1,1	7,6
V (norte-sur)	-27,3	32	1	8,6

Tabla EM-46: Estadísticas de series ortogonales. Capa superficial

Fuente: consultora Costasur

La Figura EM-76 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa una tendencia de las corrientes a agruparse en torno al 1^{er} cuadrante. Los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección NE (componente promedio U positiva y componente promedio V positiva, ambas de similar magnitud).

Fuente: consultora Costasur

Con el objeto de corroborar lo anterior, y suponiendo que la corriente observada es espacialmente homogénea y presenta similares fluctuaciones temporales en ese espacio, es posible explicar el comportamiento de una partícula de agua a través de un diagrama de vector progresivo (DVP). El diagrama de vector progresivo (Figura EM-77) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el NE (47,9°).

Fuente: consultora Costasur

Por último, y para determinar el comportamiento de la corriente en el dominio de la frecuencia, se aplicó un análisis estadístico de tipo espectral (12 grados de libertad y 95% de confianza). Este análisis permite determinar la cantidad de energía (densidad espectral) que se encuentra asociada a las distintas bandas de frecuencia (período).

Figura EM-78: Autoespectros de corrientes. Capa superficial

En los espectros presentados en la Figura EM-78, se observa contenido de energía en las componentes U y V en la banda de frecuencia diurna (0,04 cph) y semidiurna (0,08 cph). Ambas situaciones atribuibles posiblemente al efecto del viento y la marea.

Capa 16 (intermedia)

En este nivel, las corrientes observadas presentaron un patrón de comportamiento similar al detectado en la capa más superficial. A saber, se observó un predominio de las direcciones asociadas al 1^{er} cuadrante: 16,7% (dirección NE) y 14,4% (dirección E). El resto de las direcciones se agrupó entre 8,5% (dirección NW) y 13,0% (dirección S, Figura EM-79 y Tabla EM-47).

Las magnitudes medias registradas se agruparon en torno a los 5,6 cm/s (\pm 3,3 cm/s). En particular, la dirección N mostró la mayor magnitud promedio, con un valor de 6,1 cm/s. Las máximas velocidades detectadas fueron de 24,0 cm/s (0,47 nudos) y 23,0 cm/s (0,45 nudos) asociadas a las direcciones NE y N, respectivamente (Tabla EM-47).

La mayor ocurrencia de magnitud se registró en el rango de 1,1 a 5,0 cm/s, con un porcentaje de 48,8%. En tanto que el rango 5,1 cm/s a 9,0 cm/s agrupó un 34,1% de las mediciones (Figura EM-79). Las corrientes registradas en esta capa se mostraron de mediana intensidad, encontrándose un 0,1% de la información sobre 21,0 cm/s. Por último, se encontró un 3,6% de las mediciones bajo 1,0 cm/s (Tabla EM-47).

> 5,0

> 1,0

5.8

12.3

8.7

16.7

7.2

14.4

3.7

8.5

47.6

96.4

	FRECUENCIA DE INCIDENCIA DE CORRIENTES								
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.6	0.5	0.4	0.4	0.3	0.5	0.6	0.4	3.6
1,1 - 5,0	6.5	8.1	7.2	6.0	6.0	5.0	5.2	4.9	48.8
5,1 - 9,0	3.1	6.5	5.4	5.0	4.9	3.9	2.7	2.5	34.1
9,1 - 13,0	1.6	1.8	1.6	1.1	1.8	0.9	0.5	0.8	10.2
13,1 - 17,0	0.7	0.3	0.2	0.4	0.3	0.2	0.1	0.2	2.5
17,1 - 21,0	0.3	0.0	0.0	0.1	0.1	0.1	0.0	0.1	0.7
21,1 - 25,0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Efectivo	12.3	16.7	14.4	12.6	13.0	10.2	8.6	8.5	96.4
Maximo (cm/s)	23.0	24.0	19.7	17.7	20.2	21.5	17.5	22.3	24.0
Promedio (cm/s)	6.1	5.6	5.5	5.7	5.9	5.6	4.9	5.3	5.6
			FREC	UENCIA DE I	EXCEDENCIA	A DE CORRIE	INTES		
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 21,0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
> 17,0	0.3	0.0	0.0	0.1	0.1	0.1	0.0	0.1	0.8
> 13,0	1.0	0.4	0.2	0.5	0.4	0.3	0.2	0.3	3.3
> 9,0	2.7	2.2	1.8	1.6	2.2	1.3	0.7	1.1	13.5

Fuente: consultora Costasur

7.1

13.0

5.2

10.2

3.4

8.6

6.6

12.6

Las series de tiempo de componentes ortogonales, fueron sometidas a un análisis estadístico básico, obteniéndose los siguientes resultados (Tabla EM-48):

		V						
Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)				
U (este-weste)	-13,6	14,7	0,9	4,1				
V (norte-sur)	-18,3	20	0,1	4,8				
	Fuente: consultora Costasur							

Tabla FM-48	R· Fetadísticas	da sarias	ortogonalos	Cana intermedia
Tabla Elvi-40	ว. ธรเล่นเรเเตลร	ue series	ontogonales.	Capa interneula

La Figura EM-80 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). No se observa alguna tendencia clara de las corrientes a agruparse en torno a alguna dirección en particular. Los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección E (componente promedio U positiva y componente promedio V positiva y de menor magnitud).

El diagrama de vector progresivo (Figura EM-81) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el E (85,1°).

En los espectros presentados en la Figura EM-82, se observó contenido de energía en la banda diurna fundamentalmente en la componente V.

Fuente: consultora Costasur

Figura EM-81: Diagrama de vector progresivo. Capa intermedia

Fuente: consultora Costasur

Capa 1 (fondo)

Las corrientes observadas presentaron un predominio de las direcciones asociadas al 3^{er} y 1^{er} cuadrante. Las mayores ocurrencias se registraron en las direcciones SW, S y NE (25,4%, 19,8% y 15,6%, respectivamente). El resto de las direcciones se agrupó entre 5,1% (dirección NW) y 9,8% (dirección E, Figura EM-83 y Tabla EM-49).

Las magnitudes medias registradas se agruparon en torno a los 7,0 cm/s (\pm 4,0 cm/s). En particular, la dirección SW mostró la mayor magnitud promedio, con un valor de 9,1 cm/s. Por su parte, las máximas velocidades detectadas fueron de 27,8 cm/s (0,54 nudos) y 23,1 cm/s (0,45 nudos), asociadas a las direcciones SW y S, respectivamente (Tabla EM-49).

La mayor ocurrencia de magnitud se registró en el rango de 1,1 a 5,0 cm/s, con un porcentaje de 36,3%. En tanto que el rango 5,1 cm/s a 9,0 cm/s agrupó un 35,7% de las mediciones (Figura EM-83).

Las corrientes registradas durante este período de mediciones se mostraron de mediana intensidad, encontrándose un 0,4% de la información sobre 21,0 cm/s. Por último, se encontró un 2,7% de las mediciones bajo 1,0 cm/s (Tabla EM-49).

	FRECUENCIA DE INCIDENCIA DE CORRIENTES								
Velocidad		Direcciones							
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.3	0.3	0.3	0.3	0.4	0.3	0.3	0.4	2.7
1,1 - 5,0	3.9	6.0	4.9	3.9	5.4	5.6	3.8	2.8	36.3
5,1 - 9,0	2.3	6.7	3.9	2.5	7.4	7.7	3.3	1.8	35.7
9,1 - 13,0	0.3	2.6	0.9	0.5	4.8	7.0	0.9	0.5	17.4
13,1 - 17,0	0.0	0.4	0.1	0.0	1.8	3.5	0.1	0.0	6.0
17,1 - 21,0	0.0	0.0	0.0	0.0	0.3	1.3	0.0	0.0	1.6
21,1 - 25,0	0.0	0.0	0.0	0.0	0.1	0.3	0.0	0.0	0.3
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Efectivo	6.5	15.6	9.8	6.9	19.8	25.4	8.1	5.1	97.3
Maximo (cm/s)	12.4	18.6	18.4	14.8	23.1	27.8	15.7	15.3	27.8
Promedio (cm/s)	4.6	6.4	5.4	4.9	7.9	9.1	5.8	5.2	7.0

 Tabla EM-49: Frecuencia de incidencia y excedencia de corrientes. Capa fondo

			FREC	UENCIA DE I	EXCEDENCI	A DE CORRIE	INTES		
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 21,0	0.0	0.0	0.0	0.0	0.1	0.3	0.0	0.0	0.4
> 17,0	0.0	0.0	0.0	0.0	0.4	1.5	0.0	0.0	2.0
> 13,0	0.0	0.4	0.1	0.0	2.2	5.0	0.1	0.0	7.9
> 9,0	0.3	3.0	1.0	0.5	7.0	12.0	1.0	0.5	25.4
> 5,0	2.6	9.7	4.9	3.0	14.4	19.8	4.4	2.3	61.1
> 1,0	6.5	15.6	9.8	6.9	19.8	25.4	8.1	5.1	97.3

Fuente: consultora Costasur

Figura EM-83: Histograma de frecuencia de dirección y velocidad de corrientes. Capa fondo

Fuente: consultora Costasur

Las series de tiempo de componentes ortogonales, fueron sometidas a un análisis estadístico básico, obteniéndose los siguientes resultados (Tabla EM-50):

Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)
U (este-weste)	-16,8	14,4	-0,8	4,9
V (norte-sur)	-22	12,4	-2,4	5,8

Tabla EM-50: Estadísti	cas de series	ortogonales.	Capa fondo
------------------------	---------------	--------------	------------

Fuente: consultora Costasur

La Figura EM-84 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa una tendencia de las corrientes a agruparse en torno a las direcciones asociadas al 3^{er} cuadrante. Por otra parte, los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección S – SW (componente promedio U negativa y componente promedio V negativa y de mayor magnitud).

Fuente: consultora Costasur

El diagrama de vector progresivo (Figura EM-85) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el S – SW (197,9°).

En los espectros presentados en la Figura EM-86, se observa contenido de energía en ambas componentes, en la banda de frecuencia diurna (0,04 cph). Este máximo podría ser atribuido al efecto forzante del viento.

Figura EM-85: Diagrama de vector progresivo. Capa fondo

Fuente: consultora Costasur

> ADCP NORTEK (Punto de muestreo 2)

Materiales y métodos

La campaña de mediciones de corrientes eulerianas se realizó entre los días 05 de febrero al 23 de marzo de 2015 (período de sicigia y cuadratura lunar).

Estas mediciones se efectuaron mediante el anclaje (fondeo) de un perfilador de corrientes acústico Doppler (ADCP, marca NORTEK, modelo Aquadopp profiler), en un punto con las siguientes coordenadas (Figura EM-2): 262.520 E; 6.469.984 N (Datum WGS84). Este punto es el lugar de la captación de agua de mar para el funcionamento de la planta desanizadora.

El ADCP fue instalado en el veril de 22,0 metros (app.) con respecto al Nivel de Reducción de Sondas (NRS), y a 1,0 metros sobre el fondo marino. Este instrumento fue programado para medir la dirección y magnitud de las corrientes a través de la columna de agua, determinándose 17 capas de medición (de 1,0 metros de espesor cada una de ellas).

La Tabla EM-51 resume esta información:

Tabla EM-51: Capas de medición estudio de corrientes con ADCP

Сара	Centro de capa desde el fondo marino (m)	Límite superior de la capa desde el fondo marino (m)
1	2,5	3
2	3,5	4
3	4,5	5
4	5,5	6

Сара	Centro de capa desde el fondo marino (m)	Límite superior de la capa desde el fondo marino (m)
5	6,5	7
6	7,5	8
7	8,5	9
8	9,5	10
9	10,5	11
10	11,5	12
11	12,5	13
12	13,5	14
13	14,5	15
14	15,5	16
15	16,5	17
16	17,5	18
17	18,5	19

Fuente: consultora Costasur

Transductores desde el fondo marino = 1,0 m 1st. Bin = 1,50 m (centro de 1^a capa desde transductores) 1st. Bin = 2,50 m (centro de 1^a capa desde el fondo marino) Bin Size = 1,0 m

El análisis de la información consistió en procesar 3 capas características de la columna de agua (capa superficial, intermedia y de fondo). De esta manera, las capas analizadas fueron las siguientes:

Capa 17 (superficie):	Capa centrada a 18,50 metros desde el fondo
Capa 9 (intermedia):	Capa centrada a 10,50 metros desde el fondo
Capa 1 (fondo):	Capa centrada a 2,50 metros desde el fondo

Como los registros de la dirección de las corrientes son referidos originalmente al norte magnético, éstos fueron referidos al norte geográfico, empleándose para tal efecto, la corrección de desviación magnética local (+ 2°). Con la información registrada (datos cada 10 minutos), se elaboró series de tiempo horaria.

La información de corrientes fue sometida a un análisis estadístico de frecuencias por rangos de dirección y magnitud para una rosa de 8 direcciones (tabla e histograma). Por su parte, las series horarias fueron sometidas a un análisis de series de tiempo (estadística básica de componentes, dispersión, DVP y espectral).

En el análisis de frecuencia, las corrientes con magnitudes inferiores a 1 cm/s fueron consideradas calmas, debido a que éstas son muy débiles y poco significativas en los procesos dinámicos del mar.

Finalmente, con el objeto de visualizar las relaciones causa – efecto entre los forzantes vientos y marea, se realizó un análisis de correlación cruzada.

Resultados

Capa 17 (superficie)

A nivel superficial, las corrientes observadas presentaron un patrón de comportamiento direccional dominado por las direcciones asociadas al 3^{er} cuadrante. Así, las mayores ocurrencias se registraron en las direcciones SW, S y W (21,6%, 15,3% y 14,7%, respectivamente), mientras que el resto se agrupó entre 5,6% (dirección E) y 14,1% (dirección N, Figura EM-87 y Tabla EM-52).

Las magnitudes medias registradas se agruparon en torno a los 9,0 cm/s (\pm 4,9 cm/s). En particular, la dirección N mostró la mayor magnitud promedio, con un valor de 10,2 cm/s. Por su parte, las máximas velocidades detectadas fueron de 48,0 cm/s (0,93 nudos) y 34,6 cm/s (0,67 nudos) asociadas a las direcciones NE y S, respectivamente (Tabla EM-52).

La mayor ocurrencia de magnitud se registró en el rango de 5,1 a 9,0 cm/s, con un porcentaje de 32,8%. En tanto que el rango 9,1 cm/s a 13,0 cm/s agrupó un 24,6% de las mediciones (Figura EM-87).

Las corrientes registradas en esta capa se mostraron de mediana a alta intensidad, encontrándose un 0,5% de la información sobre 25,0 cm/s. Por último, se encontró un 1,2% de las mediciones bajo 1,0 cm/s (Tabla EM-52).

	FRECUENCIA DE INCIDENCIA DE CORRIENTES								
Velocidad	Direcciones								
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.2	0.2	0.1	0.1	0.2	0.2	0.2	0.1	1.2
1,1 - 5,0	2.7	2.4	2.3	2.4	3.1	3.9	3.4	2.7	22.9
5,1 - 9,0	4.0	2.8	2.0	3.3	5.5	6.6	4.8	3.8	32.8
9,1 - 13,0	3.3	2.2	0.9	1.8	4.3	6.2	3.8	2.2	24.6
13,1 - 17,0	2.2	0.9	0.3	0.5	1.6	3.2	1.9	0.9	11.4
17,1 - 21,0	1.3	0.6	0.1	0.2	0.6	1.2	0.6	0.3	5.0
21,1 - 25,0	0.5	0.2	0.0	0.1	0.3	0.3	0.1	0.1	1.5
> 25,0	0.1	0.1	0.0	0.0	0.0	0.2	0.1	0.0	0.5
Total Efectivo	14.1	9.1	5.6	8.3	15.3	21.6	14.7	9.9	98.8
Maximo (cm/s)	29.2	48.0	29.6	29.4	34.6	30.5	29.7	22.6	48.0
Promedio (cm/s)	10.2	9.1	6.9	7.8	9.0	9.6	8.9	7.9	9.0

Tabla EM-52: Frecuencia de incidencia y excedencia de corrientes. Capa superficial

		FRECUENCIA DE EXCEDENCIA DE CORRIENTES							
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.1	0.1	0.0	0.0	0.0	0.2	0.1	0.0	0.5
> 21,0	0.6	0.3	0.0	0.1	0.3	0.4	0.2	0.1	2.0
> 17,0	1.9	0.9	0.1	0.3	0.9	1.6	0.8	0.3	7.0
> 13,0	4.1	1.8	0.4	0.9	2.5	4.8	2.8	1.2	18.4
> 9,0	7.4	3.9	1.4	2.6	6.8	11.0	6.6	3.4	43.0
> 5,0	11.4	6.7	3.3	5.9	12.3	17.6	11.4	7.2	75.8
> 1.0	14.1	9.1	5.6	8.3	15.3	21.6	14.7	9.9	98.8

Fuente: consultora Costasur

Figura EM-87: Histograma de frecuencia de dirección y velocidad de corrientes. Capa superficial

Fuente: consultora Costasur

Para el análisis de las corrientes como series de tiempo, éstas fueron reducidas a series horarias, calculándose las respectivas componentes ortogonales. Así, se definen las componentes U y V de la siguiente manera:

Componente U: Este – Weste, positiva si el flujo va hacia el Este.

Componente V: Norte – Sur, positiva si el flujo va hacia el Norte.

Las series de tiempo de componentes ortogonales, fueron sometidas a un análisis estadístico básico, obteniéndose los siguientes resultados (Tabla EM-53):

			<u> </u>	
Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)
U (este-weste)	-22,8	17,1	-2	6,2
V (norte-sur)	-24,4	29,2	-0,8	7,7
	-			

Fuente: consultora Costasur

La Figura EM-88 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa una tendencia de las corrientes a agruparse en torno a las direcciones asociadas al 3^{er} cuadrante. Los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección SW – W (componente promedio U negativa y componente promedio V negativa y de menor magnitud).

Fuente: consultora Costasur

Con el objeto de corroborar lo anterior, y suponiendo que la corriente observada es espacialmente homogénea y presenta similares fluctuaciones temporales en ese espacio, es posible explicar el comportamiento de una partícula de agua a través de un diagrama de vector progresivo (DVP). El diagrama de vector progresivo (Figura EM-89) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SW – W (248,2°).

Figura EM-89: Diagrama de vector progresivo. Capa superficial

Por último, y para determinar el comportamiento de la corriente en el dominio de la frecuencia, se aplicó un análisis estadístico de tipo espectral (12 grados de libertad y 95% de confianza). Este análisis permite determinar la cantidad de energía (densidad espectral) que se encuentra asociada a las distintas bandas de frecuencia (período).

Figura EM-90: Autoespectros de corrientes. Capa superficial

En los espectros presentados en la Figura EM-90, se observa contenido de energía en la componente V en la banda de frecuencia diurna (0,04 cph). Esta situación podría ser atribuible posiblemente al efecto del viento.

Capa 9 (intermedia)

En este nivel, las corrientes observadas presentaron un predominio de las direcciones asociadas al 2^{do} cuadrante: 16,7% (dirección S) y 16,1% (dirección SE). El resto de las direcciones se agrupó entre 7,5% (dirección NW) y 13,6% (dirección E, Figura EM-91 y Tabla EM-54).

Las magnitudes medias registradas se agruparon en torno a los 6,9 cm/s ($\pm\pm$ 4,0 cm/s). En particular, la dirección N mostró la mayor magnitud promedio, con un valor de 7,7 cm/s. La máxima velocidad detectada fue de 39,1 cm/s (0,76 nudos) asociada a la dirección W (Tabla EM-54).

La mayor ocurrencia de magnitud se registró en el rango de 5,1 a 9,0 cm/s, con un porcentaje de 37,3%. En tanto que el rango 1,1 cm/s a 5,0 cm/s agrupó un 36,9% de las mediciones (Figura EM-91).

Las corrientes registradas en esta capa se mostraron de mediana a alta intensidad, encontrándose un 0,1% de la información sobre 25,0 cm/s. Por último, se encontró un 2,2% de las mediciones bajo 1,0 cm/s (Tabla EM-54).

Tabla EM-54: Frecuencia de incidencia	y excedencia de corrientes. Capa intermedia

	FRECUENCIA DE INCIDENCIA DE CORRIENTES								
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.2	0.3	0.3	0.3	0.4	0.2	0.3	0.2	2.2
1,1 - 5,0	4.1	4.5	5.4	5.1	5.8	4.5	4.0	3.3	36.9
5,1 - 9,0	3.9	4.6	5.6	6.2	6.2	4.5	3.3	2.9	37.3
9,1 - 13,0	1.8	1.7	1.9	3.4	3.1	2.3	0.9	0.9	16.0
13,1 - 17,0	1.1	0.3	0.6	1.1	1.1	0.7	0.3	0.2	5.5
17,1 - 21,0	0.5	0.1	0.1	0.2	0.4	0.2	0.0	0.1	1.6
21,1 - 25,0	0.1	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.3
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Total Efectivo	11.7	11.3	13.6	16.1	16.7	12.4	8.5	7.5	97.8
Maximo (cm/s)	26.8	25.0	24.8	22.6	27.9	28.0	39.1	26.7	39.1
Promedio (cm/s)	7.7	6.3	6.3	7.4	7.3	7.0	5.9	6.1	6.9
			FREC	UENCIA DE	EXCEDENCI/	A DE CORRIE	ENTES		
Velocidad			_	Direc	ciones	_	_	_	
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
> 21,0	0.2	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.5
> 17,0	0.7	0.1	0.1	0.3	0.5	0.3	0.1	0.1	2.1
> 13,0	1.8	0.4	0.7	1.4	1.6	1.0	0.3	0.3	7.6
> 9,0	3.6	2.1	2.6	4.8	4.7	3.3	1.2	1.3	23.6
> 5,0	7.6	6.8	8.2	10.9	10.9	7.9	4.5	4.2	60.9
> 1,0	11.7	11.3	13.6	16.1	16.7	12.4	8.5	7.5	97.8

Fuente: consultora Costasur

Figura EM-91: Histograma de frecuencia de dirección y velocidad de corrientes. Capa intermedia

Las series de tiempo de componentes ortogonales, fueron sometidas a un análisis estadístico básico, obteniéndose los siguientes resultados (Tabla EM-55):

Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)					
U (este-weste)	-25,8	20,1	0,6	5					
V (norte-sur)	-20,9	21,7	-0,9	5,9					
Fuente: consultora Costasur									

Tabla EM-55: Estadísticas de series ortogonales. Capa inte
--

La Figura EM-92 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa cierta tendencia de las corrientes a agruparse en torno a la dirección SE. Los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección SE (componente promedio U positiva y componente promedio V negativa y levemente de mayor magnitud).

El diagrama de vector progresivo (Figura EM-93) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SE (146,9°).

En los espectros presentados en la Figura EM-94, se observó contenido de energía en la banda de frecuencia diurna (componente V), atribuible posiblemente al efecto del viento.

Figura EM-92: Diagrama de dispersión dirección versus magnitud. Capa intermedia

Fuente: consultora Costasur

Figura EM-93: Diagrama de vector progresivo. Capa intermedia

Tuente: consultora Costasui

Figura EM-94: Autoespectros de corrientes. Capa intermedia

Capa 1 (fondo)

Las corrientes observadas presentaron un predominio de las direcciones asociadas al 3^{er} cuadrante. Las mayores ocurrencias se registraron en las direcciones SW y S (20,4% y 14,1%, respectivamente). El resto de las direcciones se agrupó entre 8,3% (dirección NW) y 13,3% (dirección NE, Figura EM-95 y Tabla EM-56).

Las magnitudes medias registradas se agruparon en torno a los 7,6 cm/s (± de 4,1 cm/s). En particular, la dirección SW mostró la mayor magnitud promedio, con un valor de 9,4 cm/s. Por su parte, la máxima velocidad detectada fue de 26,8 cm/s (0,52 nudos) asociada a la dirección SW (Tabla EM-56).

La mayor ocurrencia de magnitud se registró en el rango de 5,1 a 9,0 cm/s, con un porcentaje de 37,3%. En tanto que el rango 1,1 cm/s a 5,0 cm/s agrupó un 30,0% de las mediciones (Figura EM-95).

Las corrientes registradas durante este período de mediciones se mostraron de mediana intensidad, encontrándose un 0,6% de la información sobre 21,0 cm/s. Por último, se encontró un 2,1% de las mediciones bajo 1,0 cm/s (Tabla EM-56).

	FRECUENCIA DE INCIDENCIA DE CORRIENTES								
Velocidad		Direcciones							
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.4	0.3	0.3	0.3	0.4	0.2	0.1	0.2	2.1
1,1 - 5,0	3.5	3.7	4.1	3.6	3.6	4.3	3.5	3.7	30.0
5,1 - 9,0	3.8	5.2	5.2	3.8	5.6	6.4	4.1	3.3	37.3
9,1 - 13,0	1.7	3.3	2.5	1.2	3.3	5.1	2.5	1.1	20.7
13,1 - 17,0	0.3	0.9	0.5	0.3	1.2	2.9	0.8	0.1	7.1
17,1 - 21,0	0.1	0.1	0.1	0.0	0.4	1.3	0.2	0.1	2.2
21,1 - 25,0	0.0	0.0	0.0	0.0	0.0	0.4	0.1	0.0	0.6
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Efectivo	9.4	13.3	12.3	8.9	14.1	20.4	11.1	8.3	97.9
Maximo (cm/s)	20.5	23.6	24.2	19.0	23.0	26.8	23.9	24.2	26.8
Promedio (cm/s)	6.6	7.6	7.0	6.3	7.9	9.4	7.6	5.9	7.6

 Tabla EM-56: Frecuencia de incidencia y excedencia de corrientes. Capa fondo

			FREC	UENCIA DE I	EXCEDENCI	A DE CORRIE	ENTES		
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 21,0	0.0	0.0	0.0	0.0	0.0	0.4	0.1	0.0	0.6
> 17,0	0.1	0.2	0.1	0.0	0.4	1.7	0.3	0.1	2.9
> 13,0	0.4	1.1	0.6	0.3	1.6	4.6	1.1	0.2	9.9
> 9,0	2.1	4.4	3.1	1.6	4.9	9.7	3.6	1.3	30.6
> 5,0	5.9	9.6	8.3	5.4	10.5	16.1	7.6	4.6	68.0
> 1,0	9.4	13.3	12.3	8.9	14.1	20.4	11.1	8.3	97.9

Fuente: consultora Costasur

Figura EM-95: Histograma de frecuencia de dirección y velocidad de corrientes. Capa fondo

Fuente: consultora Costasur

Las series de tiempo de componentes ortogonales, fueron sometidas a un análisis estadístico básico, obteniéndose los siguientes resultados (Tabla EM-57):

Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)					
U (este-weste)	-19,8	15,4	-0,6	5,9					
V (norte-sur)	-22,1	20,1	-1,2	6,1					

 Tabla EM-57: Estadísticas de series ortogonales. Capa fondo

Fuente: consultora Costasur

La Figura EM-96 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa cierta tendencia de las corrientes a agruparse en torno a las direcciones asociadas al 3^{er} cuadrante. Por otra parte, los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección SW – S (componente promedio U negativa y componente promedio V negativa y de mayor magnitud).

El diagrama de vector progresivo (Figura EM-97) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SW – S ($208,7^{\circ}$).

En los espectros presentados en la Figura EM-98, se observa contenido de energía en las componentes U y V (bandas de frecuencia diurna y semidiurna).

Fuente: consultora Costasur

Fuente: consultora Costasur

Invierno 2015

_

En la campaña de invierno 2015 se instalaron dos instrumentos perfiladores de corrientes (ADCP), ubicadas en el punto de muestreo 1 (correspondiente al punto de descarga de la futura planta desalinizadora) y en el punto de muestreo 2 (correspondiente al punto de captación proyectado para la planta desalinizadora. (Figura EM-2).

> ADCP TRDI (Punto de muestreo 1)

Materiales y métodos

La campaña de mediciones de corrientes eulerianas se realizó entre los días 30 de julio al 08 de septiembre de 2015 (período de sicigia y cuadratura lunar).

Estas mediciones se efectuaron mediante el anclaje (fondeo) de un perfilador de corrientes acústico Doppler (ADCP, marca RD Instruments, modelo WorkHorse Sentinel 614,4 kHz), en un punto con las siguientes coordenadas (Figura EM-2): 262.161 E; 6.469.609 N (Datum WGS84). Este Punto corresponde al lugar de descarga de salmuera producto la planta desalinizadora.

El ADCP fue instalado en el veril de 26,0 metros (app.) con respecto al Nivel de Reducción de Sondas (NRS), y a 0,5 metros sobre el fondo marino. Este instrumento fue programado para medir la dirección y magnitud de las corrientes a través de la columna de agua, determinándose 30 capas de medición (de 0,75 metros de espesor cada una de ellas).

La Tabla EM-58 resume esta información:

Tabla EM-58: Capas de medición estudio de corrientes con ADCP

Capa desde el fondo marino (m) de la capa desde el fondo marino (m) 1 2,37 2,75 2 3,12 3,50 3 3,87 4,25 4 4,62 5,00 5 5,37 5,75 6 6,12 6,50 7 6,87 7,25 8 7,62 8,00 9 8,37 8,75 10 9,12 9,50 11 9,87 10,25 12 10,62 11,00 13 11,37 11,75 14 12,12 12,50 15 12,87 13,25 16 13,62 14,00 17 14,37 14,75 18 15,12 15,50 19 15,87 16,25 20 16,62 17,00 21 17,37 17,75 22 18,12 18,50 23 18,87 19	•	Centro de capa	Límite superior
Capael fondo marinodesde el fondo marino (m)12,372,7523,123,5033,874,2544,625,0055,375,7566,126,5076,877,2587,628,0098,378,75109,129,50119,8710,251210,6211,001311,3711,751412,1212,501512,8713,251613,6214,001714,3714,751815,1215,501915,8716,252016,6217,002117,3717,752218,1218,502318,8719,252419,6220,002520,3720,752621,1221,502721,8722,252822,6223,002923,3723,753024,1224,50	Cana	desde	de la capa
(m)fondo marino (m)1 $2,37$ $2,75$ 2 $3,12$ $3,50$ 3 $3,87$ $4,25$ 4 $4,62$ $5,00$ 5 $5,37$ $5,75$ 6 $6,12$ $6,50$ 7 $6,87$ $7,25$ 8 $7,62$ $8,00$ 9 $8,37$ $8,75$ 10 $9,12$ $9,50$ 11 $9,87$ $10,25$ 12 $10,62$ $11,00$ 13 $11,37$ $11,75$ 14 $12,12$ $12,50$ 15 $12,87$ $13,25$ 16 $13,62$ $14,00$ 17 $14,37$ $14,75$ 18 $15,12$ $15,50$ 19 $15,87$ $16,25$ 20 $16,62$ $17,00$ 21 $17,37$ $17,75$ 22 $18,12$ $18,50$ 23 $18,87$ $19,25$ 24 $19,62$ $20,00$ 25 $20,37$ $20,75$ 26 $21,12$ $21,50$ 27 $21,87$ $22,25$ 28 $22,62$ $23,00$ 29 $23,37$ $23,75$ 30 $24,12$ $24,50$	Capa	el fondo marino	desde el
1 $2,37$ $2,75$ 2 $3,12$ $3,50$ 3 $3,87$ $4,25$ 4 $4,62$ $5,00$ 5 $5,37$ $5,75$ 6 $6,12$ $6,50$ 7 $6,87$ $7,25$ 8 $7,62$ $8,00$ 9 $8,37$ $8,75$ 10 $9,12$ $9,50$ 11 $9,87$ $10,25$ 12 $10,62$ $11,00$ 13 $11,37$ $11,75$ 14 $12,12$ $12,50$ 15 $12,87$ $13,25$ 16 $13,62$ $14,00$ 17 $14,37$ $14,75$ 18 $15,12$ $15,50$ 19 $15,87$ $16,25$ 20 $16,62$ $17,00$ 21 $17,37$ $17,75$ 22 $18,12$ $18,50$ 23 $18,87$ $19,25$ 24 $19,62$ $20,00$ 25 $20,37$ $20,75$ 26 $21,12$ $21,50$ 27 $21,87$ $22,25$ 28 $22,62$ $23,00$ 29 $23,37$ $23,75$ 30 $24,12$ $24,50$		(m)	fondo marino (m)
2 $3,12$ $3,50$ 3 $3,87$ $4,25$ 4 $4,62$ $5,00$ 5 $5,37$ $5,75$ 6 $6,12$ $6,50$ 7 $6,87$ $7,25$ 8 $7,62$ $8,00$ 9 $8,37$ $8,75$ 10 $9,12$ $9,50$ 11 $9,87$ $10,25$ 12 $10,62$ $11,00$ 13 $11,37$ $11,75$ 14 $12,12$ $12,50$ 15 $12,87$ $13,25$ 16 $13,62$ $14,00$ 17 $14,37$ $14,75$ 18 $15,12$ $15,50$ 19 $15,87$ $16,25$ 20 $16,62$ $17,00$ 21 $17,37$ $17,75$ 22 $18,12$ $18,50$ 23 $18,87$ $19,25$ 24 $19,62$ $20,00$ 25 $20,37$ $20,75$ 26 $21,12$ $21,50$ 27 $21,87$ $22,25$ 28 $22,62$ $23,00$ 29 $23,37$ $23,75$ 30 $24,12$ $24,50$	1	2,37	2,75
3 $3,87$ $4,25$ 4 $4,62$ $5,00$ 5 $5,37$ $5,75$ 6 $6,12$ $6,50$ 7 $6,87$ $7,25$ 8 $7,62$ $8,00$ 9 $8,37$ $8,75$ 10 $9,12$ $9,50$ 11 $9,87$ $10,25$ 12 $10,62$ $11,00$ 13 $11,37$ $11,75$ 14 $12,12$ $12,50$ 15 $12,87$ $13,25$ 16 $13,62$ $14,00$ 17 $14,37$ $14,75$ 18 $15,12$ $15,50$ 19 $15,87$ $16,25$ 20 $16,62$ $17,00$ 21 $17,37$ $17,75$ 22 $18,12$ $18,50$ 23 $18,87$ $19,25$ 24 $19,62$ $20,00$ 25 $20,37$ $20,75$ 26 $21,12$ $21,50$ 27 $21,87$ $22,25$ 28 $22,62$ $23,00$ 29 $23,37$ $23,75$ 30 $24,12$ $24,50$	2	3,12	3,50
4 $4,62$ $5,00$ 5 $5,37$ $5,75$ 6 $6,12$ $6,50$ 7 $6,87$ $7,25$ 8 $7,62$ $8,00$ 9 $8,37$ $8,75$ 10 $9,12$ $9,50$ 11 $9,87$ $10,25$ 12 $10,62$ $11,00$ 13 $11,37$ $11,75$ 14 $12,12$ $12,50$ 15 $12,87$ $13,25$ 16 $13,62$ $14,00$ 17 $14,37$ $14,75$ 18 $15,12$ $15,50$ 19 $15,87$ $16,25$ 20 $16,62$ $17,00$ 21 $17,37$ $17,75$ 22 $18,12$ $18,50$ 23 $18,87$ $19,25$ 24 $19,62$ $20,00$ 25 $20,37$ $20,75$ 26 $21,12$ $21,50$ 27 $21,87$ $22,25$ 28 $22,62$ $23,00$ 29 $23,37$ $23,75$ 30 $24,12$ $24,50$	3	3,87	4,25
5 $5,37$ $5,75$ 6 $6,12$ $6,50$ 7 $6,87$ $7,25$ 8 $7,62$ $8,00$ 9 $8,37$ $8,75$ 10 $9,12$ $9,50$ 11 $9,87$ $10,25$ 12 $10,62$ $11,00$ 13 $11,37$ $11,75$ 14 $12,12$ $12,50$ 15 $12,87$ $13,25$ 16 $13,62$ $14,00$ 17 $14,37$ $14,75$ 18 $15,12$ $15,50$ 19 $15,87$ $16,25$ 20 $16,62$ $17,00$ 21 $17,37$ $17,75$ 22 $18,12$ $18,50$ 23 $18,87$ $19,25$ 24 $19,62$ $20,00$ 25 $20,37$ $20,75$ 26 $21,12$ $21,50$ 27 $21,87$ $22,25$ 28 $22,62$ $23,00$ 29 $23,37$ $23,75$ 30 $24,12$ $24,50$	4	4,62	5,00
6 $6,12$ $6,50$ 7 $6,87$ $7,25$ 8 $7,62$ $8,00$ 9 $8,37$ $8,75$ 10 $9,12$ $9,50$ 11 $9,87$ $10,25$ 12 $10,62$ $11,00$ 13 $11,37$ $11,75$ 14 $12,12$ $12,50$ 15 $12,87$ $13,25$ 16 $13,62$ $14,00$ 17 $14,37$ $14,75$ 18 $15,12$ $15,50$ 19 $15,87$ $16,25$ 20 $16,62$ $17,00$ 21 $17,37$ $17,75$ 22 $18,12$ $18,50$ 23 $18,87$ $19,25$ 24 $19,62$ $20,00$ 25 $20,37$ $20,75$ 26 $21,12$ $21,50$ 27 $21,87$ $22,25$ 28 $22,62$ $23,00$ 29 $23,37$ $23,75$ 30 $24,12$ $24,50$	5	5,37	5,75
7 $6,87$ $7,25$ 8 $7,62$ $8,00$ 9 $8,37$ $8,75$ 10 $9,12$ $9,50$ 11 $9,87$ $10,25$ 12 $10,62$ $11,00$ 13 $11,37$ $11,75$ 14 $12,12$ $12,50$ 15 $12,87$ $13,25$ 16 $13,62$ $14,00$ 17 $14,37$ $14,75$ 18 $15,12$ $15,50$ 19 $15,87$ $16,25$ 20 $16,62$ $17,00$ 21 $17,37$ $17,75$ 22 $18,12$ $18,50$ 23 $18,87$ $19,25$ 24 $19,62$ $20,00$ 25 $20,37$ $20,75$ 26 $21,12$ $21,50$ 27 $21,87$ $22,25$ 28 $22,62$ $23,00$ 29 $23,37$ $23,75$ 30 $24,12$ $24,50$	6	6,12	6,50
8 $7,62$ $8,00$ 9 $8,37$ $8,75$ 10 $9,12$ $9,50$ 11 $9,87$ $10,25$ 12 $10,62$ $11,00$ 13 $11,37$ $11,75$ 14 $12,12$ $12,50$ 15 $12,87$ $13,25$ 16 $13,62$ $14,00$ 17 $14,37$ $14,75$ 18 $15,12$ $15,50$ 19 $15,87$ $16,25$ 20 $16,62$ $17,00$ 21 $17,37$ $17,75$ 22 $18,12$ $18,50$ 23 $18,87$ $19,25$ 24 $19,62$ $20,00$ 25 $20,37$ $20,75$ 26 $21,12$ $21,50$ 27 $21,87$ $22,25$ 28 $22,62$ $23,00$ 29 $23,37$ $23,75$ 30 $24,12$ $24,50$	7	6,87	7,25
9 $8,37$ $8,75$ 10 $9,12$ $9,50$ 11 $9,87$ $10,25$ 12 $10,62$ $11,00$ 13 $11,37$ $11,75$ 14 $12,12$ $12,50$ 15 $12,87$ $13,25$ 16 $13,62$ $14,00$ 17 $14,37$ $14,75$ 18 $15,12$ $15,50$ 19 $15,87$ $16,25$ 20 $16,62$ $17,00$ 21 $17,37$ $17,75$ 22 $18,12$ $18,50$ 23 $18,87$ $19,25$ 24 $19,62$ $20,00$ 25 $20,37$ $20,75$ 26 $21,12$ $21,50$ 27 $21,87$ $22,25$ 28 $22,62$ $23,00$ 29 $23,37$ $23,75$ 30 $24,12$ $24,50$	8	7,62	8,00
10 $9,12$ $9,50$ 11 $9,87$ $10,25$ 12 $10,62$ $11,00$ 13 $11,37$ $11,75$ 14 $12,12$ $12,50$ 15 $12,87$ $13,25$ 16 $13,62$ $14,00$ 17 $14,37$ $14,75$ 18 $15,12$ $15,50$ 19 $15,87$ $16,25$ 20 $16,62$ $17,00$ 21 $17,37$ $17,75$ 22 $18,12$ $18,50$ 23 $18,87$ $19,25$ 24 $19,62$ $20,00$ 25 $20,37$ $20,75$ 26 $21,12$ $21,50$ 27 $21,87$ $22,25$ 28 $22,62$ $23,00$ 29 $23,37$ $23,75$ 30 $24,12$ $24,50$	9	8,37	8,75
11 $9,87$ $10,25$ 12 $10,62$ $11,00$ 13 $11,37$ $11,75$ 14 $12,12$ $12,50$ 15 $12,87$ $13,25$ 16 $13,62$ $14,00$ 17 $14,37$ $14,75$ 18 $15,12$ $15,50$ 19 $15,87$ $16,25$ 20 $16,62$ $17,00$ 21 $17,37$ $17,75$ 22 $18,12$ $18,50$ 23 $18,87$ $19,25$ 24 $19,62$ $20,00$ 25 $20,37$ $20,75$ 26 $21,12$ $21,50$ 27 $21,87$ $22,25$ 28 $22,62$ $23,00$ 29 $23,37$ $23,75$ 30 $24,12$ $24,50$	10	9,12	9.,50
12 $10,62$ $11,00$ 13 $11,37$ $11,75$ 14 $12,12$ $12,50$ 15 $12,87$ $13,25$ 16 $13,62$ $14,00$ 17 $14,37$ $14,75$ 18 $15,12$ $15,50$ 19 $15,87$ $16,25$ 20 $16,62$ $17,00$ 21 $17,37$ $17,75$ 22 $18,12$ $18,50$ 23 $18,87$ $19,25$ 24 $19,62$ $20,00$ 25 $20,37$ $20,75$ 26 $21,12$ $21,50$ 27 $21,87$ $22,25$ 28 $22,62$ $23,00$ 29 $23,37$ $23,75$ 30 $24,12$ $24,50$	11	9,87	10,25
13 $11,37$ $11,75$ 14 $12,12$ $12,50$ 15 $12,87$ $13,25$ 16 $13,62$ $14,00$ 17 $14,37$ $14,75$ 18 $15,12$ $15,50$ 19 $15,87$ $16,25$ 20 $16,62$ $17,00$ 21 $17,37$ $17,75$ 22 $18,12$ $18,50$ 23 $18,87$ $19,25$ 24 $19,62$ $20,00$ 25 $20,37$ $20,75$ 26 $21,12$ $21,50$ 27 $21,87$ $22,25$ 28 $22,62$ $23,00$ 29 $23,37$ $23,75$ 30 $24,12$ $24,50$	12	10,62	11,00
14 $12,12$ $12,50$ 15 $12,87$ $13,25$ 16 $13,62$ $14,00$ 17 $14,37$ $14,75$ 18 $15,12$ $15,50$ 19 $15,87$ $16,25$ 20 $16,62$ $17,00$ 21 $17,37$ $17,75$ 22 $18,12$ $18,50$ 23 $18,87$ $19,25$ 24 $19,62$ $20,00$ 25 $20,37$ $20,75$ 26 $21,12$ $21,50$ 27 $21,87$ $22,25$ 28 $22,62$ $23,00$ 29 $23,37$ $23,75$ 30 $24,12$ $24,50$	13	11,37	11,75
15 $12,87$ $13,25$ 16 $13,62$ $14,00$ 17 $14,37$ $14,75$ 18 $15,12$ $15,50$ 19 $15,87$ $16,25$ 20 $16,62$ $17,00$ 21 $17,37$ $17,75$ 22 $18,12$ $18,50$ 23 $18,87$ $19,25$ 24 $19,62$ $20,00$ 25 $20,37$ $20,75$ 26 $21,12$ $21,50$ 27 $21,87$ $22,25$ 28 $22,62$ $23,00$ 29 $23,37$ $23,75$ 30 $24,12$ $24,50$	14	12,12	12,50
16 $13,62$ $14,00$ 17 $14,37$ $14,75$ 18 $15,12$ $15,50$ 19 $15,87$ $16,25$ 20 $16,62$ $17,00$ 21 $17,37$ $17,75$ 22 $18,12$ $18,50$ 23 $18,87$ $19,25$ 24 $19,62$ $20,00$ 25 $20,37$ $20,75$ 26 $21,12$ $21,50$ 27 $21,87$ $22,25$ 28 $22,62$ $23,00$ 29 $23,37$ $23,75$ 30 $24,12$ $24,50$	15	12,87	13,25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	13,62	14,00
1815,1215,501915,8716,252016,6217,002117,3717,752218,1218,502318,8719,252419,6220,002520,3720,752621,1221,502721,8722,252822,6223,002923,3723,753024,1224,50	17	14,37	14,75
1915,8716,252016,6217,002117,3717,752218,1218,502318,8719,252419,6220,002520,3720,752621,1221,502721,8722,252822,6223,002923,3723,753024,1224,50	18	15,12	15,50
2016,6217,002117,3717,752218,1218,502318,8719,252419,6220,002520,3720,752621,1221,502721,8722,252822,6223,002923,3723,753024,1224,50	19	15,87	16,25
2117,3717,752218,1218,502318,8719,252419,6220,002520,3720,752621,1221,502721,8722,252822,6223,002923,3723,753024,1224,50	20	16,62	17,00
2218,1218,502318,8719,252419,6220,002520,3720,752621,1221,502721,8722,252822,6223,002923,3723,753024,1224,50	21	17,37	17,75
2318,8719,252419,6220,002520,3720,752621,1221,502721,8722,252822,6223,002923,3723,753024,1224,50	22	18,12	18,50
2419,6220,002520,3720,752621,1221,502721,8722,252822,6223,002923,3723,753024,1224,50	23	18,87	19,25
2520,3720,752621,1221,502721,8722,252822,6223,002923,3723,753024,1224,50	24	19,62	20,00
2621,1221,502721,8722,252822,6223,002923,3723,753024,1224,50	25	20,37	20,75
2721,8722,252822,6223,002923,3723,753024,1224,50	26	21,12	21,50
28 22,62 23,00 29 23,37 23,75 30 24,12 24,50	27	21,87	22,25
29 23,37 23,75 30 24,12 24,50	28	22,62	23,00
30 24,12 24,50	29	23,37	23,75
	30	24,12	24,50

Fuente: consultora Costasur

Transductores desde el fondo marino = 0,5 m 1st. Bin = 1,87 m (centro de 1^a capa desde transductores) 1st. Bin = 2,37 m (centro de 1ª capa desde el fondo marino) Bin Size = 0,75 m

El análisis de la información consistió en procesar 3 capas características de la columna de agua (capa superficial, intermedia y de fondo). De esta manera, las capas analizadas fueron las siguientes:

Capa 30 (superficie):	Capa centrada a 24,12 metros desde el fondo
Capa 16 (intermedia):	Capa centrada a 13,62 metros desde el fondo
Capa 1 (fondo):	Capa centrada a 2,37 metros desde el fondo

Como los registros de la dirección de las corrientes son referidos originalmente al norte magnético, éstos fueron referidos al norte geográfico, empleándose para tal efecto, la corrección de desviación magnética local (+ 2°). Con la información registrada (datos cada 10 minutos), se elaboró series de tiempo horaria.

La información de corrientes fue sometida a un análisis estadístico de frecuencias por rangos de dirección y magnitud para una rosa de 8 direcciones (tabla e histograma). Por su parte, las series horarias fueron sometidas a un análisis de series de tiempo (estadística básica de componentes, dispersión, DVP y espectral).

En el análisis de frecuencia, las corrientes con magnitudes inferiores a 1 cm/s fueron consideradas calmas, debido a que éstas son muy débiles y poco significativas en los procesos dinámicos del mar.

Finalmente, con el objeto de visualizar las relaciones causa – efecto entre los forzantes vientos y marea, se realizó un análisis de correlación cruzada.

Resultados

• Capa 30 (superficie)

A nivel superficial, las corrientes observadas presentaron un patrón de comportamiento direccional dominado por las direcciones asociadas al 1^{er} cuadrante (E y NE) con porcentajes de incidencia de 21,7%y 20,0%, respectivamente. El resto de las direcciones se agrupó entre 12,6% (dirección SW) y 6,6% (dirección NW, Figura EM-99 y Tabla EM-59).

Las magnitudes medias registradas se agruparon en torno a los 10,2 cm/s (\pm de 6,1 cm/s). En particular, la dirección NE mostró la mayor magnitud promedio, con un valor de 12,8 cm/s. Por su parte, las máximas velocidades detectadas fueron de 45,8 cm/s (0,89 nudos) y 45,3 cm/s (0,88 nudos) asociadas a las direcciones NE y E, respectivamente (Tabla EM-59).

La mayor ocurrencia de magnitud se registró en el rango de 5,1 a 9,0 cm/s, con un porcentaje de 29,3%. En tanto que el rango 9,1 cm/s a 13,0 cm/s agrupó un 23,2% de las mediciones (Figura EM-99).

Las corrientes registradas en esta capa se mostraron de mediana a alta intensidad, encontrándose un 2,7% de la información sobre 25,0 cm/s. Por último, se encontró un 1,0% de las mediciones bajo 1,0 cm/s (Tabla EM-59).

Tabla EM-59:	<u>: Frecuencia de incidencia y</u>	y excedencia de	corrientes.	Capa sup	perficial

			FREC	UENCIA DE	INCIDENCIA	DE CORRIE	NTES		
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	1.0
1,1 - 5,0	2.1	2.6	3.2	3.2	2.8	2.4	1.8	2.1	20.0
5,1 - 9,0	2.8	4.5	5.5	3.4	3.9	4.1	2.7	2.3	29.3
9,1 - 13,0	2.5	4.4	5.0	2.6	2.2	3.1	1.9	1.4	23.2
13,1 - 17,0	1.4	3.7	3.9	1.0	0.8	1.7	1.1	0.5	14.1
17,1 - 21,0	0.5	2.2	2.0	0.3	0.2	0.8	0.3	0.1	6.5
21,1 - 25,0	0.3	1.1	1.2	0.1	0.1	0.2	0.2	0.1	3.2
> 25,0	0.1	1.4	0.9	0.0	0.0	0.2	0.1	0.0	2.7
Total Efectivo	9.5	20.0	21.7	10.8	9.9	12.6	8.0	6.6	99.0
Maximo (cm/s)	30.5	45.8	45.3	28.6	32.3	37.1	33.0	22.6	45.8
Promedio (cm/s)	9.6	12.8	11.7	8.1	7.8	9.8	9.2	7.6	10.2
			FREC	UENCIA DE I	EXCEDENCIA	A DE CORRIE	INTES		
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.1	1.4	0.9	0.0	0.0	0.2	0.1	0.0	2.7
> 21,0	0.3	2.6	2.1	0.1	0.1	0.4	0.2	0.1	5.9
> 17,0	0.8	4.7	4.1	0.4	0.3	1.2	0.6	0.2	12.4
> 13,0	2.2	8.4	8.0	1.5	1.1	3.0	1.7	0.7	26.5
> 9,0	4.6	12.9	13.0	4.1	3.3	6.1	3.6	2.1	49.7
> 5,0	7.5	17.4	18.5	7.5	7.1	10.2	6.3	4.4	78.9
> 1,0	9.5	20.0	21.7	10.8	9.9	12.6	8.0	6.6	99.0

Fuente: consultora Costasur

Figura EM-99: Histograma de frecuencia de dirección y velocidad de corrientes. Capa superficial

Para el análisis de las corrientes como series de tiempo, éstas fueron reducidas a series horarias, calculándose las respectivas componentes ortogonales. Así, se definen las componentes U y V de la siguiente manera:

Componente U:	Este - Weste, positiva si el flujo va hacia el Este.
Componente V:	Norte – Sur, positiva si el flujo va hacia el Norte.

Las series de tiempo de componentes ortogonales, fueron sometidas a un análisis estadístico básico, obteniéndose los siguientes resultados (Tabla EM-60).

			enaleer eapa eap	
Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)
U (este-weste)	-24,6	41,4	2,9	8,8
V (norte-sur)	-22,3	30,3	1,0	7,3
	-			

Tabla EM-60: Estadísticas de series ortogonales. Capa superficial

Fuente: consultora Costasur

La Figura EM-100 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa una tendencia de las corrientes a agruparse en torno al 1^{er} cuadrante. Los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección NE – E (componente promedio U positiva y componente promedio V positiva, siendo esta última de menor magnitud).

Figura EM-100: Diagrama de dispersión dirección versus magnitud. Capa superficial.

Fuente: consultora Costasur

Con el objeto de corroborar lo anterior, y suponiendo que la corriente observada es espacialmente homogénea y presenta similares fluctuaciones temporales en ese espacio, es posible explicar el comportamiento de una partícula de agua a través de un diagrama de vector progresivo (DVP). El diagrama de vector progresivo (Figura EM-101) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el NE – E $(71,0^{\circ})$.

Figura EM-101: Diagrama de vector progresivo. Capa superficial

Fuente: consultora Costasur

Por último, y para determinar el comportamiento de la corriente en el dominio de la frecuencia, se aplicó un análisis estadístico de tipo espectral (12 grados de libertad y 95% de confianza). Este análisis permite determinar la cantidad de energía (densidad espectral) que se encuentra asociada a las distintas bandas de frecuencia (período).

En los espectros presentados en la Figura EM-102, se observa contenido de energía en las componentes U y V en las bandas de frecuencia semidiurna (0,08 cph) y diurna (0,04 cph), respectivamente. Ambas situaciones atribuibles posiblemente al efecto de la marea y el viento.

Capa 16 (intermedia)

En este nivel, las corrientes observadas presentaron un patrón de comportamiento similar al detectado en la capa más superficial. A saber, se observó un predominio de las direcciones asociadas al 1^{er} cuadrante: 17,8% (dirección NE) y 13,7% (dirección E). El resto de las direcciones se agrupó entre 7,8% (dirección NW) y 14,0% (dirección S, Figura EM-103 y Tabla EM-61).

Las magnitudes medias registradas se agruparon en torno a los 5,7 cm/s (± de 3,2 cm/s). En particular, las direccione N y NE mostraron la mayor magnitud promedio, con un valor de 6,2 cm/s (ambas direcciones). Las máximas velocidades detectadas fueron de 28,0 cm/s (0,54 nudos) y 24,1 cm/s (0,47 nudos) asociadas a las direcciones W y NE, respectivamente (Tabla EM-61).

La mayor ocurrencia de magnitud se registró en el rango de 1,1 a 5,0 cm/s, con un porcentaje de 48,3%. En tanto que el rango 5,1 cm/s a 9,0 cm/s agrupó un 35,4% de las mediciones (Figura EM-103). Las corrientes registradas en esta capa se mostraron de mediana intensidad, encontrándose un 0,1% de la información sobre 21,0 cm/s. Por último, se encontró un 3,4% de las mediciones bajo 1,0 cm/s (Tabla EM-61).

		FRECUENCIA DE INCIDENCIA DE CORRIENTES							
Velocidad				Direco	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.3	0.5	0.5	0.4	0.4	0.5	0.5	0.3	3.4
1,1 - 5,0	5.3	7.9	7.2	6.6	6.6	5.6	4.5	4.6	48.3
5,1 - 9,0	4.1	6.6	4.7	4.2	6.0	4.5	3.0	2.3	35.4
9,1 - 13,0	1.9	2.3	1.3	0.3	1.2	1.5	0.7	0.6	9.9
13,1 - 17,0	0.6	0.8	0.5	0.0	0.1	0.2	0.2	0.2	2.5
17,1 - 21,0	0.1	0.2	0.1	0.0	0.0	0.1	0.0	0.1	0.5
21,1 - 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Efectivo	11.9	17.8	13.7	11.1	14.0	11.8	8.5	7.8	96.6
Maximo (cm/s)	17.8	24.1	21.5	13.6	17.6	21.7	28.0	20.5	28.0
Promedio (cm/s)	6.2	6.2	5.6	4.6	5.5	5.7	5.6	5.2	5.7
			FREC	UENCIA DE I	EXCEDENCIA	DE CORRIE	INTES		
Velocidad				Direco	ciones				
(cm/s)	Ν	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 21,0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1
> 17,0	0.1	0.2	0.1	0.0	0.0	0.1	0.1	0.1	0.6
> 13,0	0.6	1.0	0.6	0.0	0.1	0.2	0.3	0.3	3.2
> 9,0	2.5	3.3	1.9	0.3	1.3	1.7	1.1	1.0	13.0
> 5,0	6.6	9.9	6.6	4.5	7.3	6.2	4.1	3.2	48.4
> 1,0	11.9	17.8	13.7	11.1	14.0	11.8	8.5	7.8	96.6

Tabla EM-61: Frecuencia de incidencia y excedencia de corrientes. Capa intermedia

Fuente: consultora Costasur

Figura EM-103: Histograma de frecuencia de dirección y velocidad de corrientes. Capa intermedia

Fuente: consultora Costasur

Las series de tiempo de componentes ortogonales, fueron sometidas a un análisis estadístico básico, obteniéndose los siguientes resultados (Tabla EM-62).

Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)						
U (este-weste)	-17,1	19,8	0,8	4,4						
V (norte-sur)	-13,6	17,8	0,2	4,7						
	E	antes especialtere Cester								

Tabla EM-62: Estadísticas de series ortogonales. Capa intermedia

Fuente: consultora Costasur

La Figura EM-104 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). No se observa alguna tendencia clara de las corrientes a agruparse en torno a alguna dirección en particular. Los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección E (componente promedio U positiva y componente promedio V positiva y de menor magnitud).

El diagrama de vector progresivo (Figura EM-105) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el NE – E (72,1°).

En los espectros presentados en la Figura EM-106, solo se observó contenido de energía en la banda de baja frecuencia en la componente V.

Fuente: consultora Costasur

Capa 1 (fondo)

Las corrientes observadas presentaron un predominio de las direcciones asociadas al 3^{er} cuadrante. Las mayores ocurrencias se registraron en las direcciones SW, S y W (21,1%, 14,9% y 13,1%, respectivamente). El resto de las direcciones se agrupó entre 7,6% (dirección NW) y 12,7% (dirección NE, Figura EM-107 y Tabla EM-63).

Las magnitudes medias registradas se agruparon en torno a los 5,5 cm/s (\pm de 3,0 cm/s). En particular, la dirección SW mostró la mayor magnitud promedio, con un valor de 6,5 cm/s. Por su parte, las máximas velocidades detectadas fueron de 24,0 cm/s (0,47 nudos) y 21,4 cm/s (0,42 nudos), asociadas a las direcciones W y N, respectivamente (Tabla EM-63).

La mayor ocurrencia de magnitud se registró en el rango de 1,1 a 5,0 cm/s, con un porcentaje de 48,7%. En tanto que el rango 5,1 cm/s a 9,0 cm/s agrupó un 35,5% de las mediciones (Figura EM-107).

Las corrientes registradas durante este período de mediciones se mostraron de mediana intensidad, encontrándose un 0,1% de la información sobre 21,0 cm/s. Por último, se encontró un 3,4% de las mediciones bajo 1,0 cm/s (Tabla EM-63).

	03.1160	uencia c		filcia y e	VCEUEII		mentes	<u>. Capa i</u>	Ulluu
			FREC	UENCIA DE	INCIDENCIA	DE CORRIE	NTES		
Velocidad				Direco	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.4	0.6	0.3	0.5	0.4	0.4	0.4	0.4	3.4
1,1 - 5,0	4.9	5.8	5.2	6.4	7.4	7.8	6.6	4.6	48.7
5,1 - 9,0	2.3	5.2	3.3	2.9	6.1	8.8	4.6	2.3	35.5
9,1 - 13,0	0.6	1.5	1.0	0.3	1.3	3.8	1.6	0.5	10.6
13,1 - 17,0	0.1	0.2	0.2	0.0	0.1	0.7	0.1	0.1	1.5
17,1 - 21,0	0.0	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.2
21,1 - 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Efectivo	7.8	12.7	9.6	9.7	14.9	21.1	13.1	7.6	96.6
Maximo (cm/s)	21.4	20.6	18.8	13.4	16.1	20.7	24.0	17.7	24.0
Promedio (cm/s)	4.8	5.7	5.3	4.5	5.4	6.5	5.7	4.9	5.5
			FREC	UENCIA DE I	EXCEDENCI	A DE CORRIE	INTES		
Velocidad				Direco	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 21,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
> 17,0	0.0	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.2
> 13,0	0.1	0.2	0.2	0.0	0.1	0.7	0.2	0.1	1.8
> 9,0	0.7	1.7	1.2	0.3	1.4	4.5	1.8	0.7	12.4
> 5,0	3.0	6.9	4.4	3.3	7.6	13.4	6.4	2.9	47.9
> 1,0	7.8	12.7	9.6	9.7	14.9	21.1	13.1	7.6	96.6

Tabla EM-63: Frecuencia de incidencia y excedencia de corrientes. Capa fondo

Fuente: consultora Costasur

Figura EM-107: Histograma de frecuencia de dirección y velocidad de corrientes. Capa fondo

Fuente: consultora Costasur

Las series de tiempo de componentes ortogonales, fueron sometidas a un análisis estadístico básico, obteniéndose los siguientes resultados (Tabla EM-64):

			egenaleel eapa is					
Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)				
U (este-weste)	-14,1	18,2	-0,6	4,4				
V (norte-sur)	-13,2	14,6	-0,8	4,2				
	Euente: consultora Costasur							

Tabla EM-64: Estadísticas de series ortogonales. Capa fondo	stadísticas de series ortogonales	. Capa fondo
---	-----------------------------------	--------------

La Figura EM-108 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa una tendencia de las corrientes a agruparse en torno a las direcciones asociadas al 3^{er} cuadrante. Por otra parte, los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección SW (componente promedio U negativa y componente promedio V negativa y de similar magnitud).

Figura EM-108: Diagrama de dispersión dirección versus magnitud. Capa fondo

Fuente: consultora Costasur

El diagrama de vector progresivo (Figura EM-109) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SW (214,9°).

En los espectros presentados en la Figura EM-110, no se observa contenido de energía importante en las componentes diurna y semidiurna.

Figura EM-109: Diagrama de vector progresivo. Capa fondo

> ADCP NORTEK (Punto de muestreo 2)

Materiales y métodos

La campaña de mediciones de corrientes eulerianas se realizó entre los días 30 de julio al 08 de septiembre de 2015 (período de sicigia y cuadratura lunar).

Estas mediciones se efectuaron mediante el anclaje (fondeo) de un perfilador de corrientes acústico Doppler (ADCP, marca NORTEK, modelo Aquadopp profiler), en un punto con las siguientes coordenadas (Figura EM-2): 262.521 E; 6.469.984 N (Datum WGS84). Este punto es el lugar de la captación de agua de mar para el funcionamento de la planta desanizadora.

El ADCP fue instalado en el veril de 22,0 metros (app.) con respecto al Nivel de Reducción de Sondas (NRS), y a 1,0 metros sobre el fondo marino. Este instrumento fue programado para medir la dirección y magnitud de las corrientes a través de la columna de agua, determinándose 17 capas de medición (de 1,0 metros de espesor cada una de ellas). La Tabla EM-65 resume esta información.

	Centro de capa	Límite superior de la capa
Capa	desde el	desde el
	fondo marino (m)	fondo marino (m)
1	2,50	3,00
2	3,50	4,00
3	4,50	5,00
4	5,50	6,00
5	6,50	7,00
6	7,50	8,00
7	8,50	9,00
8	9,50	10,00
9	10,50	11,00
10	11,50	12,00
11	12,50	13,00
12	13,50	14,00
13	14,50	15,00
14	15,50	16,00
15	16,50	17,00
16	17,50	18,00
17	18,50	19,00

Tabla EM-65: Capas de medición estudio de corrientes con ADCP

Fuente: consultora Costasur

Transductores desde el fondo marino = 1,0 m 1st. Bin = 1,50 m (centro de 1^a capa desde transductores) 1st. Bin = 2,50 m (centro de 1^a capa desde el fondo marino) Bin Size = 1,0 m

El análisis de la información consistió en procesar 3 capas características de la columna de agua (capa superficial, intermedia y de fondo). De esta manera, las capas analizadas fueron las siguientes:

Capa 17 (superficie): Capa 9 (intermedia): Capa 1 (fondo): Capa centrada a 18,50 metros desde el fondo Capa centrada a 10,50 metros desde el fondo Capa centrada a 2,50 metros desde el fondo

Como los registros de la dirección de las corrientes son referidos originalmente al norte magnético, éstos fueron referidos al norte geográfico, empleándose para tal efecto, la corrección de desviación magnética local (+ 2°). Con la información registrada (datos cada 10 minutos), se elaboró series de tiempo horaria.

La información de corrientes fue sometida a un análisis estadístico de frecuencias por rangos de dirección y magnitud para una rosa de 8 direcciones (tabla e histograma). Por su parte, las series horarias fueron sometidas a un análisis de series de tiempo (estadística básica de componentes, dispersión, DVP y espectral).

En el análisis de frecuencia, las corrientes con magnitudes inferiores a 1 cm/s fueron consideradas calmas, debido a que éstas son muy débiles y poco significativas en los procesos dinámicos del mar.

Finalmente, con el objeto de visualizar las relaciones causa – efecto entre los forzantes vientos y marea, se realizó un análisis de correlación cruzada.

Resultados

Capa 17 (superficie)

A nivel superficial, las corrientes observadas presentaron un patrón de comportamiento direccional dominado por las direcciones asociadas al 3^{er} cuadrante. Así, las mayores ocurrencias se registraron en las direcciones S y SW (15,3% y 14,2%, respectivamente). El resto de las direcciones se agrupó entre 9,3% (dirección NW) y 12,9% (dirección SE, Figura EM-111 y Tabla EM-66).

Las magnitudes medias registradas se agruparon en torno a los 8,8 cm/s (\pm de 4,9 cm/s). En particular, la dirección N mostró la mayor magnitud promedio, con un valor de 9,7 cm/s. Por su parte, las máximas velocidades detectadas fueron de 36,2 cm/s (0,70 nudos) y 34,0 cm/s (0,66 nudos) asociadas a las direcciones NE y S, respectivamente (Tabla EM-66).

La mayor ocurrencia de magnitud se registró en el rango de 5,1 a 9,0 cm/s, con un porcentaje de 33,5%. En tanto que el rango 9,1 cm/s a 13,0 cm/s agrupó un 22,9% de las mediciones (Figura EM-111).

Las corrientes registradas en esta capa se mostraron de mediana a alta intensidad, encontrándose un 0,6% de la información sobre 25,0 cm/s. Por último, se encontró un 1,2% de las mediciones bajo 1,0 cm/s (Tabla EM-66).

	FRECUENCIA DE INCIDENCIA DE CORRIENTES								
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.1	0.1	0.2	0.1	0.2	0.2	0.1	0.2	1.2
1,1 - 5,0	2.7	2.8	3.2	3.2	3.5	3.1	3.1	2.8	24.4
5,1 - 9,0	3.6	4.1	3.9	4.8	4.9	5.2	4.1	3.0	33.5
9,1 - 13,0	2.9	2.7	2.8	3.1	3.7	3.3	2.4	2.0	22.9
13,1 - 17,0	2.0	1.7	0.9	1.3	2.2	1.5	1.1	1.1	11.7
17,1 - 21,0	0.6	0.9	0.3	0.3	0.7	0.7	0.3	0.3	4.2
21,1 - 25,0	0.3	0.3	0.0	0.1	0.3	0.3	0.1	0.0	1.5
> 25,0	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.0	0.6
Total Efectivo	12.2	12.8	11.0	12.9	15.3	14.2	11.1	9.3	98.8
Maximo (cm/s)	31.5	36.2	22.8	28.4	34.0	33.3	30.2	27.0	36.2
Promedio (cm/s)	9.7	9.6	7.8	8.3	9.1	9.0	8.1	8.2	8.8
			FREC	UENCIA DE I	EXCEDENCI	A DE CORRIE	INTES		
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25,0	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.0	0.6
> 21,0	0.5	0.5	0.0	0.2	0.3	0.4	0.2	0.1	2.1
> 17,0	1.1	1.4	0.3	0.5	1.0	1.1	0.5	0.4	6.3
> 13,0	3.1	3.1	1.2	1.8	3.1	2.6	1.5	1.5	18.0
> 9,0	6.0	5.8	4.0	4.9	6.9	5.9	3.9	3.5	40.9
> 5,0	9.5	10.0	7.9	9.7	11.7	11.1	8.0	6.5	74.4
> 1,0	12.2	12.8	11.0	12.9	15.3	14.2	11.1	9.3	98.8

Fuente: consultora Costasur

Para el análisis de las corrientes como series de tiempo, éstas fueron reducidas a series horarias, calculándose las respectivas componentes ortogonales. Así, se definen las componentes U y V de la siguiente manera:

Componente U:	Este – Weste, positiva si el flujo va hacia el Este.
Componente V:	Norte – Sur, positiva si el flujo va hacia el Norte.

Las series de tiempo de componentes ortogonales, fueron sometidas a un análisis estadístico básico, obteniéndose los siguientes resultados (Tabla EM-67)

Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)					
U (este-weste)	-29,4	23,4	0,2	6,5					
V (norte-sur)	-27,3	-27,3 26,7		7,7					
	Fuente: consultora Costasur								

Tabla EM-67: Estadísticas de series ortogonales. Capa superficial

La Figura EM-112 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa cierta tendencia de las corrientes a agruparse en torno a las direcciones asociadas al 2^{do} y 3^{er} cuadrante. Los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección SE – S (componente promedio U positiva y componente promedio V negativa y de mayor magnitud).

Figura EM- 112: Diagrama de dispersión dirección versus magnitud. Capa superficial

Fuente: consultora Costasur

Con el objeto de corroborar lo anterior, y suponiendo que la corriente observada es espacialmente homogénea y presenta similares fluctuaciones temporales en ese espacio, es posible explicar el comportamiento de una partícula de agua a través de un diagrama de vector progresivo (DVP). El diagrama de vector progresivo (Figura EM-113) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SE – S (160,7°).

Fuente: consultora Costasur

Por último, y para determinar el comportamiento de la corriente en el dominio de la frecuencia, se aplicó un análisis estadístico de tipo espectral (12 grados de libertad y 95% de confianza). Este análisis permite determinar la cantidad de energía (densidad espectral) que se encuentra asociada a las distintas bandas de frecuencia (período).

En los espectros presentados en la Figura EM-114, se observa contenido de energía en la componente V en la banda de frecuencia diurna (0,04 cph). Esta situación podría ser atribuible posiblemente al efecto del viento.

Capa 9 (intermedia)

En este nivel, las corrientes observadas presentaron un predominio de las direcciones asociadas al N y 3^{er} cuadrante: 14,7% (dirección N), 13,3% y 12,5% (direcciones S y SW, respectivamente). El resto de las direcciones se agrupó entre 10,7% (dirección E) y 12,1% (dirección NE, Figura EM-115 y Tabla EM-68).

Las magnitudes medias registradas se agruparon en torno a los 7,6 cm/s (± de 4,0 cm/s). En particular, la dirección N mostró la mayor magnitud promedio, con un valor de 8,2 cm/s. La máxima velocidad detectada fue de 38,7 cm/s (0.75 nudos) asociada a la dirección SE (Tabla EM-68).

La mayor ocurrencia de magnitud se registró en el rango de 5,1 a 9,0 cm/s, con un porcentaje de 37,4%. En tanto que el rango 1,1 cm/s a 5,0 cm/s agrupó un 29,8% de las mediciones (Figura EM-115).

Las corrientes registradas en esta capa se mostraron de mediana a alta intensidad, encontrándose un 0,1% de la información sobre 25,0 cm/s. Por último, se encontró un 1,7% de las mediciones bajo 1,0 cm/s (Tabla EM-68).

		FRECUENCIA DE INCIDENCIA DE CORRIENTES							
Velocidad		Direcciones							
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	0.2	0.2	0.3	0.1	0.2	0.3	0.1	0.3	1.7
1,1 - 5,0	4.0	3.5	3.6	3.7	3.8	4.0	3.9	3.3	29.8
5,1 - 9,0	5.3	4.7	4.3	4.7	5.0	4.3	4.5	4.7	37.4
9,1 - 13,0	3.4	2.7	2.4	2.3	3.1	2.8	2.4	2.4	21.4
13,1 - 17,0	1.6	1.0	0.4	0.6	1.2	1.0	0.8	1.0	7.5
17,1 - 21,0	0.5	0.2	0.0	0.1	0.2	0.3	0.1	0.4	1.7
21,1 - 25,0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Total Efectivo	14.7	12.1	10.7	11.3	13.3	12.5	11.7	11.8	98.3
Maximo (cm/s)	31.9	20.5	22.5	38.7	27.5	26.7	21.1	32.0	38.7
Promedio (cm/s)	8.2	7.7	7.0	7.0	7.7	7.6	7.2	7.9	7.6
	FRECUENCIA DE EXCEDENCIA DE CORRIENTES								
Velocidad				Direc	ciones				
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1

Tabla EM-68: Frecuencia de incidencia y excedencia de corrientes. Capa intermedia

11.3 Fuente: consultora Costasur

0.0

0.1

0.7

29

7.6

0.0

0.2

1.4

4.5

9.5

13.3

0.1

04

1.3

4.2

8.5

12.5

0.0

0.1

0.9

3.3

7.8

11.7

0.1

0.5

1.5

3.8

8.5

11.8

0.4

21

9.6

31.0

68.5

98.3

> 21,0

> 17,0

> 13,0

> 9,0

> 5,0

> 1,0

0.1

0.6

2.2

5.5

10.8

14.7

0.0

0.2

1.2

4.0

8.7

12.1

0.0

0.1

0.5

2.8

7.1

10.7

Figura EM-115: Histograma de frecuencia de dirección y velocidad de corrientes. Capa intermedia

Fuente: consultora Costasur

Las series de tiempo de componentes ortogonales, fueron sometidas a un análisis estadístico básico, obteniéndose los siguientes resultados (Tabla EM-69).

	······									
Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)						
U (este-weste)	-23,4	20,4	-0,5	5,8						
V (norte-sur)	-35,3	21,9	0,1	6,7						
	-									

Tabla EM-69: Estadísticas de series ortogonales. Capa intermedia

Fuente: consultora Costasur

La Figura EM-116 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). No se observa tendencia de las corrientes a agruparse en torno a alguna dirección en particular. Los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección W (componente promedio U negativa y componente promedio V positiva y cercana a cero magnitud).

El diagrama de vector progresivo (Figura EM-117) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el W (281,2°).

En los espectros presentados en la Figura EM-118, se observó contenido de energía en la banda de frecuencia diurna (componente V) y baja frecuencia (componente V). La primera atribuible posiblemente al efecto del viento.

Fuente: consultora Costasur

Fuente: consultora Costasur

Figura EM-118: Autoespectros de corrientes. Capa intermedia

Capa 1 (fondo)

Las corrientes observadas presentaron un predominio de las direcciones asociadas al 3^{er} cuadrante y dirección N. Las mayores ocurrencias se registraron en las direcciones SW, W y N (15,2%, 14,5% y 13,7%, respectivamente). El resto de las direcciones se agrupó entre 8,1% (dirección SE) y 12,9% (dirección NE, Figura EM-119 y Tabla EM-70).

Las magnitudes medias registradas se agruparon en torno a los 7,7 cm/s (\pm de 4,0 cm/s). En particular, la dirección N mostró la mayor magnitud promedio, con un valor de 8,5 cm/s. Por su parte, la máxima velocidad detectada fue de 30,4 cm/s (0,59 nudos) asociada a la dirección N (Tabla EM-70).

La mayor ocurrencia de magnitud se registró en el rango de 5,1 a 9,0 cm/s, con un porcentaje de 38,3%. En tanto que el rango 1,1 cm/s a 5,0 cm/s agrupó un 28,0% de las mediciones (Figura EM-119).

Las corrientes registradas durante este período de mediciones se mostraron de mediana a alta intensidad, encontrándose un 0,1% de la información sobre 25,0 cm/s. Por último, se encontró un 1,8% de las mediciones bajo 1,0 cm/s (Tabla EM-70).

Tabla EM-70. Frecuencia de incluencia y excedencia de comentes. Capa fondo										
	FRECUENCIA DE INCIDENCIA DE CORRIENTES									
Velocidad		Direcciones								
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL	
<= 1,0	0.3	0.2	0.2	0.2	0.2	0.2	0.3	0.1	1.8	
1,1 - 5,0	3.3	4.0	3.3	2.9	3.5	3.8	3.6	3.6	28.0	
5,1 - 9,0	5.1	4.5	3.6	3.5	4.8	6.0	5.8	5.1	38.3	
9,1 - 13,0	3.2	2.8	1.4	1.4	2.5	3.9	3.6	2.6	21.4	
13,1 - 17,0	1.5	1.3	0.6	0.4	0.8	1.1	1.2	1.2	8.2	
17,1 - 21,0	0.5	0.3	0.2	0.0	0.2	0.4	0.2	0.2	2.0	
21,1 - 25,0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.3	
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	
Total Efectivo	13.7	12.9	9.1	8.1	11.8	15.2	14.5	12.8	98.2	
Maximo (cm/s)	30.4	29.6	20.2	17.0	20.2	25.2	25.9	23.3	30.4	
Promedio (cm/s)	8.5	7.9	7.0	6.5	7.4	8.1	7.9	7.9	7.7	
			FREC	UENCIA DE I	EXCEDENCI/	A DE CORRIE	INTES			
Velocidad				Direce	ciones					
(cm/s)	N	NE	E	SE	S	SW	W	NW	TOTAL	
> 25,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	
> 21,0	0.2	0.1	0.0	0.0	0.0	0.1	0.1	0.1	0.4	
> 17,0	0.6	0.4	0.2	0.0	0.2	0.4	0.3	0.3	2.3	
> 13,0	2.1	1.7	0.8	0.4	1.0	1.6	1.5	1.5	10.5	
> 9,0	5.3	4.5	2.2	1.8	3.4	5.4	5.1	4.1	31.9	
> 5,0	10.4	9.0	5.8	5.2	8.3	11.4	10.9	9.2	70.2	
> 1,0	13.7	12.9	9.1	8.1	11.8	15.2	14.5	12.8	98.2	

Tabla EM-70: Frecuencia de incidencia y excedencia de corrientes. Capa fondo

Fuente: consultora Costasur

Figura EM-119: Histograma de frecuencia de dirección y velocidad de corrientes. Capa fondo

Las series de tiempo de componentes ortogonales, fueron sometidas a un análisis estadístico básico, obteniéndose los siguientes resultados (Tabla EM-71):

Componente	Mínimo (cm/s)	Máximo(cm/s)	Promedio (cm/s)	Desv. St. (cm/s)					
U (este-weste)	-19,9	19,1	-1,2	5,7					
V (norte-sur)	-16,4	26,5	0,6	6,4					
	Evente: consultora Costasur								

Tabla EM-71:	Estadísticas o	de series	ortogonales.	Capa fondo
--------------	----------------	-----------	--------------	------------

La Figura EM-120 muestra el diagrama de dispersión de las corrientes (magnitud v/s dirección). Se observa cierta tendencia de las corrientes a agruparse en torno a las direcciones asociadas al 3^{er} cuadrante. Por otra parte, los estadísticos expuestos evidencian que la corriente neta tiende a fluir hacia la dirección W – NW (componente promedio U negativa y componente promedio V positiva y de menor magnitud).

El diagrama de vector progresivo (Figura EM-121) evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el W – NW (298,7°).

En los espectros presentados en la Figura EM-122, no se observa contenido de energía en las componentes U y V (bandas de frecuencia diurna y semidiurna).

Fuente: consultora Costasur

Figura EM-121: Diagrama de vector progresivo. Capa fondo

Fuente: consultora Costasur

Figura EM-122: Autoespectros de corrientes. Capa fondo

- Síntesis de resultados corrientes eulerianas

A continuación se presenta una síntesis de los principales resultados de la corrientes eularianas, descritos en cada campaña y por capa o nivel de la columna a de agua. En la Tabla EM-72 muestra un resumen de las corrientes eularianas.

Verano 2012

A nivel superficial, las corrientes presentaron un patrón de comportamiento direccional dominado por las direcciones asociadas al 1^{er} cuadrante. Las mayores ocurrencias se registraron en las direcciones NE, E y N (23,0%, 20,0% y 16,3%, respectivamente). El resto de las direcciones se agrupó entre 5,1% (dirección SW) y 10,6% (dirección NW). Las magnitudes medias se agruparon en torno a los 12,8 cm/s (± de 6,9 cm/s). Las máximas velocidades fueron de 43,7 cm/s (0,85 nudos), 40,9 cm/s (0,80 nudos) y 37,5 cm/s (0,73 nudos) asociadas a las direcciones NE, E y SW, respectivamente. El diagrama de vector progresivo evidenció una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el NE (51,9°).

A nivel intermedio, las corrientes presentaron un patrón de comportamiento distinto al detectado en la capa más superficial. A saber, se observó un predominio de las direcciones asociadas al 2^{do} cuadrante: 15,9% (dirección SE), 14,5% (dirección E) y 13,6% (dirección S). El resto de las direcciones se agrupó entre 8,9% (dirección SW) y 11,7% (dirección NW). Las magnitudes medias se agruparon en torno a los 5,7 cm/s (± 3,0 cm/s). Las máximas velocidades fueron de 19,8 cm/s (0,38 nudos) y 19,3 cm/s (0,38 nudos) asociadas a las direcciones S y NE, respectivamente. El diagrama de vector progresivo evidenció una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SE (125,3°).

A nivel de fondo, las corrientes presentaron un predominio de las direcciones asociadas al 2^{do} cuadrante. De esta manera, las mayores ocurrencias se registraron en las direcciones E y SE (18,2% y 17,2%, respectivamente). El resto de las direcciones se agrupó entre 6,3% (dirección N) y 14,6% (dirección W). Las magnitudes medias se agruparon en torno a los 5,3 cm/s (± 2,8 cm/s). Las máximas velocidades fueron de 20,9 cm/s (0,41 nudos) y 17,5 cm/s (0,34 nudos), asociadas a las direcciones W y E, respectivamente. El diagrama de vector progresivo evidenció una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SE – S (162,4°).

Otoño 2012

A nivel superficial, las corrientes presentaron un patrón de comportamiento direccional dominado por las direcciones asociadas al 1^{er} cuadrante. Las mayores ocurrencias se registraron en las direcciones E y NE (21,8% y 19,1%, respectivamente), el resto de las direcciones se agrupó entre 6,8% (dirección SW) y 15,2% (dirección SE). Las magnitudes medias se agruparon en torno a los 9,6 cm/s (\pm 5,6 cm/s), y las máximas velocidades fueron de 42,2 cm/s (0,82 nudos), 41,4 cm/s (0,80 nudos) y 41,2 cm/s (0,80 nudos) asociadas a las direcciones S, E y NE, respectivamente. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el E (91,5°).

A nivel intermedio, las corrientes presentaron un patrón de comportamiento levemente distinto al detectado en la capa más superficial, con un predominio de las direcciones asociadas al 1^{er} y 2^{do} cuadrante: 14,0% (dirección E), 13,7% (dirección NE) y 12,8%

(dirección SE). El resto de las direcciones se agrupó entre 10,4% (dirección SW) y 11,9% (dirección W). Las magnitudes medias se agruparon en torno a los 5,1 cm/s (\pm 2,7 cm/s), y las máximas velocidades fueron de 21,7 cm/s (0,42 nudos) y 17,3 cm/s (0,34 nudos) asociadas a las direcciones NW y SW, respectivamente. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el E (86,7°).

A nivel de fondo, las corrientes presentaron un predominio de las direcciones asociadas al 3^{er} cuadrante. Las mayores ocurrencias se registraron en las direcciones W y SW (20,7% y 13,9%, respectivamente), el resto de las direcciones se agrupó entre 6,3% (dirección N) y 12,6% (dirección SE). Las magnitudes medias se agruparon en torno a los 5,1 cm/s (± 2,6 cm/s). Las máximas velocidades fueron de 17,4 cm/s (0,34 nudos) y 14,7 cm/s (0,29 nudos), asociadas a las direcciones W y SE, respectivamente. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SW (223,8°).

Invierno 2012

A nivel superficial, las corrientes presentaron un patrón de comportamiento direccional dominado por las direcciones asociadas al 1^{er} y 2^{do} cuadrante. Las mayores ocurrencias se registraron en las direcciones E, NE y SE (20,1%, 15,9% y 15,7%, respectivamente). El resto de las direcciones se agrupó entre 7,3% (dirección NW) y 12,2% (dirección S). Las magnitudes medias se agruparon en torno a los 9,8 cm/s (\pm 5,8 cm/s). Las máximas velocidades fueron de 39,6 cm/s (0,77 nudos) y 37,1 cm/s (0,72 nudos) asociadas a las direcciones E y NE, respectivamente. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el E (100,8°).

A nivel intermedio, las corrientes presentaron un patrón de comportamiento levemente distinto al detectado en la capa más superficial. Se observó un predominio de las direcciones asociadas al 2^{do} cuadrante: 18,1% (dirección S) y 17,0% (dirección SE). El resto de las direcciones se agrupó entre 7,4% (dirección NW) y 13,8% (dirección E). Las magnitudes medias se agruparon en torno a los 5,5 cm/s (\pm 3,0 cm/s). Las máximas velocidades fueron de 20,8 cm/s (0,40 nudos) y 19,0 cm/s (0,37 nudos) asociadas a las direcciones E y S, respectivamente. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SE – S (156,0°).

A nivel profundo, las corrientes presentaron un predominio de las direcciones asociadas al 3^{er} cuadrante. Las mayores ocurrencias se registraron en las direcciones W y SW (18,9% y 14,8%, respectivamente). El resto de las direcciones se agrupó entre 7,3% (dirección N) y 13,2% (direcciones SE y S). Las magnitudes medias se agruparon en torno a los 5,1 cm/s (\pm 2,7 cm/s). Las máximas velocidades fueron de 18,8 cm/s (0,37 nudos) y 18,1 cm/s (0,35 nudos), asociadas a las direcciones W y S, respectivamente. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SW (214,7°).

Primavera 2012

A nivel superficial, las corrientes presentaron un patrón de comportamiento direccional dominado por las direcciones asociadas al 1er y 4to cuadrante. Las mayores ocurrencias se registraron en las direcciones NE, NW, N, E y W (19,1%, 13,3%, 13,2%, 13,2% y 13,0%,

respectivamente). El resto de las direcciones se agrupó entre 8,4% (dirección SW) y 9,6% (dirección SE). Las magnitudes medias se agruparon en torno a los 10,1 cm/s (\pm 5,7 cm/s). Las máximas velocidades fueron de 39,2 cm/s (0,76 nudos) y 38,1 cm/s (0,74 nudos) asociadas a las direcciones E y S, respectivamente. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el N – NE (22,4°).

A nivel intermedio, las corrientes presentaron un patrón de comportamiento distinto al detectado en la capa más superficial. A saber, se observó un predominio de las direcciones asociadas al 2do cuadrante: 19,3% (dirección SE) y 17,6% (dirección S). El resto de las direcciones se agrupó entre 8,9% (dirección NW) y 9,1% (dirección N). Las magnitudes medias se agruparon en torno a los 5,9 cm/s (\pm 3,2 cm/s). Las máximas velocidades fueron de 26,4 cm/s (0,51 nudos) y 25,4 cm/s (0,49 nudos) asociadas a las direcciones N y NE, respectivamente. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SE – S (152,2°).

A nivel de fondo, las corrientes presentaron un predominio de las direcciones asociadas al 3er y 2do cuadrante. Las mayores ocurrencias se registraron en las direcciones W y SE (16,6% y 16,4%, respectivamente). El resto de las direcciones se agrupó entre 6,3% (dirección N) y 14,0% (dirección E). Las magnitudes medias se agruparon en torno a los 5,6 cm/s (\pm 2,9 cm/s). Las máximas velocidades fueron de 20,9 cm/s (0,41 nudos) y 20,4 cm/s (0,40 nudos), asociadas a las direcciones N y W, respectivamente. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el S (177,6°).

Primavera 2014

Punto 1 (Descarga Salmuera)

A nivel superficial, las corrientes presentaron un patrón de comportamiento direccional dominado por las direcciones asociadas al 4to cuadrante. Las mayores ocurrencias se registraron en las direcciones NW, W y N (21,8%, 21,6% y 12,9%, respectivamente). El resto de las direcciones se agrupó entre 6,9% (dirección S) y 9,9% (dirección SW). Las magnitudes medias se agruparon en torno a los 12,8 cm/s (\pm 6,8 cm/s). Las máximas velocidades fueron de 48,9 cm/s (0,95 nudos) y 42,1 cm/s (0,82 nudos) asociadas a las direcciones W y SW, respectivamente. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el W – NW (296,2°).

A nivel intermedio, las corrientes presentaron un patrón de comportamiento distinto al detectado en la capa más superficial. Se observó un predominio de las direcciones asociadas al 1er cuadrante: 15,3% (dirección N) y 14,3% (dirección NE). El resto de las direcciones se agrupó entre 9,1% (dirección W) y 12,4% (direcciones E y SE). Las magnitudes medias se agruparon en torno a los 5,4 cm/s (\pm 2,8 cm/s). Las máximas velocidades fueron de 21,2 cm/s (0,41 nudos) y 19,2 cm/s (0,37 nudos) asociadas a las direcciones SW y S, respectivamente. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el NE – E (64,4°).

A nivel de fondo, las corrientes presentaron un predominio de las direcciones asociadas al 3er cuadrante. Las mayores ocurrencias se registraron en las direcciones SW y S (17,7% y 16,1%, respectivamente). El resto de las direcciones se agrupó entre 8,2% (dirección NW) y 13,1% (dirección NE). Las magnitudes medias se agruparon en torno a los 5,0 cm/s (\pm 2,8 cm/s). Las máximas velocidades fueron de 21,4 cm/s (0,42 nudos) y 20,0 cm/s (0,39 nudos), asociadas a las direcciones W y SW, respectivamente. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SW - S (195,5°).

Punto 2 (Captación agua de mar)

A nivel superficial, las corrientes presentaron un patrón de comportamiento direccional dominado por las direcciones asociadas al 3er cuadrante. Las mayores ocurrencias se registraron en las direcciones W y SW (20,8% y 19,3%, respectivamente). El resto de las direcciones se agrupó entre 5,4% (dirección E) y 14,7% (dirección NW). Las magnitudes medias se agruparon en torno a los 10,6 cm/s (± 5,3 cm/s). Las máximas velocidades fueron de 39,1 cm/s (0,76 nudos) y 35,2 cm/s (0,68 nudos) asociadas a las direcciones NW y W, respectivamente. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el W (269,5°).

A nivel intermedio, las corrientes presentaron un predominio de las direcciones asociadas al 3er cuadrante: 17,1% (dirección S) y 14,3% (dirección SW). El resto de las direcciones se agrupó entre 9,5% (dirección NE) y 13,7% (dirección SE). Las magnitudes medias se agruparon en torno a los 8,2 cm/s (\pm 3,7 cm/s). Las máximas velocidades detectadas fueron de 37,0 cm/s (0,72 nudos) y 36,4 cm/s (0,71 nudos) asociadas a las direcciones NW y E, respectivamente. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el S (189,6°).

A nivel de fondo, las corrientes presentaron un predominio de las direcciones asociadas al 3er cuadrante. Las mayores ocurrencias se registraron en las direcciones SW y S (16,8% y 15,0%, respectivamente). El resto de las direcciones se agrupó entre 10,2% (dirección NE) y 13,4% (dirección W). Las magnitudes medias se agruparon en torno a los 8,5 cm/s (\pm 3,6 cm/s). Las máximas velocidades fueron de 34,0 cm/s (0,66 nudos) y 25,9 cm/s (0,50 nudos), asociadas a las direcciones N y NE, respectivamente. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SW (228,5°).

Verano 2015

Punto 1 (Descarga salmuera)

A nivel superficial, las corrientes presentaron un patrón de comportamiento direccional dominado por la direcciones asociadas al 1^{er} cuadrante. El resto de las direcciones se agrupó entre 8,2% (dirección NW) y 13,5% (dirección N). Las magnitudes medias se agruparon en torno a los 10,3 cm/s (± 5,7 cm/s). Las máximas velocidades fueron de 52,6 cm/s (1,02 nudos) y 36,0 cm/s (0,70 nudos) asociadas a las direcciones NE y N, respectivamente. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el NE (47,9°).

A nivel intermedio, las corrientes presentaron un patrón de comportamiento similar al detectado en la capa más superficial. A saber, se observó un predominio de las direcciones asociadas al 1^{er} cuadrante: 16,7% (dirección NE) y 14,4% (dirección E). El resto de las direcciones se agrupó entre 8,5% (dirección NW) y 13,0% (dirección S). Las magnitudes medias se agruparon en torno a los 5,6 cm/s (± 3,3 cm/s). Las máximas velocidades fueron de 24,0 cm/s (0,47 nudos) y 23,0 cm/s (0,45 nudos) asociadas a las direcciones NE y N. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el E (85,1°).

A nivel de fondo, las corrientes presentaron un predominio de las direcciones asociadas al 3^{er} y 1^{er} cuadrante. Las mayores ocurrencias se registraron en las direcciones SW, S y NE (25,4%, 19,8% y 15,6%, respectivamente). El resto de las direcciones se agrupó entre 5,1% (dirección NW) y 9,8% (dirección E). Las magnitudes medias se agruparon en torno a los 7,0 cm/s (± 4,0 cm/s). Las máximas velocidades fueron de 27,8 cm/s (0,54 nudos) y 23,1 cm/s (0,45 nudos), asociadas a las direcciones SW y S. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el S – SW (197,9°).

Punto 2 (Captación agua de mar)

A nivel superficial, las corrientes presentaron un patrón de comportamiento direccional dominado por las direcciones asociadas al 3^{er} cuadrante. Las mayores ocurrencias se registraron en las direcciones SW, S y W (21,6%, 15,3% y 14,7%, respectivamente). El resto de las direcciones se agrupó entre 5,6% (dirección E) y 14,1% (dirección N). Las magnitudes medias se agruparon en torno a los 9,0 cm/s (± 4,9 cm/s). Las máximas velocidades fueron de 48,0 cm/s (0,93 nudos) y 34,6 cm/s (0,67 nudos) asociadas a las direcciones NE y S, respectivamente. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SW – W (248,2°).

A nivel intermedio, las corrientes presentaron un predominio de las direcciones asociadas al 2^{do} cuadrante: 16,7% (dirección S) y 16,1% (dirección SE). El resto de las direcciones se agrupó entre 7,5% (dirección NW) y 13,6% (dirección E). Las magnitudes medias registradas se agruparon en torno a los 6,9 cm/s (± 4,0 cm/s). La máxima velocidad detectada fue de 39,1 cm/s (0,76 nudos) asociada a la dirección W. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SE (146,9°).

A nivel de fondo, las corrientes presentaron un predominio de las direcciones asociadas al 3^{er} cuadrante. Las mayores ocurrencias se registraron en las direcciones SW y S (20,4% y 14,1%, respectivamente). El resto de las direcciones se agrupó entre 8,3% (dirección NW) y 13,3% (dirección NE). Las magnitudes medias se agruparon en torno a los 7,6 cm/s (\pm 4,1 cm/s). La máxima velocidad detectada fue de 26,8 cm/s (0,52 nudos) asociada a la dirección SW. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SW – S (208,7°).

Invierno 2015

Punto 1 (Descarga salmuera)

A nivel superficial, las corrientes presentaron un patrón de comportamiento direccional dominado por las direcciones asociadas al 1^{er} cuadrante (E y NE) con porcentajes de incidencia de 21,7%y 20,0%, respectivamente. El resto de las direcciones se agrupó entre 12,6% (dirección SW) y 6,6% (dirección NW). Las magnitudes medias se agruparon en torno a los 10,2 cm/s (\pm 6,1 cm/s). Las máximas velocidades fueron de 45,8 cm/s (0,89 nudos) y 45,3 cm/s (0,88 nudos) asociadas a las direcciones NE y E, respectivamente. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el NE – E (71,0°).

A nivel intermedio, las corrientes presentaron un patrón de comportamiento similar al detectado en la capa más superficial. A saber, se observó un predominio de las direcciones asociadas al 1^{er} cuadrante: 17,8% (dirección NE) y 13,7% (dirección E). El resto de las direcciones se agrupó entre 7,8% (dirección NW) y 14,0% (dirección S). Las magnitudes medias se agruparon en torno a los 5,7 cm/s (\pm 3,2 cm/s). Las máximas velocidades fueron de 28,0 cm/s (0,54 nudos) y 24,1 cm/s (0,47 nudos) asociadas a las direcciones W y NE, respectivamente. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el NE – E (72,1°).

A nivel de fondo, las corrientes presentaron un predominio de las direcciones asociadas al 3^{er} cuadrante. Las mayores ocurrencias se registraron en las direcciones SW, S y W (21,1%, 14,9% y 13,1%, respectivamente). El resto de las direcciones se agrupó entre 7,6% (dirección NW) y 12,7% (dirección NE). Las magnitudes medias se agruparon en torno a los 5,5 cm/s (± 3,0 cm/s). Las máximas velocidades fueron de 24,0 cm/s (0,47 nudos) y 21,4 cm/s (0,42 nudos), asociadas a las direcciones W y N, respectivamente. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SW (214,9°).

Punto 2 (Captación agua de mar)

A nivel superficial, las corrientes presentaron un patrón de comportamiento direccional dominado por las direcciones asociadas al 3^{er} cuadrante. Las mayores ocurrencias se registraron en las direcciones S y SW (15,3% y 14,2%, respectivamente). El resto de las direcciones se agrupó entre 9,3% (dirección NW) y 12,9% (dirección SE). Las magnitudes medias se agruparon en torno a los 8,8 cm/s (± 4,9 cm/s). Las máximas velocidades fueron de 36,2 cm/s (0,70 nudos) y 34,0 cm/s (0,66 nudos) asociadas a las direcciones NE y S, respectivamente. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el SE – S (160,7°).

A nivel intermedio, las corrientes presentaron un predominio de las direcciones asociadas al N y 3^{er} cuadrante: 14,7% (dirección N), 13,3% y 12,5% (direcciones S y SW, respectivamente). El resto de las direcciones se agrupó entre 10,7% (dirección E) y 12,1% (dirección NE). Las magnitudes medias se agruparon en torno a los 7,6 cm/s (± 4,0 cm/s). La máxima velocidad detectada fue de 38,7 cm/s (0,75 nudos) asociada a la dirección SE. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el W (281,2°).

A nivel de fondo, las corrientes presentaron un predominio de las direcciones asociadas al 3^{er} cuadrante y dirección N. Las mayores ocurrencias se registraron en las direcciones SW, W y N (15,2%, 14,5% y 13,7%, respectivamente). El resto de las direcciones se agrupó entre 8,1% (dirección SE) y 12,9% (dirección NE). Las magnitudes medias se agruparon en torno a los 7,7 cm/s (± 4,0 cm/s). La máxima velocidad fue de 30,4 cm/s (0,59 nudos) asociada a la dirección N. El diagrama de vector progresivo evidencia una tendencia general de las corrientes a adoptar un flujo direccional neto hacia el W – NW (298,7°).

			Patrón	Velocidad	Velocidad	Dirección vector
Año	Campaña	Capa/Nivel	direccional	media	máxima	progresivo
			uneccional	(cm/s)	(cm/s)	(grados)
		Superficial	1 ^{er} cuadrante	12,8	43,7	NE (51,9°)
	Verano	Intermedia	2 ^{do} cuadrante	5,7	19,8	SE (125,3°)
		Fondo	2 ^{do} cuadrante	5,3	20,9	SE - E (162,4°)
		Superficial	1 ^{er} cuadrante	9,6	42,4	E (91,5°)
	Otoño	Intermedia	1 ^{er} y 2 ^{do} cuadrante	5,1	21,7	E (86,7°)
2012		Fondo	3 ^{er} cuadrante	5,1	17,4	SW (223,8°)
2012		Superficial	1 ^{er} y 2 ^{do} cuadrante	9,8	39,6	E (100,8°)
	Invierno	Intermedia	2 ^{do} cuadrante	5,5	20,8	SE - E (156,0°)
		Fondo	3 ^{er} cuadrante	5,1	18,8	SW (214,7°)
		Superficial	1 ^{er} y 4 ^{to} cuadrante	10,1	39,2	N - NE (22,4°)
	Primavera	Intermedia	2 ^{do} cuadrante	5,9	26,4	SE - E (152,2°)
		Fondo	3 ^{er} y 2 ^{do} cuadrante	5,6	20,9	S (177,6°)
	Primavera Punto 1 Descarga	Superficial	4 ^{to} cuadrante	12,8	48,9	W - NW (296,2°)
		Intermedia	1 ^{er} cuadrante	5,4	21,2	NE - E (64,4°)
2014		Fondo	3 ^{er} cuadrante	5	21,4	SW - S (195,5°)
2014	Primavera Punto 2 Captación	Superficial	3 ^{er} cuadrante	10,6	39,1	W (269,5°)
		Intermedia	3 ^{er} cuadrante	8,2	37	S (189,6°)
		Fondo	3 ^{er} cuadrante	8,5	34	SW (228,5°)
	Verano	Superficial	1 ^{er} cuadrante	10,3	52,6	NE (47,9°)
	Punto 1	Intermedia	1 ^{er} cuadrante	5,6	24	E (85,1°)
	Descarga	Fondo	3 ^{er} y 1 ^{er} cuadrante	7	27,8	S - SW (197,9°)
	Verano	Superficial	3 ^{er} cuadrante	9	48	SW -W (248,2°)
	Punto 2	Intermedia	3 ^{er} cuadrante	6,9	39,1	SE (146,9°)
2015	Captación	Fondo	3 ^{er} cuadrante	7,6	26,8	SW - S (208,7°)
2015	Invierno	Superficial	1 ^{er} cuadrante	10,2	45,8	NE - E (71,0°)
	Punto 1	Intermedia	1 ^{er} cuadrante	5,7	28	NE - E (72,1°)
	Descarga	Fondo	3 ^{er} cuadrante	5,7	24	SW (214,9°)
	Invierno	Superficial	3 ^{er} cuadrante	8,8	36,2	SE - S (160,7°)
	Punto 2	Intermedia	3 ^{er} cuadrante	7,6	38,7	W (281,2°)
	Captación	Fondo	3 ^{er} cuadrante	7,7	30,4	W - NW (298,7°)

Tabla EM-72: Resumen de las corrientes eularianas

• Corrientes Lagrangianas

Las corrientes marinas corresponden al desplazamiento horizontal de un cierto volumen de agua por unidad de tiempo en un lugar determinado. La intensidad y dirección de este movimiento es función de las fuerzas generadoras, que a su vez son altamente variables. En zonas costeras, la topografía local ejerce una gran influencia en este movimiento, de tal forma que para caracterizar el patrón general de circulación es necesario conocer la trayectoria (movimiento Lagrangiano) que sigue un determinado volumen de agua, el cual es

el resultado del balance de fuerzas que actúan sobre él. Por lo tanto, este movimiento refleja el resultado final de estos agentes forzantes, sin identificarlos ni cuantificarlos, pero permitiendo obtener una visión general del sistema de circulación de un área determinada.

Bajo esta perspectiva, los comportamientos y magnitudes del campo de velocidades son indicadores del transporte de masa del cuerpo de agua y de los procesos de mezcla que ocurren en el mismo. El estudio de estos, es de utilidad para definir parámetros de diseño de obras civiles en el borde costero y para estimar o prevenir efectos de contaminación por desechos que se comportan conservativamente.

- Verano 2012

Materiales y métodos

El estudio de correntometría con derivadores se realizó en el sector de Punta Chungo, con puntos de lance en períodos de sicigia y cuadratura lunar, y condición mareal de llenante y vaciante.

Las fechas y puntos de lanzamiento aproximado fueron los siguientes: 08 de febrero de 2012 (sicigia lunar) y 13 de febrero de 2012 (cuadratura lunar):

- Punto 1 E 262.493 (m)
 N 6.469.058 (m)
- Punto 2 E 262.662 (m) N 6.469.248 (m)
- Punto 3 E 262.805 (m) N 6.468.951 (m)

(Datum WGS84)

En cada punto se desplegaron derivadores del tipo veleta cruzada con un área de arrastre efectiva de 0,64 m², a nivel superficial y 5 metros de superficie. Cada derivador constaba además de un mástil solidario al elemento de flotación, en el cual se dispusieron pequeñas banderolas identificatorias de diferentes colores. El recorrido de los derivadores fue seguido desde una embarcación y posicionado mediante estación total y sistema GPS.

Resultados

Condición Lunar Sicigia – 08 de febrero de 2012 – Llenante

Estas mediciones se efectuaron con viento fundamentalmente del W, cuya intensidad máxima alcanzó los 2,6 m/s. La Figura EM-123 (puntos de lance 1, 2 y 3) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-73 muestra un resumen de los lances efectuados.

Llenante - 08 de febrero de 2012			Vaciante - 08 de febrero	Vaciante - 08 de febrero de 2012	
Punto - 1			Punto - 1		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	11.8	9.7	Promedio (cm/s)	5.7	5.8
Dirección Promedio	S	S - SW	Dirección Promedio	E - NE	NW
Punto - 2			Punto - 2		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	10.0	7.0	Promedio (cm/s)	6.9	5.6
Dirección Promedio	SW	SW	Dirección Promedio	E - NE	E - NE
Punto - 3			Punto - 3		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	4.3	2.9	Promedio (cm/s)	4.0	4.2
Dirección Promedio	W - SW	W	Dirección Promedio	NE	NW

Tabla EM-73: Dirección y rapidez de derivadores. Condición lunar de sicigia

Fuente: consultora Costasur

En general, los derivadores mostraron en los 3 puntos de lance y ambas profundidades, desplazamientos en torno al 3^{er} cuadrante (S, SW y W). Respecto de las magnitudes, se verificaron valores máximos de 11,8 cm/s (punto de lance – 1, superficie).

Condición Lunar Sicigia – 08 de febrero de 2012 – Vaciante

Estas mediciones se efectuaron con viento SW, cuya intensidad máxima alcanzó los 4,1 m/s. La Figura EM-124 (puntos de lance 1, 2 y 3) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-73 muestra un resumen de los lances efectuados.

Los resultados de estas experiencias, mostraron en general un comportamiento distinto (en términos direccionales y de magnitud)) al detectado durante la fase mareal de llenante. Así, éstos tendieron a avanzar hacia el NE (superficie y profundo del punto de lance 2). La excepción ocurrió en los derivadores (profundo) de los puntos de lance 1 y 3, en donde estos avanzaron hacia el NW. A nivel superficial, los avances podrían ser explicados por los vientos imperantes al momento de efectuar los lances, en donde éste provino de la dirección SW. En términos de magnitud promedio, durante estas experiencias se registraron magnitudes extremas de 6,9 cm/s (punto de lance – 2, superficie).

Figura EM-123: Comportamiento derivadores. Sicigia lunar, marea llenante

Figura EM-124: Comportamiento derivadores. Sicigia lunar, marea vaciante

<u>Condición Lunar Cuadratura – 13 de febrero de 2012 – Vaciante</u>

Estas mediciones se efectuaron con viento N – NE, cuya intensidad máxima alcanzó los 2,2 m/s. La Figura EM-125 (puntos de lance 1, 2 y 3) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-74 muestra un resumen de los lances efectuados.

Punto - 1			Punto - 1		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	3.2	2.6	Promedio (cm/s)	6.6	5.3
Dirección Promedio	NW	SW	Dirección Promedio	W - NW	W
Punto - 2			Punto - 2		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	3.4	4.9	Promedio (cm/s)	6.1	5.4
Dirección Promedio	W - NW	W - N	Dirección Promedio	NW	NW
-					
Punto - 3			Punto - 3		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	8.0	7.1	Promedio (cm/s)	5.8	6.6
Dirección Promedio	W - NW	W - NW	Dirección Promedio	W	NW

Tabla EM-74: Dirección y raj	pidez de deriv	adores.	Condición lunar de cu	adratura
Vaciante - 13 de febrero de 2012		Llenante -	13 de febrero de 2012	

Fuente: consultora Costasur

Direccionalmente, en términos generales durante esta campaña los derivadores tendieron a avanzar hacia el NW (ambos niveles) con la excepción del punto – 1 (profundo), en donde el derivador avanzó hacia el SW. Respecto de las magnitudes, se alcanzaron valores máximos de 8,0 cm/s (punto de lance – 3, superficie).

Condición Lunar Cuadratura – 13 de febrero de 2012 – Llenante

Estas mediciones se efectuaron con viento del SW, cuya intensidad máxima fue de 3,0 m/s. La Figura EM-126 (puntos de lance 1 y 2) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-74 muestra un resumen de los lances efectuados.

En esta condición lunar y fase de marea, los derivadores presentaron avances similares a los detectados en la fase de marea vaciante (cuadratura lunar). Así, éstos avanzaron hacia el NW (ambos niveles muestreados), posiblemente influenciados por los vientos imperantes (del SW). Respecto de las magnitudes, se alcanzaron valores máximos de 6,6 cm/s (puntos de lance 1 y 3, superficie y profundo, respectivamente).

En resumen, los derivadores mostraron una baja respuesta al forzante marea, no detectándose diferencias entre las fases de llenante y vaciante. Los derivadores parecen responder a las condiciones de viento al momento de efectuar las mediciones y la configuración de la línea de la costa.

Figura EM-126: Comportamiento derivadores. Cuadratura lunar, marea llenante

Fuente: consultora Costasur

- Otoño 2012

Materiales y métodos

El estudio de correntometría con derivadores se realizó en el sector de Punta Chungo, con puntos de lance en períodos de sicigia y cuadratura lunar, y condición mareal de llenante y vaciante.

Las fechas y puntos de lanzamiento aproximado fueron los siguientes: 13 de abril de 2012 (cuadratura lunar) y 06 de mayo de 2012 (sicigia lunar):

Punto - 1 E 262.499 (m) N 6.469.050 (m)
 Punto - 2 E 262.659 (m) N 6.469.245 (m)
 Punto - 3 E 262.765 (m) N 6.468.908 (m)
 (Datum WGS84).

En cada punto se desplegaron derivadores del tipo veleta cruzada con un área de arrastre efectiva de 0,64 m², a nivel superficial y 5 metros de superficie. Cada derivador constaba además de un mástil solidario al elemento de flotación, en el cual se dispusieron pequeñas banderolas identificatorias de diferentes colores. El recorrido de los derivadores fue seguido desde una embarcación y posicionado mediante estación total y sistema GPS.

Resultados

Condición Lunar Cuadratura – 13 de abril de 2012 – Vaciante

Estas mediciones se efectuaron con viento fundamentalmente del NE, cuya intensidad máxima alcanzó los 2,6 m/s. La Figura EM-127 (puntos de lance 1, 2 y 3) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-75 muestra un resumen de los lances efectuados.

vaciante - 13 de abril d	e 2012		Lienante - 13 de abril de 2012		
Punto - 1			Punto - 1		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	4.7	5.1	Promedio (cm/s)	3.1	2.9
Dirección Promedio	SW	SW	Dirección Promedio	N	NE
Punto - 2			Punto - 2		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	3.2	4.6	Promedio (cm/s)	4.6	3.4
Dirección Promedio	SW	SW	Dirección Promedio	NW - N	NW - N
Punto - 3			Punto - 3		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	1.7	1.5	Promedio (cm/s)	2.0	2.5
Dirección Promedio	SE	SE	Dirección Promedio	NE	NE

Tabla EM-75: Dirección y rapidez de derivadores. Condición lunar de sicigia

Fuente: consultora Costasur

En general, los derivadores mostraron en los puntos de lance 1 y 2, avances hacia el SW, mientras que el punto de lance 3 mostró avances hacia el SE. Respecto de las magnitudes, se verificaron valores máximos de 5,1 cm/s (punto de lance – 1, 5 metros de superficie).

Condición Lunar Cuadratura – 13 de abril de 2012 – Llenante

Estas mediciones se efectuaron con viento SW, cuya intensidad máxima alcanzó los 3,9 m/s. La Figura EM-128 (puntos de lance 1, 2 y 3) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-75 muestra un resumen de los lances efectuados.

Los resultados de estas experiencias, mostraron en general un comportamiento distinto (en términos direccionales y de magnitud)) al detectado durante la fase mareal de vaciante. Así, éstos tendieron a avanzar en torno a la dirección N. Los avances podrían ser explicados por los vientos imperantes al momento de efectuar los lances, en donde éste provino de la dirección SW. En términos de magnitud promedio, durante estas experiencias se registraron magnitudes extremas de 4,6 cm/s (punto de lance – 2, superficie).

Figura EM-127: Comportamiento derivadores. Cuadratura lunar, marea vaciante

Figura EM-128: Comportamiento derivadores. Cuadratura lunar, marea llenante

Fuente: consultora Costasur

Condición Lunar Sicigia –6 de mayo de 2012 – Llenante

Estas mediciones se efectuaron con viento N – NE, cuya intensidad máxima alcanzó los 4,2 m/s. La Figura EM-129 (puntos de lance 1, 2 y 3) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-76 muestra un resumen de los lances efectuados.

Llenante - 06 de mayo de	e 2012		Vaciante - 07 de mayo de 2012		
Punto - 1			Punto - 1		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	11.3	9.3	Promedio (cm/s)	5.7	4.5
Dirección Promedio	S - SW	S	Dirección Promedio	NW	NW
Punto - 2			Punto - 2		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	9.7	8.0	Promedio (cm/s)	5.9	3.0
Dirección Promedio	S - SW	S - SW	Dirección Promedio	NW - N	NW
Punto - 3			Punto - 3		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	4.6	2.9	Promedio (cm/s)	8.0	4.2
Dirección Promedio	S	S	Dirección Promedio	NW	NW

Tabla EM-76: Dirección y rapidez de derivadores. Condición lunar de Sicigia

Fuente: consultora Costasur

Direccionalmente, en términos generales durante esta campaña los derivadores tendieron a avanzar en torno a la dirección S (ambos niveles). Respecto de las magnitudes, se alcanzaron valores máximos de 11,3 cm/s (punto de lance – 1, superficie).

Condición Lunar Sicigia –7 de mayo de 2012 – Vaciante

Estas mediciones se efectuaron con viento del S, cuya intensidad máxima fue de 7,9 m/s. La Figura EM-130 (puntos de lance 1 y 2) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-76 muestra un resumen de los lances efectuados.

En esta condición lunar y fase de marea, los derivadores presentaron avances similares a los detectados en la fase de marea llenante (cuadratura lunar). Así, éstos avanzaron hacia el NW (ambos niveles muestreados), posiblemente influenciados por los vientos imperantes (del S). Respecto de las magnitudes, se alcanzaron valores máximos de 8,0 cm/s (punto de lance 3, superficie).

En resumen, los derivadores mostraron una baja respuesta al forzante marea, no detectándose diferencias entre las fases de llenante y vaciante. Los derivadores parecen responder a las condiciones de viento al momento de efectuar las mediciones y la configuración de la línea de la costa.

Figura EM-130: Comportamiento derivadores. Sicigia lunar, marea vaciante

Fuente: consultora Costasur

Invierno 2012

El estudio de correntometría con derivadores se realizó en el sector de Punta Chungo, con puntos de lance en períodos de sicigia y cuadratura lunar, y condición mareal de llenante y vaciante.

Las fechas y puntos de lanzamiento aproximado fueron los siguientes: 21 de julio de 2012 (sicigia lunar) y 09 de agosto de 2012 (cuadratura lunar):

Punto - 1	E 262.667 (m)	N 6.469.121 (m)
Punto - 2	E 262.574 (m)	N 6.469.251 (m)
Punto - 3	E 262.760 (m)	N 6.469.261 (m)
(Datum WG	SS84)	

En cada punto se desplegaron derivadores del tipo veleta cruzada con un área de arrastre efectiva de 0,64 m², a nivel superficial y 5 metros de superficie. Cada derivador constaba además de un mástil solidario al elemento de flotación, en el cual se dispusieron pequeñas banderolas identificatorias de diferentes colores. El recorrido de los derivadores fue seguido desde una embarcación y posicionado mediante estación total y sistema GPS.

Para el lanzamiento y seguimiento de los derivadores se consideró el apoyo de una embarcación tipo zodiac, con una eslora de 5,0 m. A partir de las sucesivas posiciones que asume el derivador en cada lance se determinó la dirección y magnitud de la corriente asociadas, confeccionándose tablas resumen para cada punto en particular

Resultados

Condición Lunar Sicigia – 21 de julio de 2012 – Llenante

Estas mediciones se efectuaron con viento variable del 1^{er} y 3^{er} cuadrante, cuya intensidad máxima alcanzó los 1,2 m/s. La Figura EM-131 (puntos de lance 1, 2 y 3) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-77 muestra un resumen de los lances efectuados.

Llenante - 21 de julio de	e 2012		Vaciante - 21 de julio de	e 2012	
Punto - 1			Punto - 1		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	1.8	0.9	Promedio (cm/s)	5.7	2.6
Dirección Promedio	SW	SW	Dirección Promedio	N	N
Punto - 2			Punto - 2		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	2.2	1.9	Promedio (cm/s)	4.6	2.3
Dirección Promedio	SE	SE	Dirección Promedio	NW - N	NW
Punto - 3			Punto - 3		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	1.1	0.9	Promedio (cm/s)	6.2	4.0
Dirección Promedio	N	Ν	Dirección Promedio	N	Ν

 Tabla EM-77: Dirección y rapidez de derivadores. Condición lunar de cuadratura

 Jenante - 21 de julio de 2012

En general, los derivadores mostraron en el punto de lance 1 avances hacia el SW; en el punto de lance 2 avances hacia el SE y en el punto de lance 3 avances hacia el N. Respecto de las magnitudes, se verificaron valores máximos de 2,2 cm/s (punto de lance -2, superficie).

Condición Lunar Sicigia – 21 de julio de 2012 – Vaciante

Estas mediciones se efectuaron con viento SW – S, cuya intensidad máxima alcanzó los 4,9 m/s. La Figura EM-132 (puntos de lance 1, 2 y 3) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-77 muestra un resumen de los lances efectuados.

Los resultados de estas experiencias, mostraron en general un comportamiento distinto de los derivadores (en términos direccionales y de magnitud) al detectado durante la fase mareal de llenante. Así, éstos tendieron a avanzar en torno a la dirección N. Los avances podrían ser explicados por los vientos imperantes al momento de efectuar los lances, en donde éste provino de la dirección SW – S. En términos de magnitud promedio, durante estas experiencias se registraron magnitudes extremas de 6,2 cm/s (punto de lance – 3, superficie).

Figura EM-131: Comportamiento derivadores. Sicigia lunar, marea llenante

Fuente: consultora Costasur

Figura EM-132: Comportamiento derivadores. Sicigia lunar, marea vaciante

Fuente: consultora Costasur

Condición Lunar Cuadratura – 9 de agosto de 2012 – Vaciante

Estas mediciones se efectuaron con viento NE, cuya intensidad máxima alcanzó los 3,8 m/s. La Figura EM-133 (puntos de lance 1, 2 y 3) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-78 muestra un resumen de los lances efectuados.

vaciante - 09 de agosio	ue 2012		Lienanie - 09 de agosio de 2012		
Punto - 1			Punto - 1		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	4.0	3.0	Promedio (cm/s)	2.7	2.2
Dirección Promedio	S - SW	S - SW	Dirección Promedio	E - NE	SE - NE
Punto - 2			Punto - 2		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	5.3	3.2	Promedio (cm/s)	2.1	2.1
Dirección Promedio	S - SW	S - SW	Dirección Promedio	SE - NE	NE
Punto - 3			Punto - 3		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	4.6	2.1	Promedio (cm/s)	2.8	2.7
Dirección Promedio	S - SE	SE	Dirección Promedio	NE - E	NE

Tabla EM-78: Dirección y rapidez de derivadores. Condición lunar de Cuadratura

Fuente: consultora Costasur

Direccionalmente, en términos generales durante esta campaña los derivadores tendieron a avanzar en torno a la dirección S (ambos niveles). Respecto de las magnitudes, se alcanzaron valores máximos de 5,3 cm/s (punto de lance -2, superficie).

Condición Lunar Cuadratura – 9 de agosto de 2012 – Llenante

Estas mediciones se efectuaron con viento del SW, cuya intensidad máxima fue de 2,8 m/s. La EM-134 (puntos de lance 1 y 2) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-78 muestra un resumen de los lances efectuados.

En esta condición lunar y fase de marea, los derivadores presentaron avances en torno al NE (ambos niveles muestreados), posiblemente influenciados por los vientos imperantes (del SW). Respecto de las magnitudes, se alcanzaron valores máximos de 2,8 cm/s (punto de lance 3, superficie).

En resumen, los derivadores mostraron una baja respuesta al forzante marea, no detectándose diferencias significativas entre las fases de llenante y vaciante. Los derivadores parecen responder a las condiciones de viento al momento de efectuar las mediciones y la configuración de la línea de la costa.

Figura EM-133: Comportamiento derivadores. Cuadratura lunar, marea vaciante

Fuente: consultora Costasur

Figura EM-134: Comportamiento derivadores. Cuadratura lunar, marea llenante

Fuente: consultora Costasur

Primavera 2012

Materiales y métodos

El estudio de correntometría con derivadores se realizó en el sector de Punta Chungo, con puntos de lance en períodos de sicigia y cuadratura lunar, y condición mareal de llenante y vaciante.

Las fechas y puntos de lanzamiento aproximado fueron los siguientes: 20 de noviembre de 2012 (cuadratura lunar) y 29 de noviembre de 2012 (sicigia lunar):

Punto - 1	E 262.679 (m)	N 6.469.124 (m)
Punto - 2	E 262.673 (m)	N 6.469.315 (m)
Punto - 3	E 262.572 (m)	N 6.469.242 (m)
(Datum W	/GS84)	

En cada punto se desplegaron derivadores del tipo veleta cruzada con un área de arrastre efectiva de 0,64 m², a nivel superficial y 5 metros de superficie. Cada derivador constaba además de un mástil solidario al elemento de flotación, en el cual se dispusieron pequeñas banderolas identificatorias de diferentes colores. El recorrido de los derivadores fue seguido desde una embarcación y posicionado mediante estación total y sistema GPS.

Resultados

Condición Lunar Cuadratura – 20 de noviembre de 2012 – Vaciante

Estas mediciones se efectuaron con viento S, cuya intensidad máxima alcanzó los 2,8 m/s. La Figura EM-135 (puntos de lance 1, 2 y 3) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-79 muestra un resumen de los lances efectuados.

Vaciante - 20 de noviembre de 2012		Llenante - 20 de novien			
Punto - 1			Punto - 1		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	13.8	9.8	Promedio (cm/s)	3.1	2.4
Dirección Promedio	NW	NW	Dirección Promedio	N	SW - S
Punto - 2			Punto - 2		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	15.7	11.7	Promedio (cm/s)	0.8	2.7
Dirección Promedio	NW	NW	Dirección Promedio	W	SE
Punto - 3			Punto - 3		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	11.5	8.3	Promedio (cm/s)	4.1	4.5
Dirección Promedio	NW	NW	Dirección Promedio	N	SE

Tabla EM-79: Dirección y rapidez de derivadores. Condición lunar de cuadratura

En general, los derivadores mostraron en todos los puntos de lance avances hacia el NW. Respecto de las magnitudes, se verificaron valores máximos de 15,7 cm/s (punto de lance – 2, superficie).

Condición Lunar Cuadratura – 20 de noviembre de 2012 – Llenante

Estas mediciones se efectuaron con viento SW – S, cuya intensidad máxima alcanzó los 2,0 m/s. La Figura EM-136 (puntos de lance 1, 2 y 3) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-79 muestra un resumen de los lances efectuados.

Los resultados de estas experiencias, mostraron en general un comportamiento distinto de los derivadores (en términos direccionales y de magnitud) al detectado durante la fase mareal de vaciante. Así, a nivel superficial éstos tendieron a avanzar en torno a la dirección N con la excepción del punto de lance 2, en donde se verificó un avance hacia el W. A nivel profundo, los derivadores tienden a avanzar hacia el SE. En términos de magnitud promedio, durante estas experiencias se registraron magnitudes extremas de 4,5 cm/s (punto de lance -3, 05 metros de superficie).

Figura EM-135: Comportamiento derivadores. Cuadratura lunar, marea vaciante

Fuente: consultora Costasur

Figura EM-136: Comportamiento derivadores. Cuadratura lunar, marea llenante

Fuente: consultora Costasur

Condición Lunar Sicigia – 29 de noviembre de 2012 – Llenante

Estas mediciones se efectuaron con viento NW – N, cuya intensidad máxima alcanzó los 4,1 m/s. La Figura EM-137 (puntos de lance 1, 2 y 3) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-80 muestra un resumen de los lances efectuados.

Llenante - 29 de noviembre de 2012			Vaciante - 29 de noviembre de 2012		
Punto - 1			Punto - 1		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	10.6	9.1	Promedio (cm/s)	9.7	6.6
Dirección Promedio	NE - E	NE	Dirección Promedio	NE - E	NE
Punto - 2			Punto - 2		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	11.8	8.7	Promedio (cm/s)	6.8	5.1
Dirección Promedio	NE	NE	Dirección Promedio	NE	NE
Punto - 3			Punto - 3		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	12.7	10.6	Promedio (cm/s)	8.9	5.9
Dirección Promedio	NE	NE	Dirección Promedio NE NE		NE

Tabla EM-80: Dirección y rapidez de derivadores. Condición lunar de Sicigia

Fuente: consultora Costasur

Direccionalmente, en términos generales durante esta campaña los derivadores tendieron a avanzar en torno a la dirección NE (ambos niveles). Respecto de las magnitudes, se alcanzaron valores máximos de 12,7 cm/s (punto de lance – 3, superficie).

Condición Lunar Sicigia – 29 de noviembre de 2012 – Vaciante

Estas mediciones se efectuaron con viento del NW - W, cuya intensidad máxima fue de 3,3 m/s. La Figura EM-138 (puntos de lance 1 y 2) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-80 muestra un resumen de los lances efectuados.

En esta condición lunar y fase de marea, los derivadores presentaron avances en torno al NE (ambos niveles muestreados), posiblemente influenciados por los vientos imperantes (del NW - W). Respecto de las magnitudes, se alcanzaron valores máximos de 9,7 cm/s (punto de lance - 1, superficie).

En resumen, los derivadores mostraron una baja respuesta al forzante marea, no detectándose diferencias entre las fases de llenante y vaciante. Los derivadores parecen responder a las condiciones de viento al momento de efectuar las mediciones y la configuración de la línea de la costa.

Fuente: consultora Costasur

Figura EM-138: Comportamiento derivadores. Sicigia lunar, marea vaciante

Fuente: consultora Costasur

- Primavera 2014

Materiales y métodos

El estudio de correntometría con derivadores se realizó en el sector de Punta Chungo, con puntos de lance en períodos de sicigia y cuadratura lunar, y condición mareal de llenante y vaciante. Las fechas y puntos de lanzamiento aproximado fueron los siguientes: 29 de octubre de 2014 (cuadratura lunar) y 06 y 24 de noviembre de 2014 (sicigia lunar):

Punto - 1	E 262.632 (m)	N 6.469.498 (m)
Punto - 2	E 262.518 (m)	N 6.469.987 (m)
Punto - 3	E 262.148 (m)	N 6.469.630 (m)
(Datum WG	S – 84	

En cada punto se desplegaron derivadores del tipo veleta cruzada con un área de arrastre efectiva de 0,64 m², a nivel superficial y 5 metros de superficie. Cada derivador constaba además de un mástil solidario al elemento de flotación, en el cual se dispusieron pequeñas banderolas identificatorias de diferentes colores. El recorrido de los derivadores fue seguido desde una embarcación y posicionado mediante estación total y sistema GPS. Para el lanzamiento y seguimiento de los derivadores se consideró el apoyo de una embarcación tipo zodiac, con una eslora de 5,0 m. A partir de las sucesivas posiciones que asume el derivador en cada lance se determinó la dirección y magnitud de la corriente asociadas, confeccionándose tablas resumen para cada punto en particular.

Resultados

Condición Lunar Cuadratura – 29 de octubre de 2014 – Vaciante

Estas mediciones se efectuaron con viento NE, cuya intensidad máxima alcanzó los 1,9 m/s. La Figura EM-139 (puntos de lance 1, 2 y 3) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-81 muestra un resumen de los lances efectuados.

Vaciante - 29 de octubre de 2014			Llenante - 29 de octubre		
Punto - 1			Punto - 1		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	10.8	4.7	Promedio (cm/s)	16.5	9.1
Dirección Promedio	SW	SW	Dirección Promedio	N - NE	N - NE
Punto - 2			Punto - 2		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	10.5	4.6	Promedio (cm/s)	11.8	7.3
Dirección Promedio	SW	SW	Dirección Promedio	N - NE	N - NE
Punto - 3			Punto - 3		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	10.1	4.8	Promedio (cm/s)	14.7	7.7
Dirección Promedio	SW	SW	Dirección Promedio N - NE N - NE		N - NE

Tabla EM-81: Dirección y rapidez de derivadores. Condición lunar de cuadratura

Fuente: consultora Costasur

En general, los derivadores mostraron en todos los puntos de lance avances hacia el SW. Respecto de las magnitudes, se verificaron valores máximos de 10,8 cm/s (punto de lance – 1, superficie).

Condición Lunar Cuadratura – 29 de octubre de 2014 – Llenante

Estas mediciones se efectuaron con viento SW, cuya intensidad máxima alcanzó los 8,5 m/s. La Figura EM-140 (puntos de lance 1, 2 y 3) muestra las trayectorias seguidas por los

derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-81 muestra un resumen de los lances efectuados.

Los resultados de estas experiencias, mostraron en general un comportamiento distinto de los derivadores (en términos direccionales y de magnitud) al detectado durante la fase mareal de vaciante. Así, en ambos niveles, los derivadores tendieron a avanzar en torno a la dirección N – NE. En términos de magnitud promedio, durante estas experiencias se registraron magnitudes extremas de 16,5 cm/s (punto de lance – 1, superficie).

Figura EM-139: Comportamiento derivadores. Cuadratura lunar, marea vaciante

Figura EM-140: Comportamiento derivadores. Cuadratura lunar, marea llenante

Fuente: consultora Costasur

Condición Lunar Sicigia –6 de noviembre de 2014 – Llenante

Estas mediciones se efectuaron con viento NE, cuya intensidad máxima alcanzó los 3,1 m/s. La Figura EM-141 (puntos de lance 1, 2 y 3) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-82 muestra un resumen de los lances efectuados. Direccionalmente, en términos generales durante esta campaña los derivadores tendieron a avanzar en torno a la dirección SW – S (ambos

niveles). Respecto de las magnitudes, se alcanzaron valores máximos de 16,0 cm/s (punto de lance – 2, superficie).

Llenante - 06 de noviembre de 2014			Vaciante - 24 de noviembre de 2014		
Punto - 1			Punto - 1		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	14.8	5.5	Promedio (cm/s)	19.4	9.7
Dirección Promedio	SW - S	SW - S	Dirección Promedio	N	Ν
Punto - 2			Punto - 2		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	16.0	7.8	Promedio (cm/s)	12.3	5.9
Dirección Promedio	SW - S	SW - S	Dirección Promedio	N	Ν
Punto - 3			Punto - 3		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	13.9	9.3	Promedio (cm/s)	17.6	9.7
Dirección Promedio	SW - S	SW - S	Dirección Promedio	N	N

Tabla EM-82: Dirección y rapidez de derivadores. Condición lunar de sicigia

Fuente: consultora Costasur

Condición Lunar Sicigia - 24 de noviembre de 2014 - Vaciante

Estas mediciones se efectuaron con viento del S – SW, cuya intensidad máxima fue de 10,2 m/s. La Figura EM-142 (puntos de lance 1 y 2) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-82 muestra un resumen de los lances efectuados.

En esta condición lunar y fase de marea, los derivadores presentaron avances en torno al N (ambos niveles muestreados), posiblemente influenciados por los vientos imperantes (del S – SW). Respecto de las magnitudes, se alcanzaron valores máximos de 19,4 cm/s (punto de lance – 1, superficie).

En resumen, los derivadores mostraron una baja respuesta al forzante marea, no detectándose diferencias entre las fases de llenante y vaciante. Los derivadores parecen responder a las condiciones de viento al momento de efectuar las mediciones y la configuración de la línea de la costa.

Figura EM-141: Comportamiento derivadores. Sicigia lunar, marea llenante

Fuente: consultora Costasur

Figura EM-142: Comportamiento derivadores. Sicigia lunar, marea vaciante

Fuente: consultora Costasur

Verano 2015

Materiales y métodos

El estudio de correntometría con derivadores se realizó en el sector de Punta Chungo, con puntos de lance en períodos de sicigia y cuadratura lunar, y condición mareal de llenante y vaciante. Las fechas y puntos de lanzamiento aproximado fueron los siguientes: 25 de febrero de 2015 (cuadratura lunar) y 05 de marzo de 2015 (sicigia lunar):

Punto - 1	E 262.621 (m)	N 6.469.498 (m)
Punto - 2	E 262.515 (m)	N 6.469.991 (m)
Punto - 3	E 262.136 (m)	N 6.469.624 (m)
(Datum WG	S84)	

En cada punto se desplegaron derivadores del tipo veleta cruzada con un área de arrastre efectiva de 0,64 m², a nivel superficial y 5 metros de superficie. Cada derivador constaba además de un mástil solidario al elemento de flotación, en el cual se dispusieron pequeñas banderolas identificatorias de diferentes colores. El recorrido de los derivadores fue seguido desde una embarcación y posicionado mediante estación total y sistema GPS. Para el lanzamiento y seguimiento de los derivadores se consideró el apoyo de una embarcación tipo zodiac, con una eslora de 5,0 m. A partir de las sucesivas posiciones que asume el derivador en cada lance se determinó la dirección y magnitud de la corriente asociadas, confeccionándose tablas resumen para cada punto en particular.

Resultados

Condición Lunar Cuadratura – 25 de febrero de 2015 – Vaciante

Estas mediciones se efectuaron con viento inicialmente calma para variar a viento del S cuya intensidad máxima alcanzó los 2,2 m/s. La Figura EM-143 (puntos de lance 1, 2 y 3) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-83 muestra un resumen de los lances efectuados.

Vaciante - 25 de febrero	o de 2015		Llenante - 25 de febrero de 2015		
-					
Punto - 1			Punto - 1		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	14.0	8.2	Promedio (cm/s)	5.3	2.8
Dirección Promedio	SW	SW	SW Dirección Promédio N-NE		NW-N
Punto - 2			Punto - 2		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	8.7	7.3	Promedio (cm/s)	8.3	6.1
Dirección Promedio	SW	SW	Dirección Promedio	N-NE	N-NE
Punto - 3			Punto - 3		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	7.7	6.1	Promedio (cm/s)	5.1	2.6
Dirección Promedio	SW	SW	Dirección Promedio	NE	NE-N-NW

Tabla EM-83: Dirección y rapidez de derivadores. Condición lunar de cuadratura

En general, los derivadores mostraron en todos los puntos de lance avances hacia el SW. Respecto de las magnitudes, se verificaron valores máximos de 14,0 cm/s (punto de lance – 1, superficie).

Condición Lunar Cuadratura – 25 de febrero de 2015 – Llenante

Estas mediciones se efectuaron con viento SW, cuya intensidad máxima alcanzó los 4,1 m/s. La Figura EM-144 (puntos de lance 1, 2 y 3) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-83 muestra un resumen de los lances efectuados.

Los resultados de estas experiencias, mostraron en general un comportamiento distinto de los derivadores (en términos direccionales y de magnitud) al detectado durante la fase mareal de vaciante. Así, en ambos niveles, los derivadores tendieron a avanzar en torno a la dirección NE y N. En términos de magnitud promedio, durante estas experiencias se registraron magnitudes extremas de 8,3 cm/s (punto de lance – 2, superficie).

Figura EM-143: Comportamiento derivadores. Cuadratura lunar, marea vaciante

Fuente: consultora Costasur

Figura EM-144: Comportamiento derivadores. Cuadratura lunar, marea llenante

Fuente: consultora Costasur

Condición Lunar Sicigia –5 de marzo de 2015 – Llenante

Estas mediciones se efectuaron con viento S, cuya intensidad máxima alcanzó los 3,6 m/s. La Figura EM-145 (puntos de lance 1, 2 y 3) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-84 muestra un resumen de los lances efectuados.

Direccionalmente, en términos generales durante esta campaña los derivadores mostraron desplazamientos sin una tendencia clara. A nivel superficial, el punto de lance 1 mostró avances hacia el E – SE, el punto de lance 2 mostró avances al N y el punto de lance 3 mostró avances hacia el NE. A nivel profundo, éstos avanzaron hacia el S, S – W y S – E (puntos de lance 1, 2 y 3, respectivamente). Respecto de las magnitudes, se alcanzaron valores máximos de 4,1 cm/s (punto de lance – 1, 05 metros de superficie).

Llenante - 05 de marzo	de 2015		Vaciante - 05 de marzo de 2015		
Punto - 1			Punto - 1		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	2.0	4.1	Promedio (cm/s)	10.1	2.7
Dirección Promedio	E-SE	S	S Dirección Promedio N-NE		S
Punto - 2			Punto - 2		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	2.3	2.4	Promedio (cm/s)	7.0	2.6
Dirección Promedio	N	S-W	Dirección Promedio	N-NE	SW
Punto - 3			Punto - 3		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	3.2	3.0	Promedio (cm/s)	8.3	1.0
Dirección Promedio	NE	S-E	Dirección Promedio	N-NE	

Tabla EM-84:	Dirección y ra	apidez de de	erivadores.	Condició	n lunar de sicigia

Fuente: consultora Costasur

Condición Lunar Sicigia –5 de marzo de 2015 – Vaciante

Estas mediciones se efectuaron con viento del S – SW, cuya intensidad máxima fue de 4,9 m/s. La Figura EM-146 (puntos de lance 1, 2 y 3) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-84 muestra un resumen de los lances efectuados.

En esta condición lunar y fase de marea, los derivadores presentaron avances en torno al N – NE (superficie) posiblemente influenciados por los vientos imperantes (del S – SW), y en torno al S – SW (niveles profundos). Respecto de las magnitudes, se alcanzaron valores máximos de 10,1 cm/s (punto de lance – 1, superficie).

En resumen, los derivadores mostraron una baja respuesta al forzante marea, no detectándose diferencias entre las fases de llenante y vaciante. Los derivadores parecen responder a las condiciones de viento al momento de efectuar las mediciones y la configuración de la línea de la costa.

	-						
N:5470600	LUBICATION	LINE PAL	Sinec Larrender	400			*
N-5 470700							
11.547.0200			t				
N:5470000			for-e				
<u>N:5469800</u>	De-3						
N:5469400				(De-1	0	0	<u> </u>
N:5465200				1			-
N:5469000					S.	Costasur Sudiaria	
N£468800	- 29 300 - 29 300 - 29 300	E 25 2400	E 25,2500	5 2200	E 25 2000	PUNTA CHUNA C.LagRangiona PROFUNDO	

Figura EM-145: Comportamiento derivadores. Sicigia lunar, marea llenante

Figura EM-146: Comportamiento derivadores. Sicigia lunar, marea vaciante

Invierno 2015

Materiales y métodos

El estudio de correntometría con derivadores se realizó en el sector de Punta Chungo, con puntos de lance en períodos de sicigia y cuadratura lunar, y condición mareal de llenante y vaciante. Las fechas y puntos de lanzamiento aproximado fueron los siguientes: 14 y 24 de agosto de 2015 (sicigia y cuadratura lunar, respectivamente):

Punto - 1	E 262.636 (m)	N 6.469.494 (m)
Punto - 2	E 262.519 (m)	N 6.469.983 (m)
Punto - 3	E 262.148 (m)	N 6.469.638 (m)
(Datum WG	S84)	

En cada punto se desplegaron derivadores del tipo veleta cruzada con un área de arrastre efectiva de 0,64 m², a nivel superficial y 5 metros de superficie. Cada derivador constaba además de un mástil solidario al elemento de flotación, en el cual se dispusieron pequeñas banderolas identificatorias de diferentes colores. El recorrido de los derivadores fue seguido desde una embarcación y posicionado mediante estación total y sistema GPS. Para el lanzamiento y seguimiento de los derivadores se consideró el apoyo de una embarcación tipo zodiac, con una eslora de 5,0 m. A partir de las sucesivas posiciones que asume el derivador en cada lance se determinó la dirección y magnitud de la corriente asociadas, confeccionándose tablas resumen para cada punto en particular.

Resultados

Condición Lunar Sicigia – 14 de agosto de 2015 – Llenante

Estas mediciones se efectuaron con viento calma. La Figura EM-147 muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-85 muestra un resumen de los lances efectuados.

Llenante - 14 de agosto de	e 2015		Vaciante - 14 de agosto o	Vaciante - 14 de agosto de 2015	
Punto - 1			Punto - 1		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	5.3	3.9	Promedio (cm/s)	6.6	4.9
Dirección Promedio	SE - S	SE - S	Dirección Promedio	SW	SW
Punto - 2			Punto - 2		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	64	3.9	Promedio (cm/s)	24	34
	0.1	0.0			0.4
Dirección Promedio	W - NW	W - NW	Dirección Promedio	NW - NE	SW - S
Dirección Promedio	W - NW	W - NW	Dirección Promedio	NW - NE	SW - S
Dirección Promedio Punto - 3	W - NW	W - NW	Dirección Promedio Punto - 3	NW - NE	SW - S
Dirección Promedio Punto - 3 Profundidad	W - NW	5 m	Punto - 3 Profundidad	NW - NE	5 m
Dirección Promedio Punto - 3 Profundidad Promedio (cm/s)	W - NW superficial 6.6	5 m 4.9	Promedia (onito) Dirección Promedio Punto - 3 Profundidad Promedio (cm/s)	NW - NE superficial 2.8	5 m 1.6

Tabla EM-85: Dirección y rapidez de derivadores. Condición lunar de cuadratura

En general, los derivadores correspondientes a los puntos de lance 1 y 3 mostraron avances en torno a la dirección S. Los derivadores del punto de lance 2, avanzaron hacia el W – NW. Respecto de las magnitudes, se verificaron valores máximos de 6,6 cm/s (punto de lance – 3, superficie).

Condición Lunar Sicigia – 14 de agosto de 2015 – Vaciante

Estas mediciones se efectuaron con viento SW, cuya intensidad máxima alcanzó los 3,2 m/s. La Figura EM-148 (puntos de lance 1, 2 y 3) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-85 muestra un resumen de los lances efectuados.

Los resultados de estas experiencias, mostraron en general un comportamiento distinto de los derivadores (en términos direccionales) al detectado durante la fase mareal de llenante. Así, en ambos niveles, los derivadores del punto de lance 1 tendieron a avanzar en torno a la dirección SW. Los derivadores del punto de lance 2 avanzaron entre NW – NE (superficie) y entre SW – S (profundo). En punto de lance 3 mostró avances W – NW y N (ambos niveles). En términos de magnitud promedio, durante estas experiencias se registraron magnitudes extremas de 6,6 cm/s (punto de lance – 1, superficie).

Figura EM-147: Comportamiento derivadores. Sicigia lunar, marea llenante

Figura EM-148: Comportamiento derivadores. Sicigia lunar, marea vaciante

Fuente: consultora Costasur

Condición Lunar Cuadratura – 24 de agosto de 2015 – Vaciante

Estas mediciones se efectuaron con viento SW, cuya intensidad máxima alcanzó los 2,9 m/s. La Figura EM-149 (puntos de lance 1, 2 y 3) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-86 muestra un resumen de los lances efectuados. Direccionalmente, en términos generales durante esta campaña los derivadores mostraron desplazamientos hacia el E – NE (3 niveles muestreados). Respecto de las magnitudes, se alcanzaron valores máximos de 6,0 cm/s (punto de lance – 1, superficie).

Vaciante - 24 de agosto de	e 2015		Llenante - 24 de agosto de 2015		
Punto - 1			Punto - 1		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	6.0	4.0	Promedio (cm/s)	7.7	3.8
Dirección Promedio	NE - E	E	Dirección Promedio	NE - E	E - SE
Punto - 2			Punto - 2		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	5.5	3.3	Promedio (cm/s)	13.0	5.1
Dirección Promedio	NE	NE	Dirección Promedio	NE	NE
Punto - 3			Punto - 3		
Profundidad	superficial	5 m	Profundidad	superficial	5 m
Promedio (cm/s)	4.8	4.7	Promedio (cm/s)	14.9	9.1
Dirección Promedio	E	E	Dirección Promedio	NE	NE

Tabla EM-86: Dirección y rapidez de derivadores. Condición lunar de sicigia

Fuente: consultora Costasur

Condición Lunar Cuadratura – 24 de agosto de 2015 – Llenante

Estas mediciones se efectuaron con viento del SW, cuya intensidad máxima fue de 3,0 m/s. La Figura EM-150 (puntos de lance 1, 2 y 3) muestra las trayectorias seguidas por los derivadores (superficie y 5 metros de superficie), en tanto que la Tabla EM-86 muestra un resumen de los lances efectuados.

En esta condición lunar y fase de marea, los derivadores presentaron avances en torno al NE posiblemente influenciados por los vientos imperantes (del SW). La excepción ocurrió con el derivador profundo del punto de lance 1, quién avanzo hacia el E – SE. Respecto de las magnitudes, se alcanzaron valores máximos de 14,9 cm/s (punto de lance – 3, superficie).

En resumen, los derivadores mostraron una baja respuesta al forzante marea, no detectándose diferencias entre las fases de llenante y vaciante. Los derivadores parecen responder a las condiciones de viento al momento de efectuar las mediciones y la configuración de la línea de la costa.

N26470600							
N28470400	1		SJKECI - Deck oder				*
		P					
<u>N 647 02 00</u>				,			
N26470000				-			
			De-5				,
N26469800							
N-6489800	De-3					ہے ا	
1.10/ 00/ 00				De-1	- 0	0	<u> </u>
N-8489-00							
N-R/ 60000					S	Costasur Estudo oce	
N:8466800	BIORE	8998	250000	0000	80000		

Figura EM-149: Comportamiento derivadores. Cuadratura lunar, marea vaciante

N:6470600							
N:8470400			SJREEL 1 Jackson	-460			*
					/		
N:647 02:00				/.			
N26470000			De-2				
							ſ
14.9+99600						ہے	
N26469600	Thé=3			De-1	- 0	0	<u> </u>
N:64692.00							
N:6469000					S,	Costasur	
N:6469800	r 2000	E 200400	E 2020.00	E 202000	E 200000		

Figura EM-150: Comportamiento derivadores. Cuadratura lunar, marea llenante

Fuente: consultora Costasur

- Síntesis de resultados corrientes lagrangianas

Durante las cuatro campañas efectuadas el año 2012 y la campaña desarrollada en primavera de 2014, verano 2015 e invierno 2015, los derivadores mostraron una baja respuesta al forzante marea, no detectándose diferencias entre las fases de llenante y vaciante. Los derivadores parecen responder a las condiciones de viento al momento de efectuar las mediciones y la configuración de la línea de la costa.

- Deriva litoral
- Verano 2012

Materiales y métodos

El estudio de corrientes litorales constó con 3 estaciones de lance (ver Figura EM-2), estos lances se realizaron en 2 períodos diferentes (sicigia y cuadratura lunar) y en cada uno de estos se evaluó las corrientes litorales en fases de marea llenante y vaciante. En cada estación se desplegaron elementos derivadores (botellas de deriva) con boyantes neutra. El recorrido y posicionamiento de las botellas fue seguido desde una embarcación. Las mediciones se realizaron los días 8 y 13 de febrero de 2012 (sicigia y cuadratura lunar, respectivamente). Las estaciones de lance de las botellas de deriva corresponden al siguiente detalle aproximado:

Punto 1:	E 263.600 (m)	N 6.470.009 (m)
Punto 2:	E 263.228 (m)	N 6.469.528 (m)
Punto 3:	E 263.889 (m)	N 6.468.880 (m)
(Datum WGS84)		

Resultados

Los resultados de las experiencias de deriva litoral se presentan en las Tabla EM-87 (sicigia lunar) y Tabla EM-88 (cuadratura lunar).

Estaciones / Llenante	Magnitud (cm/s)	Dirección (º)
DL 1	2.1	N paralelo a la costa
DL2	2.3	S paralelo a la costa
DL3	2.0	S paralelo a la costa
Estaciones / Vaciante	Magnitud (cm/s)	Dirección(º)
DL 1	2.3	N paralelo a la costa
DL2	2.4	N paralelo a la costa
DL3	2.1	N - NW paralelo a la costa

Tabla EM-87: Deriva litoral, condición lunar de sicigia

Estaciones / Vaciante	Magnitud (cm/s)	Dirección (º)
DL 1	2.2	S paraleo a la costa
DL2	2.4	S paraleo a la costa
DL3	2.0	S paraleo a la costa
Estaciones / Llenante	Magnitud (cm/s)	Dirección (º)
DL 1	3.0	N paralelo a la costa
DL2	2.9	N paralelo a la costa
DL3	2.6	N - NW paralelo a la costa

Tabla EM-88: Deriva litoral, condición lunar de cuadratura

Fuente: consultora Costasur

Las 3 estaciones mostraron una deriva litoral con direcciones relativamente paralelas a la costa y fundamentalmente en dirección N (puntos de lance 1, 2 y 3), en fases de marea vaciante y llenante (sicigia y cuadratura lunar) y hacia el S (puntos de lance 1, 2 y 3) en fases de marea llenante y vaciante (sicigia y cuadratura lunar). La excepción ocurrió en el punto de lance – 1 (marea llenante, sicigia), en donde la deriva litoral fue en dirección N, en donde el avance fue hacia el N. Así también, durante la llenante (cuadratura lunar) se detectó la mayor intensidad en las corrientes de deriva. En este contexto, la máxima magnitud detectada fue de 3,0 cm/s (punto – 1).

Las direcciones de avance se explicarían, si se considera la configuración de la línea de la costa, los vientos incidentes y los trenes de olas, cuyas direcciones fueron favorables para los desplazamientos de las botellas de deriva en las direcciones encontradas.

- Otoño 2012

Materiales y métodos

El estudio de corrientes litorales constó con 3 estaciones de lance (ver Figura EM-2), estos lances se realizaron en 2 períodos diferentes (sicigia y cuadratura lunar), y en cada uno de estos se evaluó las corrientes litorales en fases de marea llenante y vaciante. En cada estación se desplegaron elementos derivadores (botellas de deriva) con boyantes neutra. El recorrido y posicionamiento de las botellas fue seguido desde una embarcación. Las mediciones se realizaron los días 13 de abril y 06 de mayo de 2012 (cuadratura y sicigia lunar, respectivamente). Las estaciones de lance de las botellas de deriva corresponden al siguiente detalle aproximado:

Punto 1:	E 263.600	N 6.470.009
Punto 2:	E 263.228	N 6.469.528
Punto 3:	E 263.889	N 6.468.880
(Datum WGS84)		

Resultados

Los resultados de las experiencias de deriva litoral se presentan en las Tabla EM-89 (cuadratura lunar) y Tabla EM-90 (sicigia lunar).

Estaciones / Vaciante	Magnitud (cm/s)	Dirección (º)
DL1	2.3	S paralelo a la costa
DL2	2.4	S paralelo a la costa
DL3	2.1	S paralelo a la costa
Estaciones / Llenante	Magnitud (cm/s)	Dirección (º)
DL1	2.4	N paralelo a la costa
DL2	2.6	N paralelo a la costa
DL3	2.3	N - NW paralelo a la costa

Tabla EM-89: Deriva litoral, condición lunar de Cuadratura

Fuente: consultora Costasur

Tabla EM-90:	Deriva	litoral,	condición	lunar de	Sicigia
					-

Estaciones / Llenante	Magnitud (cm/s)	Dirección (º)
DL1	2.7	S paraleo a la costa
DL2	2.8	S paraleo a la costa
DL3	2.6	S paraleo a la costa
Estaciones / Vaciante	Magnitud (cm/s)	Dirección (º)
DL1	3.2	N paralelo a la costa
DL2	3.4	N paralelo a la costa
DL3	2.8	N - NW paralelo a la costa

Fuente: consultora Costasur

Las 3 estaciones muestran una deriva litoral con direcciones relativamente paralelas a la costa y fundamentalmente en dirección N (puntos de lance 1, 2 y 3), en fases de marea llenante y vaciante (cuadratura y sicigia lunar) y, hacia el S (puntos de lance 1, 2 y 3) en fases de marea vaciante y llenante (cuadratura y sicigia). Durante la vaciante (sicigia lunar) se detectó la mayor intensidad en las corrientes de deriva. En este contexto, la máxima magnitud detectada fue de 3,4 cm/s (punto – 2). Las direcciones de avance se explicarían, si se considera la configuración de la línea de la costa, los vientos incidentes y los trenes de olas, cuyas direcciones fueron favorables para los desplazamientos de las botellas de deriva en las direcciones encontradas.

Invierno 2012

Materiales y métodos

El estudio de corrientes litorales constó con 3 estaciones de lance (ver Figura EM-2), estos lances se realizaron en 2 períodos diferentes (sicigia y cuadratura lunar), y en cada uno de estos se evaluó las corrientes litorales en fases de marea llenante y vaciante. En cada estación se desplegaron elementos derivadores (botellas de deriva) con boyantes neutra. El recorrido y posicionamiento de las botellas fue seguido desde una embarcación. Las mediciones se realizaron los días 21 de julio y 09 de agosto de 2012 (sicigia y cuadratura

lunar, respectivamente). Las estaciones de lance de las botellas de deriva corresponden al siguiente detalle aproximado:

Punto 1:	E 263.600	N 6.470.009
Punto 2:	E 263.228	N 6.469.528
Punto 3:	E 263.889	N 6.468.880
(Datum WGS84)		

Resultados

Los resultados de las experiencias de deriva litoral se presentan en las Tabla EM-91 (sicigia lunar) y Tabla EM-92 (cuadratura lunar).

¥		<u> </u>
Estaciones / Llenante	Magnitud (cm/s)	Dirección (º)
DL1	1.8	N paralelo a la costa
DL2	1.9	S paralelo a la costa
DL3	1.7	S paralelo a la costa
Estaciones / Vaciante	Magnitud (cm/s)	Dirección(°)
DL1	2.9	N paralelo a la costa
DL2	2.6	N paralelo a la costa
DL3	3.1	N - NW paralelo a la costa

Tabla EM-91: Deriva litoral, condición lunar de Sicigia

Fuente: consultora Costasur

Tabla EM-92: Deriva litoral, condición lunar de Cuadratura

Estaciones / Vaciante	Magnitud (cm/s)	Dirección(°)
DL1	2.2	S paraleo a la costa
DL2	2.4	S paraleo a la costa
DL3	2.3	S paraleo a la costa
Estaciones / Llenante	Magnitud (cm/s)	Dirección(º)
DL1	3.0	N paralelo a la costa
DL2	2.7	N paralelo a la costa
DL3	2.8	N - NW paralelo a la costa

Fuente: consultora Costasur

Las 3 estaciones muestran una deriva litoral con direcciones relativamente paralelas a la costa y fundamentalmente en dirección N (puntos de lance 1, 2 y 3), en fases de marea vaciante y llenante (sicigia y cuadratura lunar, respectivamente) y, hacia el S (puntos de lance 1, 2 y 3) en fases de marea llenante y vaciante (sicigia y cuadratura lunar, respectivamente). Durante la vaciante (sicigia lunar) se detectó la mayor intensidad en las corrientes de deriva. En este contexto, la máxima magnitud detectada fue de 3,1 cm/s (punto

- 3). Las direcciones de avance se explicarían, si se considera la configuración de la línea de la costa, los vientos incidentes y los trenes de olas, cuyas direcciones fueron favorables para los desplazamientos de las botellas de deriva en las direcciones encontradas.

- Primavera 2012

Materiales y métodos

El estudio de corrientes litorales constó con 3 estaciones de lance (ver Figura EM-2), estos lances se realizaron en 2 períodos diferentes (cuadratura y sicigia lunar), y en cada uno de estos se evaluó las corrientes litorales en fases de marea llenante y vaciante. En cada estación se desplegaron elementos derivadores (botellas de deriva) con boyantes neutra. El recorrido y posicionamiento de las botellas fue seguido desde una embarcación. Las mediciones se realizaron los días 20 y 29 de noviembre de 2012 (cuadratura y sicigia lunar, respectivamente). Las estaciones de lance de las botellas de deriva corresponden al siguiente detalle aproximado:

Punto 1:	E 263.600	N 6.470.009
Punto 2:	E 263.228	N 6.469.528
Punto 3:	E 263.889	N 6.468.880
(Datum WGS84)		

Resultados

Los resultados de las experiencias de deriva litoral se presentan en las Tabla EM-93 (sicigia lunar) y Tabla EM-94 (cuadratura lunar).

Deriva Litoral - Cuadratura		
Estaciones / Vaciante	Magnitud (cm/s)	Dirección (º)
DL1	2.1	N paralelo a la costa
DL2	2.2	N paralelo a la costa
DL3	2.0	N paralelo a la costa
Estaciones / Llenante	Magnitud (cm/s)	Dirección (º)
DL1	2.3	N paralelo a la costa
DL2	2.4	N - NW paralelo a la costa
DL3	1.9	N - NW paralelo a la costa

Tabla EM-93: Deriva litoral, condición lunar de Cuadratura

¥		
Estaciones / Llenante	Magnitud (cm/s)	Dirección (º)
DL1	2.4	S paraleo a la costa
DL2	2.1	S paraleo a la costa
DL3	2.6	S paraleo a la costa
Estaciones / Vaciante	Magnitud (cm/s)	Dirección (º)
DL1	2.4	N paralelo a la costa
DL2	2.3	S paraleo a la costa
DL3	2.5	S paraleo a la costa

Tabla EM-94: Deriva litoral, condición lunar de Sicigia

Fuente: consultora Costasur

Durante la cuadratura, las 3 estaciones muestran una deriva litoral con direcciones relativamente paralelas a la costa y fundamentalmente en dirección N (puntos de lance 1, 2 y 3), en fases de marea vaciante y llenante. En sicigia, la deriva litoral fue hacia en S, con la excepción del punto de lance 1 (DL1) que mostró un avance hacia en N. Durante la llenante (sicigia lunar) se detectó la mayor intensidad en las corrientes de deriva (2,6 cm/s en estación DL3).

Las direcciones de avance se explicarían, si se considera la configuración de la línea de la costa, los vientos incidentes y los trenes de olas, cuyas direcciones fueron favorables para los desplazamientos de las botellas de deriva en las direcciones encontradas.

- Primavera 2014

Materiales y métodos

El estudio de corrientes litorales constó con 3 estaciones de lance (ver Figura EM-2), estos lances se realizaron en 2 períodos diferentes (cuadratura y sicigia lunar) y en cada uno de estos se evaluó las corrientes litorales en fases de marea llenante y vaciante. En cada estación se desplegaron elementos derivadores (botellas de deriva) con boyantes neutra. El recorrido y posicionamiento de las botellas fue seguido desde una embarcación. Las mediciones se realizaron los días 29 de octubre, 06 y 24 de noviembre de 2014 (cuadratura y sicigia lunar, respectivamente). Las estaciones de lance de las botellas de deriva corresponden al siguiente detalle aproximado:

Punto 1:	E 263.127	N 6.470.370
Punto 2:	E 263.203	N 6.470.114
Punto 3:	E 263.146	N 6.469.914
(Datum WGS84)		

Resultados

Los resultados de las experiencias de deriva litoral se presentan en las Tabla EM-95 (cuadratura lunar) y Tabla EM-96 (sicigia lunar).

Estaciones / Vaciante	Magnitud (cm/s)	Dirección (°)
DL1	9.8	SW
DL2	5.4	S
DL3	12.4	SW - W
Estaciones / Llenante	Magnitud (cm/s)	Dirección (°)
DL1	> 20 .0	N - NE
DL2		varado
DL3	-	varado

Tabla EM-95: Deriva litoral, condición lunar de cuadratura

Fuente: consultora Costasur

Tabla EM-96: Deriva litoral, condición lunar de sicigia

Estaciones / Llenante	Magnitud (cm/s)	Dirección(°)
DL1	> 20.0	NE
DL2	> 20.0	NE
DL3	> 20.0	NE
Estaciones / Vaciante	Magnitud (cm/s)	Dirección (º)
DL1	> 20.0	N - NE
DL2	> 20.0	N - NE
DL3		N - NE

Fuente: consultora Costasur

Durante la cuadratura y marea vaciante, las 3 estaciones mostraron una deriva litoral con direcciones relativamente paralelas a la costa y fundamentalmente en dirección SW (puntos de lance 1, 2 y 3), mientras que durante la cuadratura (llenante) y la sicigia (llenante y vaciante) la deriva litoral fue hacia en NE. En estas últimas experiencias, se detectó la mayor intensidad en las corrientes de deriva. En este contexto, la máxima magnitud detectada fue siempre superior de 20,0 cm/s.

Las direcciones de avance se explicarían, si se considera la configuración de la línea de la costa, los vientos incidentes y los trenes de olas, cuyas direcciones fueron favorables para los desplazamientos de las botellas de deriva en las direcciones encontradas.

- Verano 2015

Materiales y métodos

El estudio de corrientes litorales constó con 3 estaciones de lance (ver Figura EM-2), estos lances se realizaron en 2 períodos diferentes (cuadratura y sicigia lunar) y en cada uno de estos se evaluó las corrientes litorales en fases de marea llenante y vaciante. En cada estación se desplegaron elementos derivadores (botellas de deriva) con boyantes neutra. El recorrido y posicionamiento de las botellas fue seguido desde una embarcación. Las mediciones se realizaron los días 25 de febrero y 05 de marzo de 2015 (cuadratura y sicigia lunar, respectivamente). Las estaciones de lance de las botellas de deriva corresponden al siguiente detalle aproximado:

Punto 1:	E 263.127	N 6.470.370
Punto 2:	E 263.203	N 6.470.114
Punto 3:	E 263.146	N 6.469.914
(Datum WGS84)		

Resultados

Los resultados de las experiencias de deriva litoral se presentan en las Tabla EM-97 (cuadratura lunar) y Tabla EM-98 (sicigia lunar).

Estaciones / Vaciante	Magnitud (cm/s)	Dirección (º)
DL1	14.0	NE
DL2	6.1	NE
DL3	4.2	N - NE
Estaciones / Llenante	Magnitud (cm/s)	Dirección (º)
DL1	> 20 .0	NE
DL2	14.8	NE
DL3	8.1	NE

Tabla EM-97: Deriva litoral, condición lunar de cuadratura

Fuente: consultora Costasur

Tabla EM-98: Deriva litoral, condición lunar de sicigia

Estaciones / Llenante	Magnitud (cm/s)	Dirección (º)
DL1	11.5	NE
DL2	13.9	NE
DL3	16.3	NE - E
Estaciones / Vaciante	Magnitud (cm/s)	Dirección (º)
DI 1		
DLI	14.0	N
DL2	14.0 6.8	N NE

Fuente: consultora Costasur

Durante la cuadratura y sicigia, las 3 estaciones mostraron una deriva litoral con direcciones relativamente paralelas a la costa y fundamentalmente en dirección NE. En términos de magnitud se verificó un máximo superior a 20 cm/s (cuadratura, llenante, punto de lance 1).

Las direcciones de avance se explicarían, si se considera la configuración de la línea de la costa, los vientos incidentes y los trenes de olas, cuyas direcciones fueron favorables para los desplazamientos de las botellas de deriva en las direcciones encontradas.

- Invierno 2015

Materiales y métodos

El estudio de corrientes litorales constó con 3 estaciones de lance (ver Figura EM-2), estos lances se realizaron en 2 períodos diferentes (sicigia y cuadratura lunar) y en cada uno de estos se evaluó las corrientes litorales en fases de marea llenante y vaciante. En cada

estación se desplegaron elementos derivadores (botellas de deriva) con boyantes neutra. El recorrido y posicionamiento de las botellas fue seguido desde una embarcación. Las mediciones se realizaron los días 14 y 24 de agosto de 2015 (sicigia y cuadratura lunar, respectivamente). Las estaciones de lance de las botellas de deriva corresponden al siguiente detalle aproximado:

Punto 1:	E 263.123	N 6.470.359
Punto 2:	E 263.206	N 6.470.112
Punto 3:	E 263.138	N 6.469.905
(Datum WGS84)		

Resultados

Los resultados de las experiencias de deriva litoral se presentan en las Tabla EM-99 (sicigia lunar) y Tabla EM-100 (cuadratura lunar).

Estaciones / Llenante	Magnitud (cm/s)	Dirección (º)
DL1	9.5	SW
DL2	10.1	SW
DL3	9.8	SW
Estaciones / Vaciante	Magnitud (cm/s)	Dirección (º)
DL1	17.9	NE
DL2	14.8	NE
DL3	14.6	E

Tabla EM-99: Deriva litoral, condición lunar de sicigia

Fuente: consultora Costasur

Tabla EM-100: Deriva litoral, condición lunar de cuadratura

Estaciones / Vaciante	Magnitud (cm/s)	Dirección (º)
DL1	16.1	NE
DL2	> 20.0	NE
DL3	18.9	NE - E
Estaciones / Llenante	Magnitud (cm/s)	Dirección (º)
DL1	> 20.0	N
DL2	> 20.0	E
DL3	> 20.0	E

Fuente: consultora Costasur

Durante la sicigia y cuadratura, las 3 estaciones muestran una deriva litoral con direcciones relativamente paralelas a la costa y fundamentalmente en dirección NE. La excepción ocurrió en la sicigia y fase mareal llenante, en donde los avances fueron hacia el SW. En términos de magnitud se verificó máximos superiores a 20 cm/s en cuadratura lunar y fundamentalmente durante la llenante (en los 3 puntos muestreados).

Salvo la excepción antes indicada, las direcciones de avance se explicarían, si se considera la configuración de la línea de la costa, los vientos incidentes y los trenes de olas, cuyas direcciones fueron favorables para los desplazamientos de las botellas de deriva en las direcciones encontradas.

• Dispersión con trazadores químicos (Rodamina WT)

La capacidad de dispersión y dilución de un contaminante o partícula depende del transporte generado por el sistema de corrientes locales, los vientos predominantes y el grado de difusión estimado a través del gradiente de concentración de un trazador, donde se asume un comportamiento pasivo de este, lo que implica que la distribución del trazador depende exclusivamente de los forzantes físicos y no existe reacción con el agua.

- Verano 2012

Materiales y métodos

Este estudio fue desarrollado utilizando rodamina WT como trazador, efectuando las mediciones los días 8 y 13 de febrero de 2012 bajo condiciones de sicigia y cuadratura lunar, respectivamente. Para ello se instaló un sistema de medición en una embarcación menor. Se seleccionó un punto de inyección de la rodamina y se realizaron un total de 4 lances de rodamina WT, según las fases de marea (llenante y vaciante) en dos días de mediciones. En cada lance se agregaron 5 ml de Rodamina WT, que se diluyeron en un bidón con 30 L de agua de mar del punto de inyección. Con esto se obtuvo una concentración final de 333,3 ppm de rodamina. Esta solución fue agregada manualmente al mar en el punto de inyección, registrándose la coordenada y hora (Tabla EM-101). Después de esperar un par de minutos para su dispersión, se realizaron transectos de medición a lo largo y ancho de la mancha, registrando la concentración de rodamina, fecha y hora, cada un segundo. Paralelamente se registró las posiciones de entrada y salida de la mancha con GPS.

Lance	Fecha	Hora	Latitud (UTM)	Longitud	Marea
1	08.02.2012	10:51:45	6469082.78	262602.60	Llenante
2	08.02.2012	13:02:30	6469080.78	262600.41	Vaciante
3	13.02.2012	08:09:55	6469113.98	262598.90	Vaciante
4	13.02.2012	11:25:46	6469162.81	262589.85	Llenante

Tabla EM- 101: Caracterización de condiciones de lances de rodamina WT

Fuente: consultora Costasur

Para la cuantificación de la rodamina WT se utilizó un fluorómetro de campo, Hydrolab Mod. DS5 con celda de flujo continuo, conectada a una bomba de inmersión FMI Mod. RPB-G25 alimentado con baterías de 12 volts. La información *in situ* colectada por el fluorómetro (*i.e.*, concentración en ppb, fecha y hora) fue registrada en la memoria sólida de un PC con una frecuencia de 5 segundos.

Durante las mediciones en terreno se monitoreó la trayectoria de las manchas desde su punto de lance, con posicionamientos tomados con un sistema DGPS. Previo al lanzamiento,

se verificó la dirección del movimiento del agua superficial y el valor de base de la fluorescencia del agua de mar (background). La información colectada fue procesada trazando isolíneas de igual concentración, lo cual permite reconstituir las manchas seleccionando aquellas lecturas que muestran una mayor dispersión de las concentraciones en la zona de dispersión en forma precisa. Con esta información se pueden estimar los coeficientes de dispersión total utilizando la metodología propuesta por Okubo (1971).

En el método de Okubo (1971) la difusión es función del cuadrado de la desviación estándar de la concentración, la cual tiene un comportamiento anisotrópico (Okubo, 1980; Carter y Okubo, 1965), lo que da como resultado un aumento del área ocupada por la mancha en dirección del flujo promedio que la transporta (*i.e.*, del tiempo o la distancia recorrida). Por lo tanto, conociendo la varianza de los radios (rc) de un círculo de área equivalente a una mancha, dadas por diferentes isolíneas de concentración, tenemos

$$\sigma^2 = (rc - rc')^2 / (n - 1)$$

Donde rc' es el radio equivalente promedio, n es número de observaciones dados por cada isolínea dentro de la mancha en un tiempo dado, lo que permite calcular la difusividad, en términos del coeficiente de dispersión $K_{a,}$ siendo σ^2 la varianza de un área equivalente a un círculo de diferentes isolíneas de concentración en una misma mancha a un tiempo "t", determinado por el momento de la observación del área.

Resultados

Las manchas reconstituidas a partir de las concentraciones de Rodamina WT se muestran en las siguientes figuras. Las experiencias desarrolladas el día 8 de febrero de 2012 en condiciones de sicigia lunar, muestran que la mancha de rodamina se desplazó en dirección al segundo cuadrante (ESE) virando progresivamente hacia el Sur en la marea vaciante (Figura EM-151), sin embargo, en la fase de marea llenante la mancha se desplazó hacia el primer cuadrante (NE) (Figura EM-152). El viento dominante en ambas mareas fue SW con una magnitud media de 4 m/s.

En el periodo de sicigia (Figura EM-153 y Figura EM-154), el gradiente de concentración de la mancha de rodamina se desplazó hacia el primer cuadrante (W – NW) durante la fase de marea vaciante, y durante la llenante la mancha cambia su desplazamiento en dirección W – SW. El efecto del viento sobre el desplazamiento de la mancha es menor debido a que la magnitud promedio durante la experiencia no superó los 2 m/s.

Fuente: consultora Costasur

Fuente: consultora Costasur

Figura EM-153: Desplazamiento y dispersión de mancha de rodamina. Cuadratura lunar, marea vaciante

Fuente: consultora Costasur

Fuente: consultora Costasur

En las siguientes figuras se muestran la evolución temporal de los círculos de áreas equivalentes de una isolínea (*i.e.*, 10ppb o 5ppb, entre otros), generados a partir del cálculo de los radios de circulo equivalente (rc) utilizados para establecer el coeficiente de dispersión.

Fuente: consultora Costasur

Fuente: consultora Costasur

Fuente: consultora Costasur

Fuente: consultora Costasur

Los coeficientes de dispersión K_a calculados de acuerdo a la metodología de Okubo (1971) se presentan en la Tabla EM-102. De acuerdo a estos valores, la capacidad de dispersión del cuerpo de agua es moderada en sicigia y cuadratura lunar e independiente de la fase mareal de vaciante o llenante.

		(s)	nnb		-		
			444	(m)	(m²)	(m² s⁻¹)	
			5	11.98			
			10	6.14			
1 0	08.02.2012	634	20	4.53	23.768	4.32*10 ⁻²	Llenante
			40	1.54			
			60	0.44			
			80	0.00			
			5	17.98			
			10	11.61			
2 0	08.02.2012	1153	20	4.98	46.241	5.90*10 ⁻²	Vaciante
			40	2.68			
			60	0.14			
			80	0.00			
			5	7.41			
			10	7.32			
3 1	3.02.2012	940	20	5.24	18.226	2.70*10 ⁻²	Vaciante
			40	2.35			
			60	2.15			
			80	0.44			
			5	13.36			
			10	8.89			
4 1	3.02.2012	750	20	4.80	60.000	9.83*10 ⁻²	Llenante
			40	0.48			
			60	0.00			
			80	0.00			

Tabla EM-102: Coeficientes de dispersión Ka calculados

Nota: rc: radio equivalente; Ka: coeficiente de difusión

Fuente: consultora Costasur

Carrasco (2000) plantea que valores de 1,8 x10⁻³ son considerados de dispersión baja, por lo que los coeficientes de dispersión obtenidos en este estudio son mayores a los observados en la zona centro – sur (Tabla EM-103), lo que corrobora que la capacidad de dispersión del sector de Punta Chungo es moderada.

Localidad	Región	Coeficiente	CV	Fuente	METODO		
		(m ² s ⁻¹)	(%)				
Bahía Coliumo	BioBio	1.8*10 ⁻³	54.6	Carrasco,2000	Okubo, 1971		
Los Vilos	Valparaiso	5.92*10 ⁻²	54.0	Esta campaña	Okubo, 1971		

Tabla EM-103: Comparación con otros estudios

Fuente: consultora Costasur

Los resultados de la dispersión del trazador químico rodamina WT muestran que en todos los lances efectuados, el desplazamiento espacial es moderado, independiente de la condición lunar y fase de marea. El comportamiento direccional de la mancha de rodamina en el sector de Punta Chungo se asoció a una fase mareal determinada pues el desplazamiento de la mancha fue clara entre la marea llenante y vaciante, especialmente en el periodo de sicigia lunar.

El comportamiento en el desplazamiento de la mancha de rodamina parece estar poco relacionado al efecto del viento, pues la mancha no siempre se movió conforme a la dirección del viento predominante. En consecuencia, es posible detectar un patrón de variación definido en cuanto al desplazamiento de la rodamina en el cuerpo de agua asociado a la fase mareal.

La dispersión observada es el resultado de la mezcla a diferentes escalas de tiempo, de un proceso de difusión turbulenta generado por remolinos o *eddies* mayores y remolinos de menor tamaño. Los mayores, proporcionan la variabilidad observada en la dispersión media del fluido, en una escala mayor asociada al movimiento del fluido, y los remolinos menores en cambio dan cuenta de la variabilidad al interior de la mancha, responsables de la mezcla, observando gradientes de concentración, explicando la tendencia a formar manchas circulares, ya que los procesos difusivos actúan en dirección radial desde el núcleo de una mancha.

Los desplazamientos observados y los coeficientes de dispersión calculados sugieren que la dispersión en el sector de Punta Chungo está dominada principalmente por procesos de transporte de masas más que por procesos difusivos.

- Otoño 2012

Materiales y métodos

Este estudio fue desarrollado utilizando rodamina WT como trazador, efectuando las mediciones el día 13 de abril de 2012 bajo condiciones de cuadratura lunar. Para ello se instaló un sistema de medición en una embarcación menor. Se seleccionó un punto de inyección de la rodamina en el sector de Punta Chungo y se realizaron un total de 2 lances de rodamina WT, según las fases de marea (vaciante y llenante), en un día de mediciones. En cada lance se agregaron 10 ml de Rodamina WT, que se diluyeron en un bidón con 60 L de agua de mar del punto de inyección. Con esto se obtuvo una concentración final de 167 ppm (mg/l) de rodamina. Esta solución fue agregada manualmente al mar en el punto de inyección, registrándose la coordenada y hora (Tabla EM-104). Después de esperar un par de minutos para su dispersión, se realizaron transectos de medición a lo largo y ancho de la mancha, registrando la concentración de rodamina, fecha y hora, cada un segundo. Paralelamente se registró las posiciones de entrada y salida de la mancha con GPS.

Lance	Fecha	Hora	Latitud (UTM)	Longitud	Marea
1	13.05.2012	09:12:00	6469101.94	262631.72	Vaciante
2	13.05.2012	12:02:00	6469090.68	262628.60	Llenante
			11 O 1		

Fuente: consultora Costasur

Para la cuantificación de la rodamina WT se utilizó un fluorómetro de campo, marca RBR modelo XR – 620 CTD / Seapoint Rhodamine Fluorometer, alimentado con baterías de 12 volts. La información *in situ* colectada por el fluorómetro (*i.e.*, concentración en ppb, fecha y hora) fue registrada en la memoria sólida de un PC con una frecuencia de 1 segundo.

Durante las mediciones en terreno se monitoreó la trayectoria de las manchas desde su punto de lance, con posicionamientos tomados con un sistema DGPS. Previo al lanzamiento, se verificó la dirección del movimiento del agua superficial y el valor de base de la fluorescencia del agua de mar (background). La información colectada fue procesada trazando isolíneas de igual concentración, lo cual permite reconstituir las manchas seleccionando aquellas lecturas que muestran una mayor dispersión de las concentraciones en la zona de dispersión en forma precisa. Con esta información se pueden estimar los coeficientes de dispersión total utilizando la metodología propuesta por Okubo (1971). Brevemente, en el método de Okubo (1971) la difusión es función del cuadrado de la

desviación estándar de la concentración, la cual tiene un comportamiento anisotrópico (Okubo, 1980; Carter Okubo, 1965), lo que da como resultado un aumento del área ocupada por la mancha en dirección del flujo promedio que la transporta (*i.e.*, del tiempo o la distancia recorrida). Por lo tanto, conociendo la varianza de los radios (rc) de un círculo de área equivalente a una mancha, dadas por diferentes isolíneas de concentración, tenemos

$$\sigma^2 = (rc - rc')^2 / (n - 1)$$

Donde rc' es el radio equivalente promedio, n es número de observaciones dados por cada isolínea dentro de la mancha en un tiempo dado, lo que permite calcular la difusividad, en términos del coeficiente de dispersión K_{a} , siendo σ^2 la varianza de un área equivalente a un círculo de diferentes isolíneas de concentración en una misma mancha a un tiempo "t", determinado por el momento de la observación del área.

Resultados

Las manchas reconstituidas a partir de las concentraciones de rodamina WT se muestran en las Figura EM-159 y Figura EM-160. Las experiencias desarrolladas el día 13 de abril de 2012 en condiciones de cuadratura lunar, muestran que la mancha de rodamina se desplazó en dirección al 3^{er} cuadrante (SW) durante la marea vaciante (Figura EM-159), con viento predominante de 3,3 m/s cuya dirección fue NE; mientras que durante la fase de marea llenante, la mancha se desplazó hacia el 2^{do} cuadrante (SE, Figura EM-160) con viento promedio de 4,2 m/s y dirección de incidencia NW.

En las Figura EM-161 y Figura EM-162 se muestran la evolución temporal de los círculos de áreas equivalentes de una isolínea (*i.e.*, 10ppb o 5ppb, entre otros), generados a partir del cálculo de los radios de circulo equivalente (rc) utilizados para establecer el coeficiente de dispersión. Los coeficientes de dispersión K_a calculados de acuerdo a la metodología de Okubo (1971) se presentan en la Tabla EM-105. De acuerdo a estos valores, la capacidad de dispersión del cuerpo de agua es moderada en cuadratura lunar e independiente de la fase mareal de vaciante o llenante, ya que sus valores son similares.

Lance	Fecha	Tiempo	Concentración	r _c	Varianza	Ka	Marea	
		(s)	ppb	(m)	(m ²)	(m ² s ⁻¹)		
			5	4.84				
			20	6.33				
1	13.05.2012	1269	40	5.41	8.379	1.10*10 ⁻²	Vaciante	
			80	2.68				
			100	4.98				
			200	2.10				
			5	6.21				
			20	5.49				
2	13.05.2012	1085	40	3.23	8.181	1.03*10 ⁻²	Llenante	
			80	1.87				
			100	3.84				
			200	2.40	1			

Tabla EM-105: Coeficientes de dispersión Ka calculados

Nota: rc: radio equivalente; Ka: coeficiente de difusión Fuente: consultora Costasur

Carrasco (2000) plantea que valores de 1,8 x10⁻³ son considerados de dispersión baja, por lo que los coeficientes de dispersión obtenidos en este estudio son mayores a los observados en la zona centro – sur (Tabla EM-106), lo que corrobora que la capacidad de dispersión del sector de Punta Chungo es moderada. Sin embargo, este valor es menor (3,5 veces) que el observado durante la campaña de verano 2012 en la misma sector de Punta Chungo.

Localidad	Región	Coeficiente	CV	Fuente	METODO				
		(m² s⁻¹)	(%)						
Bahía Coliumo	BioBio	1.8*10 ⁻³	54.6	Carrasco, 2000	Okubo, 1971				
Los Vilos	Valparaiso	5.92*10 ⁻²	54.0	PDMLP Campaña Verano 2012	Okubo, 1971				
Los Vilos	Valparaiso	1.7*10 ⁻²	46.0	PDMLP Campaña Otoño 2012	Okubo, 1971				

Tabla EM-106: Comparación con otros estudios

Fuente: consultora Costasur

Fuente: consultora Costasur

Fuente: consultora Costasur

Fuente: consultora Costasur

Los resultados del coeficiente de dispersión del trazador químico rodamina WT (K_a) muestran un desplazamiento espacial moderado e independiente de fase de marea, con valores similares entre fases de marea. Por otro lado, el comportamiento direccional de la mancha de rodamina está claramente determinado por el viento, ya que su desplazamiento fue en la dirección del viento reinante durante ambas fases de marea (vaciante y llenante). En consecuencia, es posible detectar un patrón de variación definido en cuanto al desplazamiento de la rodamina en el cuerpo de agua que no está asociado a la fase mareal y que es dependiente de la intensidad y dirección de los vientos reinantes. Al comparar el coeficiente de dispersión de las campañas previas, realizadas en la misma zona de estudio, se observa que el valor de verano es ~3,5 veces mayor que en otoño, lo que puede estar asociado a la condición de marejada observada durante la campaña estival.

La dispersión observada es el resultado de la mezcla a diferentes escalas de tiempo, de un proceso de difusión turbulenta generado por remolinos o *eddies* mayores y remolinos de menor tamaño. Los mayores, proporcionan la variabilidad observada en la dispersión media del fluido, en una escala mayor asociada al movimiento del fluido, y los remolinos menores en cambio dan cuenta de la variabilidad al interior de la mancha, responsables de la mezcla, observando gradientes de concentración, explicando la tendencia a formar manchas circulares, ya que los procesos difusivos actúan en dirección radial desde el núcleo de una mancha.

Desde un punto de vista ambiental, los desplazamientos observados y los coeficientes de dispersión calculados sugieren que la dispersión en el sector de Punta Chungo está dominada principalmente por procesos de transporte de masas más que por procesos difusivos.

- Invierno 2012

Materiales y métodos

Este estudio fue desarrollado utilizando rodamina WT como trazador, efectuando las mediciones el día 9 de agosto de 2012 (peor escenario ambiental) bajo condiciones de cuadratura lunar. Para ello se instaló un sistema de medición en una embarcación menor. Se seleccionó un punto de inyección de la rodamina en el sector de Punta Chungo y se realizaron un total de 2 lances de rodamina WT, según las fases de marea (vaciante y llenante), en un día de mediciones. En cada lance se agregaron 10 ml de Rodamina WT, que se diluyeron en un bidón con 60 L de agua de mar del punto de inyección. Con esto se obtuvo una concentración final de 167 ppm (mg/l) de rodamina. Esta solución fue agregada manualmente al mar en el punto de inyección, registrándose la coordenada y hora (Tabla EM-107). Después de esperar un par de minutos para su dispersión, se realizaron transectos de medición a lo largo y ancho de la mancha, registrando la concentración de rodamina, fecha y hora, cada un segundo. Paralelamente se registró las posiciones de entrada y salida de la mancha con GPS.

Lance	Fecha	Hora	Latitud (UTM)	Longitud	Marea				
1	09.08.2012	08:30:13	6469205.000	262675.000	Vaciante				
2	09.08.2012	12:03:00	6469223.904	262669.875	Llenante				

Tabla EM-107: Caracterización de condiciones de lances de rodamina
--

Fuente: consultora Costasur

Para la cuantificación de la rodamina WT se utilizó un fluorómetro de campo, marca RBR modelo XR – 620 CTD / Seapoint Rhodamine Fluorometer, alimentado con baterías de 12 volts. La información *in situ* colectada por el fluorómetro (*i.e.*, concentración en ppb, fecha y hora) fue registrada en la memoria sólida de un PC con una frecuencia de 1 segundo.

Durante las mediciones en terreno se monitoreó la trayectoria de las manchas desde su punto de lance, con posicionamientos tomados con un sistema DGPS. Previo al lanzamiento, se verificó la dirección del movimiento del agua superficial y el valor de base de la fluorescencia del agua de mar (background). La información colectada fue procesada trazando isolíneas de igual concentración, lo cual permite reconstituir las manchas seleccionando aquellas lecturas que muestran una mayor dispersión de las concentraciones en la zona de dispersión en forma precisa. Con esta información se pueden estimar los coeficientes de dispersión total utilizando la metodología propuesta por Okubo (1971). Brevemente, en el método de Okubo (1971) la difusión es función del cuadrado de la desviación estándar de la concentración, la cual tiene un comportamiento anisotrópico (Okubo, 1980; Carter Okubo, 1965), lo que da como resultado un aumento del área ocupada por la mancha en dirección del flujo promedio que la transporta (*i.e.*, del tiempo o la distancia recorrida). Por lo tanto, conociendo la varianza de los radios (rc) de un círculo de área equivalente a una mancha, dadas por diferentes isolíneas de concentración, tenemos:

$$\sigma^2 = (rc - rc')^2 / (n - 1)$$

Donde rc' es el radio equivalente promedio, n es número de observaciones dados por cada isolínea dentro de la mancha en un tiempo dado, lo que permite calcular la difusividad, en términos del coeficiente de dispersión K_{a} , siendo σ^2 la varianza de un área equivalente a un círculo de diferentes isolíneas de concentración en una misma mancha a un tiempo "t", determinado por el momento de la observación del área.

Resultados

Las manchas reconstituidas a partir de las concentraciones de rodamina WT se muestran en las Figura EM-163 y Figura EM-164. La experiencia desarrollada muestra que la mancha de rodamina se desplazó en dirección al 3^{er} cuadrante (SW – S) durante la marea vaciante (Figura EM-163), con viento predominante de 3,1 m/s y dirección NE; mientras que durante la fase de marea llenante, la mancha se desplazó hacia el 1^{er} cuadrante (NE – E, Figura EM-164) con viento promedio de 2,7 m/s y dirección SW.

En las Figura EM-165 y Figura EM-166 se muestran la evolución temporal de los círculos de áreas equivalentes de una isolínea (*i.e.*, 10ppb o 5ppb, entre otros), generados a partir del cálculo de los radios de circulo equivalente (rc) utilizados para establecer el coeficiente de dispersión. Los coeficientes de dispersión K_a calculados de acuerdo a la metodología de Okubo (1971) se presentan en la Tabla EM-108. De acuerdo a estos valores, la capacidad de dispersión del cuerpo de agua es independiente de la fase mareal de vaciante o llenante.

Lance	Fecha	Tiempo	Concentración	r _c	Varianza	Ka	Marea			
		(s)	ppb	(m)	(m ²)	(m ² s ⁻¹)				
			5	12.05						
			20	9.35						
1	09.08.2012	1257	40	5.93	29.353	3.15*10 ⁻²	Vaciante			
			80	5.35						
			100	7.02						
			200	0.00						
			5	5.68						
			20	6.17						
2	09.08.2012	1254	40	3.80	9.419	1.48*10 ⁻²	Llenante			
			80	2.31						
			100	4.08						
			200	2.84						
Nota: r _c : radio	o equivalente; K	a: coeficiente d	de difusión							

Tabla EM-108: Coeficientes de dispersión Ka calculados

Fuente: consultora Costasur

Los coeficientes de dispersión obtenidos en este estudio son un orden de magnitud mayor a los observados en la zona centro – sur establecidos por Carrasco (2000) donde plantea que valores de 1,8 x10⁻³ son considerados de dispersión baja (Tabla EM-109), lo que sugiere que la capacidad de dispersión del sector de Punta Chungo es moderada.

Localidad	Región	Coeficiente	CV	Fuente	METODO
		(m ² s ⁻¹)	(%)		
Bahía Coliumo	BioBio	1.80*10 ⁻³	54.6	Carrasco, 2000	Okubo, 1971
Los Vilos	Valparaiso	5.92*10 ⁻²	54.0	PDMLP Campaña verano 2012	Okubo, 1971
Los Vilos	Valparaiso	1.70*10 ⁻²	46.0	PDMLP Campaña otoño 2012	Okubo, 1971
Los Vilos	Valparaiso	2.31*10 ⁻²	51.0	PDMLP Campaña inviemo 2012	Okubo, 1971

Tabla EM-109: Comparación con otros estudios

Fuente: consultora Costasur

Fuente: consultora Costasur

Fuente: consultora Costasur

Fuente: consultora Costasur

Los resultados de la dispersión del trazador químico rodamina WT muestran que en los lances efectuados, el desplazamiento espacial fue moderado y similar en el orden de magnitud durante todas las campañas anteriores realizadas.

El comportamiento direccional de la mancha de rodamina se asoció a una fase mareal determinada pues el desplazamiento de ésta fue claro entre las marea llenante y vaciante. También, el comportamiento en el desplazamiento de la mancha de rodamina parece estar afectado por la dirección del viento incidente, lo que se puede observar durante la marea vaciante, en donde se observa un avance hacia el SW – S (y vientos del NE) y durante llenante, en donde la mancha avanzó hacia el NE – E (con vientos SW). En consecuencia, es posible detectar un patrón de variación definido en cuanto al desplazamiento de la rodamina en el cuerpo de agua asociado a la fase mareal el que es afectado por la dirección y velocidad del viento.

La dispersión observada es el resultado de la mezcla a diferentes escalas de tiempo, de un proceso de difusión turbulenta generado por remolinos o *eddies* mayores y remolinos de menor tamaño. Los mayores, proporcionan la variabilidad observada en la dispersión media del fluido, en una escala mayor asociada al movimiento del fluido, y los remolinos menores en cambio dan cuenta de la variabilidad al interior de la mancha, responsables de la mezcla, observando gradientes de concentración, explicando la tendencia a formar manchas

circulares, ya que los procesos difusivos actúan en dirección radial desde el núcleo de una mancha.

Los valores del coeficiente de dispersión de esta campaña, comparados con las realizadas en otoño y verano, muestran que en invierno (estudio actual) el valor del coeficiente es ~1,5 veces mayor que el observado en otoño, sin embargo, es al menos 2,5 veces menor que el observado en verano. La diferencia de los coeficientes de dispersión entre las campañas de invierno y otoño respecto del verano (ambas menores) pueden estar asociadas a la condición de marejada observada durante la campaña de verano 2012.

Desde un punto de vista ambiental, los desplazamientos observados y los coeficientes de dispersión calculados sugieren que la dispersión en el sector de Punta Chungo está dominada principalmente por procesos de transporte de masas más que por procesos difusivos.

- Primavera 2012

Materiales y métodos

Este estudio fue desarrollado utilizando rodamina WT como trazador, efectuando las mediciones los días 07 (marea vaciante) y 10 (marea llenante) de diciembre de 2012 (peor escenario ambiental) bajo condiciones de cuadratura lunar. Para ello se instaló un sistema de medición en una embarcación menor. Se seleccionó un punto de inyección de la rodamina en el sector de Punta Chungo y se realizaron un total de 2 lances de rodamina WT, según las fases de marea (vaciante y llenante). En cada lance se agregaron 10 ml de Rodamina WT, que se diluyeron en un bidón con 60 L de agua de mar del punto de inyección. Con esto se obtuvo una concentración final de 167 ppm (mg/l) de rodamina. Esta solución fue agregada manualmente al mar en el punto de inyección, registrándose la coordenada y hora (Tabla EM-110). Después de esperar un par de minutos para su dispersión, se realizaron transectos de medición a lo largo y ancho de la mancha, registrando la concentración de rodamina, fecha y hora, cada un segundo. Paralelamente se registró las posiciones de entrada y salida de la mancha con GPS.

Lance	Fecha	Hora	Latitud (UTM)	Longitud	Marea			
1	07.12.2012	11:15:50	6469249.463	262702.581	Vaciante			
2	10.12.2012	08:36:38	6469244.165	262709.164	Llenante			
			aultara Caataaur					

Fuente: consultora Costasur

Para la cuantificación de la rodamina WT se utilizó un fluorómetro de campo, marca RBR modelo XR – 620 CTD / Seapoint Rhodamine Fluorometer, alimentado con baterías de 12 volts. La información *in situ* colectada por el fluorómetro (*i.e.*, concentración en ppb, fecha y hora) fue registrada en la memoria sólida de un PC con una frecuencia de 1 segundo.

Durante las mediciones en terreno se monitoreó la trayectoria de las manchas desde su punto de lance, con posicionamientos tomados con un sistema DGPS. Previo al lanzamiento, se verificó la dirección del movimiento del agua superficial y el valor de base de la fluorescencia del agua de mar (background). La información colectada fue procesada trazando isolíneas de igual concentración, lo cual permite reconstituir las manchas seleccionando aquellas lecturas que muestran una mayor dispersión de las concentraciones

en la zona de dispersión en forma precisa. Con esta información se pueden estimar los coeficientes de dispersión total utilizando la metodología propuesta por Okubo (1971). Brevemente, en el método de Okubo (1971) la difusión es función del cuadrado de la desviación estándar de la concentración, la cual tiene un comportamiento anisotrópico (Okubo, 1980; Carter Okubo, 1965), lo que da como resultado un aumento del área ocupada por la mancha en dirección del flujo promedio que la transporta (*i.e.*, del tiempo o la distancia recorrida). Por lo tanto, conociendo la varianza de los radios (rc) de un círculo de área equivalente a una mancha, dadas por diferentes isolíneas de concentración, tenemos

 $\sigma^2 = (rc - rc')^2 / (n - 1)$

Donde rc' es el radio equivalente promedio, n es número de observaciones dados por cada isolínea dentro de la mancha en un tiempo dado, lo que permite calcular la difusividad, en términos del coeficiente de dispersión K_{a} , siendo σ^2 la varianza de un área equivalente a un círculo de diferentes isolíneas de concentración en una misma mancha a un tiempo "t", determinado por el momento de la observación del área.

Resultados

Las manchas reconstituidas a partir de las concentraciones de rodamina WT se muestran en las Figura EM-167 y Figura EM-168. La experiencia desarrollada el día 7 de diciembre muestra que la mancha de rodamina se desplazó en dirección al 1^{er} cuadrante (NE) durante la marea vaciante (Figura EM-166), con viento predominante de 7,5 m/s y dirección S. Mientras que durante la fase de marea llenante, la mancha se desplazó hacia el 4^{to} cuadrante (N – NW, Figura EM-168) con viento promedio de 7,0 m/s y dirección de incidencia S.

En las Figura EM-169 y Figura EM-170 se muestra la evolución temporal de los círculos de áreas equivalentes de una isolínea (*i.e.*, 10ppb o 5ppb, entre otros), generados a partir del cálculo de los radios de circulo equivalente (rc) utilizados para establecer el coeficiente de dispersión. Los coeficientes de dispersión K_a calculados de acuerdo a la metodología de Okubo (1971) se presentan en la Tabla EM-111. De acuerdo a estos valores, la capacidad de dispersión del cuerpo de agua es independiente de la fase mareal de vaciante o llenante.

Lance	Fecha	Tiempo	Concentración	r _c	Varianza	K _a	Marea
		(s)	ppb	(m)	(m ²)	(m ² s ⁻¹)	
			5	18.48			
			20	4.94			
1	07.12.2012	964	40	1.73	45.235	9.21*10 ⁻²	Vaciante
			80	1.81			
			100	2.52			
			200	2.10			
			5	8.64			
			20	8.52			
2	10.12.2012	731	40	5.12	18.159	5.05*10 ⁻²	Llenante
			80	3.28			
			100	6.85			
			200	2.99			
Nota: r _c : radio equivalente; K _a : coeficiente de difusión							

 Tabla EM-111: Coeficientes de dispersión Ka calculados

Los coeficientes de dispersión obtenidos en este estudio son un orden de magnitud mayor a los observados en la zona centro – sur establecidos por Carrasco (1999) donde plantea que valores de 1,8 x 10^{-3} son considerados de dispersión baja Tabla EM-112, lo que sugiere que la capacidad de dispersión del sector de Punta Chungo es moderada. Los valores observados en los informes anteriores muestran similitud entre los estudios de primavera y verano, con coeficientes 2 a 3 veces mayor a los obtenidos en las campañas de otoño e invierno.

		12. oompu			
Localidad	Región	Coeficiente	CV	Fuente	Método
		(m ² s ⁻¹)	(%)		
Bahía Coliumo	BioBio	1.8*10 ⁻³	54.6	Carrasco, 2000	Okubo, 1971
Los Vilos	Valparaiso	5.92*10 ⁻²	54.0	PDMLP Campaña verano 2012	Okubo, 1971
Los Vilos	Valparaiso	1.70*10 ⁻²	46.0	PDMLP Campaña otoño 2012	Okubo, 1971
Los Vilos	Valparaiso	2.31*10 ⁻²	51.0	PDMLP Campaña inviemo 2012	Okubo, 1971
Los Vilos	Valparaiso	7.13*10 ⁻²	41.3	PDMLP Campaña primavera 2012	Okubo, 1971
		-			

Tabla EM-112: Comparación con otros estudios

Fuente: consultora Costasur

Figura EM-167: Desplazamiento y dispersión de mancha de rodamina. Cuadratura lunar, marea vaciante

Fuente: consultora Costasur

Fuente: consultora Costasur

Figura EM-170: Evolución temporal de círculos de áreas equivalentes. Cuadratura lunar, marea llenante

Fuente: consultora Costasur

Los resultados de la dispersión del trazador químico rodamina WT muestran que el sector de Punta Chungo tiene una capacidad de dispersión moderada y de similar orden de magnitud durante todas las campañas realizadas. El comportamiento direccional de la mancha de rodamina no se asoció a una fase mareal determinada, pues el desplazamiento de ésta fue claramente influenciado por los vientos al momento de efectuar las experiencias. Las campañas de verano y primavera presentan valores de coeficiente de dispersión 2 a 3 veces mayor que lo observado en otoño e invierno, lo que puede estar relacionado a las condiciones de viento de mayor intensidad respecto de las otras campañas y las condiciones del mar.

La dispersión observada es el resultado de la mezcla a diferentes escalas de tiempo, de un proceso de difusión turbulenta generado por remolinos o *eddies* mayores y remolinos de menor tamaño. Los mayores, proporcionan la variabilidad observada en la dispersión media del fluido, en una escala mayor asociada al movimiento del fluido, y los remolinos menores en cambio dan cuenta de la variabilidad al interior de la mancha, responsables de la mezcla, observando gradientes de concentración, explicando la tendencia a formar manchas circulares, ya que los procesos difusivos actúan en dirección radial desde el núcleo de una mancha.

Desde un punto de vista ambiental, los desplazamientos observados y los coeficientes de dispersión calculados sugieren que la dispersión en el sector de Punta Chungo está dominada principalmente por procesos de transporte de masas más que por procesos difusivos.

- Primavera 2014

Materiales y métodos

Este estudio fue desarrollado utilizando rodamina WT como trazador, efectuando las mediciones el día 29 de octubre de 2014 (peor escenario ambiental) bajo condiciones de cuadratura lunar. Para ello se instaló un sistema de medición en una embarcación menor. Se seleccionó un punto de inyección de la rodamina en el sector de Punta Chungo y se realizaron un total de 2 lances de rodamina WT, según las fases de marea (llenante y vaciante). En cada lance se agregaron 10 ml de rodamina WT, que se diluyeron en un bidón con 50 L de agua de mar del punto de inyección. Con esto se obtuvo una concentración final de 120.000 ppb de rodamina. Esta solución fue agregada manualmente al mar en el punto de inyección, registrándose la coordenada y hora (Tabla EM-113). Después de esperar un par de minutos para su dispersión, se realizaron transectos de medición a lo largo y ancho de la mancha, registrando la concentración de rodamina, fecha y hora, cada un segundo. Paralelamente se registró las posiciones de entrada y salida de la mancha con GPS.

Lance	Fecha	Hora	Latitud (UTM)	Longitud (UTM)	Marea
1	29.10.2014	8:15:33	6469715	262371	Vaciante
2	29.10.2014	11:38:54	6469714	262383	Llenante

Tabla EM-113: Caracterización de condiciones de lances de rodamina WT

Fuente: consultora Costasur

Para la cuantificación de la rodamina WT se utilizó un Fluorómetro de campo, marca RBR modelo XR – 620 CTD / Seapoint Rhodamine Fluorometer, alimentado con baterías de 12 volts. La información in situ colectada por el Fluorómetro (i.e., concentración en ppb, fecha y hora) fue registrada en la memoria sólida de un PC con una frecuencia de 1 segundo. Durante las mediciones en terreno se monitoreó la travectoria de las manchas desde su punto de lance, con posicionamientos tomados con un sistema DGPS. Previo al lanzamiento, se verificó la dirección del movimiento del agua superficial y el valor de base de la fluorescencia del agua de mar (background). La información colectada fue procesada trazando isolíneas de igual concentración, lo cual permite reconstituir las manchas seleccionando aquellas lecturas que muestran una mayor dispersión de las concentraciones en la zona de dispersión en forma precisa. Con esta información se pueden estimar los coeficientes de dispersión total utilizando la metodología propuesta por Okubo (1971). Brevemente, en el método de Okubo (1971) la difusión es función del cuadrado de la desviación estándar de la concentración, la cual tiene un comportamiento anisotrópico (Okubo, 1980; Carter Okubo, 1965), lo que da como resultado un aumento del área ocupada por la mancha en dirección del flujo promedio que la transporta (*i.e.*, del tiempo o la distancia recorrida). Por lo tanto, conociendo la varianza de los radios (rc) de un círculo de área equivalente a una mancha, dadas por diferentes isolíneas de concentración, tenemos

$$\sigma^2 = (rc - rc')^2 / (n - 1)$$

Donde rc' es el radio equivalente promedio, n es número de observaciones dados por cada isolínea dentro de la mancha en un tiempo dado, lo que permite calcular la difusividad, en términos del coeficiente de dispersión K_{a} , siendo σ^2 la varianza de un área equivalente a un círculo de diferentes isolíneas de concentración en una misma mancha a un tiempo "t", determinado por el momento de la observación del área.

Resultados

Las manchas reconstituidas a partir de las concentraciones de rodamina WT se muestran en las Figuras EM-171 y Figura EM-172. La experiencia desarrollada muestra que la mancha de rodamina se desplazó inicialmente en dirección al 4^{to} cuadrante (NW), rolando hacia el sur durante la marea vaciante (Figura EM-170), con viento predominante de 1,2 m/s y dirección NE. Mientras que durante la fase de marea llenante, la mancha se desplazó hacia el 1^{er} cuadrante (NE, Figura EM-172) con viento promedio de 7,4 m/s y dirección de incidencia SW.

En las Figuras EM-173 y Figura EM-174 se muestra la evolución temporal de los círculos de áreas equivalentes de una isolínea (*i.e.*, 10ppb o 5ppb, entre otros), generados a partir del cálculo de los radios de circulo equivalente (rc) utilizados para establecer el coeficiente de dispersión. Los coeficientes de dispersión K_a calculados de acuerdo a la metodología de Okubo (1971) se presentan en la Tabla EM-114. De acuerdo a estos valores, la capacidad de dispersión del cuerpo de agua es independiente de la fase mareal vaciante o llenante.

Lance	Fecha	Tiempo	Concentración	r _c	Area	Varianza	Ka	Marea	
		(s)	ppb	(m)	(m ²)	(m ²)	(m ² s ⁻¹)		
			5	2.33	1.86				
			20	0.85	2.17				
1	29.10.2014	724	40	0.58	1.66	0.776	1.61*10 ⁻³	Llenante	
			80	0.63	1.69				
			100	0.73	2.64				
			200	0.60	1.40				
			5	1.52	7.26				
			20	1.59	7.94				
2	29.10.2014	511	40	1.33	5.56	0.716	1.84*10 ⁻³	Vaciante	
			80	0.72	1.63				
			100	1.04	3.40				
			200	0.03	0.00				
Nota: rc: radi	Nota: rc: radio equivalente; Ka: coeficiente de difusión								

 Tabla EM-114: Coeficientes de dispersión Ka calculados

Fuente: consultora Costasur

Los coeficientes de dispersión obtenidos en este estudio son similares en magnitud a los observados en la zona centro – sur, establecido por Carrasco (2000) donde plantea que valores de 1,8x10⁻³ son considerados de dispersión baja (Tabla EM-115), lo que sugiere que la capacidad de dispersión del sector de Punta Chungo es baja. Los valores observados en las campañas anteriores (2012), son un orden de magnitud mayor al observado de primavera 2014.

Localidad	Región	Coeficiente	CV	Fuente	METODO
Loodinada	Rogion	(m ² s ⁻¹)	(%)	1 donto	METOBO
Bahía Coliumo	BioBio	1,8*10 ⁻³	54,6	Carrasco, 2000	Okubo, 1971
Los Vilos	Valparaíso	5,92*10 ⁻²	54,0	PDMLP Campaña verano 2012	Okubo, 1971
Los Vilos	Valparaíso	1,70*10 ⁻²	46,0	PDMLP Campaña otoño 2012	Okubo, 1971
Los Vilos	Valparaíso	2,31*10 ⁻²	51,0	PDMLP Campaña invierno 2012	Okubo, 1971
Los Vilos	Valparaíso	7.13 [*] 10 ⁻²	41,3	PDMLP Campaña primavera 2012	Okubo, 1971
Los Vilos	Valparaíso	1,73*10 ⁻³	9,4	PDMLP Campaña primavera 2014	Okubo, 1971

Tabla EM-115: Comparación con otros estudios

Fuente: consultora Costasur

Los resultados de la dispersión del trazador químico rodamina WT muestran que el sector de Punta Chungo tiene una capacidad de dispersión baja, independiente de la condición mareal y un orden de magnitud menor respecto de las campañas realizadas en el año 2012. El comportamiento direccional de la mancha de rodamina se asoció a una fase mareal determinada, dado que se desplazó hacia la costa durante la fase llenante y hacia el mar abierto durante la marea vaciante. Aunque el desplazamiento de es influenciado por los la dirección y magnitud del viento predominante al momento de efectuar las experiencias. Las campañas del año 2012 presentaron valores de coeficiente de dispersión un orden de magnitud mayor al observado en esta campaña, lo que puede estar relacionado a las condiciones de viento de mayor intensidad respecto de las otras campañas y las condiciones del mar.

La dispersión observada es el resultado de la mezcla a diferentes escalas de tiempo, de un proceso de difusión turbulenta generado por remolinos o *eddies* mayores y remolinos de menor tamaño. Los mayores, proporcionan la variabilidad observada en la dispersión media del fluido, en una escala mayor asociada al movimiento del fluido, y los remolinos menores en cambio dan cuenta de la variabilidad al interior de la mancha, responsables de la mezcla, observando gradientes de concentración, explicando la tendencia a formar manchas circulares, ya que los procesos difusivos actúan en dirección radial desde el núcleo de una mancha.

Desde un punto de vista ambiental, los desplazamientos observados y los coeficientes de dispersión calculados sugieren que la dispersión en el sector de Punta Chungo está dominada principalmente por procesos de transporte de masas más que por procesos difusivos.

Figura EM-171: Desplazamiento y dispersión de mancha de rodamina. Cuadratura lunar. Marea vaciante

Fuente: consultora Costasur

Figura EM-172: Desplazamiento y dispersión de mancha de rodamina. Cuadratura Iunar. Marea llenante

Fuente: consultora Costasur

Figura EM-174: Evolución temporal de círculos de áreas equivalentes. Cuadratura lunar, marea llenante

Verano 2015

Materiales y métodos

Este estudio fue desarrollado utilizando rodamina WT como trazador, efectuando las mediciones el día 25 de febrero de 2015 (peor escenario ambiental) bajo condiciones de cuadratura lunar. Para ello se instaló un sistema de medición en una embarcación menor. Se seleccionó un punto de inyección de la rodamina en el sector de Punta Chungo y se realizaron un total de 2 lances de rodamina WT, según las fases de marea (llenante y vaciante). En cada lance se agregaron 10 ml de rodamina WT, que se diluyeron en un bidón con 50 L de agua de mar del punto de inyección. Con esto se obtuvo una concentración final de 120000 ppb de rodamina. Esta solución fue agregada manualmente al mar en el punto de inyección, registrándose la coordenada y hora (Tabla EM-116). Después de esperar un par de minutos para su dispersión, se realizaron transectos de medición a lo largo y ancho de la mancha, registrando la concentración de rodamina, fecha y hora, cada un segundo. Paralelamente se registró las posiciones de entrada y salida de la mancha con GPS.

Lance	Fecha	Hora	Latitud (UTM)	Longitud (UTM)	Marea					
1	25.02.2015	8:44:44	6469715	262386	Vaciante					
2	25.02.2015	12:26:40	6469718	262369	Llenante					
		_								

Tabla EM-116: Caracterización de condiciones de lances de rodamina WT

Fuente: consultora Costasur

Para la cuantificación de la rodamina WT se utilizó un Fluorómetro de campo, marca RBR modelo XR – 620 CTD / Seapoint Rhodamine Fluorometer, alimentado con baterías de 12 volts. La información in situ colectada por el Fluorómetro (i.e., concentración en ppb, fecha y hora) fue registrada en la memoria sólida de un PC con una frecuencia de 1 segundo. Durante las mediciones en terreno se monitoreó la trayectoria de las manchas desde su punto de lance, con posicionamientos tomados con un sistema DGPS. Previo al lanzamiento, se verificó la dirección del movimiento del agua superficial y el valor de base de la fluorescencia del agua de mar (background). La información colectada fue procesada trazando isolíneas de igual concentración, lo cual permite reconstituir las manchas seleccionando aquellas lecturas que muestran una mayor dispersión de las concentraciones en la zona de dispersión en forma precisa. Con esta información se pueden estimar los coeficientes de dispersión total utilizando la metodología propuesta por Okubo (1971). Brevemente, en el método de Okubo (1971) la difusión es función del cuadrado de la desviación estándar de la concentración, la cual tiene un comportamiento anisotrópico (Okubo, 1980; Carter Okubo, 1965), lo que da como resultado un aumento del área ocupada por la mancha en dirección del flujo promedio que la transporta (*i.e.*, del tiempo o la distancia recorrida). Por lo tanto, conociendo la varianza de los radios (rc) de un círculo de área equivalente a una mancha, dadas por diferentes isolíneas de concentración, tenemos

$$\sigma^2 = (rc - rc')^2 / (n - 1)$$

Donde rc' es el radio equivalente promedio, n es número de observaciones dados por cada isolínea dentro de la mancha en un tiempo dado, lo que permite calcular la difusividad, en términos del coeficiente de dispersión $K_{a,}$ siendo σ^2 la varianza de un área equivalente a un círculo de diferentes isolíneas de concentración en una misma mancha a un tiempo "t", determinado por el momento de la observación del área.

Resultados

Las manchas reconstituidas a partir de las concentraciones de rodamina WT se muestran en las Figuras EM-175 y Figura EM-176. La experiencia desarrollada muestra que la mancha de rodamina se desplazó en dirección al 3^{er} cuadrante (SW) durante la marea vaciante (Figura EM-175), con viento predominante de 0,4 m/s y dirección NNW. Mientras que durante la fase de marea llenante, la mancha se desplazó hacia el 1^{er} cuadrante (NE, Figura EM-176) con viento promedio de 4,5 m/s y dirección de incidencia WSW.

En las Figuras EM-177 y Figura EM-178 se muestra la evolución temporal de los círculos de áreas equivalentes de una isolínea (*i.e.*, 10ppb o 5ppb, entre otros), generados a partir del cálculo de los radios de circulo equivalente (rc) utilizados para establecer el coeficiente de dispersión. Los coeficientes de dispersión K_a calculados de acuerdo a la metodología de Okubo (1971) se presentan en la Tabla EM-117.

Lance	Fecha	Tiempo	Concentración	r _c	Area	Varianza	Ka	Marea
		(s)	ppb	(m)	(m ²)	(m ²)	$(m^2 s^{-1})$	
			5	2.08	1.86			
			20	1.35	2.17			
1	25.02.2015	883	40	1.12	1.66	0.527	8.13*10 ⁻⁴	Vaciante
			80	1.16	1.69			
			100	1.92	2.64			
			200	1.10	1.40			
			5	1.95	11.95			
			20	1.75	9.62			
2	25.02.2015	698	40	1.56	7.65	0.869	2.21*10 ⁻³	Llenante
			80	1.08	3.66			
			100	2.13	14.25			
			200	0.14	0.06			
Nota: r _c : ra	dio equivalen	te: K _a : coefi	ciente de difusión					

Tabla EM-117:	Coeficientes	de disp	persión Ka	a calculados
---------------	---------------------	---------	------------	--------------

Fuente: consultora Costasur

Los coeficientes de dispersión obtenidos en este estudio son similares en magnitud a los observados en la zona centro – sur, establecido por Carrasco (2000) donde plantea que valores de 1,8 $\times 10^{-3}$ son considerados de dispersión baja (Tabla EM-118), lo que sugiere que la capacidad de dispersión del sector de Punta Chungo es baja e independiente de la fase mareal. Los valores observados en los informes anteriores (2012), son un orden de magnitud mayor al observado en verano 2015.

Localidad	Pogián	Coeficiente	CV	Fuerte	METODO							
LUCAIIUAU	Region	(m ² s ⁻¹)	(%)	Fuente	METODO							
Bahía Coliumo	BioBio	1,8*10 ⁻³	54,6	Carrasco, 2000	Okubo, 1971							
Los Vilos	Valparaíso	5,92*10 ⁻²	54,0	PDMLP Campaña verano 2012	Okubo, 1971							
Los Vilos	Valparaíso	1,70*10 ⁻²	46,0	PDMLP Campaña otoño 2012	Okubo, 1971							
Los Vilos	Valparaíso	2,31*10 ⁻²	51,0	PDMLP Campaña invierno 2012	Okubo, 1971							
Los Vilos	Valparaíso	7.13*10 ⁻²	41,3	PDMLP Campaña primavera 2012	Okubo, 1971							
Los Vilos	Valparaíso	1,73*10 ⁻³	9,4	PDMLP Campaña primavera 2014	Okubo, 1971							
Los Vilos	Valparaíso	1,51*10 ⁻³	65,4	PDMLP Campaña verano 2015	Okubo, 1971							
				-								

 Tabla EM-118: Comparación con otros estudios

Fuente: consultora Costasur

Los resultados de la dispersión del trazador químico rodamina WT muestran que el sector de Punta Chungo tiene una capacidad de dispersión baja, independiente de la condición mareal, un orden de magnitud menor respecto de las campañas realizadas en el año 2012 y similar a lo observado en primavera 2014.

El comportamiento direccional de la mancha de rodamina se asoció a una fase mareal determinada, dado que se desplazó hacia la costa (sector norte de bahía Conchalí) durante la fase llenante y hacia el mar abierto durante la marea vaciante, aunque también el desplazamiento pudo ser influenciado por la dirección y magnitud del viento predominante al momento de efectuar las experiencias. Las campañas del año 2012 presentan valores de coeficiente de dispersión un orden de magnitud mayor al observado en esta campaña, lo que puede estar relacionado a las condiciones de viento de mayor intensidad respecto de las condiciones del mar en campañas anteriores.

La dispersión observada es el resultado de la mezcla a diferentes escalas de tiempo, de un proceso de difusión turbulenta generado por remolinos o *eddies* mayores y remolinos de menor tamaño. Los mayores, proporcionan la variabilidad observada en la dispersión media del fluido, en una escala mayor asociada al movimiento del fluido, y los remolinos menores en cambio dan cuenta de la variabilidad al interior de la mancha, responsables de la mezcla, observando gradientes de concentración, explicando la tendencia a formar manchas circulares, ya que los procesos difusivos actúan en dirección radial desde el núcleo de una mancha.

Desde un punto de vista ambiental, los desplazamientos observados y los coeficientes de dispersión calculados sugieren que la dispersión en el sector de Punta Chungo está dominada principalmente por procesos de transporte de masas más que por procesos difusivos.

Fuente: consultora Costasur

Figura EM-178: Evolución temporal de círculos de áreas equivalentes. Cuadratura lunar, marea llenante

Fuente: consultora Costasur

Invierno 2015

Materiales y métodos

Este estudio fue desarrollado utilizando rodamina WT como trazador, efectuando las mediciones el día 24 de agosto de 2015 (peor escenario ambiental) bajo condiciones de cuadratura lunar. Para ello se instaló un sistema de medición en una embarcación menor. Se seleccionó un punto de inyección de la rodamina en el sector de Punta Chungo y se realizaron un total de 2 lances de rodamina WT, según las fases de marea (llenante y vaciante). En cada lance se agregaron 15 ml de rodamina WT, que se diluyeron en un bidón con 50 L de agua de mar del punto de inyección. Con esto se obtuvo una concentración final de 180000 ppb de rodamina. Esta solución fue agregada manualmente al mar en el punto de inyección, registrándose la coordenada y hora (Tabla EM-119). Después de esperar un par de minutos para su dispersión, se realizaron transectos de medición a lo largo y ancho de la mancha, registrando la concentración de rodamina, fecha y hora, cada un segundo. Paralelamente se registró las posiciones de entrada y salida de la mancha con GPS.

Tabla LW-115. Caracterización de condiciónes de fances de fodamina Wi									
Lance	Fecha	Hora	Latitud (UTM)	Longitud (UTM)	Marea				
1	24.08.2015	12:24:30	6469713	262379	Vaciante				
2	24.08.2015	14:28:16	6469720	262359	Llenante				

Tabla EM-119: Caracterización de condiciones de lances de rodamina WT

Fuente: consultora Costasur

Para la cuantificación de la rodamina WT se utilizó un Fluorómetro de campo, marca RBR modelo XR – 620 CTD / Seapoint Rhodamine Fluorometer, alimentado con baterías de 12 volts. La información in situ colectada por el Fluorómetro (i.e., concentración en ppb, fecha y hora) fue registrada en la memoria sólida de un PC con una frecuencia de 1 segundo. Durante las mediciones en terreno se monitoreó la trayectoria de las manchas desde su punto de lance, con posicionamientos tomados con un sistema DGPS. Previo al lanzamiento, se verificó la dirección del movimiento del agua superficial y el valor de base de la fluorescencia del agua de mar (background). La información colectada fue procesada trazando isolíneas de igual concentración, lo cual permite reconstituir las manchas seleccionando aquellas lecturas que muestran una mayor dispersión de las concentraciones en la zona de dispersión en forma precisa. Con esta información se pueden estimar los coeficientes de dispersión total utilizando la metodología propuesta por Okubo (1971). Brevemente, en el método de Okubo (1971) la difusión es función del cuadrado de la desviación estándar de la concentración, la cual tiene un comportamiento anisotrópico (Okubo, 1980; Carter Okubo, 1965), lo que da como resultado un aumento del área ocupada por la mancha en dirección del flujo promedio que la transporta (*i.e.*, del tiempo o la distancia recorrida). Por lo tanto, conociendo la varianza de los radios (rc) de un círculo de área equivalente a una mancha, dadas por diferentes isolíneas de concentración, tenemos

$$\sigma^2 = (rc - rc')^2 / (n - 1)$$

Donde rc' es el radio equivalente promedio, n es número de observaciones dados por cada isolínea dentro de la mancha en un tiempo dado, lo que permite calcular la difusividad, en términos del coeficiente de dispersión K_{a} , siendo σ^2 la varianza de un área equivalente a un círculo de diferentes isolíneas de concentración en una misma mancha a un tiempo "t", determinado por el momento de la observación del área.

Resultados

Las manchas reconstituidas a partir de las concentraciones de rodamina WT se muestran en las Figuras EM-179 y Figura EM-180. La experiencia desarrollada muestra que la mancha de rodamina se desplazó en dirección al 2^{do} cuadrante (SE) rolando hacia el 1^{er} cuadrante (NE) durante la marea vaciante (Figura EM-179), con viento predominante de 1,5 m/s y dirección SW. Mientras que durante la fase de marea llenante, la mancha se desplazó hacia el 1^{er} cuadrante (NE, Figura EM-180) con viento promedio de 3,5 m/s y dirección de incidencia W – SW.

En las Figuras EM-181 y Figura EM-182 se muestra la evolución temporal de los círculos de áreas equivalentes de una isolínea (*i.e.*, 10ppb o 5ppb, entre otros), generados a partir del cálculo de los radios de circulo equivalente (rc) utilizados para establecer el coeficiente de dispersión. Los coeficientes de dispersión K_a calculados de acuerdo a la metodología de Okubo (1971) se presentan en la Tabla EM-120.

Lance	Fecha	Tiempo	Concentración	r _c	Area	Varianza	Ka	Marea
		(s)	ppb	(m)	(m ²)	(m ²)	$(m^2 s^{-1})$	
			5	1.97	12.19			
			20	2.19	15.07			
1	24.08.2015	664	40	1.68	8.87	0.673	1.62*10 ⁻³	Vaciante
			80	1.15	4.15			
			100	2.38	17.80			
			200	0.52	0.85			
			5	1.82	10.41			
			20	1.82	10.41			
2	24.08.2015	733	40	1.45	6.61	0.748	2.04*10 ⁻³	Llenante
			80	0.52	0.85			
			100	1.18	4.37			
			200	0.42	0.55			
Nota: r · radio	equivalente K · c	coeficiente de d	ifusión					

Tabla EM-120: Coeficientes de dispersión Ka calculados

Fuente: consultora Costasur

Los coeficientes de dispersión obtenidos en este estudio son similares en magnitud a los observados en la zona centro – sur, establecido por Carrasco (2000) donde plantea que valores de 1,8 x10⁻³ son considerados de dispersión baja (Tabla EM-121), lo que sugiere que la capacidad de dispersión del sector de Punta Chungo es baja e independiente de la fase mareal. Los valores observados son similares a los obtenidos en la campaña de primavera 2014 y verano 2015, mientras que los valores de las campañas 2012 son un orden de magnitud mayores. El valor obtenido en la marea llenante es mayor que el obtenido en marea vaciante, lo que puede estar asociado a la condición del mar rizada, reportada durante la marea llenante.

Localidad	Región	Coeficiente (m2 s-1)	CV (%)	Fuente	METODO
Bahía Coliumo	BioBio	1,8*10 ⁻³	54,6	Carrasco, 2000	Okubo, 1971
Los Vilos	Valparaíso	5,92*10 ⁻²	54,0	PDMLP Campaña verano 2012	Okubo, 1971
Los Vilos	Valparaíso	1,70*10 ⁻²	46,0	PDMLP Campaña otoño 2012	Okubo, 1971
Los Vilos	Valparaíso	2,31*10 ⁻²	51,0	PDMLP Campaña invierno 2012	Okubo, 1971
Los Vilos	Valparaíso	7,13*10 ⁻²	41,3	PDMLP Campaña primavera 2012	Okubo, 1971
Los Vilos	Valparaíso	1,73*10 ⁻³	9,4	PDMLP Campaña primavera 2014	Okubo, 1971
Los Vilos	Valparaíso	1,51*10 ⁻³	65,4	PDMLP Campaña verano 2015	Okubo, 1971
Los Vilos	Valparaíso	1,83*10 ⁻³	16,2	Este estudio	Okubo, 1971

Tabla EM-121: Comparación con otros estudios

Fuente: consultora Costasur

Los resultados de la dispersión del trazador químico rodamina WT muestran que el sector de Punta Chungo tiene una capacidad de dispersión baja, independiente de la condición mareal, con valores similares a los obtenidos en primavera 2014 y verano 2015.

El comportamiento direccional de la mancha de rodamina no se asoció a una fase mareal determinada, dado que se desplazó hacia la costa (sector norte de bahía Conchalí) durante la fase llenante y vaciante, aunque también el desplazamiento pudo ser influenciado por la dirección y magnitud del viento predominante al momento de efectuar las experiencias. Las campañas del año 2012 presentan valores de coeficiente de dispersión un orden de magnitud mayor al observado en esta campaña, lo que puede estar relacionado a las condiciones de viento de mayor intensidad respecto de las otras campañas y las condiciones del mar.

La dispersión observada es el resultado de la mezcla a diferentes escalas de tiempo, de un proceso de difusión turbulenta generado por remolinos o *eddies* mayores y remolinos de menor tamaño. Los mayores, proporcionan la variabilidad observada en la dispersión media del fluido, en una escala mayor asociada al movimiento del fluido, y los remolinos menores en cambio dan cuenta de la variabilidad al interior de la mancha, responsables de la mezcla, observando gradientes de concentración, explicando la tendencia a formar manchas circulares, ya que los procesos difusivos actúan en dirección radial desde el núcleo de una mancha.

Los desplazamientos observados y los coeficientes de dispersión calculados sugieren que la dispersión está dominada principalmente por procesos de transporte de masas más que por procesos difusivos.

Figura EM-179: Desplazamiento y dispersión de mancha de rodamina. Cuadratura lunar. Marea vaciante

Figura EM-181: Evolución temporal de círculos de áreas equivalentes. Cuadratura lunar, marea vaciante

Fuente: consultora Costasur

Figura EM-182: Evolución temporal de círculos de áreas equivalentes. Cuadratura lunar, marea llenante

Fuente: consultora Costasur

• Síntesis de resultados dispersión con trazadores químicos (WT Rodamina)

Los resultados de la dispersión del trazador químico rodamina WT muestran en el lugar de liberación existió una capacidad de dispersión baja, independiente de la condición mareal en las campañas realizadas el 2014 y 2015. A diferencia de las campañas realizadas el 2012 donde la capacidad de dispersión fue moderada, siendo estas un orden de magnitud mayor a las reportadas el 2014 y 2015.

Adicionalmente, se estable que los desplazamientos observados y los coeficientes de dispersión calculados sugieren que la dispersión está dominada principalmente por procesos de transporte de masas más que por procesos difusivos.

7.1.4.1.2 Vientos

• Verano 2012

En el sector de Punta Chungo se realizaron mediciones de vientos con el objetivo de conocer el régimen local de vientos durante el período de mediciones de corrientes lagrangianas y eulerianas, de tal forma de evaluar el efecto forzante de éste sobre las corrientes marinas.

Materiales y métodos

Las mediciones de vientos fueron efectuadas por una estación meteorológica instalada en las siguientes coordenadas: 262.854 (m) E; 6.469.157(m) N (Datum WGS84).

El instrumento utilizado corresponde a una estación marca MetOne, Data Logger Campbell Scientific CR800, de registro en memoria sólida, programado para obtener una observación promedio cada 10 minutos. Las mediciones se iniciaron el día 26 de enero de 2012 y se extendiaron hasta el día 02 de marzo de 2012.

Los vientos fueron procesados a través de un análisis de frecuencia de magnitud y dirección (rosa de 8 direcciones) en términos de estadística básica, ciclo diario y espectral. En el análisis de frecuencia, los vientos con magnitudes medias inferiores a 1 m/s fueron considerados calmas, debido a que éstos son muy débiles y poco importantes dentro del proceso de transferencia de energía desde la atmósfera al océano.

Resultados

En términos de frecuencia de incidencia, los vientos observados presentaron un predominio de las direcciones asociadas al 3^{er} cuadrante. De esta manera, la mayor ocurrencia de incidencia se registró en las direcciones S y SW (35,4% y 21,8%, respectivamente). El resto de las direcciones se agrupó entre 1,1% (dirección SE) y 11,2% (dirección NE). La Figura EM-183 y la Tabla EM-122 resumen esta información. La mayor ocurrencia de magnitud se registró en el rango de 1,1 a 3,0 m/s, con un porcentaje de incidencia de 31,4%, seguida del rango 3,1 a 5,0 m/s (21,8% de las mediciones). El rango de 5,1 a 7,0 m/s agrupó un 10,5% de las mediciones (Figura EM-183). El máximo de magnitud fue de 19,0 m/s (dirección S).

Los vientos registrados durante este período de mediciones se mostraron de mediana a alta intensidad, encontrándose un 1,1% de la información sobre 15,0 m/s. Por último, un 15,7% de las mediciones se ubicó en la categoría calma (Tabla EM-122).

			coucher		acticia j	CAUCUC			
		FRECUENCIA DE INCIDENCIA DE VIENTOS							
Velocidad				Direc	ciones				
(m/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	1.4	3.8	2.5	1.4	3.1	1.4	1.2	0.9	15.7
1,1 - 3,0	1.5	9.1	1.7	0.9	5.5	6.3	4.6	1.7	31.4
3,1 - 5,0	0.6	1.9	0.2	0.1	6.0	8.8	3.2	0.9	21.8
5,1 - 7,0	0.1	0.1	0.1	0.0	7.0	2.9	0.1	0.1	10.5
7,1 - 9,0	0.0	0.0	0.0	0.0	5.8	1.7	0.0	0.0	7.6
9,1 - 11,0	0.0	0.0	0.0	0.0	4.4	1.2	0.0	0.0	5.7
11,1 - 13,0	0.0	0.0	0.0	0.0	3.5	0.7	0.0	0.0	4.2
13,1 - 15,0	0.0	0.0	0.0	0.0	2.1	0.1	0.0	0.0	2.1
> 15,0	0.0	0.0	0.0	0.0	1.1	0.0	0.0	0.0	1.1
Total Efectivo	2.2	11.2	2.0	1.1	35.4	21.8	7.9	2.8	84.3
Maximo (m/s)	6.0	6.3	6.3	5.4	19.0	13.6	6.4	6.2	19.0
Promedio (m/s)	2.5	2.2	2.0	2.1	7.3	4.6	2.9	2.8	5.0

Tabla EM-122: Frecuencia de incidencia y excedencia de viento

		FRECUENCIA DE EXCEDENCIA DE VIENTOS									
Velocidad				Direco	ciones						
(m/s)	N	NE	E	SE	S	SW	W	NW	TOTAL		
> 15,0	0.0	0.0	0.0	0.0	1.1	0.0	0.0	0.0	1.1		
> 13,0	0.0	0.0	0.0	0.0	3.2	0.1	0.0	0.0	3.3		
> 11,0	0.0	0.0	0.0	0.0	6.6	0.8	0.0	0.0	7.4		
> 9,0	0.0	0.0	0.0	0.0	11.1	2.0	0.0	0.0	13.1		
> 7,0	0.0	0.0	0.0	0.0	16.9	3.7	0.0	0.0	20.6		
> 5,0	0.1	0.1	0.1	0.0	23.9	6.6	0.1	0.1	31.1		
> 3,0	0.7	2.1	0.3	0.2	29.9	15.5	3.3	1.0	52.9		
> 1,0	2.2	11.2	2.0	1.1	35.4	21.8	7.9	2.8	84.3		

Fuente: consultora Costasur

Fuente: consultora Costasur

Para determinar el comportamiento del viento en el dominio de la frecuencia, se aplicó un análisis estadístico de tipo espectral estándar (12 grados de libertad y 95% de confianza). El análisis espectral de las componentes ortogonales de los vientos (Figura EM-184) mostró contenido de energía en la banda diurna (fundamentalmente en la componente V), indicativo de un efecto de ciclo diario del viento.

Al respecto, en la Figura EM-185 se observa que en el sector de Punta Chungo existe un ciclo diario del viento en términos direccionales y de magnitud promedio. En horas de la noche (22:00 horas, Z + 3) se produce un decaimiento de la magnitud promedio del viento, para mantenerse en bajos valores durante la madrugada y hasta las 10:00 horas (Z + 3). A partir de esta hora, los vientos comienzan a incrementar su intensidad, alcanzándose valores máximos promedio de 8,30 m/s (20:00 horas, Z + 3). Direccionalmente durante el día, los vientos muestran una clara dominancia de la dirección SW y S (Figura EM-183). Durante la noche y madrugada, existe una marcada variabilidad direccional de vientos, destacando la dirección NE y las calmas.

• Otoño 2012

Materiales y métodos

Las mediciones de vientos fueron efectuadas por una estación meteorológica instalada en las siguientes coordenadas: 262.854 (m) E; 6.469.157 (m) N (Datum WGS84)

El instrumento utilizado correspondió a una estación marca MetOne, Data Logger Campbell Scientific CR800, de registro en memoria sólida, programado para obtener una observación promedio cada 10 minutos. Las mediciones se iniciaron el día 11 de abril de 2012 y se extiendieron hasta el día 14 de mayo de 2012.

Los vientos fueron procesados a través de un análisis de frecuencia de magnitud y dirección (rosa de 8 direcciones) en términos de estadística básica, ciclo diario y espectral. En el análisis de frecuencia, los vientos con magnitudes medias inferiores a 1 m/s fueron considerados calmas, debido a que éstos son muy débiles y poco importantes dentro del proceso de transferencia de energía desde la atmósfera al océano.

Resultados

En términos de frecuencia de incidencia, los vientos observados presentaron un predominio de las direcciones asociadas al 3^{er} y 1^{er} cuadrante. De esta manera, la mayor ocurrencia de incidencia se registra en las direcciones S, NE y SW (23,3%, 22,4% y 11,7%,

respectivamente). El resto de las direcciones se agrupó entre 1,8% (dirección SE) y 6,9% (dirección E). La Figura EM-186 y la Tabla EM-123, resumen esta información.

La mayor ocurrencia de magnitud se registró en el rango de 1,1 a 3,0 m/s, con un porcentaje de incidencia de 45,0%, seguida del rango 3,1 a 5,0 m/s (19,9% de las mediciones). El rango de 5,1 a 7,0 m/s agrupó un 8,8% de las mediciones (Figura EM-186). El máximo de magnitud fue de 12,4 m/s (dirección S).

Los vientos registrados durante este período de mediciones se mostraron de mediana a alta intensidad, encontrándose un 0,2% de la información sobre 11,0 m/s. Por último, un 20,7% de las mediciones se ubicó en la categoría calma (Tabla EM-123).

			FI	RECUENCIA I	DE INCIDENCI	A DE VIENTO	S		
Velocidad				Direc	ciones				
(m/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	1.7	5.4	3.8	3.1	2.9	1.6	1.1	1.1	20.7
1,1 - 3,0	2.4	18.0	5.7	1.6	4.6	5.8	4.4	2.3	45.0
3,1 - 5,0	1.1	4.2	1.1	0.2	5.8	5.0	1.4	1.1	19.9
5,1 - 7,0	0.1	0.2	0.1	0.0	7.3	0.8	0.0	0.3	8.8
7,1 - 9,0	0.0	0.0	0.0	0.0	4.2	0.0	0.0	0.0	4.2
9,1 - 11,0	0.0	0.0	0.0	0.0	1.2	0.0	0.0	0.0	1.2
11,1 - 13,0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.2
13,1 - 15,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 15,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Efectivo	3.7	22.4	6.9	1.8	23.3	11.7	5.7	3.8	79.3
Maximo (m/s)	6.1	5.6	5.3	4.2	12.4	8.6	4.2	6.9	12.4
Promedio (m/s)	2.7	2.3	2.2	1.9	5.4	3.1	2.5	2.9	3.4
			FR	ECUENCIA D	E EXCEDENC	IA DE VIENT	DS		
Velocidad				Direc	ciones				
(m/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 15,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 13,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 11,0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.2
> 9,0	0.0	0.0	0.0	0.0	1.4	0.0	0.0	0.0	1.4
> 7,0	0.0	0.0	0.0	0.0	5.6	0.0	0.0	0.0	5.7
> 5,0	0.1	0.2	0.1	0.0	12.9	0.9	0.0	0.3	14.5
> 3,0	1.3	4.4	1.2	0.2	18.7	5.8	1.4	1.5	34.4
> 1.0	37	22.4	6.0	1.8	23.3	117	57	3.8	70.3

Tabla EM-123: Frecuencia de incidencia y excedencia de viento

Fuente: consultora Costasur

Figura EM-186: Histograma de frecuencia de dirección y velocidad del viento

Para determinar el comportamiento del viento en el dominio de la frecuencia, se aplicó un análisis estadístico de tipo espectral estándar (12 grados de libertad y 95% de confianza). El análisis espectral de las componentes ortogonales de los vientos (Figura EM-187) mostró contenido de energía en la banda diurna (componente U y V), indicativo de un efecto de ciclo diario del viento.

Al respecto, en la Figura EM-188 se observa que en el sector de Punta Chungo existe un ciclo diario del viento en términos direccionales y de magnitud promedio. En horas de la noche (21:00 horas, Z + 3) se produce un decaimiento de la magnitud promedio del viento, para mantenerse en bajos valores durante la madrugada y hasta las 11:00 horas (Z + 3). A partir de esta hora, los vientos comienzan a incrementar su intensidad, alcanzándose valores máximos promedio de 4,56 m/s (15:00 horas, Z + 3). Direccionalmente durante el día, los vientos muestran una clara dominancia de las direcciones S, SW y W. Durante la noche y madrugada, existe una variabilidad direccional de vientos, destacando la dirección NE, E y las calmas.

Fuente: consultora Costasur

Figura EM-187: Autoespectros del viento

Figura EM-188: Ciclo diario del viento, dirección y magnitud promedio

Invierno 2012

Materiales y métodos

Las mediciones de fueron efectuadas por una estación meteorológica instalada en las siguientes coordenadas: 262.854 (m) E; 6.469.157 (m) N (Datum WGS84).

El instrumento utilizado corresponde a una estación marca MetOne, Data Logger Campbell Scientific CR800, de registro en memoria sólida, programado para obtener una observación promedio cada 10 minutos. Las mediciones se iniciaron el día 10 de julio de 2012 y se extienden hasta el día 17 de agosto de 2012.

Los vientos fueron procesados a través de un análisis de frecuencia de magnitud y dirección (rosa de 8 direcciones) en términos de estadística básica, ciclo diario y espectral. En el análisis de frecuencia, los vientos con magnitudes medias inferiores a 1 m/s fueron considerados calmas, debido a que éstos son muy débiles y poco importantes dentro del proceso de transferencia de energía desde la atmósfera al océano.

Resultados

En términos de frecuencia de incidencia, los vientos observados presentaron un predominio de las direcciones asociadas al 1^{er} y 3^{er} cuadrante. De esta manera, la mayor ocurrencia de incidencia se registra en las direcciones NE y S (32,0% y 22,1%, respectivamente). El resto de las direcciones se agrupó entre 2,0% (dirección W) y 8,3% (direcciones N y E). La Figura EM-189 y la Tabla EM-124, resumen esta información.

La mayor ocurrencia de magnitud se registró en el rango de 1,1 a 3,0 m/s, con un porcentaje de incidencia de 40,4%, seguida del rango 3,1 a 5,0 m/s (22,4% de las mediciones). El rango de 5,1 a 7,0 m/s agrupó un 11,9% de las mediciones (Figura EM-189). El máximo de magnitud fue de 15,5 m/s (dirección S).

Los vientos registrados durante este período de mediciones se mostraron de mediana a alta intensidad, encontrándose un 0,1% de la información sobre 15,0 m/s. Por último, un 15,0% de las mediciones se ubicó en la categoría calma (Tabla EM-124).

			loouono		Jiachola	y choca			
	FRECUENCIA DE INCIDENCIA DE VIENTOS								
Velocidad				Direc	ciones				
(m/s)	Ν	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	1.0	4.6	3.2	2.0	1.9	1.0	0.7	0.6	15.0
1,1 - 3,0	1.4	20.1	6.5	2.1	4.1	3.5	1.5	1.1	40.4
3,1 - 5,0	2.8	10.2	1.4	0.3	3.9	2.4	0.4	1.0	22.4
5,1 - 7,0	2.8	1.3	0.3	0.0	6.1	0.9	0.1	0.5	11.9
7,1 - 9,0	1.2	0.4	0.0	0.0	4.1	0.3	0.0	0.2	6.1
9,1 - 11,0	0.0	0.0	0.0	0.0	2.4	0.1	0.0	0.0	2.6
11,1 - 13,0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0
13,1 - 15,0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.5
> 15,0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.1
Total Efectivo	8.3	32.0	8.3	2.4	22.1	7.1	2.0	2.9	85.0
Maximo (m/s)	9.1	9.5	9.3	6.9	15.5	13.9	6.3	9.5	15.5
Promedio (m/s)	5.0	2.8	2.4	1.9	6.2	3.5	2.4	3.8	3.9

Tabla EM-124: Frecuencia de incidencia y excedencia de viento

		FRECUENCIA DE EXCEDENCIA DE VIENTOS									
Velocidad				Direco	ciones						
(m/s)	N	NE	E	SE	S	SW	W	NW	TOTAL		
> 15,0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.1		
> 13,0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.5		
> 11,0	0.0	0.0	0.0	0.0	1.5	0.0	0.0	0.0	1.6		
> 9,0	0.0	0.0	0.0	0.0	3.9	0.1	0.0	0.0	4.1		
> 7,0	1.3	0.4	0.0	0.0	8.0	0.4	0.0	0.2	10.3		
> 5,0	4.1	1.6	0.3	0.0	14.1	1.2	0.1	0.7	22.2		
> 3,0	6.9	11.9	1.7	0.3	18.0	3.6	0.5	1.7	44.6		
> 1,0	8.3	32.0	8.3	2.4	22.1	7.1	2.0	2.9	85.0		

Fuente: consultora Costasur

Figura EM-189: Histograma de frecuencia de dirección y velocidad del viento

Fuente: consultora Costasur

Para determinar el comportamiento del viento en el dominio de la frecuencia, se aplicó un análisis estadístico de tipo espectral estándar (12 grados de libertad y 95% de confianza). El análisis espectral de las componentes ortogonales de los vientos (Figura EM-190) mostró contenido de energía en la banda diurna (componente U y V), indicativo de un efecto de ciclo diario del viento.

Al respecto, en la Figura EM-191 se observa que en el sector de Punta Chungo existe un ciclo diario del viento en términos direccionales y de magnitud promedio. En horas de la noche (21:00 horas, Z + 3) se produce un decaimiento de la magnitud promedio del viento, para mantenerse en bajos valores durante la madrugada y hasta las 11:00 horas (Z + 3). A partir de esta hora, los vientos comienzan a incrementar su intensidad, alcanzándose valores máximos promedio de 6,56 m/s (16:00 horas, Z + 3). Direccionalmente durante el día, los vientos muestran una clara dominancia de las direcciones S y SW (Figura EM-189). Durante la noche y madrugada, existe una variabilidad direccional de vientos, destacando la dirección NE, E y las calmas.

Figura EM-190: Autoespectros del viento

Figura EM-191: Ciclo diario del viento, dirección y magnitud promedio

Fuente: consultora Costasur

• Primavera 2012

Materiales y métodos

Las mediciones de vientos fueron efectuadas por una estación meteorológica instalada en las siguientes coordenadas: 262.854 (m) E; 6.469.157 (m) N (Datum WGS84).

El instrumento utilizado corresponde a una estación marca MetOne, Data Logger Campbell Scientific CR800, de registro en memoria sólida, programado para obtener una observación promedio cada 10 minutos. Las mediciones se iniciaron el día 09 de noviembre de 2012 y se extienden hasta el día 10 de diciembre de 2012.

Los vientos fueron procesados a través de un análisis de frecuencia de magnitud y dirección (rosa de 8 direcciones) en términos de estadística básica, ciclo diario y espectral. En el análisis de frecuencia, los vientos con magnitudes medias inferiores a 1 m/s fueron considerados calmas, debido a que éstos son muy débiles y poco importantes dentro del proceso de transferencia de energía desde la atmósfera al océano.

Resultados

En términos de frecuencia de incidencia, los vientos observados presentaron un predominio de las direcciones asociadas al 3^{er} y 1^{er} cuadrante. De esta manera, la mayor ocurrencia de incidencia se registra en las direcciones S, SW y NE (45,7%, 10,7% y 9,9%, respectivamente). El resto de las direcciones se agrupó entre 0,7% (dirección E) y 6,2% (dirección W). La Figura EM-192 y la Tabla EM-125, resumen esta información.

La mayor ocurrencia de magnitud se registró en el rango de 1,1 a 3,0 m/s, con un porcentaje de incidencia de 31,3%, seguida del rango 3,1 a 5,0 m/s (27,2% de las mediciones). El rango de 5,1 a 7,0 m/s agrupó un 12,6% de las mediciones (La Figura EM-192). El máximo de magnitud fue de 16,1 m/s (dirección S).

Los vientos registrados durante este período de mediciones se mostraron de mediana a alta intensidad, encontrándose un 0.5% de la información sobre 15.0 m/s. Por último, un 13.4% de las mediciones se ubicó en la categoría calma (Tabla EM-125).

	FRECUENCIA DE INCIDENCIA DE VIENTOS								
Velocidad	Direcciones								
(m/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	1.4	4.8	1.7	1.5	1.5	1.1	0.6	0.9	13.4
1,1 - 3,0	3.0	8.2	0.7	1.5	6.7	4.8	4.0	2.4	31.3
3,1 - 5,0	2.1	1.6	0.0	0.7	13.9	4.7	2.1	2.1	27.2
5,1 - 7,0	0.7	0.1	0.0	0.2	10.2	0.9	0.0	0.5	12.6
7,1 - 9,0	0.1	0.0	0.0	0.0	6.2	0.3	0.1	0.0	6.7
9,1 - 11,0	0.1	0.0	0.0	0.0	4.3	0.0	0.0	0.0	4.4
11,1 - 13,0	0.0	0.0	0.0	0.0	2.1	0.0	0.0	0.0	2.1
13,1 - 15,0	0.0	0.0	0.0	0.0	1.9	0.0	0.0	0.0	1.9
> 15,0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.5
Total Efectivo	6.1	9.9	0.7	2.4	45.7	10.7	6.2	5.0	86.6
Maximo (m/s)	10.0	5.8	3.0	7.1	16.1	8.6	7.6	7.1	16.1
Promedio (m/s)	3.4	2.2	1.6	2.8	6.2	3.4	2.8	3.2	4.7
			FR	RECUENCIA D	E EXCEDENC	IA DE VIENT	os		
Velocidad				Direc	ciones				
(m/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 15,0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.5
> 13,0	0.0	0.0	0.0	0.0	2.3	0.0	0.0	0.0	2.3
> 11,0	0.0	0.0	0.0	0.0	4.5	0.0	0.0	0.0	4.5
> 9,0	0.1	0.0	0.0	0.0	8.7	0.0	0.0	0.0	8.8
> 7,0	0.3	0.0	0.0	0.0	14.9	0.3	0.1	0.0	15.6
> 5.0	0.9	0.1	0.0	0.2	25.0	1.2	0.1	0.5	28.1

Tabla EM-125: Frecuencia de incidencia y excedencia de viento

Fuente: consultora Costasur

39.0

45.7

0.9

2.4

0.0

0.7

5.9

10.7

2.2

6.2

2.6

5.0

55.3

86.6

> 5,0

> 3,0

> 1,0

3.1

6.1

1.7

9.9

Figura EM-192: Histograma de frecuencia de dirección y velocidad del viento

Para determinar el comportamiento del viento en el dominio de la frecuencia, se aplicó un análisis estadístico de tipo espectral estándar (12 grados de libertad y 95% de confianza). El análisis espectral de las componentes ortogonales de los vientos (La Figura EM-193) mostró contenido de energía en la banda diurna (componente U y V), indicativo de un efecto de ciclo diario del viento.

Al respecto, en la Figura EM-194 se observa que en el sector de Punta Chungo existe un ciclo diario del viento en términos direccionales y de magnitud promedio. En horas de la noche (23:00 horas, Z + 3) se produce un decaimiento de la magnitud promedio del viento, para mantenerse en bajos valores durante la madrugada y hasta las 09:00 horas (Z + 3). A partir de esta hora, los vientos comienzan a incrementar su intensidad, alcanzándose valores máximos promedio de 6,71 m/s (20:00 horas, Z + 3). Direccionalmente durante el día, los vientos muestran una clara dominancia de las direcciones S y SW (La Figura EM-192). Durante la noche y madrugada, destacan las direcciones NE, S y las calmas.

Fuente: consultora Costasur

Figura EM-193: Autoespectros del viento

Figura EM-194: Ciclo diario del viento, dirección y magnitud promedio

• Primavera 2014

Materiales y métodos

Las mediciones de vientos fueron efectuadas por una estación meteorológica instalada en las siguientes coordenadas: 263.304 E; 6.469.548 E (Datum WGS84).

El instrumento utilizado corresponde a una estación marca Young, Data Logger Campbell Scientific CR1000, de registro en memoria sólida, programado para obtener una observación promedio cada 1 hora. Las mediciones se iniciaron el día 28 de octubre y se extienden hasta el día 10 de diciembre de 2014.

Los vientos fueron procesados a través de un análisis de frecuencia de magnitud y dirección (rosa de 8 direcciones) en términos de estadística básica, ciclo diario y espectral. En el análisis de frecuencia, los vientos con magnitudes medias inferiores a 1 m/s fueron considerados calmas, debido a que éstos son muy débiles y poco importantes dentro del proceso de transferencia de energía desde la atmósfera al océano.

Resultados

En términos de frecuencia de incidencia, los vientos observados presentaron un predominio de las direcciones asociadas al 3^{er} y 1^{er} cuadrante. De esta manera, la mayor ocurrencia de incidencia se registra en las direcciones SW, S y NE (48,6%, 15,9% y 12,0%, respectivamente). El resto de las direcciones se agrupó entre 1,4% (dirección SE) y 10,2% (dirección W). La Figura EM-195 y la Tabla EM-126, resumen esta información.

La mayor ocurrencia de magnitud se registró en el rango de 1,1 a 3,0 m/s, con un porcentaje de incidencia de 32,9%, seguida del rango 3,1 a 5,0 m/s (24,7% de las mediciones). El rango de 5,1 a 7,0 m/s agrupó un 16,3% de las mediciones (Figura EM-195). El máximo de magnitud fue de 16,6 m/s (dirección SW). Los vientos registrados durante este período de mediciones se mostraron de mediana a alta intensidad, encontrándose un 0,8% de la información sobre 15,0 m/s. Por último, un 3,8% de las mediciones se ubicó en la categoría calma (Tabla EM-126).

	rusia Eliti 120. i recucitcia de melacificia y execucitcia de viento										
	FRECUENCIA DE INCIDENCIA DE VIENTOS										
Velocidad		Direcciones									
(m/s)	N	NE	E	SE	S	SW	W	NW	TOTAL		
<= 1,0	0.2	0.7	0.5	0.4	0.1	0.4	0.7	1.0	3.8		
1,1 - 3,0	1.8	11.0	1.6	1.2	3.3	5.9	6.3	1.8	32.9		
3,1 - 5,0	1.0	1.1	0.0	0.2	4.6	13.0	3.7	1.2	24.7		
5,1 - 7,0	0.3	0.0	0.0	0.0	4.6	11.0	0.1	0.4	16.3		
7,1 - 9,0	0.0	0.0	0.0	0.0	2.4	7.8	0.0	0.0	10.2		
9,1 - 11,0	0.0	0.0	0.0	0.0	1.0	4.4	0.0	0.0	5.4		
11,1 - 13,0	0.0	0.0	0.0	0.0	0.0	3.7	0.0	0.0	3.7		
13,1 - 15,0	0.0	0.0	0.0	0.0	0.0	2.2	0.0	0.0	2.2		
> 15,0	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.8		
Total Efectivo	3.1	12.0	1.6	1.4	15.9	48.6	10.2	3.4	96.2		
Maximo (m/s)	6.1	3.9	2.2	3.3	10.4	16.6	5.1	5.6	16.6		
Promedio (m/s)	2.9	2.1	1.5	1.9	5.2	6.7	2.7	3.0	5.1		

Tabla EM-126: Frecuencia de incidencia y excedencia de viento

		FRECUENCIA DE EXCEDENCIA DE VIENTOS							
Velocidad				Direc	ciones				
(m/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 15,0	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.8
> 13,0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	3.0
> 11,0	0.0	0.0	0.0	0.0	0.0	6.6	0.0	0.0	6.6
> 9,0	0.0	0.0	0.0	0.0	1.0	11.0	0.0	0.0	12.0
> 7,0	0.0	0.0	0.0	0.0	3.4	18.8	0.0	0.0	22.2
> 5,0	0.3	0.0	0.0	0.0	8.0	29.8	0.1	0.4	38.5
> 3,0	1.2	1.1	0.0	0.2	12.6	42.7	3.8	1.5	63.2
> 1,0	3.1	12.0	1.6	1.4	15.9	48.6	10.2	3.4	96.2

Fuente: consultora Costasur

Figura EM-195: Histograma de frecuencia de dirección y velocidad del viento

Para determinar el comportamiento del viento en el dominio de la frecuencia, se aplicó un análisis estadístico de tipo espectral estándar (12 grados de libertad y 95% de confianza). El análisis espectral de las componentes ortogonales de los vientos (Figura EM-196) mostró contenido de energía en la banda diurna (componente U y V), indicativo de un efecto de ciclo diario del viento.

Al respecto, en la Figura EM-197 se observa que en el sector de Punta Chungo existe un ciclo diario del viento en términos direccionales y de magnitud promedio. En horas de la noche (23:00 horas, Z + 3) se produce un decaimiento de la magnitud promedio del viento, para mantenerse en bajos valores durante la madrugada y hasta las 09:00 horas (Z + 3). A partir de esta hora, los vientos comienzan a incrementar su intensidad, alcanzándose valores máximos promedio de 7,52 m/s (18:00 horas, Z + 3). Direccionalmente durante el día, los vientos muestran una clara dominancia de la dirección SW (Figura EM-195). Durante la noche y madrugada, destacan las direcciones NE, S y las calmas.

Figura EM-196: Autoespectros del viento

Figura EM-197: Ciclo diario del viento, dirección y magnitud promedio

Fuente: consultora Costasur

• Verano 2015

Materiales y métodos

Las mediciones de vientos fueron efectuadas por una estación meteorológica instalada en las siguientes coordenadas: 262.697 (m) E; 6.466.909 (m) N (Datum WGS84).

El instrumento utilizado corresponde a una estación marca Young, Data Logger Campbell Scientific CR850, de registro en memoria sólida, programado para obtener una observación promedio cada 10 minutos. Las mediciones se iniciaron el día 04 de febrero y se extienden hasta el día 23 de marzo de 2015.

Los vientos fueron procesados a través de un análisis de frecuencia de magnitud y dirección (rosa de 8 direcciones) en términos de estadística básica, ciclo diario y espectral. En el análisis de frecuencia, los vientos con magnitudes medias inferiores a 1 m/s fueron considerados calmas, debido a que éstos son muy débiles y poco importantes dentro del proceso de transferencia de energía desde la atmósfera al océano.

Resultados

En términos de frecuencia de incidencia, los vientos observados presentaron un predominio de las direcciones asociadas al 3^{er} cuadrante. De esta manera, la mayor ocurrencia de incidencia se registró en las direcciones S y SW (23,3% y 21,5%, respectivamente). El resto de las direcciones se agrupó entre 3,6% (dirección E) y 13,5% (dirección W). La Figura EM-198 y la Tabla EM-127, resumen esta información.

La mayor ocurrencia de magnitud se registró en el rango de 1,1 a 3,0 m/s, con un porcentaje de incidencia de 42,9%, seguida del rango 3,1 a 5,0 m/s (30,6% de las mediciones). El rango de 5,1 a 7,0 m/s agrupó un 10,4% de las mediciones (Figura EM-198). El máximo de magnitud fue de 8,9 m/s (dirección S). Los vientos registrados durante este período de mediciones se mostraron de mediana intensidad, encontrándose un 1,3% de la información sobre 7,0 m/s. Por último, un 14,8% de las mediciones se ubicó en la categoría calma (Tabla EM-127).

	FRECUENCIA DE INCIDENCIA DE VIENTOS								
Velocidad				Direc	ciones				
(m/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	2.3	3.5	2.9	1.4	0.7	0.6	1.1	2.2	14.8
1,1 - 3,0	2.9	5.8	3.4	4.0	9.4	4.9	6.9	5.7	42.9
3,1 - 5,0	0.8	0.3	0.2	0.6	8.9	10.6	6.2	3.0	30.6
5,1 - 7,0	0.0	0.0	0.0	0.0	3.9	5.7	0.4	0.4	10.4
7,1 - 9,0	0.0	0.0	0.0	0.0	1.0	0.3	0.0	0.0	1.3
9,1 - 11,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11,1 - 13,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13,1 - 15,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 15,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Efectivo	3.7	6.0	3.6	4.6	23.3	21.5	13.5	9.1	85.2
Maximo (m/s)	5.7	4.7	4.7	4.4	8.9	8.5	5.7	6.6	8.9
Promedio (m/s)	2.4	1.7	1.7	2.2	3.7	4.2	3.0	2.8	3.3
			FR	RECUENCIA D	E EXCEDENC	IA DE VIENT	os		
Velocidad				Direc	ciones				
(m/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 15,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 13,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 11,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 9,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 7,0	0.0	0.0	0.0	0.0	1.0	0.3	0.0	0.0	1.3
> 5,0	0.0	0.0	0.0	0.0	4.9	6.0	0.4	0.4	11.7

Tabla EM-127: Frecuencia de incidencia y excedencia de viento

Fuente: consultora Costasur

13.8

23.3

16.6

21.5

6.6

13.5

3.4

9.1

42.3

85.2

0.6

4.6

> 3,0

> 1.0

0.8

3.7

0.3

6.0

0.2

3.6

Figura EM-198: Histograma de frecuencia de dirección y velocidad del viento

Fuente: consultora Costasur

Para determinar el comportamiento del viento en el dominio de la frecuencia, se aplicó un análisis estadístico de tipo espectral estándar (12 grados de libertad y 95% de confianza). El análisis espectral de las componentes ortogonales de los vientos (Figura EM-199) mostró contenido de energía en la banda diurna (componente U y V), indicativo de un efecto de ciclo diario del viento.

Al respecto, en la Figura EM-200 se observa que en el sector de Punta Chungo existe un ciclo diario del viento en términos direccionales y de magnitud promedio. En horas de la noche (23:00 horas, Z + 3) se produce un decaimiento de la magnitud promedio del viento, para mantenerse en bajos valores durante la madrugada y hasta las 09:00 horas (Z + 3). A partir de esta hora, los vientos comienzan a incrementar su intensidad, alcanzándose valores máximos promedio de 4,7 m/s (18:00 horas, Z + 3). Direccionalmente durante el día, los vientos muestran una clara dominancia de la dirección S, SW y W (Figura EM-197). Durante la noche y madrugada, destacan las direcciones NE, S y las calmas.

Figura EM-199: Autoespectros del viento

Figura EM-200: Ciclo diario del viento, dirección y magnitud promedio

Invierno 2015

Materiales y métodos

Las mediciones de vientos fueron efectuadas por una estación meteorológica instalada en las siguientes coordenadas: 260.363 E; 6.472.975 N (Datum WGS84).

El instrumento utilizado corresponde a una estación marca Young, Data Logger Campbell Scientific CR850, de registro en memoria sólida, programado para obtener una observación promedio cada 10 minutos. Las mediciones se iniciaron el día 30 de julio y se extienden hasta el día 08 de septiembre de 2015.

Los vientos fueron procesados a través de un análisis de frecuencia de magnitud y dirección (rosa de 8 direcciones) en términos de estadística básica, ciclo diario y espectral. En el análisis de frecuencia, los vientos con magnitudes medias inferiores a 1 m/s fueron considerados calmas, debido a que éstos son muy débiles y poco importantes dentro del proceso de transferencia de energía desde la atmósfera al océano.

Resultados

En términos de frecuencia de incidencia, los vientos observados presentaron un predominio de las direcciones asociadas al 2^{do} y 4^{to} cuadrante. De esta manera, la mayor ocurrencia de incidencia se registra en las direcciones S, N, SE y NW (19,9%, 18,3%, 8,5% y 7,8%, respectivamente). El resto de las direcciones se agrupó entre 3,0% (dirección W) y 7,1% (dirección SW). La Figura EM-201 y la Tabla EM-128, resumen esta información.

La mayor ocurrencia de magnitud se registró en el rango de 1,1 a 3,0 m/s, con un porcentaje de incidencia de 41,5%, seguida del rango 3,1 a 5,0 m/s (21,1% de las mediciones). El rango de 5,1 a 7,0 m/s agrupó un 9,5% de las mediciones (Figura EM-201). El máximo de magnitud fue de 13,7 m/s (dirección NW). Los vientos registrados durante este período de mediciones se mostraron de mediana intensidad, encontrándose un 0,2% de la información sobre 11,0 m/s. Por último, un 24,8% de las mediciones se ubicó en la categoría calma (Tabla EM-128).

	abia Lini- 120. i recucincia de mendencia y excedencia de Mento								
	FRECUENCIA DE INCIDENCIA DE VIENTOS								
Velocidad				Direc	ciones				
(m/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
<= 1,0	7.8	4.6	2.2	3.0	1.5	1.9	1.6	2.2	24.8
1,1 - 3,0	10.4	5.8	2.9	7.4	5.5	4.1	2.5	2.9	41.5
3,1 - 5,0	5.3	0.5	0.8	1.0	7.4	1.9	0.4	3.8	21.1
5,1 - 7,0	1.5	0.4	0.2	0.1	5.7	0.6	0.0	1.0	9.5
7,1 - 9,0	0.5	0.3	0.0	0.0	1.2	0.3	0.0	0.0	2.3
9,1 - 11,0	0.3	0.0	0.0	0.0	0.1	0.2	0.0	0.0	0.6
11,1 - 13,0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2
13,1 - 15,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 15,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Efectivo	18.3	6.9	3.8	8.5	19.9	7.1	3.0	7.8	75.2
Maximo (m/s)	12.5	9.1	6.2	5.3	10.2	10.2	4.6	13.7	13.7
Promedio (m/s)	3.3	2.4	2.4	2.1	4.3	3.3	2.1	3.7	3.3

Tabla EM-128: Frecuencia de incidencia y excedencia de viento

		FRECUENCIA DE EXCEDENCIA DE VIENTOS							
Velocidad				Direc	ciones				
(m/s)	N	NE	E	SE	S	SW	W	NW	TOTAL
> 15,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 13,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
> 11,0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2
> 9,0	0.5	0.0	0.0	0.0	0.1	0.2	0.0	0.1	0.9
> 7,0	1.0	0.3	0.0	0.0	1.3	0.5	0.0	0.1	3.2
> 5,0	2.5	0.7	0.2	0.1	7.0	1.1	0.0	1.1	12.7
> 3,0	7.9	1.1	0.9	1.1	14.4	3.0	0.4	4.9	33.8
> 1,0	18.3	6.9	3.8	8.5	19.9	7.1	3.0	7.8	75.2

Fuente: consultora Costasur

Figura EM-201: Histograma de frecuencia de dirección y velocidad del viento

Fuente: consultora Costasur

Para determinar el comportamiento del viento en el dominio de la frecuencia, se aplicó un análisis estadístico de tipo espectral estándar (12 grados de libertad y 95% de confianza). El análisis espectral de las componentes ortogonales de los vientos (Figura EM-202) mostró contenido de energía en la banda diurna (componente U), indicativo de un efecto de ciclo diario del viento. La componente V mostró contenido de energía en las bajas frecuencias.

En la Figura EM-203, se observa que en el sector de Punta Chungo existe un leve ciclo diario del viento en términos direccionales y de magnitud promedio. En horas de la noche (23:00 horas, Z + 3) se produce un decaimiento de la magnitud promedio del viento, para mantenerse en bajos valores durante la madrugada y hasta las 09:00 horas (Z + 3). A partir de esta hora, los vientos comienzan a incrementar su intensidad, alcanzándose valores máximos promedio de 3,76 m/s (15:00 horas, Z + 3). Direccionalmente durante el día, los vientos muestran direcciones de incidencia S, SW y N. Durante la noche y madrugada, destacan las direcciones N y las calmas.

Figura EM-202: Autoespectros del viento

Figura EM-203: Ciclo diario del viento, dirección y magnitud promedio

Fuente: consultora Costasur

• Sintesis de resultados de vientos

A continuación se presenta una sístesis de los resultados de vientos respresentados en cada campaña, en la Tabla EM-129 se resumen toda la información.

Verano 2012

Los vientos presentaron un predominio de las direcciones asociadas al 3^{er} cuadrante. Las mayores ocurrencias de incidencia se registraron en las direcciones S y SW (35,4% y 21,8%, respectivamente). El máximo de magnitud fue de 19,0 m/s (dirección S).

Otoño 2012

Los vientos presentaron un predominio de las direcciones asociadas al 3^{er} y 1^{er} cuadrante, y la mayor ocurrencia de incidencia se registra en las direcciones S, NE y SW (23,3%, 22,4% y 11,7%, respectivamente). El resto de las direcciones se agrupó entre 1,8% (dirección SE) y 6,9% (dirección E). El máximo de magnitud fue de 12,4 m/s (dirección S).

Invierno 2012

Los vientos presentaron un predominio de las direcciones asociadas al 1^{er} y 3^{er} cuadrante. La mayor ocurrencia de incidencia se registra en las direcciones NE y S (32,0% y 22,1%, respectivamente). El resto de las direcciones se agrupó entre 2,0% (dirección W) y 8,3% (direcciones N y E). El máximo de magnitud fue de 15,5 m/s (dirección S).

Primavera 2012

Los vientos observados presentaron un predominio de las direcciones asociadas al 1^{er} y 3^{er} cuadrante. La mayor ocurrencia de incidencia se registra en las direcciones S, SW y NE (45,7%, 10,7% y 9,9%, respectivamente). El resto de las direcciones se agrupó entre 0,7% (dirección E) y 6,2% (dirección W). El máximo de magnitud fue de 16,1 m/s (dirección S).

Primavera 2014

Los vientos presentaron un predominio de las direcciones asociadas al 1^{er} y 3^{er} cuadrante. La mayor ocurrencia de incidencia se registra en las direcciones SW, S y NE (48,6%, 15,9% y 12,0%, respectivamente). El resto de las direcciones se agrupó entre 1,4% (dirección SE) y 10,2% (dirección W). El máximo de magnitud fue de 16,6 m/s (dirección SW).

Verano 2015

Los vientos presentaron un predominio de las direcciones asociadas al 3^{er} cuadrante. La mayor ocurrencia de incidencia se registra en las direcciones S y SW (23,3% y 21,5%, respectivamente). El resto de las direcciones se agrupó entre 3,6% (dirección E) y 13,5% (dirección W). El máximo de magnitud fue de 8,9 m/s (dirección S).

Invierno 2015

Los vientos observados presentaron un predominio de las direcciones asociadas al 2^{do} y 4^{to} cuadrante. La mayor ocurrencia de incidencia se registra en las direcciones S, N, SE y NW (19,9%, 18,3%, 8,5% y 7,8%, respectivamente). El resto de las direcciones se agrupó entre 3,0% (dirección W) y 7,1% (dirección SW). El máximo de magnitud fue de 13,7 m/s (dirección NW).

Año	Campaña	Patrón direccional	Magnitud máxima (m/s)		
	Verano	3 ^{er} cuadrante	19,0 (dirección S)		
2012	Otoño	3 ^{er} y 1 ^{er} cuadrante	12,4 (dirección S)		
2012	Invierno	1 ^{er} y 3 ^{er} cuadrante	15,5 (dirección S)		
	Primavera	1 ^{er} y 3 ^{er} cuadrante	16,1 (dirección S)		
2014	Primavera	1 ^{er} y 3 ^{er} cuadrante	16,6 (dirección SW)		
2015	Verano	3 ^{er} cuadrante	8,9 (dirección S)		
	Invierno	2 ^{do} y 4 ^{to} cuadrante	13,7 (dirección NW)		

Tabla EM-129: Resumen de vientos

7.1.4.1.3 Mareas

El ascenso y descenso del nivel del mar en respuesta al efecto gravitacional de la luna y el sol sobre las aguas, puede representar una fuerza fundamental en la dinámica de un determinado lugar. Este proceso cobra especial importancia en zonas costeras, representando en algunos casos la principal fuerza que genera la circulación o bien la modifica. Por lo tanto, para caracterizar adecuadamente la circulación de un área en particular, el conocimiento del régimen de marea es fundamental.

Se analizó las variaciones que experimenta el nivel del mar en la localidad de Los Vilos, región de Coquimbo, describiendo el comportamiento que exhibe la marea y definiendo los principales planos de referencia, como el Nivel Medio del Mar (NEM) y el Nivel de Reducción de Sondas (NRS), para fines de reducción de sondajes de precisión e instalación de cotas de marea en tierra.

• Verano 2012

Materiales y métodos

La campaña de mediciones de alturas del nivel del mar (marea), se efectuó entre el 26 de enero de 2012 al 3 de marzo de 2012.

El instrumento utilizado en este estudio fue un mareógrafo OTT, modelo MiniOrpheus, N/S 249590, rango operación (0–10 m). El punto de medición y período comprendido por la medición se lista a continuación en la Tabla EM-130:

Sector	coordenada Norte (m)	coordenada E (m)	ste	Inicio Mediciones	Final Mediciones			
Punta Chungo	6.469.329	263.166		26/01/2012	03/03/2012			

Tabla EM-130: Coordenadas (Datum WGS84) y duración mareografó OTT

Fuente: consultora Costasur

El instrumento mide la presión absoluta (altura real) en el punto de fondeo (instalación). Además, utiliza una unidad medidora de presión atmosférica que contrarresta las variaciones de esta presión, sobre la medida absoluta del instrumento, permitiéndose estimar la presión hidrostática ejercida por la columna de agua en el lugar de fijación del sensor (producto de las variaciones de la marea).

De los datos registrados, se obtuvo los valores de alturas horarias del nivel del mar (para análisis de tipo armónico), estando los valores de altura referidos al "cero" del sensor.

El análisis armónico asume que la marea observada corresponde a la sumatoria de un número determinado de constituyentes armónicos. Estos constituyentes representativos de una onda de marea particular se caracterizan por la amplitud, atraso de fase y velocidad angular, las cuales son determinadas a partir de argumentos astronómicos.

Así también, de la información recolectada se obtuvo las ocurrencias y valores de las pleamares y bajamares con el objeto de realizar un análisis de tipo no armónico y calcular los planos mareales más importantes (Pub. S.H.O.A. N° 3202.Instrucciones Oceanográficas N° 2. Cálculo de los Valores No-Armónicos de la Marea).

Para la determinación del régimen de marea en cada área de interés se utilizó el criterio definido por el coeficiente de Courtier "F" (Pub. S.H.O.A. N° 3013, "Glosario de Marea y Corrientes"). Este coeficiente, se obtiene del cuociente de las amplitudes de cuatro de los constituyentes armónicos principales. A saber, $F = (H_{K1} + H_{O1}) / (H_{M2} + H_{S2})$. De esta manera, si F < 0.25 (régimen semidiurno), y si 0.25 < F < 1.50 (régimen mixto predominantemente semidiurno).

Para el establecimiento del Nivel de Reducción de Sondas (NRS), se consideró la sumatoria de los constituyentes principales individualizados M_2 , S_2 , N_2 , K_1 y O_1 , de acuerdo a la metodología expuesta en la Pub. S.H.O.A. N° 3105, "Instrucciones Hidrográficas N° 5".

Resultados

La Figura EM-204 muestra la curva de marea registrada en Punta Chungo. En ella, se observa el efecto de las sicigias del 7 y 21 de febrero de 2012, con mayores amplitudes y un retardo inercial de uno a dos días. Así también, se observa las mínimas amplitudes producto de las cuadraturas del 31 de enero, 14 y 29 de febrero de 2012.

Figura EM-204: Curva de marea observada, verano 2012

Fuente: consultora Costasur

Los principales constituyentes armónicos se presentan en la Tabla EM-131. A partir de esta información, se obtuvo un valor para el coeficiente de Courtier "F" de 0,43, indicativo que la marea en el sector de Punta Chungo es de tipo mixto predominantemente semidiurna, es decir, en un día se presenta la ocurrencia de dos pleamares y dos bajamares, con diferencia de alturas entre ellas.

El Nivel de Reducción de Sondas (NRS) calculado a partir de la sumatoria de los constituyentes M_2 , S_2 , N_2 , K_1 y O_1 , entregó un valor de 0,953 metros bajo el Nivel Medio del Mar (NEM). Por su parte, el NEM se ubicó a 1,626 metros sobre el cero del sensor. De esta manera, el NRS, se encuentra a 0,673 metros sobre el cero del sensor.

La Tabla EM-132 resume los resultados del análisis no armónico. Al respecto, se deduce que la bajamar más baja observada esta a 0,830 metros sobre el cero del sensor. Este valor es

consistente con el NRS teórico calculado, ya que éste último se ubica 0,157 metros más abajo que el valor de marea mínimo observado.

El rango máximo de marea observado fue de 1,648 metros, valor similar al informado en la Pub. S.H.O.A. N° 3009 "Tablas de Marea de la Costa de Chile, 2012", para la localidad de Los Vilos, que establece un rango máximo de marea de 1,650 metros.

Valores Armónico	Valores Armónicos de la Marea							
Constituyente	Frecuencia	Periodo	Semi Amplitud	Atraso de Fase				
Armónico	(cph)	(horas)	(cm)	(°)				
ZO			162.6					
MM	0.00151215	661.3	3.1	104.1				
MSF	0.00282193	354.4	1.7	264.1				
ALP1	0.03439657	29.1	0.3	263.2				
2Q1	0.03570635	28.0	0.1	63.3				
Q1	0.03721850	26.9	1.8	278.0				
O1	0.03873065	25.8	10.6	298.5				
NO1	0.04026859	24.8	1.0	11.0				
K1	0.04178075	23.9	15.4	1.5				
J1	0.04329290	23.1	1.0	7.0				
001	0.04483084	22.3	1.2	55.2				
UPS1	0.04634299	21.6	0.6	225.8				
EPS2	0.07617731	13.1	0.1	104.6				
MU2	0.07768947	12.9	1.5	207.5				
N2	0.07899925	12.7	8.2	281.4				
M2	0.08051140	12.4	43.5	305.3				
L2	0.08202355	12.2	0.3	21.9				
S2	0.08333334	12.0	17.6	333.8				
ETA2	0.08507364	11.8	0.5	356.4				
MO3	0.11924210	8.4	0.4	326.5				
M3	0.12076710	8.3	0.7	83.6				
MK3	0.12229210	8.2	0.2	128.4				
SK3	0.12511410	8.0	0.6	108.5				
MN4	0.15951060	6.3	0.4	349.5				
M4	0.16102280	6.2	0.2	143.3				
SN4	0.16233260	6.2	0.5	177.9				
MS4	0.16384470	6.1	0.3	325.6				
S4	0.16666670	6.0	0.1	307.1				
2MK5	0.20280360	4.9	0.2	6.6				
2SK5	0.20844740	4.8	0.3	127.0				
2MN6	0.24002200	4.2	0.4	13.4				
M6	0.24153420	4.1	0.3	339.5				
2MS6	0.24435610	4.1	0.2	125.6				
2SM6	0.24717810	4.0	0.1	121.4				
3MK7	0.28331490	3.5	0.1	21.8				
M8	0.32204560	3.1	0.2	14.9				
70 – Nivel Medio del M	ar							

Tabla EM-131	Valores armónicos o	de la marea, verano 2012

Tabla EM-132: Valores no armónicos de la marea, verano 2012	
/alores No - Armónicos de la Marea	

Valores No - Armónicos	Sobre Cero Instrumental (m)
Nivel Medio del Mar	1.626
Nivel Medio de la Marea	1.624
Altura Media de la Bajamar	1.137
Altura Media de la Bajamar Inferior	1.105
Bajamar Mínima	0.830
Nivel de Reducción de Sondas	0.673
Altura Media de la Pleamar	2.104
Altura Media de la Pleamar Superior	2.252
Pleamar Máxima	2.501
Amplitud Máxima de la Marea	1.648

Fuente: consultora Costasur

Los pronósticos realizados a partir de la información recolectada en terreno se mostraron relativamente consistentes y cercanos a los valores reales (Figura EM-205). La correlación entre los datos observados y pronosticados mostró un $r^2 = 0.9856$. Estos resultados posibilitan la emisión de pronósticos confiables de marea para el sector de Punta Chungo.

Figura EM-205: Correlación entre valores de marea observada y pronosticada

- Fuente: consultora Costasur
- Otoño 2012

Materiales y métodos

La campaña de mediciones de alturas del nivel del mar (marea), se efectuó entre los días 11 de abril de 2012 y 14 de mayo de 2012. El instrumento utilizado en estas mediciones fue un perfilador de corrientes acústico Doppler (ADCP, marca RD Instruments, modelo WorkHorse Sentinel 614,4 kHz), en un punto con las siguientes coordenadas: 262.691 E; 6.469.230 N (Datum WGS84)

Este instrumento corresponde al mismo empleado en las mediciones de corrientes eulerianas (ADCP), el que cuenta con un sensor de presión que permite medir las variaciones que experimenta el nivel de las aguas en el punto de fondeo del mismo (presión absoluta o altura real).

Resultados

La Figura EM-206 muestra la curva de marea registrada en Los Vilos, Punta Chungo. En ella, se observa el efecto de las sicigias del 21 de abril y 5 de mayo de 2012, con mayores amplitudes y un retardo inercial de uno a dos días. Así también, se observa las mínimas amplitudes producto de las cuadraturas del 13 y 29 de abril y 12 de mayo de 2012.

Fuente: consultora Costasur

De la inspección de la Figura EM-206, se deduce que la marea en el sector de Punta Chungo es de tipo mixto predominantemente semidiurna, es decir, en un día se presenta la ocurrencia de dos pleamares y dos bajamares, con diferencia de alturas entre ellas.

Invierno 2012

Materiales y métodos

La campaña de mediciones de alturas del nivel del mar (marea), se efectuó entre los días 10 de julio de 2012 y 18 de agosto de 2012. El instrumento utilizado en estas mediciones fue un perfilador de corrientes acústico Doppler (ADCP, marca RD Instruments, modelo WorkHorse Sentinel 614,4 kHz), en un punto con las siguientes coordenadas: 262.662 E; 6.469.217 N (Datum WGS84).

La Figura EM-207 muestra la curva de marea registrada en Los Vilos, Punta Chungo. En ella, se observa el efecto de las sicigias del 19 de julio y 1 de agosto de 2012, con mayores amplitudes y un retardo inercial de uno a dos días. Así también, se observa las mínimas amplitudes producto de las cuadraturas del 10 y 26 de julio y 9 de agosto de 2012.

Fuente: consultora Costasur

De la inspección de la Figura EM-207, se deduce que la marea en el sector de Punta Chungo es de tipo mixto predominantemente semidiurna, es decir, en un día se presenta la ocurrencia de dos pleamares y dos bajamares, con diferencia de alturas entre ellas.

• Primavera 2012

Materiales y métodos

La campaña de mediciones de alturas del nivel del mar (marea), se efectuó entre los días 9 de noviembre de 2012 y 10 de diciembre de 2012. El instrumento utilizado en estas mediciones fue un perfilador de corrientes acústico Doppler (ADCP, marca RD Instruments, modelo WorkHorse Sentinel 614,4 kHz), en un punto con las siguientes coordenadas: 262.679 E; 6.469.215 N (Datum WGS84).

La Figura EM-208 muestra la curva de marea registrada en Los Vilos, Punta Chungo. En ella, se observa el efecto de las sicigias del 13 y 28 de noviembre de 2012, con mayores amplitudes y un retardo inercial de uno a dos días. Así también, se observa las mínimas amplitudes producto de las cuadraturas del 20 de noviembre y 6 de diciembre de 2012.

Fuente: consultora Costasur

De la inspección de la Figura EM-208, se deduce que la marea en el sector de Punta Chungo es de tipo mixto predominantemente semidiurna, es decir, en un día se presenta la ocurrencia de dos pleamares y dos bajamares, con diferencia de alturas entre ellas.

• Primavera 2014

Materiales y métodos

La campaña de mediciones de alturas del nivel del mar (marea), se efectuó entre los días 28 de octubre y 15 de diciembre de 2014. El instrumento utilizado en estas mediciones fue un perfilador de corrientes acústico Doppler (ADCP, marca RD Instruments, modelo WorkHorse Sentinel 614,4 kHz), en un punto con las siguientes coordenadas: 262.151 E; 6.469.638 N (Datum WGS84).

La Figura EM-209 muestra la curva de marea registrada en Los Vilos, Punta Chungo. En ella, se observa el efecto de las sicigias del 6 y 22 de noviembre y 06 de diciembre de 2014, con mayores amplitudes y un retardo inercial de uno a dos días. Así también, se observa las mínimas amplitudes producto de las cuadraturas del 30 de octubre, 14 y 29 de noviembre y 14 de diciembre 2014.

Fuente: consultora Costasur

De la inspección de la Figura EM-209, se deduce que la marea en el sector de Punta Chungo es de tipo mixto predominantemente semidiurna, es decir, en un día se presenta la ocurrencia de dos pleamares y dos bajamares, con diferencia de alturas entre ellas.

• Verano 2015

Materiales y métodos

La campaña de mediciones de alturas del nivel del mar (marea), se efectuó entre los días 05 de febrero y 24 de marzo de 2015. El instrumento utilizado en estas mediciones fue un perfilador de corrientes acústico Doppler (ADCP, marca RD Instruments, modelo WorkHorse Sentinel 614,4 kHz), en un punto con las siguientes coordenadas: 262.161 E; 6.469.622 N (Datum WGS84).

La Figura EM-210 muestra la curva de marea registrada en Los Vilos, Punta Chungo. En ella, se observa el efecto de las sicigias del 18 de febrero y 5 y 20 de marzo de 2015, con mayores amplitudes y un retardo inercial de uno a dos días. Así también, se observa las mínimas amplitudes producto de las cuadraturas del 11 y 25 de febrero y 13 de marzo de 2015.

Fuente: consultora Costasur

De la inspección de la Figura EM-210, se deduce que la marea en el sector de Punta Chungo es de tipo mixto predominantemente semidiurna, es decir, en un día se presenta la ocurrencia de dos pleamares y dos bajamares, con diferencia de alturas entre ellas.

Invierno 2015

Materiales y métodos

La campaña de mediciones de alturas del nivel del mar (marea), se efectuó entre los días 30 de julio y 8 de septiembre de 2015. El instrumento utilizado en estas mediciones fue un perfilador de corrientes acústico Doppler (ADCP, marca RD Instruments, modelo WorkHorse Sentinel 614,4 kHz), en un punto con las siguientes coordenadas: 262.161 E; 6.469.609 N (Datum WGS84).

La Figura EM-211 muestra la curva de marea registrada en Los Vilos, Punta Chungo. En ella, se observa el efecto de las sicigias del 31 de julio y 14 y 29 de agosto de 2015, con mayores amplitudes y un retardo inercial de 1 a 2 días. Así también, se observa las mínimas amplitudes producto de las cuadraturas del 06 y 22 de agosto y 5 de septiembre de 2015.

Fuente: consultora Costasur

De la inspección de la Figura EM-211, se deduce que la marea en el sector de Punta Chungo es de tipo mixto predominantemente semidiurna, es decir, en un día se presenta la ocurrencia de dos pleamares y dos bajamares, con diferencia de alturas entre ellas.

• Síntesis de resultados de mareas

En verano de 2012 se determinó el Nivel de Reducción de Sondas (NRS) el cual entregó un valor de 0,953 metros bajo el Nivel Medio del Mar (NEM). El NEM se ubicó a 1,626 metros sobre el cero del sensor. El NRS se determinó a 0,673 metros sobre el cero del sensor. El rango máximo de marea fue de 1,648 metros. Los pronósticos realizados a partir de la información recolectada en terreno se mostraron relativamente consistentes y cercanos a los valores reales. La correlación entre los datos observados y pronosticados mostró un $r^2 = 0.9856$. Estos resultados posibilitan la emisión de pronósticos confiables de marea para el sector de Punta Chungo.

Adicionalmente, durante las cuatro campañas efectuadas el 2012, durante la primavera 2014, verano 2015 e invierno 2015, se determinó que la marea en el sector de Punta Chungo es de tipo mixto predominantemente semidiurna, es decir, en un día se presenta la ocurrencia de dos pleamares y dos bajamares, con diferencia de alturas entre ellas.

7.1.4.1.4 Correlación cruzada

Con el objeto de visualizar las relaciones causa efecto entre variables, los registros de corrientes eulerianas (capa superficial, intermedia y de fondo), marea y vientos, fueron sometidos a un análisis de correlación cruzada.

• Verano 2012

En la Tabla EM-133 se aprecia que el efecto del viento sobre las corrientes es importante (fundamentalmente a nivel superficial), con coeficientes de correlación máximos de 0,56 (máximo igual a 1). Este máximo se registró en el par "componente V de la corriente capa superficial v/s componente V del viento". A niveles inferiores, los coeficientes de correlación son menores.

Por su parte, el efecto de la marea sobre las corrientes (Tabla EM-134) se apreció inferior respecto del forzante viento. Los valores máximos alcanzados se ubicaron en torno a 0,25 (máximo igual a 1). Este máximo se registró en el par "componente U de la corriente capa fondo v/s marea".

Estos resultados evidenciaron el importante efecto del viento sobre las corrientes eulerianas, fundamentalmente en las capas superficiales. También, se aprecia el bajo efecto de la marea sobre las corrientes eulerianas medidas.

-					Oomenice	
De sfa se	U Superficie	U Intermedio	U Fondo	V Superficie	V Intermedio	V Fondo
Horas	U viento	U viento	U viento	V viento	V viento	V viento
0	0.12	0.07	0.04	-0.55	0.03	0.28
1	0.07	0.09	0.04	-0.56	-0.01	0.24
2	0.01	0.13	0.01	-0.55	-0.05	0.19
3	-0.04	0.17	-0.01	-0.51	-0.05	0.14
4	-0.08	0.20	-0.04	-0.46	-0.05	0.10
5	-0.14	0.20	-0.08	-0.39	-0.05	0.07
6	-0.17	0.21	-0.10	-0.33	-0.07	0.05
7	-0.21	0.17	-0.10	-0.25	-0.07	0.03
8	-0.23	0.13	-0.11	-0.16	-0.09	0.03
9	-0.26	0.08	-0.11	-0.08	-0.11	0.00
10	-0.22	0.05	-0.13	-0.01	-0.10	-0.04
11	-0.21	-0.02	-0.13	0.07	-0.09	-0.06
12	-0.14	-0.05	-0.10	0.14	-0.06	-0.08
13	-0.08	-0.10	-0.07	0.19	-0.03	-0.10
14	-0.04	-0.15	-0.03	0.22	-0.01	-0.10
15	0.02	-0.19	0.03	0.22	0.01	-0.10
16	0.06	-0.20	0.09	0.21	0.03	-0.10
17	0.08	-0.23	0.11	0.18	0.06	-0.09
18	0.12	-0.21	0.14	0.13	0.10	-0.08
19	0.17	-0.20	0.15	0.06	0.11	-0.02
20	0.21	-0.19	0.13	-0.04	0.11	0.02
21	0.23	-0.12	0.08	-0.13	0.10	0.08
22	0.23	-0.07	0.08	-0.24	0.07	0.13
23	0.18	-0.04	0.07	-0.32	0.04	0.17
24	0.13	0.02	0.06	-0.40	0.01	0.19
25	0.07	0.06	-0.01	-0.44	-0.02	0.10
26	0.00	0.07	-0.01	-0.45	-0.07	0.15
27	-0.05	0.12	-0.04	-0.43	-0.08	0.12
28	-0.10	0.16	-0.07	-0.39	-0.09	0.08
29	-0.14	0.20	-0.09	-0.34	-0.09	0.05
30	-0.17	0.19	-0.13	-0.28	-0.09	0.05
31	-0.20	0.17	-0.15	-0.21	-0.10	0.03
32	-0.23	0.13	-0.16	-0.13	-0.11	0.01
33	-0.23	0.07	-0.16	-0.06	-0.12	0.00
34	-0.23	0.03	-0.14	0.01	-0.13	0.00
35	-0.20	-0.04	-0.11	0.07	-0.14	-0.04
36	-0.15	-0.08	-0.08	0.12	-0.11	-0.07
37	-0.09	-0.13	-0.05	0.17	-0.07	-0.08
38	-0.02	-0.15	0.00	0.18	-0.03	-0.08
39	0.02	-0.17	0.03	0.18	0.01	-0.07
40	0.05	-0.19	0.06	0.20	0.02	-0.06
41	0.09	-0.21	0.12	0.18	0.04	-0.05
42	0.14	-0.22	0.14	0.13	0.05	-0.02
43	0.17	-0.21	0.13	0.06	0.08	-0.01
44	0.20	-0.18	0.10	-0.01	0.00	-0.01
45	0.20	-0.15	0.10	-0.10	0.12	0.03
46	0.21	-0.08	0.09	-0.20	0.14	0.08
47	0.16	-0.04	0.08	-0.30	0.11	0.14
48	0.11	0.05	0.04	-0.36	0.08	0.15

Tabla EM-133: Correlación cruzada Viento – Corriente

					oomente	
Desfase	U Superficie	V Superficie	U Intermedio	V Intermedio	U Fondo	V Fondo
Horas	Marea	Marea	Marea	Marea	Marea	Marea
0	-0.22	-0.05	0.08	-0.06	-0.08	-0.02
1	-0.19	-0.01	0.13	-0.07	0.02	-0.09
2	-0.15	0.04	0.16	-0.07	0.11	-0.13
3	-0.09	0.10	0.16	-0.06	0.17	-0.16
4	-0.02	0.15	0.13	-0.02	0.17	-0.14
5	0.04	0.19	0.06	0.01	0.12	-0.10
6	0.09	0.21	-0.02	0.05	0.04	-0.03
7	0.11	0.19	-0.10	0.09	-0.04	0.03
8	0.11	0.15	-0.17	0.11	-0.12	0.08
9	0.09	0.09	-0.20	0.11	-0.16	0.12
10	0.06	0.01	-0.19	0.11	-0.15	0.11
11	0.03	-0.06	-0.15	0.07	-0.10	0.08
12	0.00	-0.11	-0.08	0.04	-0.01	0.03
13	0.00	-0.14	0.00	0.00	0.09	-0.02
14	0.01	-0.14	0.07	-0.03	0.18	-0.06
15	0.04	-0.13	0.11	-0.05	0.23	-0.07
16	0.07	-0.10	0.13	-0.05	0.23	-0.06
17	0.08	-0.07	0.13	-0.05	0.18	-0.03
18	0.08	-0.05	0.09	-0.04	0.08	0.01
19	0.06	-0.03	0.05	-0.03	-0.03	0.07
20	0.02	-0.02	0.00	-0.01	-0.13	0.10
21	-0.04	-0.03	-0.02	-0.01	-0.21	0.11
22	-0.10	-0.03	-0.03	0.00	-0.25	0.10
23	-0.16	-0.04	-0.01	-0.01	-0.22	0.06
24	-0.20	-0.03	0.03	-0.02	-0.15	-0.01
25	-0.21	0.00	0.07	-0.04	-0.05	-0.07
26	-0.18	0.03	0.11	-0.05	0.04	-0.12
27	-0.14	0.07	0.13	-0.05	0.13	-0.15
28	-0.07	0.12	0.12	-0.04	0.16	-0.14
29	-0.01	0.15	0.08	-0.02	0.16	-0.11
30	0.05	0.16	0.02	0.02	0.11	-0.05
31	0.10	0.16	-0.05	0.05	0.03	0.01
32	0.13	0.13	-0.11	0.08	-0.05	0.07
33	0.12	0.07	-0.17	0.10	-0.12	0.11
34	0.10	0.01	-0.19	0.11	-0.14	0.12
35	0.06	-0.04	-0.17	0.10	-0.13	0.10
36	0.03	-0.09	-0.13	0.08	-0.06	0.06
37	0.00	-0.13	-0.06	0.05	0.03	0.00
38	-0.01	-0.14	0.01	0.01	0.12	-0.04
39	0.01	-0.14	0.08	-0.03	0.18	-0.07
40	0.03	-0.12	0.12	-0.06	0.21	-0.07
41	0.05	-0.09	0.14	-0.07	0.19	-0.04
42	0.07	-0.07	0.13	-0.07	0.13	0.00
43	0.07	-0.04	0.10	-0.06	0.04	0.05
44	0.05	-0.03	0.06	-0.04	-0.07	0.09
45	0.01	-0.02	0.02	-0.02	-0.16	0.11
46	-0.04	-0.01	0.00	-0.01	-0.22	0.11
47	-0.10	-0.01	-0.01	0.00	-0.23	0.07
48	-0.16	0.00	0.01	0.00	-0.19	0.01

Tabla EM-134: Correlación cruzada Marea – Corriente

• Otoño 2012

En la Tabla EM-135 se aprecia que el efecto del viento sobre las corrientes es importante (fundamentalmente a nivel superficial), con coeficientes de correlación máximos de 0,46 (máximo igual a 1). Este máximo se registró en el par "componente V de la corriente capa superficial v/s componente V del viento". A niveles inferiores, los coeficientes de correlación son menores.

Por su parte, el efecto de la marea sobre las corrientes (Tabla EM-136) se apreció inferior respecto del forzante viento. Los valores máximos alcanzados se ubicaron en torno a 0,27 (máximo igual a 1). Este máximo se registró en el par "componentes U y V de la corriente capa superficie v/s marea".

Estos resultados evidencian el importante efecto del viento sobre las corrientes eulerianas, fundamentalmente en las capas superficiales. También, se aprecia el bajo efecto de la marea sobre las corrientes eulerianas medidas.

		135. Correla	acion cruze	aua viento		
Desfase	U Superficie	U Intermedio	U Fondo	V Superficie	V Intermedio	V Fondo
Horas	U viento	U viento	U viento	V viento	V viento	V viento
0	0.00	0.13	-0.10	-0.46	-0.14	0.01
1	0.05	0.17	-0.08	-0.42	-0.11	0.01
2	0.05	0.13	-0.04	-0.37	-0.09	0.00
3	0.09	0.12	0.02	-0.31	-0.07	0.01
4	0.04	0.09	0.02	-0.24	-0.04	-0.03
5	0.03	0.07	0.09	-0.20	-0.02	-0.02
6	0.03	0.01	0.11	-0.14	0.01	-0.04
7	-0.01	-0.02	0.14	-0.08	-0.01	-0.06
8	0.00	-0.03	0.15	-0.01	0.01	-0.03
9	-0.02	-0.06	0.13	0.06	0.01	-0.03
10	-0.02	-0.07	0.11	0.13	0.05	-0.06
11	-0.01	-0.07	0.06	0.18	0.08	-0.06
12	-0.05	-0.13	-0.01	0.20	0.10	-0.04
13	-0.04	-0.13	-0.03	0.20	0.09	-0.03
14	-0.04	-0.15	-0.05	0.20	0.08	-0.02
15	0.00	-0.12	-0.06	0.15	0.07	0.01
16	0.00	-0.11	-0.09	0.09	0.03	0.04
17	0.01	-0.11	-0.09	0.03	-0.02	0.05
18	-0.01	-0.12	-0.12	-0.05	-0.07	0.06
19	0.01	-0.04	-0.12	-0.10	-0.11	0.07
20	-0.03	0.01	-0.12	-0.17	-0.15	0.06
21	-0.02	0.05	-0.15	-0.22	-0.16	0.05
22	0.00	0.10	-0.12	-0.23	-0.16	0.04
23	0.01	0.10	-0.11	-0.26	-0.14	0.01
24	0.03	0.12	-0.08	-0.25	-0.11	-0.01
25	0.02	0.10	-0.06	-0.21	-0.09	-0.05
26	0.05	0.10	-0.03	-0.18	-0.05	-0.05
27	0.06	0.06	0.03	-0.14	-0.01	-0.05
28	0.06	0.05	0.07	-0.09	0.03	-0.04
29	0.06	0.01	0.10	-0.06	0.06	-0.02
30	0.04	0.02	0.10	0.00	0.05	-0.02
31	-0.01	-0.01	0.11	0.03	0.06	-0.03
32	-0.03	-0.08	0.13	0.09	0.08	-0.06
33	-0.04	-0.09	0.12	0.10	0.10	-0.08
34	-0.05	-0.09	0.10	0.14	0.11	-0.06
35	-0.06	-0.11	0.10	0.17	0.13	-0.05
36	-0.06	-0.13	0.04	0.17	0.13	-0.03
37	-0.06	-0.16	0.00	0.18	0.11	0.00
38	-0.02	-0.16	-0.07	0.16	0.09	-0.01
39	-0.01	-0.15	-0.07	0.12	0.06	0.03
40	0.00	-0.16	-0.08	0.07	0.02	0.06
41	0.03	-0.11	-0.07	0.01	0.02	0.06
42	0.00	-0.07	-0.10	-0.05	-0.01	0.05
43	0.02	-0.03	-0.11	-0.10	-0.03	0.06
44	-0.03	-0.04	-0.13	-0.18	-0.07	0.08
45	-0.01	0.02	-0.11	-0.23	-0.10	0.06
46	0.03	0.07	-0.09	-0.23	-0.10	0.03
47	0.04	0.14	-0.07	-0.24	-0.09	0.00
48	0.05	0.15	-0.06	-0.21	-0.06	-0.03

Tabla EM-135: Correlación cruzada Viento – Corriente

	Tabla Elvi-	ISO: Correl	acion cruza	aua marea -	- Comente	
Desfase	U Superficie	V Superficie	U Intermedio	V Intermedio	U Fondo	V Fondo
Horas	Marea	Marea	Marea	Marea	Marea	Marea
0	-0.23	-0.09	0.01	-0.17	0.20	-0.01
1	-0.20	-0.12	0.01	-0.20	0.17	-0.07
2	-0.09	-0.10	0.05	-0.18	0.12	-0.11
3	0.03	-0.06	0.06	-0.13	0.04	-0.11
4	0.14	-0.01	0.05	-0.07	-0.06	-0.08
5	0.21	0.03	0.02	-0.01	-0.15	-0.01
6	0.22	0.05	-0.02	0.04	-0.21	0.05
7	0.19	0.03	-0.05	0.04	-0.22	0.10
8	0.11	-0.02	-0.06	0.02	-0.19	0.14
9	0.01	-0.09	-0.05	-0.03	-0.11	0.14
10	-0.09	-0.16	-0.02	-0.10	-0.02	0.11
11	-0.15	-0.21	0.04	-0.16	0.09	0.04
12	-0.17	-0.23	0.08	-0.20	0.17	-0.04
13	-0.14	-0.22	0.12	-0.20	0.21	-0.11
14	-0.06	-0.16	0.14	-0.16	0.20	-0.16
15	0.04	-0.06	0.13	-0.09	0.15	-0.17
16	0.13	0.05	0.10	0.01	0.07	-0.15
17	0.19	0.15	0.04	0.10	-0.01	-0.09
18	0.20	0.23	-0.03	0.17	-0.08	-0.02
19	0.16	0.27	-0.09	0.20	-0.12	0.06
20	0.07	0.25	-0.13	0.19	-0.11	0.11
21	-0.04	0.20	-0.15	0.13	-0.08	0.14
22	-0.15	0.12	-0.15	0.05	-0.01	0.13
23	-0.23	0.03	-0.12	-0.05	0.06	0.10
24	-0.27	-0.06	-0.06	-0.13	0.12	0.04
25	-0.25	-0.11	-0.01	-0.19	0.16	-0.02
26	-0.17	-0.13	0.03	-0.20	0.14	-0.08
27	-0.06	-0.12	0.06	-0.18	0.09	-0.10
28	0.05	-0.09	0.06	-0.12	0.01	-0.09
29	0.16	-0.03	0.05	-0.05	-0.08	-0.05
30	0.21	0.01	0.02	0.01	-0.15	0.00
31	0.22	0.03	-0.02	0.05	-0.19	0.05
32	0.17	0.02	-0.04	0.06	-0.19	0.10
33	0.09	-0.02	-0.05	0.03	-0.14	0.13
34	-0.02	-0.08	-0.04	-0.03	-0.07	0.11
35	-0.10	-0.13	0.00	-0.09	0.03	0.06
36	-0.15	-0.17	0.05	-0.15	0.12	0.00
37	-0.15	-0.19	0.09	-0.18	0.18	-0.07
38	-0.10	-0.17	0.13	-0.18	0.21	-0.13
39	-0.03	-0.11	0.13	-0.13	0.18	-0.16
40	0.06	-0.02	0.12	-0.06	0.12	-0.16
41	0.14	0.08	0.08	0.03	0.04	-0.13
42	0.19	0.17	0.02	0.11	-0.03	-0.07
43	0.19	0.23	-0.04	0.17	-0.09	0.01
44	0.13	0.26	-0.10	0.19	-0.11	0.08
45	0.05	0.23	-0.13	0.17	-0.10	0.13
46	-0.06	0.18	-0.14	0.11	-0.05	0.15
47	-0.15	0.09	-0.12	0.03	0.01	0.14
48	-0.23	0.00	-0 10	-0.07	0.08	0.10

Table FM 400. Ca malasián amunada Manaa

Fuente: consultora Costasur

Invierno 2012 •

En la Tabla EM-137 se aprecia que el efecto del viento sobre las corrientes es importante (fundamentalmente a nivel superficial), con coeficientes de correlación máximos de 0,46 (máximo igual a 1). Este máximo se registró en el par "componente V de la corriente capa superficial v/s componente V del viento". A niveles inferiores, los coeficientes de correlación son menores.

Por su parte, el efecto de la marea sobre las corrientes (Tabla EM-138) se apreció inferior respecto del forzante viento. Los valores máximos alcanzados se ubicaron en torno a 0,27 (máximo igual a 1). Este máximo se registró en el par "componente U de la corriente capa superficie v/s marea".

Estos resultados evidencian el importante efecto del viento sobre las corrientes eulerianas, fundamentalmente en las capas superficiales. También, se aprecia el bajo efecto de la marea sobre las corrientes eulerianas medidas.

Desfase	U Superficie	U Intermedio	U Fondo	V Superficie	V Intermedio	V Fondo
Horas	U viento	U viento	U viento	V viento	V viento	V viento
0	0.03	0.12	0.05	-0.46	-0.25	-0.05
1	0.03	0.13	0.05	-0.45	-0.24	-0.08
2	0.05	0.13	0.04	-0.42	-0.26	-0.10
3	0.06	0.14	0.05	-0.35	-0.24	-0.12
4	0.06	0.10	0.10	-0.32	-0.24	-0.15
5	0.06	0.07	0.10	-0.27	-0.24	-0.17
6	0.01	0.01	0.12	-0.21	-0.22	-0.17
7	0.03	0.01	0.14	-0.14	-0.20	-0.17
8	0.00	-0.03	0.10	-0.07	-0.17	-0.16
9	-0.03	-0.05	0.08	-0.04	-0.13	-0.15
10	-0.03	-0.05	0.04	0.00	-0.09	-0.12
11	-0.03	-0.05	0.02	0.04	-0.06	-0.10
12	-0.02	-0.07	-0.03	0.05	-0.05	-0.09
13	-0.01	-0.06	-0.07	0.06	-0.03	-0.05
14	0.04	-0.04	-0.11	0.05	-0.03	-0.03
15	0.04	-0.06	-0.14	0.03	-0.03	-0.01
16	0.05	-0.07	-0.19	-0.01	-0.03	0.01
17	0.08	-0.06	-0.20	-0.06	-0.04	0.06
18	0.08	-0.03	-0.18	-0.11	-0.06	0.08
19	0.09	0.01	-0.13	-0.17	-0.08	0.11
20	0.07	0.05	-0.10	-0.24	-0.09	0.11
21	0.05	0.07	-0.08	-0.27	-0.11	0.11
22	0.03	0.10	-0.04	-0.31	-0.13	0.07
23	0.01	0.12	0.00	-0.33	-0.13	0.04
24	0.03	0.13	0.01	-0.33	-0.16	0.00
25	0.03	0.10	0.04	-0.31	-0.17	-0.03
26	0.01	0.13	0.06	-0.29	-0.18	-0.07
27	0.03	0.13	0.10	-0.27	-0.19	-0.09
28	0.03	0.11	0.11	-0.24	-0.21	-0.10
29	0.02	0.08	0.14	-0.21	-0.21	-0.10
30	0.01	0.04	0.13	-0.16	-0.20	-0.09
31	0.02	0.03	0.11	-0.13	-0.19	-0.09
32	-0.02	-0.01	0.08	-0.09	-0.18	-0.07
33	-0.02	0.00	0.07	-0.07	-0.15	-0.06
34	-0.02	-0.03	0.00	-0.03	-0.14	-0.06
35	-0.05	-0.05	-0.02	-0.01	-0.13	-0.04
36	-0.07	-0.09	-0.07	-0.01	-0.09	-0.03
37	-0.04	-0.09	-0.11	0.01	-0.06	-0.02
38	-0.01	-0.11	-0.14	0.01	-0.05	0.00
39	0.00	-0.14	-0.20	0.01	-0.03	0.03
40	0.02	-0.10	-0.23	-0.01	-0.02	0.06
41	0.03	-0.08	-0.21	-0.06	-0.02	0.09
42	0.00	-0.11	-0.21	-0.10	-0.03	0.09
43	0.02	-0.07	-0.13	-0.12	-0.04	0.08
44	0.03	-0.04	-0.09	-0.18	-0.07	0.07
45	0.02	0.01	-0.06	-0.20	-0.08	0.05
46	0.02	0.05	0.01	-0.23	-0.11	0.02
47	0.02	0.05	0.02	-0.24	-0.15	-0.01
48	-0.01	0.04	0.03	-0.23	-0.16	-0.05

Tabla EM-137: Correlación cruzada Viento – Corriente

Tabla EM-136: Correlación cruzada Marea – Corriente								
Desfase	U Superficie	V Superficie	U Intermedio	V Intermedio	U Fondo	V Fondo		
Horas	Marea	Marea	Marea	Marea	Marea	Marea		
0	-0.16	-0.17	0.06	-0.05	0.01	0.06		
1	-0.15	-0.20	0.06	-0.09	0.00	0.00		
2	-0.06	-0.19	0.11	-0.10	0.02	-0.03		
3	0.05	-0.15	0.13	-0.09	0.01	-0.05		
4	0.16	-0.09	0.13	-0.07	0.00	-0.04		
5	0.24	-0.04	0.12	-0.04	0.00	-0.01		
6	0.26	0.00	0.07	-0.02	-0.01	0.02		
7	0.22	0.02	0.04	0.00	-0.02	0.05		
8	0.13	0.01	-0.01	-0.01	0.00	0.05		
9	0.00	-0.01	-0.05	-0.03	0.02	0.02		
10	-0.12	-0.04	-0.05	-0.06	0.05	-0.02		
11	-0.21	-0.07	-0.05	-0.10	0.09	-0.08		
12	-0.24	-0.09	-0.02	-0.12	0.11	-0.14		
13	-0.23	-0.08	0.00	-0.12	0.12	-0.18		
14	-0.14	-0.04	0.04	-0.10	0.11	-0.19		
15	-0.03	0.02	0.05	-0.05	0.09	-0.17		
16	0.10	0.08	0.05	0.01	0.04	-0.10		
17	0.20	0.14	0.03	0.06	-0.02	-0.03		
18	0.26	0.18	0.01	0.11	-0.07	0.06		
19	0.25	0.18	-0.03	0.15	-0.12	0.13		
20	0.19	0.15	-0.07	0.15	-0.14	0.18		
21	0.09	0.08	-0.08	0.12	-0.13	0.20		
22	-0.03	0.00	-0.08	0.07	-0.12	0.17		
23	-0.13	-0.08	-0.07	0.01	-0.08	0.13		
24	-0.20	-0.16	-0.03	-0.04	-0.06	0.07		
25	-0.20	-0.20	0.02	-0.09	-0.01	0.01		
26	-0.14	-0.22	0.08	-0.11	0.01	-0.04		
27	-0.04	-0.19	0.12	-0.11	0.02	-0.07		
28	0.09	-0.15	0.14	-0.08	0.03	-0.06		
29	0.20	-0.08	0.14	-0.05	0.02	-0.03		
30	0.27	-0.02	0.12	-0.01	0.01	0.00		
31	0.27	0.02	0.07	0.01	0.00	0.03		
32	0.21	0.03	0.02	0.01	0.00	0.05		
33	0.10	0.03	-0.03	0.00	0.01	0.04		
34	-0.03	0.00	-0.06	-0.03	0.05	0.01		
35	-0.16	-0.03	-0.07	-0.06	0.09	-0.04		
36	-0.24	-0.05	-0.04	-0.09	0.12	-0.10		
37	-0.27	-0.06	-0.03	-0.10	0.14	-0.15		
38	-0.24	-0.04	0.00	-0.09	0.14	-0.17		
39	-0.14	0.01	0.03	-0.06	0.12	-0.15		
40	-0.02	0.06	0.04	-0.01	0.08	-0.11		
41	0.11	0.12	0.03	0.05	0.02	-0.05		
42	0.21	0.16	0.01	0.10	-0.04	0.03		
43	0.25	0.18	-0.03	0.14	-0.10	0.11		
44	0.23	0.16	-0.06	0.16	-0.13	0.17		
45	0.16	0.12	-0.09	0.15	-0.14	0.20		
46	0.05	0.05	-0.10	0.11	-0.13	0.19		
47	-0.08	-0.04	-0.09	0.06	-0.11	0.16		
48	-0.17	-0.12	-0.06	-0.01	-0.07	0.10		

Tabla EM 128: Corrolación cruzada Marca Corrignto

Fuente: consultora Costasur

Primavera 2012 .

En la Tabla EM-139 se aprecia que el efecto del viento sobre las corrientes es importante (fundamentalmente a nivel superficial), con coeficientes de correlación máximos de 0,42 (máximo igual a 1). Este máximo se registró en el par "componente V de la corriente capa superficial v/s componente V del viento". A niveles inferiores, los coeficientes de correlación son menores.

Por su parte, el efecto de la marea sobre las corrientes (Tabla EM-140) se apreció levemente inferior respecto del forzante viento. Los valores máximos alcanzados se ubicaron en torno a 0,38 (máximo igual a 1). Este máximo se registró en el par "componente V de la corriente capa superficie v/s marea".

Estos resultados evidencian el importante efecto del viento sobre las corrientes eulerianas, fundamentalmente en las capas superficiales.

- -					V laterne d'a	V Famila
Destase	U Superficie	UIntermedio	UFondo	v Superficie	v Intermedio	V Fondo
Horas	U viento	U viento	Uviento	V viento	V viento	V viento
0	-0.08	0.17	0.03	-0.42	0.06	0.35
1	-0.12	0.16	0.05	-0.41	0.01	0.33
2	-0.13	0.17	0.06	-0.39	-0.02	0.28
3	-0.17	0.17	0.02	-0.35	-0.04	0.22
4	-0.16	0.18	0.02	-0.29	-0.05	0.15
5	-0.15	0.19	0.06	-0.21	-0.06	0.10
6	-0.20	0.15	0.10	-0.14	-0.05	0.05
7	-0.23	0.10	0.09	-0.07	-0.04	0.00
8	-0.23	0.04	0.06	0.00	-0.04	-0.04
9	-0.17	0.06	0.09	0.08	-0.03	-0.08
10	-0.12	0.03	0.09	0.15	-0.03	-0.11
11	-0.11	-0.05	0.10	0.21	0.00	-0.14
12	-0.03	-0.09	0.08	0.24	0.03	-0.16
13	0.04	-0.13	0.07	0.27	0.06	-0.13
14	0.08	-0.20	0.04	0.26	0.09	-0.09
15	0.08	-0.21	-0.01	0.25	0.10	-0.07
16	0.11	-0.20	-0.03	0.20	0.10	-0.06
17	0.12	-0.23	-0.05	0.14	0.09	-0.02
18	0.16	-0.19	-0.04	0.06	0.08	0.02
19	0.18	-0.14	-0.05	-0.03	0.07	0.06
20	0.20	-0.05	-0.02	-0.12	0.03	0.08
21	0.15	-0.04	-0.03	-0.20	0.01	0.11
22	0.11	0.02	0.01	-0.28	-0.01	0.14
23	0.11	0.09	0.02	-0.33	-0.04	0.16
24	0.07	0.13	0.01	-0.36	-0.06	0.15
25	0.03	0.22	-0.01	-0.36	-0.07	0.13
26	-0.06	0.19	-0.03	-0.33	-0.07	0.12
27	-0.08	0.20	-0.03	-0.30	-0.04	0.11
28	-0.13	0.18	-0.01	-0.26	-0.04	0.09
29	-0.12	0.16	0.02	-0.20	-0.02	0.07
30	-0.12	0.13	0.04	-0.14	-0.01	0.04
31	-0.16	0.10	0.07	-0.08	0.00	0.02
32	-0.17	0.07	0.09	-0.01	0.00	-0.01
33	-0.14	-0.02	0.06	0.07	0.01	-0.05
34	-0.09	-0.02	0.10	0.12	0.01	-0.08
35	-0.06	-0.07	0.05	0.17	0.01	-0.10
36	-0.07	-0.15	-0.01	0.21	0.02	-0.10
37	-0.02	-0.15	-0.03	0.23	0.02	-0.12
38	0.00	-0.17	-0.04	0.24	0.01	-0.11
39	0.08	-0.20	-0.06	0.22	0.01	-0.11
40	0.06	-0.19	-0.07	0.19	0.00	-0.10
41	0.10	-0.16	-0.07	0.15	0.00	-0.09
42	0.12	-0.18	-0.07	0.11	0.00	-0.06
43	0.16	-0.12	-0.07	0.05	0.00	-0.04
44	0.16	-0.05	-0.09	-0.02	-0.01	0.00
45	0.12	-0.01	-0.06	-0.09	-0.04	0.02
46	0.10	0.04	-0.06	-0.16	-0.04	0.04
47	0.02	0.08	-0.03	-0.20	-0.05	0.07
48	-0.02	0.12	-0.01	-0.22	-0.05	0.08

Tabla EM-139: Correlación cruzada Viento – Corriente

	Tabla EM-140: Correlación cruzada Marea – Corriente						
Desfase	U Superficie	V Superficie	U Intermedio	V Intermedio	U Fondo	V Fondo	
Horas	Marea	Marea	Marea	Marea	Marea	Marea	
0	-0.23	-0.27	0.08	-0.10	0.11	0.08	
1	-0.24	-0.27	0.11	-0.16	0.17	0.02	
2	-0.19	-0.20	0.17	-0.18	0.22	-0.05	
3	-0.10	-0.09	0.19	-0.16	0.21	-0.11	
4	-0.01	0.06	0.18	-0.09	0.16	-0.14	
5	0.07	0.21	0.14	-0.01	0.07	-0.16	
6	0.11	0.32	0.07	0.09	-0.02	-0.15	
7	0.11	0.38	-0.01	0.16	-0.11	-0.12	
8	0.07	0.36	-0.09	0.20	-0.15	-0.06	
9	0.01	0.28	-0.16	0.20	-0.15	-0.01	
10	-0.07	0.16	-0.20	0.16	-0.12	0.04	
11	-0.12	0.01	-0.20	0.09	-0.04	0.08	
12	-0.16	-0.13	-0.17	0.01	0.04	0.09	
13	-0.14	-0.23	-0.12	-0.07	0.10	0.09	
14	-0.08	-0.27	-0.06	-0.11	0.14	0.08	
15	0.01	-0.26	0.00	-0.11	0.14	0.06	
16	0.10	-0.19	0.04	-0.08	0.09	0.05	
17	0.19	-0.10	0.06	-0.02	0.02	0.04	
18	0.22	-0.02	0.06	0.05	-0.07	0.05	
19	0.22	0.05	0.04	0.12	-0.15	0.07	
20	0.17	0.07	0.01	0.16	-0.20	0.09	
21	0.08	0.05	-0.01	0.16	-0.21	0.10	
22	-0.04	-0.02	-0.01	0.13	-0.17	0.12	
23	-0.15	-0.10	0.00	0.06	-0.09	0.11	
24	-0.23	-0.18	0.03	-0.01	0.01	0.08	
25	-0.26	-0.22	0.07	-0.09	0.11	0.04	
26	-0.24	-0.21	0.12	-0.14	0.18	-0.02	
27	-0.18	-0.15	0.15	-0.15	0.21	-0.07	
28	-0.08	-0.04	0.17	-0.12	0.19	-0.11	
29	0.02	0.09	0.15	-0.06	0.13	-0.14	
30	0.10	0.22	0.11	0.03	0.04	-0.14	
31	0.14	0.31	0.04	0.10	-0.04	-0.12	
32	0.14	0.35	-0.04	0.17	-0.11	-0.08	
33	0.10	0.32	-0.11	0.20	-0.15	-0.03	
34	0.03	0.24	-0.17	0.19	-0.14	0.02	
35	-0.05	0.11	-0.20	0.14	-0.10	0.06	
36	-0.11	-0.04	-0.20	0.07	-0.03	0.08	
37	-0.14	-0.18	-0.16	-0.01	0.04	0.10	
38	-0.12	-0.27	-0.10	-0.08	0.10	0.10	
39	-0.06	-0.31	-0.04	-0.12	0.13	0.09	
40	0.01	-0.29	0.02	-0.12	0.11	0.08	
41	0.10	-0.22	0.07	-0.08	0.06	0.07	
42	0.17	-0.13	0.09	-0.02	-0.01	0.07	
43	0.21	-0.03	0.09	0.06	-0.09	0.07	
44	0.19	0.04	0.06	0.13	-0.17	0.08	
45	0.13	0.07	0.03	0.16	-0.20	0.09	
46	0.04	0.05	0.00	0.17	-0.20	0.10	
47	-0.06	0.00	0.00	0.13	-0.14	0.09	
48	-0.16	-0.07	0.00	0.07	-0.06	0.08	

......

Fuente: consultora Costasur

Primavera 2014 .

Con el objeto de visualizar las relaciones causa efecto entre variables, los registros de corrientes eulerianas (capa superficial, intermedia y de fondo), marea y vientos, fueron sometidos a un análisis de correlación cruzada. Los resultados de este análisis son presentados en las Tablas EM-141 y Tabla EM-142 (corrientes punto de muestreo 1) y Tablas EM-143 y Tabla EM-144 (corrientes punto de muestreo 2).

Al respecto, en el punto de muestreo 1, asociado a la descarga de salmuera del Proyecto, (Tabla EM-141) se aprecia que el efecto del viento sobre las corrientes es importante (fundamentalmente a nivel superficial), con coeficientes de correlación máximos de 0,64 (máximo igual a 1). Este máximo se registró en el par "componente V de la corriente capa superficial v/s componente V del viento". A niveles inferiores, los coeficientes de correlación son menores. Por su parte, el efecto de la marea sobre las corrientes (Tabla EM-142) se apreció inferior respecto del forzante viento. Los valores máximos alcanzados se ubicaron en torno a 0,34 (máximo igual a 1). Este máximo se registró en el par "componente U de la corriente capa superficie v/s marea".

En la Tabla EM-143, del punto de muestreo 2, asociado a la captación de agua del Proyecto, se aprecia que el efecto del viento sobre las corrientes es importante (fundamentalmente a nivel superficial), con coeficientes de correlación máximos de 0,43 (máximo igual a 1). Este máximo se registró en el par "componente V de la corriente capa superficial v/s componente V del viento". A niveles inferiores, los coeficientes de correlación son menores. Por su parte, el efecto de la marea sobre las corrientes (Tabla EM-144) se apreció inferior respecto del forzante viento. Los valores máximos alcanzados se ubicaron en torno a 0,30 (máximo igual a 1). Este máximo se registró en el par "componente V de la corriente capa superficie v/s marea".

Estos resultados evidencian el importante efecto del viento y la marea sobre las corrientes eulerianas, fundamentalmente en las capas superficiales.

Destase U Superficie U Intermedio U Fondo V Superficie V Intermedia	• V Eanda
	o v Fondo
Horas Uviento Uviento Vviento Vviento Vviento	V viento
0 0.43 -0.07 0.01 -0.64 0.20	0.23
1 0.40 -0.04 -0.01 -0.62 0.23	0.22
2 0.33 -0.01 -0.01 -0.56 0.23	0.19
3 0.27 0.02 -0.04 -0.49 0.22	0.14
4 0.18 0.03 -0.05 -0.41 0.20	0.11
5 0.10 0.05 -0.05 -0.33 0.17	0.07
6 0.01 0.06 -0.06 -0.25 0.13	0.02
7 -0.07 0.05 -0.07 -0.17 0.09	-0.04
8 -0.15 0.04 -0.05 -0.09 0.07	-0.08
9 -0.20 0.02 -0.03 -0.01 0.04	-0.12
10 -0.25 -0.01 -0.02 0.04 0.00	-0.14
11 -0.26 -0.02 -0.01 0.08 -0.03	-0.15
12 -0.25 -0.03 0.01 0.09 -0.06	-0.15
13 -0.21 -0.04 0.04 0.09 -0.07	-0.15
14 -0.17 -0.04 0.05 0.07 -0.09	-0.14
15 -0.13 -0.05 0.04 0.04 -0.09	-0.14
16 -0.07 -0.06 0.05 0.01 -0.10	-0.11
17 0.00 -0.07 0.06 -0.03 -0.09	-0.09
18 0.07 -0.08 0.05 -0.08 -0.09	-0.06
19 0.13 -0.08 0.05 -0.12 -0.06	-0.02
20 0.19 -0.08 0.04 -0.17 -0.05	0.02
21 0.25 -0.07 0.04 -0.22 -0.02	0.06
22 0.29 -0.06 0.03 -0.25 0.01	0.08
23 0.31 -0.04 0.01 -0.28 0.04	0.10
24 0.30 -0.02 -0.01 -0.29 0.07	0.11
25 0.26 0.00 -0.03 -0.28 0.10	0.11
26 0.22 0.02 -0.02 -0.26 0.11	0.09
27 0.16 0.04 -0.03 -0.22 0.13	0.06
28 0.09 0.05 -0.04 -0.16 0.12	0.02
29 0.01 0.07 -0.06 -0.11 0.11	-0.02
30 -0.07 0.09 -0.05 -0.05 0.10	-0.04
31 -0.14 0.10 -0.04 0.01 0.08	-0.08
32 -0.19 0.10 -0.05 0.07 0.05	-0.09
33 -0.25 0.08 -0.05 0.12 0.01	-0.11
34 -0.29 0.06 -0.05 0.16 -0.03	-0.12
35 -0.29 0.05 -0.03 0.17 -0.07	-0.14
36 -0.27 0.03 0.00 0.16 -0.08	-0.13
37 -0.24 0.01 0.00 0.14 -0.10	-0.14
	-0.14
39 -0.13 -0.02 0.04 0.08 -0.10	-0.12
40 -0.07 -0.05 0.05 0.03 -0.09	-0.11
41 0.01 -0.07 0.06 -0.01 -0.08	-0.09
42 0.07 -0.08 0.06 -0.05 -0.06	-0.06
	-0.04
44 0.17 -0.07 0.06 -0.13 -0.02	-0.01
	0.01
	0.03
47 0.21 -0.06 0.03 -0.22 0.00	0.04
48 0.22 -0.03 0.02 -0.21 0.00	0.04

Tabla EM-1/1: Correlación cruzada Viento - Corriente Punto 1

Fuente: consultora Costasur

						<u> </u>
Desfase	U Superficie	V Superficie	U Intermedio	V Intermedio	U Fondo	V Fondo
Horas	Marea	Marea	Marea	Marea	Marea	Marea
0	0.34	-0.04	0.10	0.04	0.05	-0.01
1	0.28	-0.01	0.14	-0.02	0.05	-0.07
2	0.18	0.04	0.18	-0.06	0.06	-0.12
3	0.03	0.07	0.16	-0.08	0.04	-0.14
4	-0.13	0.10	0.11	-0.09	-0.01	-0.13
5	-0.26	0.11	0.02	-0.07	-0.06	-0.11
6	-0.33	0.10	-0.07	-0.04	-0.11	-0.07
7	-0.33	0.08	-0.15	-0.01	-0.13	-0.04
8	-0.26	0.05	-0.19	0.02	-0.12	-0.01
9	-0.14	0.02	-0.19	0.05	-0.09	0.01
10	0.00	0.00	-0.16	0.05	-0.04	0.02
11	0.14	-0.02	-0.08	0.04	0.02	0.01
12	0.23	-0.03	0.01	0.02	0.07	0.01
13	0.27	-0.03	0.09	0.00	0.12	0.00
14	0.24	-0.04	0.15	-0.02	0.13	0.01
15	0.15	-0.03	0.16	-0.03	0.12	0.02
16	0.04	-0.04	0.12	-0.03	0.07	0.04
17	-0.07	-0.05	0.05	-0.01	0.01	0.07
18	-0.14	-0.05	-0.04	0.02	-0.05	0.11
19	-0.16	-0.07	-0.12	0.06	-0.10	0.13
20	-0.11	-0.08	-0.17	0.09	-0.13	0.14
21	-0.02	-0.09	-0.19	0.12	-0.13	0.12
22	0.10	-0.09	-0.16	0.12	-0.10	0.09
23	0.10	-0.07	-0.09	0.12	-0.06	0.04
20	0.21	-0.04	0.00	0.07	-0.01	-0.01
25	0.20	0.04	0.00	0.07	0.01	-0.07
26	0.00	0.00	0.00	-0.02	0.06	-0.10
27	0.13	0.08	0.10	-0.07	0.06	-0.12
28	-0.02	0.00	0.13	-0.10	0.00	-0.12
29	-0.17	0.10	0.11	-0.10	-0.01	-0.12
30	-0.28	0.11	0.02	-0.09	-0.06	-0.07
31	-0.34	0.09	-0.07	-0.07	-0.09	-0.04
32	-0.32	0.07	-0.15	-0.03	-0.11	-0.01
33	-0.24	0.04	-0.19	0.00	-0.11	0.00
34	-0.11	0.04	-0.19	0.01	-0.08	0.00
35	0.04	-0.01	-0.15	0.00	-0.03	0.01
36	0.17	-0.03	-0.07	0.05	0.00	-0.01
37	0.25	-0.04	0.01	0.00	0.02	-0.02
28	0.20	-0.05	0.01	0.04	0.00	-0.02
30	0.20	-0.05	0.00	-0.02	0.10	-0.02
<u>4</u> 0	0.15	-0.05	0.10	-0.02	0.09	0.02
41	0.13	-0.05	0.14	-0.02	0.03	0.02
42	-0.07	-0.05	0.10	0.00	-0.04	0.00
42	-0.14	-0.07	-0.05	0.00	-0.06	0.10
44	-0.15	-0.08	-0.11	0.00	-0.10	0.10
45	-0.10	-0.00	-0.16	0.00	-0.10	0.14
45	-0.10	-0.00	_0.17	0.10	_0.11	0.14
47	0.10	-0.07	-0.13	0.12	-0.08	0.07
47 /Q	0.10	-0.07	-0.15	0.12	-0.00	0.07
-+0	0.20	-0.04	-0.00	0.10	-0.05	0.01

Tabla EM-142: Correlación cruzada Marea – Corriente Punto 1

-					
Desfase U Superficie	U Intermedio	U Fondo	V Superficie	V Intermedio	V Fondo
Horas U viento	U viento	U viento	V viento	V viento	V viento
0 -0.10	-0.01	-0.01	-0.43	0.04	0.13
1 -0.11	0.02	-0.01	-0.42	0.04	0.13
2 -0.12	0.08	-0.01	-0.39	0.04	0.11
3 -0.13	0.13	-0.02	-0.36	0.05	0.09
4 -0.11	0.15	-0.03	-0.31	0.05	0.06
5 -0.11	0.15	-0.05	-0.24	0.06	0.06
6 -0.09	0.15	-0.04	-0.16	0.07	0.06
7 -0.06	0.12	-0.07	-0.09	0.07	0.06
8 -0.05	0.09	-0.03	-0.03	0.06	0.04
9 -0.03	0.06	-0.02	0.05	0.03	0.02
10 0.00	0.02	-0.01	0.11	0.01	-0.01
11 0.02	-0.01	0.01	0.14	-0.01	-0.04
12 0.03	-0.05	0.02	0.14	-0.01	-0.07
13 0.04	-0.08	0.05	0.14	0.00	-0.11
14 0.03	-0.13	0.04	0.12	-0.01	-0.13
15 0.02	-0.16	0.04	0.10	-0.01	-0.15
16 0.02	-0.17	0.05	0.06	-0.03	-0.16
17 0.00	-0.17	0.04	0.03	-0.05	-0.16
18 -0.04	-0.17	0.05	0.00	-0.06	-0.14
19 -0.04	-0.16	0.03	-0.04	-0.05	-0.11
20 -0.07	-0.16	0.03	-0.07	-0.06	-0.10
21 -0.07	-0.13	0.01	-0.12	-0.06	-0.07
22 -0.07	-0.07	-0.02	-0.16	-0.05	-0.04
23 -0.08	-0.02	-0.03	-0.18	-0.02	-0.02
24 -0.08	0.02	-0.04	-0.21	-0.01	0.00
25 -0.08	0.05	-0.07	-0.22	0.01	0.02
26 -0.08	0.08	-0.04	-0.23	0.03	0.03
27 -0.09	0.11	-0.04	-0.22	0.03	0.03
28 -0.08	0.11	-0.05	-0.20	0.02	0.02
29 -0.04	0.11	-0.06	-0.17	0.03	0.02
30 -0.03	0.11	-0.06	-0.12	0.03	0.02
31 0.00	0.11	-0.06	-0.08	0.03	0.02
32 0.01	0.07	-0.07	-0.02	0.04	0.02
33 0.03	0.05	-0.06	0.03	0.03	0.00
34 0.04	-0.01	-0.04	0.07	0.01	-0.02
35 0.05	-0.03	-0.03	0.10	0.00	-0.02
36 0.08	-0.06	0.00	0.10	-0.01	-0.03
37 0.10	-0.09	0.00	0.10	-0.03	-0.03
38 0.11	-0.10	0.02	0.11	-0.04	-0.05
39 0.10	-0.14	0.03	0.09	-0.03	-0.05
40 0.11	-0.13	0.04	0.06	-0.02	-0.05
41 0.09	-0.12	0.04	0.00	-0.02	-0.05
42 0.06	-0.14	0.08	-0.01	-0.02	-0.05
43 0.04	-0.14	0.00	-0.05	-0.02	-0.05
44 0.01	-0.13	0.00	-0.08	-0.01	-0.05
45 -0.02	-0.11	0.10	_0 11	0.00	-0.07
46 -0.02	-0.08	0.03	-0.14	0.00	-0.06
47 -0.09	-0.03	0.06	-0.16	0.00	-0.06
48 -0.09	-0.01	0.03	-0,17	0.00	-0.05

Tabla EM-143: Correlación cruzada Viento – Corriente Punto 2

	Jia Livi-144.	COlleiacio	n cruzaua i		neme rum	0 2
Desfase	U Superficie	V Superficie	U Intermedio	V Intermedio	U Fondo	V Fondo
Horas	Marea	Marea	Marea	Marea	Marea	Marea
0	-0.17	-0.16	0.11	0.02	-0.01	-0.02
1	-0.11	-0.08	0.16	-0.01	-0.02	-0.05
2	-0.02	0.03	0.18	-0.04	-0.04	-0.08
3	0.07	0.14	0.16	-0.05	-0.05	-0.08
4	0.14	0.23	0.11	-0.06	-0.06	-0.07
5	0.18	0.29	0.04	-0.04	-0.06	-0.05
6	0.18	0.30	-0.04	-0.02	-0.05	-0.02
7	0.13	0.25	-0.11	0.00	-0.04	0.01
8	0.06	0.18	-0.15	0.02	-0.02	0.03
9	-0.01	0.08	-0.15	0.04	0.00	0.04
10	-0.08	-0.02	-0.13	0.05	0.01	0.03
11	-0.11	-0.09	-0.09	0.05	0.03	0.01
12	-0.12	-0.14	-0.03	0.04	0.04	-0.01
13	-0.08	-0.15	0.01	0.03	0.04	-0.03
14	-0.03	-0.12	0.04	0.02	0.04	-0.04
15	0.04	-0.07	0.04	0.01	0.02	-0.04
16	0.09	-0.03	0.01	0.01	0.00	-0.02
17	0.12	0.00	-0.02	0.01	0.00	0.01
18	0.11	0.00	-0.07	0.04	-0.01	0.04
19	0.07	-0.02	-0.11	0.05	0.00	0.07
20	0.01	-0.07	-0.13	0.06	0.00	0.08
21	-0.07	-0.12	-0.11	0.07	0.00	0.08
22	-0.14	-0.17	-0.07	0.07	0.00	0.07
23	-0.18	-0.18	-0.02	0.06	0.00	0.05
24	-0.18	-0.16	0.05	0.05	-0.01	0.01
25	-0.14	-0.10	0.11	0.02	-0.02	-0.03
26	-0.07	-0.02	0.15	-0.01	-0.03	-0.06
27	0.02	0.09	0.16	-0.03	-0.04	-0.07
28	0.11	0.18	0.13	-0.05	-0.05	-0.07
29	0.17	0.26	0.09	-0.06	-0.05	-0.06
30	0.21	0.29	0.02	-0.06	-0.05	-0.03
31	0.20	0.28	-0.05	-0.05	-0.03	-0.01
32	0.15	0.22	-0.11	-0.03	-0.02	0.01
33	0.08	0.13	-0.15	0.00	-0.01	0.02
34	0.00	0.03	-0.15	0.02	0.00	0.02
35	-0.07	-0.05	-0.12	0.04	0.01	0.02
36	-0.11	-0.12	-0.07	0.05	0.01	0.01
37	-0.10	-0.15	-0.03	0.05	0.01	0.00
38	-0.08	-0.15	0.03	0.04	0.01	-0.02
39	-0.02	-0.13	0.05	0.03	0.00	-0.02
40	0.05	-0.09	0.05	0.02	0.01	-0.02
41	0.10	-0.05	0.03	0.01	0.01	0.00
42	0.13	-0.02	-0.01	0.01	0.01	0.02
43	0.12	-0.03	-0.05	0.02	0.01	0.05
44	0.08	-0.05	-0.08	0.03	0.00	0.07
45	0.02	-0.09	-0.10	0.04	0.00	0.08
46	-0.06	-0.13	-0.10	0.05	0.00	0.08
47	-0.12	-0.15	-0.06	0.06	0.00	0.07
48	-0.17	-0.15	-0.01	0.06	0.00	0.05

Tabla EM-144: Correlación cruzada Marea – Corriente Punto 2

• Verano 2014

Con el objeto de visualizar las relaciones causa efecto entre variables, los registros de corrientes eulerianas (capa superficial, intermedia y de fondo), marea y vientos, fueron sometidos a un análisis de correlación cruzada. Los resultados de este análisis son presentados en las Tablas EM-145 y Tabla EM-146 (corrientes punto de muestreo 1) y Tablas EM-147 y Tabla EM-148 (corrientes punto de muestreo 2).

Al respecto, en la Tabla EM-145, en el punto de muestreo 1, asociado a la descarga de salmuera del Proyecto, se aprecia que el efecto del viento sobre las corrientes es importante (fundamentalmente a nivel superficial), con coeficientes de correlación máximos de 0,34 (máximo igual a 1). Este máximo se registró en el par "componente U de la corriente capa fondo v/s componente U del viento". Por su parte, el efecto de la marea sobre las corrientes (Tabla EM-146) se apreció inferior respecto del forzante viento. Los valores máximos alcanzados se ubicaron en torno a 0,27 (máximo igual a 1). Este máximo se registró en el par "componente U de la corriente capa superficie v/s marea".

En la Tabla EM-147, en el punto de muestreo 2, asociado a la captación de agua de mar del Proyecto, se aprecia que el efecto del viento sobre las corrientes es importante (fundamentalmente a nivel superficial), con coeficientes de correlación máximos de 0,26 (máximo igual a 1). Por su parte, el efecto de la marea sobre las corrientes (Tabla EM-148) se apreció inferior respecto del forzante viento. Los valores máximos alcanzados se ubicaron en torno a 0,18 (máximo igual a 1).

Estos resultados evidencian el mayor efecto del viento (por sobre la marea) en las corrientes eulerianas.

i apia EM-145: Correlación cruzada Viento – Corriente Punto 1							
Desfase	U Superficie	U Intermedio	U Fondo	V Superficie	V Intermedio	V Fondo	
Horas	U viento	U viento	U viento	V viento	V viento	V viento	
0	-0.08	0.02	0.20	-0.26	0.21	0.23	
1	-0.10	0.07	0.15	-0.25	0.19	0.25	
2	-0.12	0.07	0.11	-0.25	0.15	0.24	
3	-0.13	0.07	0.05	-0.23	0.11	0.21	
4	-0.13	0.08	-0.03	-0.20	0.05	0.18	
5	-0.16	0.08	-0.12	-0.17	0.01	0.15	
6	-0.15	0.09	-0.20	-0.12	-0.05	0.11	
7	-0.14	0.10	-0.28	-0.08	-0.08	0.05	
8	-0.15	0.10	-0.33	-0.04	-0.10	-0.03	
9	-0.13	0.11	-0.31	-0.01	-0.12	-0.10	
10	-0.11	0.07	-0.29	0.02	-0.12	-0.18	
11	-0.05	0.03	-0.26	0.06	-0.10	-0.23	
12	0.03	-0.03	-0.21	0.10	-0.10	-0.27	
13	0.12	-0.07	-0.16	0.12	-0.08	-0.30	
14	0.16	-0.12	-0.09	0.16	-0.05	-0.29	
15	0.16	-0.17	-0.01	0.18	-0.01	-0.27	
16	0.18	-0.18	0.08	0.18	0.02	-0.23	
17	0.18	-0.20	0.17	0.17	0.05	-0.18	
18	0.16	-0.19	0.23	0.16	0.08	-0.13	
19	0.14	-0.17	0.24	0.12	0.11	-0.05	
20	0.11	-0.14	0.24	0.06	0.15	0.00	
21	0.06	-0.10	0.24	0.00	0.17	0.06	
22	0.02	-0.05	0.24	-0.04	0.18	0.12	
23	0.01	-0.01	0.23	-0.10	0.17	0.16	
24	-0.01	0.04	0.21	-0.15	0.15	0.18	
25	-0.07	0.05	0.15	-0.17	0.13	0.20	
26	-0.09	0.06	0.09	-0.18	0.09	0.20	
27	-0.12	0.06	0.01	-0.18	0.03	0.20	
28	-0.11	0.09	-0.07	-0.16	0.00	0.18	
29	-0.15	0.09	-0.16	-0.14	-0.05	0.14	
30	-0.14	0.09	-0.23	-0.10	-0.08	0.10	
31	-0.15	0.08	-0.28	-0.07	-0.09	0.05	
32	-0.14	0.08	-0.33	-0.04	-0.11	-0.01	
33	-0.11	0.07	-0.34	0.01	-0.13	-0.09	
34	-0.09	0.06	-0.33	0.05	-0.15	-0.16	
35	-0.03	0.02	-0.28	0.10	-0.15	-0.22	
36	0.02	-0.02	-0.23	0.14	-0.15	-0.28	
37	0.09	-0.02	-0.16	0.16	-0.13	-0.30	
38	0.14	-0.06	-0.05	0.19	-0.10	-0.30	
39	0.20	-0.11	0.02	0.21	-0.06	-0.29	
40	0.20	-0.17	0.09	0.21	-0.01	-0.24	
41	0.22	-0.18	0.14	0.19	0.03	-0.17	
42	0.21	-0.18	0.21	0.17	0.08	-0.11	
43	0.16	-0.20	0.24	0.15	0.13	-0.03	
44	0.10	-0.17	0.25	0.11	0.17	0.04	
45	0.06	-0.13	0.26	0.06	0.20	0.12	
46	0.02	-0.08	0.23	0.00	0.21	0.17	
47	-0.01	-0.02	0.23	-0.05	0.22	0.22	
48	-0.06	-0.02	0.18	-0.09	0.19	0.26	

ahla EM 445. C nto D 4 . . ~

b		b: Correlació	on cruzada in	larea – Corri	ente Punto	<u> </u>
Desfase	U Superficie	V Superficie	U Intermedio	V Intermedio	U Fondo	V Fondo
Horas	Marea	Marea	Marea	Marea	Marea	Marea
0	-0.26	-0.16	0.03	0.00	-0.18	-0.11
1	-0.21	-0.11	0.05	-0.04	-0.15	-0.13
2	-0.12	-0.03	0.07	-0.06	-0.09	-0.12
3	-0.01	0.06	0.06	-0.06	-0.03	-0.10
4	0.09	0.14	0.03	-0.03	0.02	-0.08
5	0.16	0.18	-0.01	0.01	0.04	-0.05
6	0.18	0.18	-0.07	0.06	0.04	-0.02
7	0.15	0.14	-0.11	0.11	0.01	0.00
8	0.09	0.07	-0.14	0.15	-0.04	0.01
9	0.00	-0.03	-0.15	0.17	-0.08	0.02
10	-0.09	-0.12	-0.13	0.17	-0.10	0.03
11	-0.15	-0.19	-0.09	0.16	-0.10	0.04
12	-0.17	-0.22	-0.05	0.12	-0.06	0.05
13	-0.14	-0.20	-0.01	0.08	0.00	0.07
14	-0.08	-0.15	0.03	0.04	0.07	0.10
15	0.00	-0.08	0.04	0.02	0.13	0.12
16	0.08	-0.01	0.03	0.01	0.17	0.13
17	0.13	0.04	0.01	0.02	0.18	0.13
18	0.13	0.06	-0.03	0.03	0.14	0.11
19	0.09	0.04	-0.06	0.05	0.07	0.08
20	0.02	0.00	-0.07	0.07	-0.02	0.03
21	-0.08	-0.06	-0.07	0.08	-0.11	-0.02
22	-0.17	-0.12	-0.06	0.07	-0.18	-0.07
23	-0.25	-0.16	-0.03	0.04	-0.22	-0.11
24	-0.27	-0.16	0.01	0.01	-0.22	-0.13
25	-0.25	-0.13	0.04	-0.03	-0.19	-0.13
26	-0.18	-0.07	0.06	-0.06	-0.13	-0.11
27	-0.08	0.01	0.06	-0.06	-0.05	-0.09
28	0.04	0.08	0.04	-0.06	0.02	-0.06
29	0.13	0.14	0.01	-0.03	0.06	-0.03
30	0.19	0.16	-0.03	0.01	0.07	-0.01
31	0.19	0.15	-0.07	0.06	0.05	0.00
32	0.15	0.09	-0.10	0.11	0.01	0.01
33	0.07	0.00	-0.12	0.14	-0.05	0.01
34	-0.03	-0.08	-0.12	0.15	-0.09	0.01
35	-0.11	-0.16	-0.09	0.13	-0.10	0.02
36	-0.16	-0.21	-0.06	0.10	-0.07	0.03
37	-0.18	-0.22	-0.03	0.06	-0.02	0.05
38	-0.13	-0.19	0.02	0.02	0.04	0.08
39	-0.06	-0.14	0.04	-0.02	0.11	0.11
40	0.03	-0.07	0.05	-0.04	0.16	0.12
41	0.10	0.00	0.04	-0.03	0.17	0.12
42	0.13	0.04	0.02	-0.01	0.16	0.10
43	0.12	0.05	-0.01	0.01	0.10	0.07
44	0.07	0.04	-0.03	0.03	0.02	0.02
45	-0.01	-0.01	-0.04	0.05	-0.07	-0.03
46	-0.11	-0.07	-0.04	0.04	-0.14	-0.08
47	-0.19	-0.12	-0.03	0.03	-0.20	-0.12
48	-0.25	-0.14	0.00	0.00	-0.22	-0.14

Tabla EM-146: Correlación cruzada Marea - Corriente Punto 1

Tabla EM-147: Correlación cruzada Viento – Corriente Punto 2						
Desfase	U Superficie	U Intermedio	U Fondo	V Superficie	V Intermedio	V Fondo
Horas	U viento	U viento	U viento	V viento	V viento	V viento
0	-0.09	0.02	0.15	-0.24	0.19	0.23
1	-0.08	0.04	0.11	-0.24	0.13	0.19
2	-0.08	0.05	0.06	-0.22	0.10	0.15
3	-0.06	0.04	0.01	-0.20	0.06	0.11
4	-0.04	0.06	-0.07	-0.17	0.01	0.08
5	-0.03	0.06	-0.13	-0.15	-0.03	0.04
6	-0.03	0.05	-0.19	-0.11	-0.07	-0.01
7	-0.02	0.05	-0.22	-0.08	-0.08	-0.06
8	-0.05	0.04	-0.21	-0.04	-0.08	-0.11
9	-0.04	0.04	-0.21	0.02	-0.10	-0.17
10	-0.02	0.02	-0.20	0.06	-0.10	-0.21
11	0.01	-0.02	-0.19	0.11	-0.09	-0.22
12	0.02	-0.03	-0.19	0.14	-0.06	-0.22
13	0.07	-0.01	-0.13	0.19	-0.02	-0.19
14	0.08	-0.02	-0.03	0.20	0.01	-0.16
15	0.10	-0.05	0.06	0.22	0.06	-0.13
16	0.06	-0.05	0.12	0.22	0.08	-0.08
17	0.07	-0.07	0.18	0.21	0.11	-0.03
18	0.04	-0.07	0.20	0.18	0.14	0.01
19	0.04	-0.09	0.22	0.15	0.15	0.05
20	0.01	-0.08	0.21	0.10	0.16	0.10
21	-0.04	-0.03	0.25	0.04	0.17	0.12
22	-0.05	-0.02	0.22	0.00	0.17	0.16
23	-0.08	0.00	0.20	-0.05	0.15	0.17
24	-0.08	0.02	0.16	-0.09	0.13	0.17
25	-0.07	0.02	0.10	-0.14	0.09	0.17
26	-0.07	0.04	0.03	-0.15	0.04	0.14
27	-0.04	0.04	-0.04	-0.16	-0.01	0.13
28	-0.03	0.02	-0.12	-0.15	-0.04	0.12
29	-0.02	0.02	-0.15	-0.16	-0.08	0.09
30	-0.03	0.02	-0.22	-0.11	-0.12	0.04
31	0.00	0.04	-0.23	-0.08	-0.15	-0.02
32	0.00	0.01	-0.26	-0.05	-0.17	-0.07
33	0.02	0.03	-0.24	-0.01	-0.19	-0.13
34	0.01	0.01	-0.22	0.04	-0.18	-0.19
35	0.01	0.01	-0.16	0.10	-0.18	-0.22
36	0.03	-0.01	-0.12	0.13	-0.16	-0.25
37	0.07	-0.01	-0.06	0.16	-0.13	-0.26
38	0.12	-0.02	-0.02	0.20	-0.10	-0.24
39	0.12	-0.02	0.06	0.22	-0.06	-0.18
40	0.11	-0.05	0.11	0.22	-0.01	-0.14
41	0.11	-0.07	0.16	0.22	0.04	-0.07
42	0.10	-0.09	0.22	0.20	0.07	-0.01
43	0.06	-0.09	0.24	0.18	0.12	0.06
44	0.04	-0.08	0.23	0.15	0.14	0.11
45	0.04	-0.04	0.21	0.12	0.14	0.14
46	0.01	-0.01	0.22	0.06	0.13	0.18
47	-0.04	0.03	0.19	0.00	0.12	0.21
48	-0.07	0.03	0.13	-0.05	0.10	0.20

EM 447. C 4~ \/; nto Di nto 2 **F**abla ~

Tabla EM-146. Correlación cruzada Marea – Corriente Funto z						
Desfase	U Superficie	V Superficie	U Intermedio	V Intermedio	U Fondo	V Fondo
Horas	Marea	Marea	Marea	Marea	Marea	Marea
0	-0.05	-0.02	-0.08	-0.03	-0.10	-0.08
1	-0.01	0.00	-0.04	-0.05	-0.08	-0.06
2	0.02	0.03	0.00	-0.06	-0.04	-0.04
3	0.05	0.06	0.03	-0.04	0.00	-0.03
4	0.05	0.09	0.04	0.00	0.02	-0.02
5	0.05	0.11	0.03	0.05	0.03	-0.02
6	0.04	0.12	0.00	0.10	0.02	-0.02
7	0.01	0.11	-0.04	0.14	0.01	-0.02
8	-0.02	0.09	-0.08	0.18	-0.02	-0.01
9	-0.03	0.05	-0.12	0.18	-0.03	0.00
10	-0.05	0.02	-0.13	0.17	-0.04	0.03
11	-0.05	-0.02	-0.13	0.14	-0.03	0.05
12	-0.03	-0.04	-0.10	0.10	0.00	0.09
13	0.00	-0.05	-0.06	0.06	0.04	0.11
14	0.03	-0.05	-0.03	0.03	0.09	0.13
15	0.05	-0.05	0.01	0.01	0.12	0.13
16	0.06	-0.04	0.03	0.01	0.14	0.12
17	0.05	-0.04	0.04	0.02	0.13	0.09
18	0.03	-0.03	0.02	0.04	0.10	0.04
19	-0.01	-0.04	-0.01	0.05	0.05	-0.01
20	-0.05	-0.04	-0.04	0.06	-0.02	-0.05
21	-0.08	-0.04	-0.07	0.05	-0.07	-0.09
22	-0.10	-0.05	-0.09	0.03	-0.12	-0.11
23	-0.10	-0.04	-0.10	0.01	-0.14	-0.11
24	-0.07	-0.02	-0.09	-0.02	-0.13	-0.09
25	-0.04	0.00	-0.07	-0.05	-0.10	-0.07
26	0.01	0.03	-0.03	-0.06	-0.06	-0.04
27	0.06	0.06	0.00	-0.06	-0.01	-0.02
28	0.09	0.08	0.02	-0.04	0.03	0.00
29	0.10	0.09	0.02	0.00	0.05	0.00
30	0.08	0.09	0.01	0.05	0.05	0.00
31	0.05	0.08	-0.01	0.09	0.03	0.00
32	0.01	0.05	-0.05	0.13	0.00	-0.01
33	-0.04	0.02	-0.08	0.15	-0.03	-0.01
34	-0.07	-0.01	-0.11	0.14	-0.04	0.00
35	-0.08	-0.04	-0.11	0.12	-0.05	0.01
36	-0.07	-0.06	-0.10	0.08	-0.03	0.04
37	-0.04	-0.07	-0.08	0.04	0.01	0.07
38	0.00	-0.06	-0.04	0.00	0.05	0.09
39	0.05	-0.06	0.00	-0.02	0.10	0.11
40	0.08	-0.05	0.02	-0.03	0.13	0.11
41	0.09	-0.04	0.04	-0.03	0.13	0.09
42	0.07	-0.04	0.04	-0.01	0.12	0.06
43	0.03	-0.05	0.03	0.01	0.07	0.00
44	-0.01	-0.05	0.00	0.02	0.01	-0.05
45	-0.06	-0.06	-0.03	0.03	-0.05	-0.10
46	-0.10	-0.06	-0.05	0.02	-0.10	-0.13
47	-0.11	-0.06	-0.07	0.00	-0.14	-0.14
48	-0.09	-0.04	-0.07	-0.03	-0.15	-0.13

Tabla EM-148: Correlación cruzada Marea – Corriente Punto 2

Invierno 2015

Con el objeto de visualizar las relaciones causa efecto entre variables, los registros de corrientes eulerianas (capa superficial, intermedia y de fondo), marea y vientos, fueron sometidos a un análisis de correlación cruzada. Los resultados de este análisis son presentados en las Tablas EM-149 y Tabla EM-150 (corrientes punto de muestreo 1) y Tablas EM-151 y Tabla EM-152 (corrientes punto de muestreo 2).

Al respecto, en la Tabla EM-149, punto de muestreo 1, asociado a la descarga de salmuera del Proyecto, se aprecia que el efecto del viento sobre las corrientes es importante (fundamentalmente a nivel superficial), con coeficientes de correlación máximos de 0,32 (máximo igual a 1). Este máximo se registró en el par "componente V de la corriente capa superficie v/s componente V del viento". Por su parte, el efecto de la marea sobre las corrientes (Tabla EM-150) se apreció similar respecto del forzante viento. Los valores máximos alcanzados se ubicaron en torno a 0,32 (máximo igual a 1). Este máximo se registró en el par "componente V de la corriente capa

En la Tabla EM-151, punto de muestreo 2, asociado a la captación de agua de mar del Proyecto, se aprecia que el efecto del viento sobre las corrientes es importante (fundamentalmente a nivel superficial), con coeficientes de correlación máximos de 0,32 (máximo igual a 1). Por su parte, el efecto de la marea sobre las corrientes (Tabla EM-152) se apreció inferior respecto del forzante viento. Los valores máximos alcanzados se ubicaron en torno a 0,20 (máximo igual a 1).

Estos resultados evidencian un efecto similar entre los forzantes viento y marea sobre las corrientes eulerianas.

. Iai	na Livi-143.	CONTENACION	i ciuzaua v		mente Fun	
Desfase	U Superficie	U Intermedio	U Fondo	V Superficie	V Intermedio	V Fondo
Horas	U viento	U viento	U viento	V viento	V viento	V viento
0	-0.07	0.03	0.07	-0.32	0.08	0.18
1	-0.07	0.00	0.07	-0.29	0.09	0.15
2	-0.02	-0.01	0.05	-0.25	0.10	0.13
3	-0.01	0.00	0.07	-0.23	0.10	0.11
4	0.02	0.00	0.06	-0.20	0.10	0.10
5	0.02	-0.01	0.02	-0.18	0.06	0.07
6	0.02	-0.03	0.00	-0.13	0.07	0.05
7	0.01	-0.03	-0.03	-0.09	0.07	0.06
8	-0.01	-0.02	-0.02	-0.07	0.06	0.04
9	0.01	0.00	0.00	-0.07	0.05	0.03
10	-0.02	-0.03	-0.02	-0.06	0.04	0.03
11	-0.01	-0.01	0.04	-0.04	0.04	0.03
12	0.01	-0.02	0.05	-0.03	0.01	0.01
13	0.00	-0.08	0.01	-0.03	0.00	0.00
14	0.00	-0.08	0.01	-0.05	0.00	0.00
15	0.03	-0.07	0.02	-0.04	0.02	-0.01
16	0.06	-0.05	-0.03	-0.05	0.02	0.00
17	0.01	-0.09	-0.07	-0.08	0.01	-0.02
18	0.02	-0.05	-0.10	-0.08	0.02	-0.03
19	0.02	-0.02	-0.11	-0.11	0.00	-0.02
20	0.01	-0.01	-0.09	-0.14	0.01	-0.03
21	0.00	0.02	-0.04	-0.15	0.02	-0.02
22	-0.01	0.04	-0.01	-0.15	0.02	-0.01
23	-0.02	0.01	-0.01	-0.16	0.02	-0.01
24	-0.04	0.00	0.02	-0.16	0.01	-0.01
25	0.01	0.03	0.03	-0.15	0.01	-0.01
26	-0.04	-0.01	-0.01	-0.16	0.00	-0.02
27	0.00	0.05	0.01	-0.15	0.01	-0.01
28	-0.01	-0.01	-0.02	-0.15	0.01	0.00
29	-0.03	0.01	-0.01	-0.14	0.00	-0.01
30	-0.04	-0.02	-0.01	-0.13	0.01	0.00
31	-0.03	-0.03	-0.01	-0.11	0.00	0.00
32	0.01	-0.03	-0.04	-0.11	0.00	0.00
33	0.00	-0.05	-0.04	-0.09	0.00	0.00
34	-0.01	-0.03	-0.02	-0.09	-0.01	0.00
35	0.00	-0.03	-0.05	-0.09	-0.02	0.00
36	-0.01	0.00	-0.05	-0.08	-0.02	0.00
37	0.03	0.01	-0.02	-0.08	-0.03	-0.01
38	0.03	-0.02	-0.04	-0.07	-0.03	-0.03
39	0.07	-0.03	-0.05	-0.06	-0.02	-0.03
40	0.06	-0.03	-0.05	-0.05	-0.02	-0.03
41	0.01	-0.03	-0.07	-0.06	0.00	-0.02
42	0.05	0.04	-0.03	-0.07	0.00	0.00
43	0.00	-0.01	-0.03	-0.09	-0.01	0.00
44	-0.03	0.00	-0.02	-0.10	-0.01	0.00
45	-0.03	0.03	-0.01	-0.11	0.00	0.03
46	0.00	0.10	0.02	-0.11	0.00	0.07
47	-0.03	0.06	0.00	-0.13	0.01	0.06
48	0.01	0.09	0.05	-0.14	0.00	0.06

Toble EM 140, Correlación aruzado Viente - Corriente Punto 1

<u> </u>		Contelacio	n cruzaua i		neme run	
Desfase	U Superficie	V Superficie	U Intermedio	V Intermedio	U Fondo	V Fondo
Horas	Marea	Marea	Marea	Marea	Marea	Marea
0	-0.26	-0.21	0.06	0.00	0.08	0.16
1	-0.27	-0.22	0.02	-0.05	0.10	0.11
2	-0.18	-0.17	0.05	-0.06	0.15	0.05
3	-0.04	-0.08	0.07	-0.05	0.15	-0.02
4	0.09	0.01	0.08	-0.02	0.11	-0.09
5	0.19	0.07	0.07	0.02	0.05	-0.13
6	0.23	0.11	0.05	0.05	-0.03	-0.13
7	0.20	0.10	0.02	0.08	-0.10	-0.11
8	0.11	0.05	-0.02	0.09	-0.14	-0.06
9	-0.02	-0.02	-0.04	0.08	-0.15	0.00
10	-0.16	-0.09	-0.06	0.06	-0.12	0.05
11	-0.28	-0.15	-0.05	0.01	-0.05	0.09
12	-0.32	-0.17	-0.03	-0.02	0.02	0.09
13	-0.31	-0.15	-0.01	-0.06	0.09	0.07
14	-0.22	-0.08	0.01	-0.07	0.13	0.02
15	-0.08	0.01	0.03	-0.08	0.14	-0.05
16	0.06	0.10	0.03	-0.05	0.11	-0.12
17	0.19	0.17	0.02	-0.02	0.05	-0.16
18	0.27	0.21	0.00	0.01	-0.04	-0.16
19	0.28	0.20	-0.02	0.04	-0.12	-0.14
20	0.21	0.13	-0.04	0.06	-0.18	-0.08
21	0.09	0.03	-0.05	0.06	-0.20	-0.01
22	-0.06	-0.08	-0.05	0.04	-0.17	0.05
23	-0.18	-0.17	-0.04	0.00	-0.11	0.11
24	-0.27	-0.24	-0.01	-0.03	-0.03	0.14
25	-0.29	-0.25	0.02	-0.06	0.05	0.13
26	-0.25	-0.22	0.05	-0.08	0.12	0.09
27	-0.13	-0.15	0.07	-0.08	0.15	0.03
28	0.00	-0.06	0.07	-0.06	0.14	-0.04
29	0.12	0.02	0.07	-0.03	0.10	-0.10
30	0.21	0.08	0.05	0.02	0.03	-0.12
31	0.24	0.11	0.02	0.05	-0.05	-0.12
32	0.19	0.10	-0.01	0.08	-0.11	-0.08
33	0.10	0.05	-0.03	0.08	-0.15	-0.04
34	-0.03	-0.02	-0.04	0.07	-0.15	0.02
35	-0.16	-0.09	-0.04	0.04	-0.11	0.07
36	-0.26	-0.15	-0.03	-0.01	-0.03	0.10
37	-0.31	-0.16	-0.01	-0.05	0.05	0.09
38	-0.28	-0.13	0.01	-0.08	0.12	0.06
39	-0.18	-0.06	0.02	-0.09	0.15	0.00
40	-0.05	0.02	0.02	-0.08	0.14	-0.07
41	0.09	0.10	0.02	-0.06	0.10	-0.12
42	0.21	0.16	0.01	-0.02	0.03	-0.14
43	0.27	0.18	-0.01	0.02	-0.05	-0.14
44	0.27	0.16	-0.03	0.05	-0.12	-0.10
45	0.20	0.09	-0.04	0.06	-0.18	-0.05
46	0.08	-0.01	-0.04	0.06	-0.19	0.02
47	-0.05	-0.10	-0.03	0.03	-0.15	0.09
48	-0.17	-0.19	0.00	0.00	-0.09	0.13

Tabla EM-150: Correlación cruzada Marea – Corriente Punto 1

Iak		CONTENACIO	Tuzaua		mente Fun	10 2
Desfase	U Superficie	U Intermedio	U Fondo	V Superficie	V Intermedio	V Fondo
Horas	U viento	U viento	U viento	V viento	V viento	V viento
0	-0.13	0.07	0.12	-0.32	-0.04	0.11
1	-0.16	0.05	0.09	-0.31	-0.02	0.09
2	-0.14	0.04	0.07	-0.30	-0.01	0.06
3	-0.10	0.03	0.05	-0.24	0.01	0.06
4	-0.06	0.03	0.07	-0.21	0.01	0.07
5	0.00	0.04	0.05	-0.17	0.04	0.07
6	0.00	0.02	0.03	-0.15	0.03	0.07
7	0.01	0.02	0.03	-0.12	0.01	0.04
8	0.04	-0.05	0.01	-0.07	0.03	0.03
9	0.02	-0.01	0.02	-0.05	0.01	0.02
10	0.04	0.00	0.03	-0.03	0.01	0.01
11	0.03	-0.02	0.00	-0.01	0.02	0.01
12	0.06	-0.01	0.01	0.00	0.02	0.00
13	0.06	-0.09	-0.01	0.01	-0.01	-0.04
14	0.08	-0.05	0.01	0.00	-0.02	-0.04
15	0.09	-0.04	-0.03	-0.03	-0.03	-0.05
16	0.08	-0.04	-0.04	-0.04	-0.04	-0.05
17	0.10	-0.07	-0.06	-0.07	-0.03	-0.05
18	0.05	-0.06	-0.02	-0.08	-0.03	-0.04
19	-0.05	-0.05	-0.01	-0.12	-0.05	-0.03
20	-0.08	-0.06	-0.01	-0.13	-0.05	-0.03
21	-0.09	-0.05	0.00	-0.14	-0.05	-0.01
22	-0.07	-0.05	-0.01	-0.15	-0.04	0.01
23	-0.06	-0.01	0.05	-0.14	-0.04	-0.01
24	-0.09	-0.02	0.05	-0.17	-0.04	-0.02
25	-0.08	0.01	0.05	-0.17	-0.03	-0.02
26	-0.08	0.04	0.02	-0.15	0.01	-0.03
27	-0.08	0.00	0.02	-0.14	0.02	-0.02
28	-0.04	0.01	0.03	-0.14	0.02	-0.02
29	-0.03	0.03	0.01	-0.11	0.02	0.00
30	-0.02	0.03	-0.03	-0.09	0.00	0.01
31	-0.02	0.01	-0.04	-0.07	0.00	-0.01
32	0.04	0.02	0.00	-0.06	0.00	-0.02
33	0.05	0.01	0.01	-0.03	0.00	-0.02
34	0.05	0.00	0.00	-0.03	-0.02	-0.02
35	0.06	-0.01	-0.05	-0.02	-0.01	-0.02
36	0.11	-0.01	-0.05	-0.02	0.00	-0.02
37	0.09	-0.05	-0.04	-0.02	-0.01	-0.03
38	0.09	0.02	-0.06	-0.01	-0.01	0.00
39	0.07	0.00	-0.07	-0.01	-0.02	-0.02
40	0.07	-0.02	-0.03	-0.01	-0.01	0.00
41	0.04	-0.03	-0.01	-0.02	-0.02	-0.01
42	0.00	-0.07	0.00	-0.03	0.00	-0.03
43	0.02	0.03	-0.02	-0.06	-0.01	0.00
44	-0.01	0.04	0.01	-0.08	-0.01	0.02
45	-0.03	0.02	-0.01	-0.08	-0.01	0.03
46	-0.05	0.01	-0.01	-0.11	-0.02	0.04
47	-0.06	0.04	0.04	-0.13	-0.03	0.04
48	-0.05	0.04	0.05	-0.13	-0.02	0.04

Tabla EM-151: Correlación cruzada Viento – Corriente Punto 2

Desase U Superficie V Intermedio V Intermedio V Fondo V Fondo Horas Marea Marea Marea Marea Marea Marea 0 -0.19 -0.14 -0.05 -0.12 0.07 0.07 1 -0.18 -0.12 -0.02 -0.05 0.04 -0.04 3 -0.05 -0.08 0.06 0.00 0.01 -0.03 -0.10 4 0.04 -0.04 0.06 0.06 -0.06 -0.01 -0.08 -0.01 5 0.11 -0.02 0.06 0.05 -0.08 0.00 6 0.14 0.00 0.06 0.02 -0.02 0.10 6 0.14 0.00 0.06 0.02 0.02 0.10 10 -0.09 -0.04 -0.06 0.02 0.02 0.10 11 -0.15 -0.09 -0.04 -0.06 0.03 -0.11 11 -0.16	ται		Correlacio			neme i un	
Horas Marea Marea Marea Marea Marea Marea Marea 0 0.19 0.14 -0.02 -0.02 0.07 0.07 1 0.18 -0.12 0.02 -0.05 0.04 -0.02 2 -0.12 -0.12 0.02 -0.05 0.04 -0.04 3 0.05 -0.08 0.06 0.04 -0.03 -0.01 4 0.04 -0.04 0.08 0.04 -0.08 -0.06 -0.10 5 0.11 -0.02 0.03 0.02 -0.08 0.06 0.05 7 0.12 0.00 0.06 0.05 -0.08 0.06 0.02 0.12 11 -0.15 -0.09 -0.05 0.08 0.06 0.01 0.11 12 -0.18 -0.04 -0.04 -0.04 0.07 -0.05 0.03 0.01 0.11 14 -0.16 0.06 0.03 <t< th=""><th>Desfase</th><th>U Superficie</th><th>V Superficie</th><th>U Intermedio</th><th>V Intermedio</th><th>U Fondo</th><th>V Fondo</th></t<>	Desfase	U Superficie	V Superficie	U Intermedio	V Intermedio	U Fondo	V Fondo
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Horas	Marea	Marea	Marea	Marea	Marea	Marea
1 -0.18 -0.14 -0.02 -0.06 0.07 0.02 2 -0.12 -0.12 0.02 -0.05 0.04 -0.08 3 -0.05 -0.08 0.06 0.00 0.01 -0.08 4 0.04 -0.04 0.08 0.04 -0.08 -0.10 5 0.11 -0.02 0.01 -0.06 -0.08 -0.04 6 0.14 0.00 0.06 0.05 -0.08 0.00 7 0.12 0.00 0.06 0.05 -0.08 0.06 9 -0.01 -0.05 0.08 0.06 0.01 1.12 10 -0.16 -0.04 -0.04 -0.07 0.08 0.06 11 -0.16 -0.04 -0.07 0.03 -0.01 0.03 13 -0.16 -0.11 0.06 0.01 0.03 -0.11 <	0	-0.19	-0.14	-0.05	-0.12	0.07	0.07
2 -0.12 -0.02 -0.05 -0.04 -0.06 3 -0.05 -0.04 0.06 0.00 0.01 -0.08 4 0.04 -0.04 0.08 0.04 -0.03 -0.10 5 0.11 -0.02 0.10 0.06 -0.09 -0.06 7 0.12 0.00 0.06 0.07 -0.02 0.01 9 -0.01 -0.05 0.00 -0.02 0.01 0.06 0.02 0.11 10 -0.09 -0.08 -0.04 -0.02 0.03 0.06 0.01 11 -0.15 -0.09 -0.05 -0.08 0.06 0.11 12 -0.18 -0.08 -0.04 -0.07 0.08 13 -0.16 0.03 -0.01 0.03 -0.01 0.07 14 -0.16 0.13 0.07 0.05 0.06	1	-0.18	-0.14	-0.02	-0.09	0.07	0.02
3 -0.05 -0.08 0.06 0.00 0.01 -0.08 4 0.04 -0.04 0.08 0.04 -0.03 -0.10 5 0.11 -0.02 0.10 0.06 -0.06 -0.06 -0.07 6 0.14 0.00 0.09 0.07 -0.09 -0.06 0.05 7 0.12 0.00 0.06 0.05 -0.08 0.00 8 0.07 -0.02 0.03 0.02 -0.02 0.10 10 -0.09 -0.08 -0.04 -0.06 0.02 0.12 11 -0.15 -0.09 -0.05 -0.08 0.06 0.01 12 -0.18 -0.04 -0.04 -0.07 0.09 -0.01 14 -0.10 0.005 -0.03 -0.01 -0.08 0.01 15 -0.05 0.03 -0.01 -0.06 -0.13 0.01 -0.06 16 0.08 0.	2	-0.12	-0.12	0.02	-0.05	0.04	-0.04
4 0.04 -0.04 0.08 0.04 -0.03 -0.10 5 0.11 -0.02 0.10 0.06 -0.06 -0.10 6 0.14 0.00 0.09 0.07 -0.09 -0.68 7 0.12 0.00 0.06 0.05 -0.08 0.00 8 0.07 -0.02 0.03 0.02 -0.02 0.10 10 -0.09 -0.08 -0.04 -0.06 0.02 0.12 11 -0.15 -0.09 -0.05 -0.08 0.06 0.02 12 -0.18 -0.09 -0.05 -0.08 0.06 0.01 12 -0.18 -0.04 -0.04 -0.08 0.08 0.01 13 -0.16 -0.04 -0.04 -0.08 0.08 0.01 14 -0.10 0.00 -0.04 -0.08 0.08 0.01 15 -0.02 0.05 0.03 -0.01 -0.18 16 0.08 0.11 0.06 0.05 -0.01 -0.13 16 0.20 0.14 0.06 0.05 -0.01 -0.13 16 0.20 0.14 0.06 0.05 -0.01 -0.13 17 0.16 0.16 0.01 0.00 -0.11 -0.05 20 0.15 0.06 0.01 0.00 -0.11 0.05 21 0.08 0.00 -0.02 -0.05 -0.06 0.05 22 0.01 <td>3</td> <td>-0.05</td> <td>-0.08</td> <td>0.06</td> <td>0.00</td> <td>0.01</td> <td>-0.08</td>	3	-0.05	-0.08	0.06	0.00	0.01	-0.08
5 0.11 -0.02 0.10 0.06 -0.06 -0.10 6 0.14 0.00 0.09 0.07 -0.09 -0.06 7 0.12 0.00 0.06 0.05 -0.08 0.00 8 0.07 -0.02 0.03 0.02 -0.06 0.05 9 -0.01 -0.09 -0.08 -0.04 -0.06 0.02 0.12 11 -0.15 -0.09 -0.04 -0.08 0.06 0.10 12 -0.18 -0.08 -0.04 -0.07 0.09 -0.01 14 -0.10 0.00 -0.04 -0.07 -0.08 -0.11 14 -0.10 0.00 0.004 -0.07 -0.08 -0.11 15 -0.02 0.05 0.03 -0.01 -0.16 -0.13 16 0.08 0.01 0.06 0.05 -0.10 -0.16 17 0.16	4	0.04	-0.04	0.08	0.04	-0.03	-0.10
6 0.14 0.00 0.06 0.07 -0.09 -0.06 7 0.12 0.00 0.06 0.05 -0.08 0.00 8 0.07 -0.02 0.03 0.02 -0.06 0.05 9 -0.01 -0.05 0.00 -0.02 0.10 10 0.09 -0.08 -0.04 -0.08 0.08 0.06 11 -0.15 -0.04 -0.08 0.08 0.05 0.01 12 -0.18 -0.04 -0.04 -0.07 0.09 -0.01 13 -0.16 -0.04 -0.07 -0.08 0.08 -0.11 14 -0.02 0.05 -0.07 -0.16 15 -0.02 0.05 -0.07 -0.16 17 0.16 0.12 0.05 -0.07 -0.16 18 0.20 0.12 0.05 -0.07 -0.13 <	5	0.11	-0.02	0.10	0.06	-0.06	-0.10
7 0.12 0.00 0.06 0.05 -0.08 0.00 8 0.07 -0.02 0.03 0.02 -0.06 0.05 9 -0.01 -0.05 0.00 -0.02 0.02 0.12 10 -0.09 -0.05 -0.08 0.06 0.10 11 -0.15 -0.09 -0.05 -0.08 0.06 0.10 12 -0.18 -0.08 -0.04 -0.07 0.09 -0.01 13 -0.16 -0.04 -0.04 -0.04 -0.07 0.09 -0.01 14 -0.10 0.00 0.00 -0.04 -0.07 -0.08 -0.13 16 0.02 0.05 0.03 -0.01 -0.16 -0.13 -0.01 -0.16 17 0.16 0.13 0.07 0.05 -0.07 -0.16 18 0.20 0.12 0.02 -0.10 -0.11 -0.07 20 0.15 <t< td=""><td>6</td><td>0.14</td><td>0.00</td><td>0.09</td><td>0.07</td><td>-0.09</td><td>-0.06</td></t<>	6	0.14	0.00	0.09	0.07	-0.09	-0.06
8 0.07 -0.02 0.03 0.02 -0.06 0.05 9 -0.01 -0.05 0.00 -0.02 0.12 11 -0.15 -0.08 -0.04 -0.08 0.06 0.02 0.12 11 -0.15 -0.09 -0.05 -0.08 0.06 0.01 12 -0.18 -0.04 -0.04 -0.08 0.08 0.05 13 -0.16 -0.04 -0.04 -0.04 0.07 -0.08 14 -0.10 0.00 0.00 -0.04 0.07 -0.08 15 -0.02 0.05 0.03 -0.01 -0.01 -0.01 16 0.08 0.11 0.06 0.03 -0.01 -0.01 -0.01 17 0.16 0.13 0.07 0.05 -0.07 -0.16 19 0.20 0.12 0.05 -0.06 0.01 0.00 21 0.08 0.00 -0.02	7	0.12	0.00	0.06	0.05	-0.08	0.00
9 -0.01 -0.06 0.00 -0.02 -0.02 0.10 10 -0.09 -0.06 -0.06 0.02 0.12 11 -0.15 -0.09 -0.06 -0.08 0.06 0.01 12 -0.18 -0.04 -0.04 -0.08 0.09 0.01 13 -0.16 -0.04 -0.04 -0.07 0.09 -0.01 14 -0.10 0.00 0.00 -0.04 0.07 -0.08 15 -0.02 0.05 0.03 -0.01 0.03 -0.11 16 0.08 0.11 0.06 0.03 -0.01 -0.16 17 0.16 0.13 0.07 0.05 -0.07 -0.16 18 0.20 0.12 0.05 0.03 -0.11 -0.07 20 0.15 0.06 0.01 0.00 -0.10 -0.11 21 0.08 0.00 -0.02 -0.06 -0.12 0.02 0.10 22 -0.01 -0.77 -0.05 -0.09 -0.02 0.10 23 -0.11 -0.12 -0.06 -0.13 0.06 0.09 24 -0.17 -0.16 -0.06 -0.13 0.06 0.09 25 -0.20 -0.17 -0.04 -0.12 0.07 -0.05 26 -0.17 -0.16 -0.02 -0.08 0.07 -0.09 25 -0.20 -0.17 -0.08 0.06 -0.07 -0.08 <td>8</td> <td>0.07</td> <td>-0.02</td> <td>0.03</td> <td>0.02</td> <td>-0.06</td> <td>0.05</td>	8	0.07	-0.02	0.03	0.02	-0.06	0.05
10 -0.09 -0.08 -0.06 -0.08 -0.06 0.012 11 -0.15 -0.09 -0.05 -0.08 0.06 0.06 12 -0.18 -0.08 -0.04 -0.07 0.09 -0.01 13 -0.16 -0.04 -0.04 -0.07 0.09 -0.01 14 -0.10 0.00 -0.04 -0.07 -0.08 15 -0.02 0.05 0.03 -0.01 0.03 -0.11 16 0.08 0.11 0.06 0.03 -0.07 -0.16 17 0.16 0.13 0.07 0.06 0.07 -0.16 18 0.20 0.12 0.05 0.00 -0.07 0.06 20 0.15 0.06 0.01 0.00 -0.10 0.02 0.02 0.02 0.02 0.02 0.11 0.05 0.02 0.11 0.05	9	-0.01	-0.05	0.00	-0.02	-0.02	0.10
11 -0.15 -0.09 -0.05 -0.08 0.06 0.10 12 -0.18 -0.04 -0.04 -0.08 0.08 0.05 13 -0.16 -0.04 -0.04 -0.04 0.07 0.09 -0.01 14 -0.10 0.00 0.00 -0.04 0.07 -0.08 15 -0.02 0.05 0.03 -0.01 0.03 -0.11 16 0.08 0.11 0.06 0.03 -0.01 -0.16 17 0.16 0.13 0.07 0.05 -0.07 -0.16 18 0.20 0.12 0.05 0.03 -0.11 -0.07 20 0.15 0.06 0.01 0.00 -0.10 0.00 21 0.08 0.00 -0.02 -0.10 0.00 22 -0.01 -0.07 -0.05 -0.06 0.05 22 -0.01 -0.07 -0.05 -0.06 0.06 23 -0.11 -0.17 -0.06 -0.12 0.02 0.11 24 -0.17 -0.16 -0.06 -0.13 0.06 0.09 25 -0.20 -0.17 -0.04 -0.12 0.07 -0.01 27 -0.10 -0.11 0.03 -0.04 -0.03 -0.06 28 -0.02 -0.06 0.06 -0.07 -0.08 31 0.14 0.01 0.07 -0.06 -0.02 0.10 33 0.07 -0.03 <	10	-0.09	-0.08	-0.04	-0.06	0.02	0.12
12 0.18 -0.08 -0.04 -0.08 0.08 0.05 13 0.16 -0.04 -0.07 0.09 -0.01 14 -0.10 0.00 0.00 -0.07 0.08 15 -0.02 0.05 0.03 -0.01 0.03 -0.11 16 0.08 0.11 0.06 0.03 -0.01 -0.16 17 0.16 0.13 0.07 0.05 -0.07 -0.16 18 0.20 0.12 0.05 0.03 -0.11 -0.17 20 0.15 0.06 0.01 0.00 -0.07 0.06 21 0.08 0.00 -0.02 -0.10 0.01 23 -0.11 -0.07 -0.05 -0.09 -0.02 0.11 24 -0.17 -0.16 -0.06 -0.12 0.02 0.11 24 -0.17 -0.16 -0.06 -0.12 0.02 0.11 24 -0.17 -0.15 -0.02 -0.08 0.07 -0.01 27 -0.10 -0.11 0.03 -0.04 -0.03 -0.06 28 -0.02 -0.06 0.06 0.06 -0.07 -0.08 31 0.14 0.01 0.07 -0.06 -0.11 -0.03 32 0.12 0.00 0.08 0.06 -0.07 -0.08 33 0.07 -0.03 0.08 0.06 -0.07 -0.08 34 -0.02 -0.05	11	-0.15	-0.09	-0.05	-0.08	0.06	0.10
13 -0.16 -0.04 -0.07 0.09 -0.01 14 -0.10 0.00 0.00 -0.04 0.07 -0.08 15 -0.02 0.05 0.03 -0.01 0.03 -0.11 16 0.08 0.11 0.06 0.03 -0.01 -0.16 17 0.16 0.13 0.07 0.05 -0.07 -0.16 18 0.20 0.14 0.06 0.05 -0.07 -0.16 18 0.20 0.12 0.05 0.03 -0.11 -0.07 20 0.15 0.06 0.01 0.00 -0.10 0.00 21 0.08 0.00 -0.02 -0.05 -0.09 -0.02 23 -0.11 -0.12 -0.06 -0.12 0.02 0.11 24 -0.17 -0.16 -0.06 -0.13 0.06 0.09 25 -0.20 -0.17 -0.02 -0.08 0.07 -0.01 26 -0.17 -0.15 -0.02 -0.08 0.07 -0.01 27 -0.10 -0.11 0.03 -0.04 0.05 -0.06 28 -0.02 -0.06 0.06 -0.07 -0.08 31 0.14 0.01 0.07 0.06 -0.03 32 0.12 0.00 0.04 -0.09 0.02 33 0.07 -0.08 -0.06 -0.03 -0.06 34 -0.22 -0.08 -0.07 -0.08 <	12	-0.18	-0.08	-0.04	-0.08	0.08	0.05
14 -0.10 0.00 0.00 -0.04 0.07 -0.08 15 -0.02 0.05 0.03 -0.01 0.03 -0.13 16 0.08 0.11 0.06 0.03 -0.01 -0.16 17 0.16 0.13 0.07 0.05 -0.07 -0.16 18 0.20 0.14 0.06 0.05 -0.10 -0.13 19 0.20 0.12 0.05 0.03 -0.11 -0.07 20 0.15 0.06 0.01 0.00 -0.10 0.00 21 0.08 0.00 -0.02 -0.05 -0.06 0.02 23 -0.11 -0.17 -0.06 -0.13 0.06 0.09 25 -0.20 -0.17 -0.06 -0.12 0.07 0.05 26 -0.17 -0.16 -0.02 -0.06 0.04 0.05 -0.06 28 -0.02 -0.06 0.06 0.00 -0.09 -0.02 30 0.12 0.00 0.08 0.04 -0.03 -0.08 31 0.14 0.01 0.07 -0.08 -0.07 -0.08 33 0.07 -0.02 0.00 0.04 -0.09 0.02 33 0.07 -0.08 -0.07 -0.08 0.07 -0.08 34 -0.02 -0.06 -0.06 -0.08 0.07 -0.08 34 -0.02 -0.06 -0.08 0.07 -0.09 <t< td=""><td>13</td><td>-0.16</td><td>-0.04</td><td>-0.04</td><td>-0.07</td><td>0.09</td><td>-0.01</td></t<>	13	-0.16	-0.04	-0.04	-0.07	0.09	-0.01
15 -0.02 0.05 0.03 -0.01 0.03 -0.13 16 0.08 0.11 0.06 0.03 -0.01 -0.16 17 0.16 0.13 0.07 0.05 -0.07 -0.16 18 0.20 0.12 0.05 0.03 -0.11 -0.07 20 0.15 0.06 0.01 0.00 -0.10 0.07 21 0.08 0.00 -0.02 -0.05 -0.06 0.05 22 -0.01 -0.07 -0.05 -0.06 0.02 0.11 23 -0.11 -0.12 -0.06 -0.12 0.02 0.11 24 -0.17 -0.16 -0.06 -0.13 0.06 0.09 25 -0.20 -0.17 -0.04 -0.12 0.07 -0.05 26 -0.17 -0.15 -0.02 -0.08 0.07 -0.06 27 -0.10 -0.11 0.03 -0.04 0.05 -0.06 28 -0.02 -0.06 0.06 0.00 0.00 -0.09 29 0.07 -0.03 0.08 0.04 -0.03 -0.10 30 0.12 0.00 0.04 0.04 -0.09 0.02 33 0.07 -0.05 -0.06 0.03 0.11 36 -0.15 -0.08 -0.07 0.08 0.06 34 -0.02 -0.05 -0.03 -0.02 0.00 39 -0.08 0.07 <	14	-0.10	0.00	0.00	-0.04	0.07	-0.08
16 0.08 0.11 0.06 0.03 -0.01 -0.16 17 0.16 0.13 0.07 0.05 -0.07 -0.16 18 0.20 0.14 0.06 0.05 -0.07 -0.13 19 0.20 0.12 0.05 0.03 -0.11 -0.07 20 0.15 0.06 0.01 0.00 -0.10 0.00 21 0.08 0.00 -0.02 -0.05 -0.06 0.05 22 -0.01 -0.07 -0.05 -0.09 -0.02 0.11 24 -0.17 -0.16 -0.06 -0.13 0.06 0.09 25 -0.20 -0.17 -0.04 -0.12 0.07 0.05 26 -0.17 -0.16 -0.08 0.07 -0.06 27 -0.10 -0.11 0.03 -0.04 0.05 -0.06 28 -0.02 -0.06 0.06 0.00 0.00 -0.03 29 0.07 -0.03 0.08 0.06 -0.07 -0.08 31 0.14 0.01 0.07 0.06 -0.07 -0.08 33 0.07 -0.02 -0.03 -0.02 0.10 35 -0.09 -0.02 -0.08 0.07 -0.03 36 -0.15 -0.08 -0.07 0.09 0.02 37 -0.17 -0.08 -0.06 -0.03 0.11 36 -0.17 -0.02 0.03 -0.02 <td>15</td> <td>-0.02</td> <td>0.05</td> <td>0.03</td> <td>-0.01</td> <td>0.03</td> <td>-0.13</td>	15	-0.02	0.05	0.03	-0.01	0.03	-0.13
170.160.130.070.05 -0.07 -0.16 180.200.140.060.05 -0.10 -0.13 190.200.120.050.03 -0.11 -0.07 200.150.060.010.00 -0.10 0.00210.080.00 -0.02 -0.05 -0.06 0.0522 -0.01 -0.07 -0.05 -0.09 -0.02 0.1123 -0.11 -0.12 -0.06 -0.12 0.02 0.1124 -0.17 -0.16 -0.06 -0.13 0.06 0.09 25 -0.20 -0.17 -0.04 -0.12 0.07 0.05 26 -0.17 -0.15 -0.02 -0.08 0.07 -0.01 27 -0.10 -0.11 0.03 -0.04 0.05 -0.06 28 -0.02 -0.06 0.06 0.00 0.00 -0.09 29 0.07 -0.03 0.08 0.06 -0.07 -0.08 31 0.14 0.01 0.07 0.06 -0.02 0.10 32 0.12 0.00 0.04 0.04 -0.09 0.02 33 0.07 -0.02 0.00 0.04 -0.09 0.02 33 0.07 -0.05 -0.08 0.07 0.09 34 -0.02 -0.05 -0.08 0.07 0.09 35 -0.09 -0.03 -0.05 -0.08 <td>16</td> <td>0.08</td> <td>0.11</td> <td>0.06</td> <td>0.03</td> <td>-0.01</td> <td>-0.16</td>	16	0.08	0.11	0.06	0.03	-0.01	-0.16
18 0.20 0.14 0.06 0.05 -0.10 -0.13 19 0.20 0.12 0.05 0.03 -0.11 -0.07 20 0.15 0.06 0.01 0.00 -0.10 0.00 21 0.08 0.00 -0.02 -0.05 -0.06 0.05 22 -0.01 -0.07 -0.05 -0.09 -0.02 0.10 23 -0.11 -0.12 -0.06 -0.12 0.02 0.11 24 -0.17 -0.16 -0.04 -0.12 0.07 0.05 26 -0.20 -0.17 -0.04 -0.12 0.07 0.05 26 -0.17 -0.15 -0.02 -0.08 0.07 -0.01 27 -0.10 -0.11 0.03 -0.04 0.05 -0.06 28 -0.02 -0.06 0.06 0.00 0.00 -0.09 29 0.07 -0.03 0.08 0.04 -0.03 -0.10 30 0.12 0.00 0.08 0.06 -0.07 -0.08 31 0.14 0.01 0.07 -0.05 -0.06 0.03 0.11 35 -0.09 -0.07 -0.05 -0.06 0.03 0.11 36 -0.15 -0.08 -0.07 0.09 0.04 38 -0.15 -0.08 -0.07 -0.05 -0.06 0.03 39 -0.08 0.01 0.05 -0.03 -0.14 41 <td>17</td> <td>0.16</td> <td>0.13</td> <td>0.07</td> <td>0.05</td> <td>-0.07</td> <td>-0.16</td>	17	0.16	0.13	0.07	0.05	-0.07	-0.16
19 0.20 0.12 0.05 0.03 0.11 -0.07 20 0.15 0.06 0.01 0.00 -0.10 0.00 21 0.08 0.00 -0.02 -0.05 -0.06 0.05 22 -0.01 -0.07 -0.05 -0.09 -0.02 0.11 23 -0.11 -0.17 -0.06 -0.12 0.02 0.11 24 -0.17 -0.16 -0.06 -0.12 0.07 0.05 26 -0.17 -0.14 -0.12 0.07 0.05 26 -0.17 -0.15 -0.02 -0.08 0.07 -0.01 27 -0.10 -0.11 0.03 -0.04 0.05 -0.06 28 -0.02 -0.06 0.06 0.00 0.00 -0.09 29 0.07 -0.03 0.08 0.04 -0.03 -0.10 30 0.12 0.00 0.08 0.04 -0.03 -0.10 31 0.14 0.01 0.07 -0.06 0.06 0.07 -0.08 31 0.14 0.01 0.07 0.06 0.03 0.11 -0.03 32 0.12 0.00 0.04 0.04 -0.09 0.02 33 0.07 -0.05 -0.08 0.07 0.09 34 -0.02 -0.05 -0.08 0.07 0.09 35 -0.09 -0.07 -0.05 -0.08 0.09 0.04 36 $-$	18	0.20	0.14	0.06	0.05	-0.10	-0.13
200.150.060.010.00-0.100.00210.080.00-0.02-0.05-0.060.0522-0.01-0.07-0.05-0.09-0.020.1023-0.11-0.12-0.06-0.120.020.1124-0.17-0.16-0.06-0.120.070.0526-0.17-0.15-0.02-0.080.07-0.0127-0.10-0.110.03-0.040.05-0.0628-0.02-0.060.060.000.00-0.09290.07-0.030.080.04-0.03-0.10300.120.000.080.06-0.07-0.08310.140.010.070.06-0.10-0.03320.120.000.040.04-0.090.02330.07-0.02-0.000.01-0.060.0634-0.02-0.05-0.03-0.020.1035-0.09-0.07-0.05-0.080.0739-0.080.010.00-0.030.0639-0.080.010.00-0.030.06400.010.060.03-0.070.0939-0.080.010.00-0.030.06400.010.060.030.07-0.09400.010.060.030.02-0.14410.10 <td>19</td> <td>0.20</td> <td>0.12</td> <td>0.05</td> <td>0.03</td> <td>-0.11</td> <td>-0.07</td>	19	0.20	0.12	0.05	0.03	-0.11	-0.07
21 0.08 0.00 -0.02 -0.05 -0.06 0.05 22 -0.01 -0.07 -0.05 -0.09 -0.02 0.10 23 -0.11 -0.12 -0.06 -0.12 0.02 0.11 24 -0.17 -0.16 -0.06 -0.13 0.06 0.09 25 -0.20 -0.17 -0.04 -0.12 0.07 0.05 26 -0.17 -0.15 -0.02 -0.08 0.07 -0.01 27 -0.10 -0.11 0.03 -0.04 0.05 -0.06 28 -0.02 -0.06 0.06 0.00 0.00 -0.09 29 0.07 -0.03 0.08 0.04 -0.03 -0.10 30 0.12 0.00 0.08 0.06 -0.07 -0.08 31 0.14 0.01 0.07 0.06 -0.10 -0.03 32 0.12 0.00 0.04 0.04 -0.09 0.02 33 0.07 -0.02 0.00 0.01 -0.06 0.06 34 -0.02 -0.05 -0.03 -0.02 0.11 36 -0.15 -0.08 -0.06 0.03 0.11 36 -0.15 -0.08 -0.07 0.09 -0.03 39 -0.08 0.01 0.06 -0.03 0.06 -0.09 44 0.15 -0.03 -0.05 -0.08 0.09 -0.14 <t< td=""><td>20</td><td>0.15</td><td>0.06</td><td>0.01</td><td>0.00</td><td>-0.10</td><td>0.00</td></t<>	20	0.15	0.06	0.01	0.00	-0.10	0.00
22 0.01 0.07 0.05 0.00 0.02 0.10 23 0.11 0.12 0.06 0.12 0.02 0.11 24 0.17 0.16 -0.06 0.13 0.06 0.09 25 -0.20 -0.17 -0.04 -0.12 0.07 0.05 26 -0.17 -0.15 -0.02 -0.08 0.07 -0.01 27 -0.10 -0.11 0.03 -0.04 0.05 -0.06 28 -0.02 -0.06 0.06 0.00 0.00 -0.09 29 0.07 -0.03 0.08 0.06 -0.07 -0.08 31 0.14 0.01 0.07 -0.08 0.06 -0.07 -0.08 31 0.14 0.01 0.07 0.06 -0.06 0.06 -0.07 -0.08 31 0.14 0.01 0.07 0.06 -0.07 -0.08 -0.02 0.02 33 0.07 -0.02 0.00 0.04 -0.09 0.02 33 0.07 -0.02 0.00 0.01 -0.06 0.06 34 -0.02 -0.05 -0.03 -0.02 0.10 35 -0.09 -0.07 -0.05 -0.08 0.07 0.09 37 -0.15 -0.08 -0.07 0.08 0.07 0.09 39 -0.08 0.01 0.00 -0.03 0.06 -0.03 39 -0.0	21	0.08	0.00	-0.02	-0.05	-0.06	0.05
22 0.01 0.01 0.02 0.02 0.11 24 0.17 0.16 0.06 0.13 0.02 0.11 24 0.17 0.16 0.06 0.13 0.02 0.11 24 0.17 0.16 0.06 0.13 0.06 0.09 25 0.20 0.17 -0.04 -0.12 0.07 0.05 26 0.17 -0.15 -0.02 -0.08 0.07 -0.01 27 -0.10 -0.11 0.03 -0.04 0.05 -0.06 28 -0.02 -0.06 0.06 0.04 -0.03 -0.09 29 0.07 -0.03 0.08 0.04 -0.03 -0.10 30 0.12 0.00 0.08 0.06 -0.07 -0.08 31 0.14 0.01 0.07 0.06 -0.10 -0.03 32 0.12 0.00 0.04 0.04 -0.09 0.02 33 0.07 -0.02 0.00 0.01 -0.06 0.06 34 -0.02 -0.05 -0.03 -0.02 0.02 0.11 35 -0.09 -0.07 -0.05 -0.08 0.07 0.09 37 -0.17 -0.07 -0.05 -0.08 0.07 0.09 36 -0.15 -0.08 -0.07 0.03 0.06 -0.03 39 -0.08 0.01 0.00 -0.03 0.06 -0.03 <td>22</td> <td>-0.01</td> <td>-0.07</td> <td>-0.05</td> <td>-0.09</td> <td>-0.02</td> <td>0.10</td>	22	-0.01	-0.07	-0.05	-0.09	-0.02	0.10
24 -0.17 -0.16 -0.06 -0.13 0.06 0.013 25 -0.20 -0.17 -0.04 -0.12 0.07 0.05 26 -0.17 -0.15 -0.02 -0.08 0.07 -0.01 27 -0.10 -0.11 0.03 -0.04 0.05 -0.06 28 -0.02 -0.06 0.06 0.00 0.00 -0.09 29 0.07 -0.03 0.08 0.06 -0.07 -0.08 30 0.12 0.00 0.08 0.06 -0.07 -0.08 31 0.14 0.01 0.07 0.06 -0.10 -0.03 32 0.12 0.00 0.04 -0.09 0.02 33 0.07 -0.02 0.00 0.01 -0.06 -0.08 34 -0.02 -0.05 -0.03 -0.02 -0.02 0.00 35 -0.09 -0.07 -0.05 -0.08 0.07	23	-0.11	-0.12	-0.06	-0.12	0.02	0.10
21 0.17 0.16 0.06 0.16 0.06 0.06 25 -0.20 -0.17 -0.04 -0.12 0.07 0.05 26 -0.17 -0.15 -0.02 -0.08 0.07 -0.01 27 -0.10 -0.11 0.03 -0.04 0.05 -0.06 28 -0.02 -0.06 0.06 0.00 0.00 -0.09 29 0.07 -0.03 0.08 0.04 -0.03 -0.10 30 0.12 0.00 0.08 0.06 -0.07 -0.08 31 0.14 0.01 0.07 0.06 -0.07 -0.08 31 0.14 0.01 0.07 0.06 -0.09 0.02 33 0.07 -0.02 0.00 0.01 -0.06 0.06 34 -0.02 -0.05 -0.03 -0.02 0.10 35 -0.09 -0.07 -0.05 -0.08 0.07 0.09 37 -0.17 -0.07 -0.05 -0.08 0.07 0.09 37 -0.17 -0.07 -0.05 -0.08 0.09 0.04 38 -0.15 -0.03 -0.03 -0.07 0.09 -0.03 40 0.01 0.06 0.03 0.02 -0.14 41 0.10 0.11 0.05 0.02 -0.14 41 0.10 0.11 0.05 0.02 -0.14 41 0.19 <td>24</td> <td>-0.17</td> <td>-0.16</td> <td>-0.06</td> <td>-0.13</td> <td>0.06</td> <td>0.09</td>	24	-0.17	-0.16	-0.06	-0.13	0.06	0.09
10 0.17 0.15 0.18 0.07 0.01 26 0.17 0.15 0.02 0.08 0.07 0.01 27 0.10 0.11 0.03 -0.04 0.05 -0.06 28 -0.02 -0.06 0.06 0.00 0.00 -0.09 29 0.07 -0.03 0.08 0.04 -0.03 -0.10 30 0.12 0.00 0.08 0.06 -0.07 -0.08 31 0.14 0.01 0.07 0.06 -0.07 -0.08 32 0.12 0.00 0.04 0.04 -0.09 0.02 33 0.07 -0.02 0.00 0.01 -0.06 0.06 34 -0.02 -0.05 -0.03 -0.02 -0.02 0.10 35 -0.09 -0.07 -0.05 -0.08 0.07 0.09 37 -0.17 -0.07 -0.05 -0.08 0.09 0.04 </td <td>25</td> <td>-0.20</td> <td>-0.17</td> <td>-0.04</td> <td>-0.12</td> <td>0.07</td> <td>0.05</td>	25	-0.20	-0.17	-0.04	-0.12	0.07	0.05
25 0.11 0.10 0.01 0.02 0.04 0.05 0.06 27 -0.10 -0.11 0.03 -0.04 0.05 -0.06 28 -0.02 -0.06 0.06 0.00 0.00 -0.09 29 0.07 -0.03 0.08 0.04 -0.03 -0.10 30 0.12 0.00 0.08 0.06 -0.07 -0.08 31 0.14 0.01 0.07 0.06 -0.10 -0.03 32 0.12 0.00 0.04 0.04 -0.09 0.02 33 0.07 -0.02 0.00 0.01 -0.06 0.06 34 -0.02 -0.05 -0.03 -0.02 0.02 0.10 35 -0.09 -0.07 -0.05 -0.06 0.03 0.11 36 -0.15 -0.08 -0.06 0.03 0.11 36 -0.15 -0.08 -0.06 0.03 0.11 38 -0.15 -0.03 -0.03 0.06 -0.09 39 -0.08 0.01 0.00 -0.03 0.06 -0.09 40 0.01 0.06 0.03 0.02 -0.14 41 0.10 0.11 0.05 0.03 -0.07 42 0.17 0.12 0.05 0.03 -0.07 44 0.19 0.08 0.03 0.02 -0.14 41 0.10 0.11 0.05 $0.$	26	-0.17	-0.15	-0.02	-0.08	0.07	-0.01
21 0.10 0.11 0.00 0.00 0.00 0.00 28 0.07 -0.03 0.06 0.00 0.00 0.00 29 0.07 -0.03 0.08 0.04 -0.03 -0.10 30 0.12 0.00 0.08 0.06 -0.07 -0.08 31 0.14 0.01 0.07 0.06 -0.07 -0.08 32 0.12 0.00 0.04 0.04 -0.09 0.02 33 0.07 -0.02 0.00 0.01 -0.06 0.06 34 -0.02 -0.05 -0.03 -0.02 -0.02 0.10 35 -0.09 -0.07 -0.05 -0.08 0.07 0.09 37 -0.15 -0.08 -0.06 -0.08 0.07 0.09 37 -0.15 -0.03 -0.05 -0.08 0.09 0.04 38 -0.15 -0.03 -0.07 0.09 -0.03 39 -0.08 0.01 0.00 -0.03 0.06 -0.09 40 0.01 0.06 0.03 0.00 0.02 -0.14 41 0.10 0.11 0.05 0.03 -0.07 -0.14 43 0.20 0.11 0.05 0.03 -0.07 -0.14 44 0.19 0.08 0.03 0.02 -0.11 -0.03 46 0.05 -0.04 -0.03 -0.05 0.08 0.00 <	20	-0.10	-0.10	0.02	-0.04	0.05	-0.06
25 0.02 0.03 0.03 0.03 0.03 0.03 0.03 29 0.07 -0.03 0.00 0.08 0.06 -0.07 -0.08 31 0.14 0.01 0.07 0.06 -0.10 -0.03 32 0.12 0.00 0.04 0.04 -0.09 0.02 33 0.07 -0.02 0.00 0.01 -0.06 0.06 34 -0.02 -0.05 -0.03 -0.02 0.02 35 -0.09 -0.07 -0.05 -0.06 0.03 0.11 36 -0.15 -0.08 -0.06 0.03 0.11 36 -0.15 -0.08 -0.06 0.03 0.11 38 -0.15 -0.08 -0.06 -0.08 0.07 39 -0.08 0.01 0.00 -0.03 0.06 40 0.01 0.06 0.03 0.02 -0.14 41 0.10 0.11 0.05 0.02 -0.03 40 0.01 0.06 0.03 0.07 -0.14 41 0.10 0.11 0.05 0.02 -0.03 42 0.17 0.12 0.05 0.03 -0.07 44 0.19 0.08 0.03 0.02 -0.14 43 0.20 0.11 0.05 0.04 -0.10 44 0.19 0.08 0.03 0.02 -0.11 45 0.13 0	28	-0.02	-0.06	0.06	0.00	0.00	-0.09
100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 31 0.12 0.00 0.08 0.06 -0.07 -0.08 31 0.14 0.01 0.07 0.06 -0.10 -0.03 32 0.12 0.00 0.04 0.04 -0.09 0.02 33 0.07 -0.02 0.00 0.01 -0.06 0.06 34 -0.02 -0.05 -0.03 -0.02 -0.02 0.10 35 -0.09 -0.07 -0.05 -0.06 0.03 0.11 36 -0.15 -0.08 -0.06 -0.08 0.07 0.09 37 -0.17 -0.07 -0.05 -0.08 0.09 0.04 38 -0.15 -0.03 -0.03 -0.07 0.09 -0.03 39 -0.08 0.01 0.00 -0.03 0.06 -0.09 40 0.01 0.06 0.03 0.00 0.02 -0.14 41 0.10 0.11 0.05 0.02 -0.03 -0.15 42 0.17 0.12 0.05 0.03 -0.07 -0.14 43 0.20 0.11 0.05 0.04 -0.10 -0.09 44 0.19 0.08 0.03 0.02 -0.11 -0.03 46 0.05 -0.04 -0.03 -0.05 0.08 0.00 0.11 48 -0.13 -0.14 -0.0	29	0.07	-0.03	0.08	0.04	-0.03	-0.10
31 0.14 0.01 0.07 0.06 -0.01 0.03 32 0.12 0.00 0.04 0.04 -0.09 0.02 33 0.07 -0.02 0.00 0.01 -0.06 0.06 34 -0.02 -0.05 -0.03 -0.02 0.00 35 -0.09 -0.07 -0.05 -0.06 0.03 36 -0.15 -0.08 -0.06 0.03 0.11 36 -0.15 -0.08 -0.06 0.08 0.07 37 -0.17 -0.07 -0.05 -0.08 0.09 37 -0.17 -0.07 -0.05 -0.08 0.09 38 -0.15 -0.03 -0.03 -0.07 0.09 39 -0.08 0.01 0.00 -0.03 0.06 40 0.01 0.06 0.03 0.07 0.09 40 0.01 0.06 0.03 0.00 0.02 41 0.10 0.11 0.05 0.02 -0.14 41 0.10 0.11 0.05 0.02 -0.03 42 0.17 0.12 0.05 0.03 -0.07 44 0.19 0.08 0.03 0.02 -0.11 43 0.20 0.11 0.05 0.08 0.00 44 0.19 0.08 0.03 0.02 -0.11 45 0.13 0.02 0.01 -0.05 -0.05 46 <	30	0.12	0.00	0.08	0.06	-0.07	-0.08
32 0.11 0.01 0.01 0.02 0.02 33 0.07 -0.02 0.00 0.04 -0.09 0.02 33 0.07 -0.02 0.00 0.01 -0.06 0.06 34 -0.02 -0.05 -0.03 -0.02 -0.02 0.10 35 -0.09 -0.07 -0.05 -0.06 0.03 0.11 36 -0.15 -0.08 -0.06 -0.08 0.07 0.09 37 -0.17 -0.07 -0.05 -0.08 0.09 0.04 38 -0.15 -0.03 -0.03 -0.07 0.09 -0.03 39 -0.08 0.01 0.00 -0.03 0.06 -0.09 40 0.01 0.06 0.03 0.00 0.02 -0.14 41 0.10 0.11 0.05 0.02 -0.03 -0.15 42 0.17 0.12 0.05 0.03 -0.07 -0.14 43 0.20 0.11 0.05 0.04 -0.10 -0.09 44 0.19 0.08 0.03 0.02 -0.11 -0.03 46 0.05 -0.04 -0.03 -0.05 0.08 0.00 0.11 48 -0.13 -0.14 -0.05 -0.08 0.00 0.11	31	0.12	0.00	0.07	0.06	-0.10	-0.03
32 0.12 0.00 0.01 0.01 0.00 0.02 33 0.07 -0.02 0.00 0.01 -0.06 0.06 34 -0.02 -0.05 -0.03 -0.02 -0.02 0.10 35 -0.09 -0.07 -0.05 -0.06 0.03 0.11 36 -0.15 -0.08 -0.06 -0.08 0.07 0.09 37 -0.17 -0.07 -0.05 -0.08 0.09 0.04 38 -0.15 -0.03 -0.03 -0.07 0.09 -0.03 39 -0.08 0.01 0.00 -0.03 0.06 -0.09 40 0.01 0.06 0.03 0.00 0.02 -0.14 41 0.10 0.11 0.05 0.02 -0.03 -0.14 41 0.10 0.11 0.05 0.03 -0.07 -0.14 41 0.10 0.11 0.05 0.04 -0.10 -0.09 44 0.19 0.08 0.03 0.02 -0.11 -0.03 45 0.13 0.02 0.01 -0.05 -0.05 0.08 47 -0.05 -0.04 -0.03 -0.05 0.08 0.00 0.11 48 -0.13 -0.14 -0.06 -0.11 0.05 0.11	32	0.12	0.00	0.04	0.04	-0.09	0.02
34 -0.02 -0.05 -0.03 -0.02 -0.02 0.101 35 -0.09 -0.07 -0.05 -0.06 0.03 0.11 36 -0.15 -0.08 -0.06 -0.08 0.07 0.09 37 -0.17 -0.07 -0.05 -0.08 0.09 0.04 38 -0.15 -0.03 -0.03 -0.07 0.09 -0.03 39 -0.08 0.01 0.00 -0.03 0.06 -0.09 40 0.01 0.06 0.03 0.00 0.02 -0.14 41 0.10 0.11 0.05 0.02 -0.03 -0.15 42 0.17 0.12 0.05 0.03 -0.07 -0.14 43 0.20 0.11 0.05 0.04 -0.10 -0.09 44 0.19 0.08 0.03 0.02 -0.11 -0.03 45 0.13 0.02 0.01 -0.03 -0.05 -0.05 47 -0.05 -0.04 -0.03 -0.05 -0.05 0.08 47 -0.05 -0.14 -0.06 -0.11 0.05 0.11	33	0.07	-0.02	0.00	0.01	-0.06	0.06
35 -0.02 0.07 -0.05 -0.06 0.03 0.11 36 -0.15 -0.08 -0.06 0.03 0.11 36 -0.15 -0.08 -0.06 -0.08 0.07 0.09 37 -0.17 -0.07 -0.05 -0.08 0.09 0.04 38 -0.15 -0.03 -0.03 -0.07 0.09 -0.03 39 -0.08 0.01 0.00 -0.03 0.06 -0.09 40 0.01 0.06 0.03 0.00 0.02 -0.14 41 0.10 0.11 0.05 0.02 -0.03 -0.15 42 0.17 0.12 0.05 0.03 -0.07 -0.14 43 0.20 0.11 0.05 0.04 -0.10 -0.09 44 0.19 0.08 0.03 0.02 -0.11 -0.03 45 0.13 0.02 0.01 -0.01 -0.09 0.03 46 0.05 -0.04 -0.03 -0.05 0.08 47 -0.05 -0.10 -0.05 -0.08 0.00 0.11 48 -0.13 -0.14 -0.06 -0.11 0.05 0.11	34	-0.02	-0.05	-0.03	-0.02	-0.02	0.00
36 -0.05 -0.08 -0.06 -0.08 0.07 0.09 37 -0.17 -0.07 -0.05 -0.08 0.09 0.04 38 -0.15 -0.03 -0.03 -0.07 0.09 0.04 38 -0.15 -0.03 -0.03 -0.07 0.09 -0.03 39 -0.08 0.01 0.00 -0.03 0.06 -0.09 40 0.01 0.06 0.03 0.00 0.02 -0.14 41 0.10 0.11 0.05 0.02 -0.03 -0.15 42 0.17 0.12 0.05 0.03 -0.07 -0.14 43 0.20 0.11 0.05 0.04 -0.10 -0.09 44 0.19 0.08 0.03 0.02 -0.11 -0.03 45 0.13 0.02 0.01 -0.05 -0.05 0.08 47 -0.05 -0.04 -0.03 -0.05 0.08 0.00 0.11 48 -0.13 -0.14 -0.06 -0.11 0.05 0.11	35	-0.09	-0.07	-0.05	-0.06	0.02	0.10
36 0.16 0.06 0.06 0.06 0.07 0.06 37 -0.17 -0.07 -0.05 -0.08 0.09 0.04 38 -0.15 -0.03 -0.03 -0.07 0.09 -0.03 39 -0.08 0.01 0.00 -0.03 0.06 -0.09 40 0.01 0.06 0.03 0.00 0.02 -0.14 41 0.10 0.11 0.05 0.02 -0.03 -0.15 42 0.17 0.12 0.05 0.03 -0.07 -0.14 43 0.20 0.11 0.05 0.04 -0.10 -0.09 44 0.19 0.08 0.03 0.02 -0.11 -0.09 44 0.19 0.08 0.03 0.02 -0.11 -0.03 45 0.13 0.02 0.01 -0.01 -0.09 0.03 46 0.05 -0.04 -0.03 -0.05 0.08 </td <td>36</td> <td>-0.15</td> <td>-0.08</td> <td>-0.06</td> <td>-0.08</td> <td>0.00</td> <td>0.09</td>	36	-0.15	-0.08	-0.06	-0.08	0.00	0.09
38 -0.15 -0.03 -0.03 -0.07 0.09 -0.03 39 -0.08 0.01 0.00 -0.03 0.06 -0.09 40 0.01 0.06 0.03 0.00 0.02 -0.14 41 0.10 0.11 0.05 0.02 -0.03 -0.15 42 0.17 0.12 0.05 0.03 -0.07 -0.14 43 0.20 0.11 0.05 0.02 -0.03 -0.15 44 0.19 0.08 0.03 0.02 -0.11 -0.09 44 0.19 0.08 0.03 0.02 -0.11 -0.03 45 0.13 0.02 0.01 -0.01 -0.09 0.03 46 0.05 -0.04 -0.03 -0.05 0.08 0.00 0.11 48 -0.13 -0.14 -0.06 -0.11 0.05 0.11	37	-0.17	-0.07	-0.05	-0.08	0.09	0.00
30 -0.08 0.01 0.00 -0.03 0.00 -0.03 39 -0.08 0.01 0.00 -0.03 0.06 -0.09 40 0.01 0.06 0.03 0.00 0.02 -0.14 41 0.10 0.11 0.05 0.02 -0.03 -0.15 42 0.17 0.12 0.05 0.03 -0.07 -0.14 43 0.20 0.11 0.05 0.04 -0.10 -0.09 44 0.19 0.08 0.03 0.02 -0.11 -0.03 45 0.13 0.02 0.01 -0.01 -0.09 0.03 46 0.05 -0.04 -0.03 -0.05 0.08 0.00 0.11 48 -0.13 -0.14 -0.06 -0.14 0.05 0.11	38	-0.15	-0.03	-0.03	-0.07	0.09	-0.03
40 0.00 0.00 0.00 0.00 0.00 0.00 41 0.10 0.11 0.05 0.02 -0.14 41 0.10 0.11 0.05 0.02 -0.03 -0.15 42 0.17 0.12 0.05 0.03 -0.07 -0.14 43 0.20 0.11 0.05 0.04 -0.10 -0.09 44 0.19 0.08 0.03 0.02 -0.11 -0.03 45 0.13 0.02 0.01 -0.01 -0.09 0.03 46 0.05 -0.04 -0.03 -0.05 0.08 0.00 0.11 48 -0.13 -0.14 -0.05 -0.08 0.00 0.11	39	-0.08	0.00	0.00	-0.03	0.06	-0.09
41 0.10 0.11 0.05 0.05 0.00 0.02 0.02 0.14 41 0.10 0.11 0.05 0.02 -0.03 -0.15 42 0.17 0.12 0.05 0.03 -0.07 -0.14 43 0.20 0.11 0.05 0.04 -0.10 -0.09 44 0.19 0.08 0.03 0.02 -0.11 -0.03 45 0.13 0.02 0.01 -0.01 -0.09 0.03 46 0.05 -0.04 -0.03 -0.05 -0.08 0.00 0.11 48 -0.13 -0.14 -0.05 -0.08 0.00 0.11		0.00	0.06	0.00	0.00	0.00	-0 1/
42 0.17 0.12 0.05 0.02 0.03 0.07 0.13 43 0.20 0.11 0.05 0.03 -0.07 -0.14 43 0.20 0.11 0.05 0.04 -0.10 -0.09 44 0.19 0.08 0.03 0.02 -0.11 -0.03 45 0.13 0.02 0.01 -0.01 -0.09 0.03 46 0.05 -0.04 -0.03 -0.05 -0.05 0.08 47 -0.05 -0.10 -0.05 -0.08 0.00 0.11 48 -0.13 -0.14 -0.05 -0.14 0.05 0.11		0.01	0.00	0.05	0.00	-0.02	-0.14
43 0.20 0.11 0.05 0.04 -0.10 -0.09 44 0.19 0.08 0.03 0.02 -0.11 -0.03 45 0.13 0.02 0.01 -0.01 -0.09 0.03 46 0.05 -0.04 -0.03 -0.05 -0.05 0.08 47 -0.05 -0.10 -0.05 -0.08 0.00 0.11 48 -0.13 -0.14 -0.06 -0.11 0.05 0.11	42	0.17	0.12	0.05	0.02	-0.07	-0.14
44 0.19 0.08 0.03 0.02 -0.11 -0.03 45 0.13 0.02 0.01 -0.01 -0.09 0.03 46 0.05 -0.04 -0.03 -0.05 -0.05 0.08 47 -0.05 -0.10 -0.05 -0.08 0.00 0.11 48 -0.13 -0.14 -0.06 -0.01 0.05 0.11	43	0.20	0.12	0.05	0.00	-0.10	-0.09
45 0.13 0.02 0.01 -0.01 -0.09 0.03 46 0.05 -0.04 -0.03 -0.05 -0.05 0.08 47 -0.05 -0.10 -0.05 -0.08 0.00 0.11 48 -0.13 -0.14 -0.06 -0.11 0.05 0.11	44	0.19	0.08	0.03	0.07	-0.11	-0.03
46 0.05 -0.04 -0.03 -0.05 -0.05 0.08 47 -0.05 -0.10 -0.05 -0.08 0.00 0.11 48 -0.13 -0.14 -0.06 -0.11 0.05 0.11	<u>45</u>	0.13	0.00	0.00	-0.02	-0.09	0.00
47 -0.05 -0.10 -0.05 -0.08 0.00 0.11 48 -0.13 -0.14 -0.06 -0.11 0.05 0.11	46	0.05	-0.02	-0.03	-0.05	-0.05	0.00
	_+0 	-0.05	-0.10	-0.05	-0.08	0.00	0.00
	48	-0.13	-0.14	-0.06	-0.11	0.05	0.11

Tabla EM-152: Correlación cruzada Marea – Corriente Punto 2

• Síntesis de resultados de correlación cruzada

A continuación se muestran la síntesis de resultados de correlación cruzada, en la Tabla EM-153 se resumen la información de correlación cruzada.

En todas las campañas realizadas el 2012, como también el 2014 y 2015 en ambos puntos de medicione (captación y descarga), el efecto del viento sobre las corrientes Eulerianas es importante (fundamentalmente a nivel superficial), con coeficientes de correlación máximos de entre 0,26 a 0,56 (máximo igual a 1). Por su parte al igual que todas las campañas realizadas, el efecto de la marea sobre las corrientes se apreció inferior respecto del forzante viento. Los valores máximos alcanzados se ubicaron entre 0,18 a 0,38 (máximo igual a 1).

Año	Campaña	Coeficiente máximo Viento	Coeficiente máximo Marea	
2012	Verano	0,56	0,25	
	Otoño	0,46	0,27	
	Invierno	0,46	0,27	
	Primavera	0,42	0,38	
2014	Primavera punto 1 descarga	0,64	0,34	
	Primavera punto 2 captación	0,43	0,3	
	Verano punto 1 descarga	0,34	0,27	
2015	Verano punto 2 captación	0,26	0,18	
2013	Invierno punto 1 descarga	0,32	0,32	
	Invierno punto 2 captación	0,32	0,2	

Tabla EM-153: Resumen de correlación cruzada

7.1.4.1.5 Mediciones locales de olas

• Verano 2012

Materiales y métodos

Para caracterizar las condiciones de oleaje *in situ* se efectuaron mediciones continuas de altura, periodo y dirección de olas, por un periodo de 36 días. Estas mediciones se realizaron con un medidor de olas direccional marca TRD Instruments, modelo WorkHorse Sentinel 614,4 kHz, en un punto con las siguientes coordenadas: 262.672 E; 6.469.224 N (Datum WGS84).

El medidor fue instalado en el veril de 18,4 metros aproximadamente con respecto al Nivel de Reducción de Sondas (NRS), y a 0,5 metros sobre el fondo marino. La Tabla EM-154 muestra la configuración del instrumento.

Instrumento	ADCP modelo WHS 614,4 kHz – TRD Instruments.
Ubicación del fondeo	6.469.224 N ; 262.672 E (Datum WGS84)
Profundidad (NRS)	18,4 m app.
Fecha instalación	26 de enero de 2012
Fecha retiro	02 de marzo de 2012
Altura sensor desde el fondo	0,5 m
Intervalo entre burst de olas	4 horas
Frecuencia de muestreo olas	2 Hz
Número de datos por burst	150
Tamaño de celdas	0,5 m
Sistema de referencia	Norte magnético
Huso horario	Z + 3

Tabla EM-154: Parámetros de configuración del instrumento medidor de olas

Fuente: consultora Costasur

Una vez recuperados los datos crudos del medidor de olas direccionales, estos fueron procesados utilizando el software WavesMon versión 3.07, software desarrollado por RD Instruments para el procesamiento de datos de olas direccionales.

Siguiendo la sugerencia del fabricante (Teledyne RD Instruments), se procesó los datos con metodologías diferentes (espectro de velocidad, espectro de presión) para ver cual reducía el ruido en las series de tiempo. Como conclusión de este proceso, se determinó que los datos más confiables se obtenían al utilizar el espectro de velocidad para calcular los parámetros del oleaje (Tabla EM-155).

Longitud Trasformada Rápida de Fourier	128
Bandas de Frecuencia	64
Frecuencia de corte inferior	0,030 Hz
Frecuencia de corte superior	0,448 Hz
Espectro utilizado para calcular parámetros de oleaje	Espectro de Velocidad
Eventer consultant Oct	

Tabla EM-155: Parámetros de procesamiento de olas

Fuente: consultora Costasur

Resultados

La Tabla EM-156 muestra la distribución conjunta de los parámetros de olas H_s versus T_{pro}.

Tabla EM-156: Distribución conjunta altura significativa (Hs) v/s periodo promedio (Tpro)

Período	Altura (m)									
(seg)	0.00 - 0.50	0.501 - 1.00	1.01 - 1.50	1.501 - 2.00	2.01 - 2.50	2.501 - 3.00	Total	Total (%)		
0 - 1	0	0	0	0	0	0	0	0.0		
1 - 2	0	0	0	0	0	0	0	0.0		
2 - 3	0	0	0	0	0	0	0	0.0		
3 - 4	0	2	0	0	0	0	2	0.9		
4 - 5	0	7	3	0	0	0	10	4.7		
5 - 6	1	30	20	1	0	0	52	24.3		
6 - 7	0	29	29	4	1	0	63	29.4		
7 - 8	0	29	17	7	0	0	53	24.8		
8 - 9	2	6	3	1	1	0	13	6.1		
9 - 10	2	8	1	1	0	0	12	5.6		
10 - 11	0	4	0	0	0	0	4	1.9		
11 - 12	0	0	0	0	0	0	0	0.0		
12 - 13	0	1	0	0	0	0	1	0.5		
13 - 14	1	2	0	0	0	0	3	1.4		
14 - 15	0	1	0	0	0	0	1	0.5		
15 - 16	0	0	0	0	0	0	0	0.0		
16 - 17	0	0	0	0	0	0	0	0.0		
17 - 18	0	0	0	0	0	0	0	0.0		
18 - 19	0	0	0	0	0	0	0	0.0		
19 - 20	0	0	0	0	0	0	0	0.0		
Total	6	119	73	14	2	0	214	100		
Total (%)	2.8	55.6	34.1	6.5	0.9	0.0	100			

Fuente: consultora Costasur

Figura EM-212: Histograma de incidencia del oleaje

Fuente: consultora Costasur

La Figura EM-212 muestra la distribución direccional de las olas medidas (rosa de 8 direcciones). En ella se observa que las olas inciden en el sector de Punta Chungo mayoritariamente de las direcciones W y SW con porcentajes de incidencia de 50,5% y 49,1%. El resto de las direcciones prácticamente no tienen incidencia.

La Figura EM-213 muestra la distribución de las alturas significativas (H_s) respecto del tiempo y su distribución porcentual respecto de diferentes rangos de altura. Al respecto, se aprecia que las alturas significativas se agrupan mayoritariamente entre 0,501 y 1,00 metros (55,6%) y entre 1,01 a 1,50 (34,1%). La máxima altura significativa muestreada fue de 2,27 metros.

Respecto del periodo promedio T_{pro} , la Figura EM-214 muestra su comportamiento a través del tiempo y su distribución porcentual respecto de diferentes rangos de periodo. En general, se aprecia que los periodos se agrupan mayoritariamente entre los rangos 6 a 7 segundos, con valores porcentuales de 27,4%. El mínimo período detectado fue de 3,7 segundos, mientras que el máximo período detectado fue de 14,3 segundos.

Fuente: consultora Costasur

Figura EM-214: Periodo promedio T_{pro} del oleaje

Fuente: consultora Costasur

• Otoño 2012

Materiales y métodos

Para caracterizar las condiciones de oleaje *in situ*, se efectuaron mediciones continuas de altura, periodo y dirección de olas, por un periodo de 34 días. Estas mediciones se realizaron con un medidor de olas direccional marca TRD Instruments, modelo WorkHorse Sentinel 614,4 kHz, en un punto con las siguientes coordenadas: 262.691 E; 6.469.230 N (Datum WGS84)

El medidor fue instalado en el veril de 18,2 metros (app.) con respecto al Nivel de Reducción de Sondas (NRS), y a 0,5 metros sobre el fondo marino. La siguiente Tabla EM-157 muestra la configuración del instrumento

Tabla EM-157: Parámetros de configuración del instrumento medidor de olas

Instrumento	ADCP modelo WHS 614,4 kHz – TRD Instruments.
Ubicación del fondeo	6.469.230 N ; 262.691 E (Datum WGS84)
Profundidad (NRS)	18,2 m app.
Fecha instalación	11 de abril de 2012
Fecha retiro	14 de mayo de 2012
Altura sensor desde el fondo	0,5 m
Intervalo entre burst de olas	3 horas
Frecuencia de muestreo olas	2 Hz
Número de datos por burst	4200
Tamaño de celdas	0,5 m
Sistema de referencia	Norte magnético
Huso horario	Z + 3

Fuente: consultora Costasur

Una vez recuperados los datos crudos del medidor de olas direccionales, estos fueron procesados utilizando el software WavesMon versión 3.07, software desarrollado por RD Instruments para el procesamiento de datos de olas direccionales.

Siguiendo la sugerencia del fabricante (Teledyne RD Instruments), se procesó los datos con metodologías diferentes (espectro de velocidad, espectro de presión) para ver cual reducía el ruido en las series de tiempo. Como conclusión de este proceso, se determinó que los datos más confiables se obtenían al utilizar el espectro de velocidad para calcular los parámetros del oleaje (Tabla EM-158).

Tabla EM-158: Parámetros de procesamiento de olas

Longitud Trasformada Rápida de Fourier	4096					
Bandas de Frecuencia	128					
Frecuencia de corte inferior	0,030 Hz					
Frecuencia de corte superior	0,448 Hz					
Espectro utilizado para calcular parámetros de oleaje	Espectro de Velocidad					
Eventer consultant Costoour						

Fuente: consultora Costasur

Resultados

En la Tabla EM-159 muestra la distribución conjunta de los parámetros de olas $H_{\rm s}$ versus $T_{\rm pro}.$

Tabla EM-159: Distribución conjunta altura significativa (Hs) v/s periodo promedio (Tpro)

Período				Altu	ra (m)			
(seg)	0.00 - 0.50	0.501 - 1.00	1.01 - 1.50	1.501 - 2.00	2.01 - 2.50	2.501 - 3.00	Total	Total (%)
0 - 1	0	0	0	0	0	0	0	0.0
1 - 2	0	0	0	0	0	0	0	0.0
2 - 3	0	0	0	0	0	0	0	0.0
3 - 4	0	0	0	0	0	0	0	0.0
4 - 5	0	0	0	0	0	0	0	0.0
5 - 6	0	0	0	0	0	0	0	0.0
6 - 7	0	4	11	0	0	0	15	5.7
7 - 8	0	20	61	1	0	0	82	30.9
8 - 9	0	43	43	3	0	0	89	33.6
9 - 10	0	34	15	7	0	0	56	21.1
10 - 11	0	9	3	10	0	0	22	8.3
11 - 12	0	0	0	0	1	0	1	0.4
12 - 13	0	0	0	0	0	0	0	0.0
13 - 14	0	0	0	0	0	0	0	0.0
14 - 15	0	0	0	0	0	0	0	0.0
15 - 16	0	0	0	0	0	0	0	0.0
16 - 17	0	0	0	0	0	0	0	0.0
17 - 18	0	0	0	0	0	0	0	0.0
18 - 19	0	0	0	0	0	0	0	0.0
19 - 20	0	0	0	0	0	0	0	0.0
Total	0	110	133	21	1	0	265	100
Total (%)	0.0	41.5	50.2	7.9	0.4	0.0	100	

Fuente: consultora Costasur

Figura EM-215: Histograma de incidencia del oleaje

ruente. consultora costasti

La Figura EM-215 muestra la distribución direccional de las olas medidas (rosa de 8 direcciones). En ella se observa que las olas inciden en el sector de Punta Chungo mayoritariamente de las direcciones W y SW con porcentajes de incidencia de 89,1% y 9,1%. El resto de las direcciones prácticamente no tienen incidencia, a excepción de la dirección NW que agrupó un 1,9% de la ocurrencia direccional.

La Figura EM-216 muestra la distribución de las alturas significativas (H_s) respecto del tiempo y su distribución porcentual respecto de diferentes rangos de altura. Al respecto, se aprecia que las alturas significativas se agrupan mayoritariamente entre 1,01 y 1,50 metros (50,2%) y entre 0,501 a 1,00 (41,5%). La máxima altura significativa muestreada fue de 2,02 metros.

Respecto del periodo promedio T_{pro}, la Figura EM-217 muestra su comportamiento a través del tiempo y su distribución porcentual respecto de diferentes rangos de periodo En general, se aprecia que los periodos se agrupan mayoritariamente entre los rangos 8 a 9 segundos, con valores porcentuales de 33,6%. El mínimo período detectado fue de 6,4 segundos, mientras que el máximo período detectado fue de 11,1 segundos.

Fuente: consultora Costasur

Invierno 2012

Materiales y métodos

Para caracterizar las condiciones de oleaje *in situ*, se efectuaron mediciones continuas de altura, periodo y dirección de olas, por un periodo de 39 días. Estas mediciones se realizaron con un medidor de olas direccional marca TRD Instruments, modelo WorkHorse Sentinel 614,4 kHz, en un punto con las siguientes coordenadas: 262.662 E; 6.469.217 N, (Datum WGS84)

El medidor fue instalado en el veril de 18,5 metros (app.) con respecto al Nivel de Reducción de Sondas (NRS), y a 0,5 metros sobre el fondo marino. La siguiente Tabla EM-160 muestra la configuración del instrumento:

Tabla EM-160: Parámetros de configuración del instrumento medidor de olas

Instrumento	ADCP modelo WHS 614,4 kHz – TRD Instruments.
Ubicación del fondeo	6.469.217 N ; 262.662 E (Datum WGS84)
Profundidad (NRS)	18,5 m app.
Fecha instalación	10 de julio de 2012
Fecha retiro	18 de agosto de 2012
Altura sensor desde el fondo	0,5 m
Intervalo entre burst de olas	3 horas
Frecuencia de muestreo olas	2 Hz
Número de datos por burst	4200
Tamaño de celdas	0,5 m
Sistema de referencia	Norte magnético
Huso horario	Z + 4

Fuente: consultora Costasur

Una vez recuperados los datos crudos del medidor de olas direccionales, estos fueron procesados utilizando el software WavesMon versión 3.07, software desarrollado por RD Instruments para el procesamiento de datos de olas direccionales.

Siguiendo la sugerencia del fabricante (Teledyne RD Instruments), se procesó los datos con metodologías diferentes (espectro de velocidad, espectro de presión) para ver cual reducía el ruido en las series de tiempo. Como conclusión de este proceso, se determinó que los datos más confiables se obtenían al utilizar el espectro de velocidad para calcular los parámetros del oleaje (Tabla EM-161).

Tabla EM-161: Parámetros de procesamiento de olas

Longitud Trasformada Rápida de Fourier	4096				
Bandas de Frecuencia	128				
Frecuencia de corte inferior	0,030 Hz				
Frecuencia de corte superior	0,448 Hz				
Espectro utilizado para calcular parámetros de oleaje	Espectro de Velocidad				
Fuente: consultora Costasur					

Resultados

La Tabla EM-162 muestra la distribución conjunta de los parámetros de olas H_s versus T_{pro} .

Tabla EM-162: Distribución conjunta altura significativa (Hs) v/s periodo promedio (Tpro)

(.p. e)									
Período					Altura (m)				
(seg)	0.00 - 0.50	0.501 - 1.00	1.01 - 1.50	1.501 - 2.00	2.01 - 2.50	2.501 - 3.00	3.01 - 3.50	Total	Total (%)
0 - 1	0	0	0	0	0	0	0	0	0.0
1 - 2	0	0	0	0	0	0	0	0	0.0
2 - 3	0	0	0	0	0	0	0	0	0.0
3 - 4	0	0	0	0	0	0	0	0	0.0
4 - 5	0	0	1	0	0	0	0	1	0.3
5 - 6	0	6	7	0	0	0	0	13	4.2
6 - 7	0	16	43	8	0	0	0	67	21.6
7 - 8	0	22	58	50	0	0	0	130	41.9
8 - 9	0	16	32	22	3	0	0	73	23.5
9 - 10	0	5	7	5	5	1	0	23	7.4
10 - 11	0	0	0	0	0	1	2	3	1.0
11 - 12	0	0	0	0	0	0	0	0	0.0
12 - 13	0	0	0	0	0	0	0	0	0.0
13 - 14	0	0	0	0	0	0	0	0	0.0
14 - 15	0	0	0	0	0	0	0	0	0.0
15 - 16	0	0	0	0	0	0	0	0	0.0
16 - 17	0	0	0	0	0	0	0	0	0.0
17 - 18	0	0	0	0	0	0	0	0	0.0
18 - 19	0	0	0	0	0	0	0	0	0.0
19 - 20	0	0	0	0	0	0	0	0	0.0
Total	0	65	148	85	8	2	2	310	100
Total (%)	0.0	21.0	47.7	27.4	2.6	0.6	0.6	100.0	

Fuente: consultora Costasur

Figura EM-218: Histograma de incidencia del oleaje

Fuente: consultora Costasur

La Figura EM-218 muestra la distribución direccional de las olas medidas (rosa de 8 direcciones). En ella se observa que las olas inciden en el sector de Punta Chungo mayoritariamente de las direcciones W y SW con porcentajes de incidencia de 54,8% y 44,8%. El resto de las direcciones prácticamente no tienen incidencia, sólo se aprecio que la dirección NW se agrupó en un 0,3% de la ocurrencia direccional.

La Figura EM-219 muestra la distribución de las alturas significativas (H_s) respecto del tiempo y su distribución porcentual respecto de diferentes rangos de altura. Al respecto, se aprecia que las alturas significativas se agrupan mayoritariamente entre 1,01 y 1,50 metros (47,7%) y entre 1,501 a 2,00 (27,4%). La máxima altura significativa muestreada fue de 3,24 metros.

Respecto del periodo promedio T_{pro} , la Figura EM-210 muestra su comportamiento a través del tiempo y su distribución porcentual respecto de diferentes rangos de periodo En general, se aprecia que los periodos se agrupan mayoritariamente entre los rangos 7 a 8 segundos, con valores porcentuales de 41,9%. El mínimo período detectado fue de 5,0 segundos, mientras que el máximo período detectado fue de 10,8 segundos.

Fuente: consultora Costasur

Figura EM-220: Periodo promedio Tpro del oleaje

Fuente: consultora Costasur

• Primavera 2012

Materiales y métodos

Para caracterizar las condiciones de oleaje *in situ* del sector de estudio, se efectuaron mediciones continuas de altura, periodo y dirección de olas, por un periodo de 31 días. Estas mediciones se realizaron con un medidor de olas direccional marca TRD Instruments, modelo WorkHorse Sentinel 614,4 kHz, en un punto con las siguientes coordenadas: 262.679 E; 6.469.215 N (Datum WGS84).

El medidor fue instalado en el veril de 18,3 metros (app.) con respecto al Nivel de Reducción de Sondas (NRS), y a 0,5 metros sobre el fondo marino. La siguiente Tabla EM-163 muestra la configuración del instrumento:

Tabla EM-163: Parámetros de configuración del instrumento medidor de olas

Instrumento	ADCP modelo WHS 614,4 kHz – TRD Instruments.
Ubicación del fondeo	6.469.217 N ; 262.662 E (Datum WGS84)
Profundidad (NRS)	18,3 m app.
Fecha instalación	09 de noviembre de 2012
Fecha retiro	10 de diciembre de 2012
Altura sensor desde el fondo	0,5 m
Intervalo entre burst de olas	3 horas
Frecuencia de muestreo olas	2 Hz
Número de datos por burst	4200
Tamaño de celdas	0,5 m
Sistema de referencia	Norte magnético
Huso horario	Z + 3

Fuente: consultora Costasur

Una vez recuperados los datos crudos del medidor de olas direccionales, estos fueron procesados utilizando el software WavesMon versión 3.07, software desarrollado por RD Instruments para el procesamiento de datos de olas direccionales.

Siguiendo la sugerencia del fabricante (Teledyne RD Instruments), se procesó los datos con metodologías diferentes (espectro de velocidad, espectro de presión) para ver cual reducía el ruido en las series de tiempo. Como conclusión de este proceso, se determinó que los datos más confiables se obtenían al utilizar el espectro de velocidad para calcular los parámetros del oleaje (Tabla EM-164).

Tabla EM-164: Parámetros de procesamiento de olas

Longitud Trasformada Rápida de Fourier	4096				
Bandas de Frecuencia	128				
Frecuencia de corte inferior	0,030 Hz				
Frecuencia de corte superior	0,448 Hz				
Espectro utilizado para calcular parámetros de oleaje	Espectro de Velocidad				
Fuente: consultora Costasur					

Resultados

La Tabla EM-165 muestra la distribución conjunta de los parámetros de olas H_s versus T_{pro} .

Tabla EM-165: Distribución conjunta altura significativa (Hs) v/s periodo promedio (Tpro)

Período					Altura (m)				
(seg)	0.00 - 0.50	0.501 - 1.00	1.01 - 1.50	1.501 - 2.00	2.01 - 2.50	2.501 - 3.00	3.01 - 3.50	Total	Total (%)
0 - 1	0	0	0	0	0	0	0	0	0.0
1 - 2	0	0	0	0	0	0	0	0	0.0
2 - 3	0	0	0	0	0	0	0	0	0.0
3 - 4	0	0	0	0	0	0	0	0	0.0
4 - 5	0	2	0	0	0	0	0	2	0.8
5 - 6	0	12	3	0	0	0	0	15	6.0
6 - 7	2	32	31	18	0	0	0	83	33.5
7 - 8	5	42	40	17	0	0	0	104	41.9
8 - 9	1	11	18	5	0	0	0	35	14.1
9 - 10	2	0	6	1	0	0	0	9	3.6
10 - 11	0	0	0	0	0	0	0	0	0.0
11 - 12	0	0	0	0	0	0	0	0	0.0
12 - 13	0	0	0	0	0	0	0	0	0.0
13 - 14	0	0	0	0	0	0	0	0	0.0
14 - 15	0	0	0	0	0	0	0	0	0.0
15 - 16	0	0	0	0	0	0	0	0	0.0
16 - 17	0	0	0	0	0	0	0	0	0.0
17 - 18	0	0	0	0	0	0	0	0	0.0
18 - 19	0	0	0	0	0	0	0	0	0.0
19 - 20	0	0	0	0	0	0	0	0	0.0
Total	10	99	98	41	0	0	0	248	100
Total (%)	4.0	39.9	39.5	16.5	0.0	0.0	0.0	100.0	

Fuente: consultora Costasur

Figura EM-221: Histograma de incidencia del oleaje

Fuente: consultora Costasur

La Figura EM-221 muestra la distribución direccional de las olas medidas (rosa de 8 direcciones). En ella se observa que las olas inciden en el sector de Punta Chungo mayoritariamente de las direcciones W y SW con porcentajes de incidencia de 69,0% y 31,0%. El resto de las direcciones no tuvo incidencia.

La Figura EM-222 muestra la distribución de las alturas significativas (H_s) respecto del tiempo y su distribución porcentual respecto de diferentes rangos de altura. Al respecto, se aprecia que las alturas significativas se agrupan mayoritariamente entre 0,51 y 1,00 metros (39,9%) y entre 1,01 a 1,50 (39,5%). La máxima altura significativa muestreada fue de 1,97 metros.

Respecto del periodo promedio T_{pro} , la Figura EM-223 muestra su comportamiento a través del tiempo y su distribución porcentual respecto de diferentes rangos de periodo En general, se aprecia que los periodos se agrupan mayoritariamente entre los rangos 7 a 8 segundos, con valores porcentuales de 41,9%. El mínimo período detectado fue de 4,7 segundos, mientras que el máximo período detectado fue de 10,0 segundos.

Fuente: consultora Costasur

Figura EM-223: Periodo promedio Tpro del oleaje

Fuente: consultora Costasur

• Primavera 2014

Materiales y métodos

Para caracterizar las condiciones de oleaje *in situ* del sector de estudio, se efectuaron mediciones continuas de altura, periodo y dirección de olas, por un periodo de 47 días. Estas mediciones se realizaron con un medidor de olas direccional marca TRD Instruments, modelo WorkHorse Sentinel 614,4 kHz, en un punto con las siguientes coordenadas: 262.151 E; 6.469.638 N (Datum WGS84)

El medidor fue instalado en el veril de 26,0 metros (app.) con respecto al Nivel de Reducción de Sondas (NRS), y a 0,5 metros sobre el fondo marino. La siguiente Tabla EM-166 muestra la configuración del instrumento:

Tabla EM-166: Parámetros de configuración del instrumento medidor de olas

Instrumento	ADCP modelo WHS 614,4 kHz – TRD Instruments.
Ubicación del fondeo	6.469.638 N ; 262.151 E (Datum WGS84)
Profundidad (NRS)	26,0 m app.
Fecha instalación	28 de octubre de 2014
Fecha retiro	15 de diciembre de 2014
Altura sensor desde el fondo	0,5 m
Intervalo entre burst de olas	3 horas
Frecuencia de muestreo olas	2 Hz
Número de datos por burst	4200
Tamaño de celdas	0,5 m
Sistema de referencia	Norte magnético
Huso horario	Z + 3

Fuente: consultora Costasur

Una vez recuperados los datos crudos del medidor de olas direccionales, estos fueron procesados utilizando el software WavesMon versión 3.08, software desarrollado por RD Instruments para el procesamiento de datos de olas direccionales.

Siguiendo la sugerencia del fabricante (Teledyne RD Instruments), se procesó los datos con metodologías diferentes (espectro de velocidad, espectro de presión) para ver cual reducía el ruido en las series de tiempo. Como conclusión de este proceso, se determinó que los datos más confiables se obtenían al utilizar el espectro de velocidad para calcular los parámetros del oleaje (Tabla EM-167).

Tabla EM-167: Parámetros de procesamiento de olas

Longitud Trasformada Rápida de Fourier	4096					
Bandas de Frecuencia	128					
Frecuencia de corte inferior	0,030 Hz					
Frecuencia de corte superior	0,448 Hz					
Espectro utilizado para calcular parámetros de oleaje	Espectro de Velocidad					
Fuente: consultora Costasur						

Resultados

La Tabla EM-168 muestra la distribución conjunta de los parámetros de olas H_s versus T_{pro} .

Tabla EM-168: Distribución conjunta altura significativa (Hs) v/s periodo promedio (Tpro)

Período					Altura (m)				
(seg)	0.00 - 0.50	0.501 - 1.00	1.01 - 1.50	1.501 - 2.00	2.01 - 2.50	2.501 - 3.00	3.01 - 3.50	Total	Total (%)
0 - 1	0	0	0	0	0	0	0	0	0.0
1 - 2	0	0	0	0	0	0	0	0	0.0
2 - 3	0	0	0	0	0	0	0	0	0.0
3 - 4	0	0	0	0	0	0	0	0	0.0
4 - 5	0	0	0	0	0	0	0	0	0.0
5 - 6	0	5	3	0	0	0	0	8	2.1
6 - 7	0	28	72	10	0	0	0	110	28.6
7 - 8	0	39	80	63	2	0	0	184	47.9
8 - 9	0	10	16	25	1	0	0	52	13.5
9 - 10	0	1	5	3	0	0	0	9	2.3
10 - 11	0	3	3	5	0	0	0	11	2.9
11 - 12	0	6	1	0	2	0	0	9	2.3
12 - 13	0	0	0	0	1	0	0	1	0.3
13 - 14	0	0	0	0	0	0	0	0	0.0
14 - 15	0	0	0	0	0	0	0	0	0.0
15 - 16	0	0	0	0	0	0	0	0	0.0
16 - 17	0	0	0	0	0	0	0	0	0.0
17 - 18	0	0	0	0	0	0	0	0	0.0
18 - 19	0	0	0	0	0	0	0	0	0.0
19 - 20	0	0	0	0	0	0	0	0	0.0
Total	0	92	180	106	6	0	0	384	100
Total (%)	0.0	24.0	46.9	27.6	1.6	0.0	0.0	100.0	

Fuente: consultora Costasur

Figura EM-224: Histograma de incidencia del oleaje

Fuente: consultora Costasur

La Figura EM-224 muestra la distribución direccional de las olas medidas (rosa de 8 direcciones). En ella se observa que las olas inciden en el sector de Punta Chungo mayoritariamente de las direcciones SW y W con porcentajes de incidencia de 85,7% y 14,3%. El resto de las direcciones no tienen incidencia.

La Figura EM-225 muestra la distribución de las alturas significativas (H_s) respecto del tiempo y su distribución porcentual respecto de diferentes rangos de altura. Al respecto, se aprecia que las alturas significativas se agrupan mayoritariamente entre 1,01 y 1,50 metros (46,9%) y entre 1,51 a 2,00 (27,6%). La máxima altura significativa muestreada fue de 2,28 metros.

Respecto del periodo promedio T_{pro} , la Figura EM-226 muestra su comportamiento a través del tiempo y su distribución porcentual respecto de diferentes rangos de periodo En general, se aprecia que los periodos se agrupan mayoritariamente entre los rangos 7 a 8 segundos, con valores porcentuales de 47,9%.

El mínimo período detectado fue de 5,5 segundos, mientras que el máximo período detectado fue de 12,9 segundos.

Figura EM-225: Altura significativa del oleaje

Fuente: consultora Costasur

Figura EM-226: Periodo promedio Tpro del oleaje

Fuente: consultora Costasur

• Verano 2015

Materiales y métodos

Para caracterizar las condiciones de oleaje *in situ* del sector de estudio, se efectuaron mediciones continuas de altura, periodo y dirección de olas, por un periodo de 47 días. Estas mediciones se realizaron con un medidor de olas direccional marca TRD Instruments, modelo WorkHorse Sentinel 614,4 kHz, en un punto con las siguientes coordenadas: 262.161 E; 6.469.622 N (Datum WGS84)

El medidor fue instalado en el veril de 25,0 metros (app.) con respecto al Nivel de Reducción de Sondas (NRS), y a 0,5 metros sobre el fondo marino. La siguiente Tabla EM-169 muestra la configuración del instrumento:

Tabla EM-169: Parámetros de configuración del instrumento medidor de olas

Instrumento	ADCP modelo WHS 614,4 kHz – TRD Instruments.
Ubicación del fondeo	6.469.622 N ; 262.161 E (Datum WGS84)
Profundidad (NRS)	25,0 m app.
Fecha instalación	05 de febrero de 2015
Fecha retiro	24 de marzo de 2015
Altura sensor desde el fondo	0,5 m
Intervalo entre burst de olas	3 horas
Frecuencia de muestreo olas	2 Hz
Número de datos por burst	4200
Tamaño de celdas	0,5 m
Sistema de referencia	Norte magnético
Huso horario	Z + 3

Fuente: consultora Costasur

Una vez recuperados los datos crudos del medidor de olas direccionales, estos fueron procesados utilizando el software WavesMon versión 3.08, software desarrollado por RD Instruments para el procesamiento de datos de olas direccionales.

Siguiendo la sugerencia del fabricante (Teledyne RD Instruments), se procesó los datos con metodologías diferentes (espectro de velocidad, espectro de presión) para ver cual reducía el ruido en las series de tiempo. Como conclusión de este proceso, se determinó que los datos más confiables se obtenían al utilizar el espectro de velocidad para calcular los parámetros del oleaje.

Así, los parámetros para el procesamiento de las olas fueron los siguientes (Tabla EM-170).

Longitud Trasformada Rápida de Fourier	4096					
Bandas de Frecuencia	128					
Frecuencia de corte inferior	0,030 Hz					
Frecuencia de corte superior	0,448 Hz					
Espectro utilizado para calcular parámetros de oleaje	Espectro de Velocidad					
Fuente: consultora Costasur						

Tabla EM-170: Parámetros de procesamiento de olas

Resultados

La Tabla EM-171 muestra la distribución conjunta de los parámetros de olas H_s versus T_{pro}.

Tabla EM-171: Distribución conjunta altura significativa (Hs) v/s periodo promedio (Tpro)

	(
(seg)	0.00 - 0.50	0.501 - 1.00	1.01 - 1.50	1.501 - 2.00	2.01 - 2.50	2.501 - 3.00	3.01 - 3.50	Total	Total (%)			
0 - 1	0	0	0	0	0	0	0	0	0.0			
1 - 2	0	0	0	0	0	0	0	0	0.0			
2 - 3	0	0	0	0	0	0	0	0	0.0			
3 - 4	0	0	0	0	0	0	0	0	0.0			
4 - 5	0	0	0	0	0	0	0	0	0.0			
5 - 6	0	0	0	0	0	0	0	0	0.0			
6 - 7	0	17	40	0	0	0	0	57	15.2			
7 - 8	0	36	71	16	0	0	0	123	32.7			
8 - 9	0	31	50	16	7	0	0	104	27.7			
9 - 10	0	21	20	13	6	1	0	61	16.2			
10 - 11	0	14	5	2	5	0	0	26	6.9			
11 - 12	0	2	0	0	0	0	0	2	0.5			
12 - 13	0	2	0	0	0	0	0	2	0.5			
13 - 14	0	1	0	0	0	0	0	1	0.3			
14 - 15	0	0	0	0	0	0	0	0	0.0			
15 - 16	0	0	0	0	0	0	0	0	0.0			
16 - 17	0	0	0	0	0	0	0	0	0.0			
17 - 18	0	0	0	0	0	0	0	0	0.0			
18 - 19	0	0	0	0	0	0	0	0	0.0			
19 - 20	0	0	0	0	0	0	0	0	0.0			
Total	0	124	186	47	18	1	0	376	100			
Total (%)	0.0	33.0	49.5	12.5	4.8	0.3	0.0	100.0				

Fuente: consultora Costasur

Figura EM-227: Histograma de incidencia del oleaje

Fuente: consultora Costasur

La Figura EM-227 muestra la distribución direccional de las olas medidas (rosa de 8 direcciones). En ella se observa que las olas inciden en el sector de Punta Chungo mayoritariamente de las direcciones SW y W con porcentajes de incidencia de 91,8% y 7,4%. El resto de las direcciones prácticamente no tuvieron incidencia.

La Figura EM-228 muestra la distribución de las alturas significativas (H_s) respecto del tiempo y su distribución porcentual respecto de diferentes rangos de altura. Al respecto, se aprecia que las alturas significativas se agrupan mayoritariamente entre 1,01 y 1,50 metros (49,5%) y entre 0,51 a 1,00 (33,0%). La máxima altura significativa muestreada fue de 2,54 metros.

Respecto del periodo promedio T_{pro} , la Figura EM-229 muestra su comportamiento a través del tiempo y su distribución porcentual respecto de diferentes rangos de periodo En general, se aprecia que los periodos se agrupan mayoritariamente entre los rangos 7 a 8 segundos, con valores porcentuales de 32,7%.

El mínimo período detectado fue de 6,2 segundos, mientras que el máximo período detectado fue de 13,2 segundos.

Figura EM-228: Altura significativa del oleaje medido

Fuente: consultora Costasur

Figura EM-229: Periodo promedio Tpro del oleaje

Fuente: consultora Costasur

Invierno 2015

Materiales y métodos

Para caracterizar las condiciones de oleaje *in situ* del sector de estudio, se efectuaron mediciones continuas de altura, periodo y dirección de olas, por un periodo de 40 días. Estas mediciones se realizaron con un medidor de olas direccional marca TRD Instruments, modelo WorkHorse Sentinel 614,4 kHz, en un punto con las siguientes coordenadas: 262.161 E; 6.469.609 N (Datum WGS84).

El medidor fue instalado en el veril de 26,0 metros (app.) con respecto al Nivel de Reducción de Sondas (NRS), y a 0,5 metros sobre el fondo marino. La siguiente Tabla EM-172 muestra la configuración del instrumento:

Tabla EM-172: Parámetros de configuración del instrumento medidor de olas

Instrumento	ADCP modelo WHS 614,4 kHz – TRD Instruments.
Ubicación del fondeo	6.469.609 N ; 262.161 E (Datum WGS84)
Profundidad (NRS)	26,0 m app.
Fecha instalación	30 de julio de 2015
Fecha retiro	08 de septiembre de 2015
Altura sensor desde el fondo	0,5 m
Intervalo entre burst de olas	3 horas
Frecuencia de muestreo olas	2 Hz
Número de datos por burst	2400
Tamaño de celdas	0,5 m
Sistema de referencia	Norte magnético
Huso horario	Z + 3

Fuente: consultora Costasur

Una vez recuperados los datos crudos del medidor de olas direccionales, estos fueron procesados utilizando el software WavesMon versión 3.08, software desarrollado por RD Instruments para el procesamiento de datos de olas direccionales.

Siguiendo la sugerencia del fabricante (Teledyne RD Instruments), se procesó los datos con metodologías diferentes (espectro de velocidad, espectro de presión) para ver cual reducía el ruido en las series de tiempo. Como conclusión de este proceso, se determinó que los datos más confiables se obtenían al utilizar el espectro de velocidad para calcular los parámetros del oleaje.

Así, los parámetros para el procesamiento de las olas fueron los siguientes (Tabla EM-173):

Longitud Trasformada Rápida de Fourier	2048					
Bandas de Frecuencia	128					
Frecuencia de corte inferior	0,030 Hz					
Frecuencia de corte superior	0,448 Hz					
Espectro utilizado para calcular parámetros de oleaje	Espectro de Velocidad					
Fuente: consultora Costasur						

Tabla EM-173: Parámetros de procesamiento de olas

Resultados

La Tabla EM-174 muestra la distribución conjunta de los parámetros de olas H_s versus T_{pro}.

Tabla EM-174: Distribución conjunta altura significativa (Hs) v/s periodo promedio (Tpro)

-										
Período	Altura (m)									
(seg)	0.00 - 0.50	0.501 - 1.00	1.01 - 1.50	1.501 - 2.00	2.01 - 2.50	2.501 - 3.00	3.01 - 3.50	> 3.50	Total	Total (%)
0 - 1	0	0	0	0	0	0	0	0	0	0.0
1 - 2	0	0	0	0	0	0	0	0	0	0.0
2 - 3	0	0	0	0	0	0	0	0	0	0.0
3 - 4	0	0	0	0	0	0	0	0	0	0.0
4 - 5	0	0	0	0	0	0	0	0	0	0.0
5 - 6	0	5	1	0	0	0	0	0	6	1.9
6 - 7	0	8	28	6	0	0	0	0	42	13.2
7 - 8	1	20	39	18	4	0	0	0	82	25.7
8 - 9	1	20	24	24	3	0	0	0	72	22.6
9 - 10	0	7	11	26	7	0	0	0	51	16.0
10 - 11	0	4	8	20	14	2	0	0	48	15.0
11 - 12	0	1	1	2	3	0	2	0	9	2.8
12 - 13	0	0	0	0	0	3	3	1	7	2.2
13 - 14	0	0	0	0	0	0	0	2	2	0.6
14 - 15	0	0	0	0	0	0	0	0	0	0.0
15 - 16	0	0	0	0	0	0	0	0	0	0.0
16 - 17	0	0	0	0	0	0	0	0	0	0.0
17 - 18	0	0	0	0	0	0	0	0	0	0.0
18 - 19	0	0	0	0	0	0	0	0	0	0.0
19 - 20	0	0	0	0	0	0	0	0	0	0.0
Total	2	65	112	96	31	5	5	3	319	100
Total (%)	0.6	20.4	35.1	30.1	9.7	1.6	1.6	0.9	100.0	

Fuente: consultora Costasur

Figura EM-230: Histograma de incidencia del oleaje

Fuente: consultora Costasur

La Figura EM-230 muestra la distribución direccional de las olas medidas (rosa de 8 direcciones). En ella se observa que las olas inciden en el sector de Punta Chungo mayoritariamente de las direcciones SW y W con porcentajes de incidencia de 52,2% y 47,5%. El resto de las direcciones prácticamente no tienen incidencia.

La Figura EM-231 muestra la distribución de las alturas significativas (H_s) respecto del tiempo y su distribución porcentual respecto de diferentes rangos de altura. Al respecto, se aprecia que las alturas significativas se agrupan mayoritariamente entre 1,01 y 1,50 metros (35,1%) y entre 1,51 a 2,00 (30,1%). La máxima altura significativa muestreada fue de 3,87 metros.

Respecto del periodo promedio T_{pro} , la Figura EM-232 muestra su comportamiento a través del tiempo y su distribución porcentual respecto de diferentes rangos de periodo En general, se aprecia que los periodos se agrupan mayoritariamente entre los rangos 7 a 8 segundos, con valores porcentuales de 25,7%.

El mínimo período detectado fue de 5,1 segundos, mientras que el máximo período detectado fue de 13,7 segundos.

Figura EM-231: Altura significativa del oleaje

Fuente: consultora Costasur

Figura EM-232: Periodo promedio Tpro del oleaje

• Síntesis de resultados de mediciones locales de olas

A continuación se muestran una síntesis de loa resultados de mediciones locales de olas, en la Tabla EM-175 se resumen los resultados finales.

Verano 2012

Las olas inciden en el sector de Punta Chungo mayoritariamente de las direcciones W y SW con porcentajes de incidencia de 50,5% y 49,1%. El resto de las direcciones prácticamente no tienen incidencia, a excepción de la dirección NW que agrupó un 0,5% de la ocurrencia direccional. Las alturas significativas se agrupan mayoritariamente entre 0,501 y 1,00 metros (55,6%) y entre 1,01 a 1,50 (34,1%). La máxima altura significativa muestreada fue de 2,27 metros. Los periodos promedio se agrupan mayoritariamente entre los rangos 6 a 7 segundos, con valores porcentuales de 27,4%. El mínimo período detectado fue de 3,7 segundos, mientras que el máximo período detectado fue de 14,3 segundos.

Otoño 2012

Las olas inciden en el sector de Punta Chungo mayoritariamente de las direcciones W y SW con porcentajes de incidencia de 89,1% y 9,1%. El resto de las direcciones prácticamente no tienen incidencia, a excepción de la dirección NW que agrupó un 1,9% de la ocurrencia direccional. Las alturas significativas se agrupan mayoritariamente entre 1,01 y 1,50 metros (50,2%) y entre 0,501 a 1,00 (41,5%), y la máxima altura significativa muestreada fue de 2,02 metros. Los periodos se agrupan mayoritariamente entre los rangos 8 a 9 segundos, con valores porcentuales de 33,6%. El mínimo período detectado fue de 6,4 segundos, mientras que el máximo período detectado fue de 11,1 segundos.

Invierno 2012

Las olas inciden en el sector de Punta Chungo mayoritariamente de las direcciones W y SW con porcentajes de incidencia de 54,8% y 44,8%. El resto de las direcciones prácticamente no tienen incidencia, a excepción de la dirección NW que agrupó un 0,3% de la ocurrencia direccional. Las alturas significativas se agrupan mayoritariamente entre 1,01 y 1,50 metros (47,7%) y entre 1,501 a 2,00 (27,4%). La máxima altura significativa muestreada fue de 3,24 metros. Los periodos se agrupan mayoritariamente entre los rangos 7 a 8 segundos, con valores porcentuales de 41,9%. El mínimo período detectado fue de 5,0 segundos, mientras que el máximo período detectado fue de 10,8 segundos.

Primavera 2012

Las olas inciden en el sector de Punta Chungo mayoritariamente de las direcciones W y SW con porcentajes de incidencia de 69,0% y 31,0%. El resto de las direcciones no tienen incidencia. Las alturas significativas se agrupan mayoritariamente entre 0,51 y 1,00 metros (39,9%) y entre 1,01 a 1,50 (39,5%). La máxima altura significativa muestreada fue de 1,97 metros. Los periodos se agrupan mayoritariamente entre los rangos 7 a 8 segundos, con valores porcentuales de 41,9%. El mínimo período detectado fue de 4,7 segundos, mientras que el máximo período detectado fue de 10,0 segundos.

Primavera 2014

Las olas inciden en el sector de Punta Chungo mayoritariamente de las direcciones SW y W con porcentajes de incidencia de 85,7% y 14,3%. El resto de las direcciones no tienen incidencia. Las alturas significativas se agrupan mayoritariamente entre 1,01 y 1,50 metros (46,9%) y entre 1,51 a 2,00 (27,6%). La máxima altura significativa muestreada fue de 2,28 metros. Los periodos se agrupan mayoritariamente entre los rangos 7 a 8 segundos, con valores porcentuales de 47,9%. El mínimo período detectado fue de 5,5 segundos, mientras que el máximo período detectado fue de 12,9 segundos.

Verano 2015

Las olas inciden en el sector de Punta Chungo mayoritariamente de las direcciones SW y W con porcentajes de incidencia de 91,8% y 7,4%. El resto de las direcciones prácticamente no tienen incidencia. Las alturas significativas se agrupan mayoritariamente entre 1,01 y 1,50 metros (49,5%) y entre 0,51 a 1,00 (33,0%). La máxima altura significativa muestreada fue de 2,54 metros. Los periodos se agrupan mayoritariamente entre los rangos 7 a 8 segundos,

con valores porcentuales de 32,7%. El mínimo período detectado fue de 6,2 segundos, mientras que el máximo período detectado fue de 13,2 segundos.

Invierno 2015

Las olas inciden en el sector de Punta Chungo mayoritariamente de las direcciones SW y W con porcentajes de incidencia de 52,2% y 47,5%. El resto de las direcciones prácticamente no tienen incidencia. Las alturas significativas se agrupan mayoritariamente entre 1,01 y 1,50 metros (35,1%) y entre 1,51 a 2,00 (30,1%). La máxima altura significativa muestreada fue de 3,87 metros. Los periodos se agrupan mayoritariamente entre los rangos 7 a 8 segundos, con valores porcentuales de 25,7%. El mínimo período detectado fue de 5,1 segundos, mientras que el máximo período detectado fue de 13,7 segundos.

				Altura (m)				Periodo (s)		
Año	Campaña	Incidencia de olas	0,5 - 1	1 - 1,5	1,5 - 2	Max.	Min.	Max.	Mayor agrupación	
2012	Verano	W (50,5%) y SW (49,1%)	55,6%	34,1%	6,5%	2,27	3,7	14,3	6 a 7	
	Otoño	W (89,1%) y SW (9,1%)	41,5%	50,2%	7,9%	2,02	6,4	11,1	8a9	
	Invierno	W (54,8%) y SW (44,8%)	21,0%	47,7%	27,4%	3,24	5	10,8	7 a 8	
	Primavera	W (69,0%) y SW (31,0%)	39,9%	39,5%	27,6%	1,97	4,7	10	7 a 8	
2014	Primavera	SW (85,7%) y W (14,3%)	24,0%	46,9%	27,6%	2,28	5,5	12,9	7 a 8	
2015	Verano	SW (91,8%) y W (7,4%)	33,0%	49,5%	12,5%	2,54	6,2	13,2	7 a 8	
2015	Invierno	SW (52,2% y W (47,5%)	20,4%	35,1%	30,1%	3,87	5,1	13,7	7 a 8	

Tabla EM-175: Resumen de la medición de olas locales

7.1.4.1.6 Síntesis general de los resultados de la caracterización oceanográfica física

Los resultados obtenidos en las campañas de verano, otoño, invierno y primavera de 2012 mostraron que el patrón de circulación en el área del sector costero de Punta Chungo es, en general, estable en términos direccionales y forzado de manera importante por los vientos reinantes. En este sentido, durante el verano se observó que los flujos netos superficiales tendieron a avanzar hacia la dirección NE (51,9°), mientras que a niveles más profundos, los flujos netos avanzaron hacia la dirección SE (125,3°, nivel intermedio) y hacia la dirección SE (162,5°, nivel de fondo). Durante el otoño, los flujos netos superficiales avanzaron hacia la dirección E (86,7°, nivel intermedio) y dirección SW (223,8°, nivel de fondo). En época invernal, los flujos netos superficiales avanzaron hacia la dirección SE – S (156,0°, nivel intermedio) y dirección SW (214,7°, nivel de fondo). En primavera, los flujos netos superficiales avanzaron hacia la dirección SU (22,4°), y hacia la dirección SE – S (152,2°, nivel intermedio) y dirección S (177,6°, nivel de fondo).

Durante la primavera de 2014, los flujos netos superficiales fueron hacia el W – NW (296,2°) en el punto 1 (descarga) y W (269,5°) en el punto 2 (captación). Los flujos intermedios fueron hacia el NE – E (64,4°) en el punto 1 y S (189,6°) en el punto 2 y los flujos netos de fondo fueron hacia SW – S (195,5°) en el punto 1 y SW (228,5°) en el punto 2. Estas diferencias pueden explicarse a la nueva ubicación de las estaciones de muestreo se ubicaron (600 m aproximados más al norte de las consideradas en las campañas de 2012). Por otro lado, un efecto importante en las nuevas direcciones podría estar asociado a la punta Chungo,

accidente geográfico que podría estar deflectando las corrientes superficiales hacia la zona oceánica.

En la campaña de verano 2015, se verificó una similitud direccional del flujo neto superficial del punto de muestreo 1 (descarga) respecto del verano 2012. Así, el flujo neto fue hacia el NE (47,9°). El punto de muestreo 2 (captación) en su nivel más superficial se mostró similar a los valores de flujo neto estimado en la primavera 2014 (SW – S, 208,7°). A niveles intermedios (puntos de muestreo 1 y 2), se mantuvo la tendencia de los flujos netos de avanzar hacia el E (85,1°) y SE (146,9°), y a nivel de fondo los flujos netos fueron muy similares entre campañas, con flujos en general hacia el 3^{er} cuadrante.

En el invierno 2015, el punto de muestreo 1 mostró similitud direccional respecto de las campañas del año 2012 y verano 2015, con flujos superficiales netos al NE – E (71,0°), al NE – E (72,1°, nivel intermedio) y al SW (214,3°, nivel de fondo). El punto de muestreo 2 presentó flujos netos al SE – S (160,7°, superficie), al W (281,2°, intermedio) y al W – NW (298,7°, fondo).

En términos de magnitud de las corrientes, éstas se mostraron de mediana intensidad. Durante el 2012, en general las corrientes promedio (Tabla EM-176) fueron superiores durante las campañas de verano y primavera en comparación con el otoño e invierno. Esta situación podría ser explicada mediante el forzante viento, la que se mostró de mayor intensidad y estable (mayor incidencia de la direcciones SW y S) en la época estival y de primavera. En cuanto a las magnitudes máximas (Tabla EM-176), estás se mostraron similares en todas las campañas realizadas y en todas las capas analizadas, salvo las corrientes máximas del nivel intermedio (campaña de primavera), en donde se registró un valor máximo de 26,4 cm/s, el que fue claramente superior al resto de los valores máximos registrados durante las mediciones en las capas intermedias.

Durante la primavera 2014 (Tabla EM-177), el punto de muestreo 1 se mostró similar en términos de magnitud promedio con la campaña de verano 2012 en todas las capas analizadas. Respecto de las magnitudes máximas, éstas fueron superiores a nivel superficial en comparación con todas las campañas anteriores (2012). Respecto del punto de muestreo 2, la magnitud promedio superficial fue levemente superior respecto de las campañas de otoño, invierno y primavera 2012. A niveles más profundos, éstas fueron superiores. Respecto de las magnitudes máximas, durante la primavera de 2014, se verificó una magnitud máxima similar a la primavera 2012. No obstante, a niveles más profundos, las corrientes máximas fueron siempre superiores en primavera 2014 que en las campañas realizadas el 2012.

En el verano 2015 (Tabla EM-177), los valores promedio de las corrientes fueron similares a las campañas anteriores. La diferencia se verificó en el punto de muestreo 1 (capa de fondo) en donde el valor promedio de las corrientes fue 7,0 cm/s, mostrando esta capa un incremento respecto de la campaña de primavera 2014 (5,0 cm/s). En cuanto a las corrientes máximas, durante esta campaña se observó un valor máximo individual de 52,6 cm/s (punto de muestreo 1) que no había sido reportado en campañas anteriores.

En el invierno 2015, se observaron en el punto 1 valores de magnitud promedio muy similares a los registrados durante todas las campañas de 2012 con excepción del verano 2012 (superficie), primavera 2014 (superficie) y verano 2015 (fondo). El punto 2, mostró

valores más bajos de magnitud promedio superficial respecto de todas las campañas realizadas.

Tabla EM-176: Resumen de magnitud promedio y máximo (cm/s) de los flujos netos de las campañas realizadas el 2012

		Campañas 2012						
		Verano	Otoño	Invierno	Primavera			
Magnitud Promedio (cm/s)	Superficial	12,8	9,6	9,8	10,1			
	Intermedia	5,7	5,1	5,5	5,9			
	Fondo	5,3	5,1	5,1	5,6			
Magnitud Máxima (cm/s)	Superficial	43,7	42,2	39,6	39,2			
	Intermedia	19,8	21,7	20,8	26,4			
	Fondo	20,9	17,4	18,8	20,9			

Tabla EM-177: Resumen de magnitud promedio y máximo (cm/s) de los flujos netos de las campañas realizadas en primavera 2014, verano e invierno 2015, en los puntos 1 (descarga) y 2 (captación)

		Primavera 2014		Veran	o 2015	Invierno 2015		
		Punto 1	Punto 2	Punto 1	Punto 2	Punto 1	Punto 2	
Magnitud Promedio	Superficial	12,8	10,6	10,3	9	10,2	8,8	
	Intermedia	5,4	8,2	5,6	6,9	5,7	7,6	
(cm/s)	Fondo	5	8,5	7	7,6	5,5	7,7	
Magnitud Máxima (cm/s)	Superficial	48,9	39,1	52,6	48	45,8	36,2	
	Intermedia	21,2	37	24	39,1	28,0	38,7	
	Fondo	21,4	34	27,8	26,8	24,0	30,4	

En cuanto a la correntometría lagrangiana, durante las campañas de 2012, primavera 2014, verano 2015 e invierno 2015, los derivadores mostraron una baja respuesta al forzante marea. Es más, en estas experiencias el viento (bajo ciertas condiciones de magnitud) aparece como un forzante de importancia dentro del movimiento de las aguas en el sector de Punta Chungo, además de la configuración de la línea de la costa.

En año 2012, los resultados de la dispersión del trazador químico rodamina WT mostraron que el lugar de liberación (sector costero Punta Chungo) posee una capacidad de dispersión moderada. No obstante, durante la primavera 2014, verano 2015 e invierno 2015, se verificó que la capacidad de dispersión cercano a Punta Chungo es baja.

La dispersión observada es el resultado de la mezcla a diferentes escalas de tiempo, de un proceso de difusión turbulenta generado por remolinos o *eddies* mayores y remolinos de menor tamaño. Los mayores, proporcionan la variabilidad observada en la dispersión media del fluido, en una escala mayor asociada al movimiento del fluido, y los remolinos menores en cambio dan cuenta de la variabilidad al interior de la mancha, responsables de la mezcla, observando gradientes de concentración, explicando la tendencia a formar manchas circulares, ya que los procesos difusivos actúan en dirección radial desde el núcleo de una mancha. Por otro lado, los desplazamientos observados y los coeficientes de dispersión

calculados sugieren que la dispersión en el área de Punta Chungo está dominada principalmente por procesos de transporte de masas más que por procesos difusivos.

Finalmente se puede concluir en términos generales que el patrón de circulación en el área del sector costero de Punta Chungo es estable en términos direccionales y forzado de manera importante por los vientos reinantes. En este sentido, se observó que los flujos netos superficiales tendieron a avanzar en su gran mayoría hacia el norte y este (N y E) forzados principalmente por el viento, el cual tuvo leves variaciones en su dirección de acuerdo a período estacional del año. La capa intermedia siguió un patrón con flujos netos que avanzaron hacia este (E) con variaciones entre los periodos estacionales tendiendo a virar en dirección sur (S). Por su parte, la capa profunda se desplazó regularmente hacia el surweste (SW). En términos de magnitud de las corrientes, éstas se mostraron de mediana intensidad, variando entre cada período estacional. En general las corrientes promedio fueron superiores durante las campañas de verano y primavera en comparación con el otoño e invierno. Lo que está directamente relacionado con la forzante del viento, el cual mostró mayor intensidad y estabilidad en la época estival y de primavera (direcciones SW y S).