Appendix M.

Toxicity Assessment of Barossa Condensate (Jacobs 2017)

Barossa Environmental Studies

ConocoPhillips

Toxicity Assessment of Barossa-3 Condensate

IW021200-NMS-RP-0028 | Rev 1

30 May 2017

Barossa Environmental Studies

Project no:	IW021200
Document title:	Toxicity Assessment of Barossa-3 Condensate
Document No.:	IW021200-NMS-RP-0028
Revision:	Rev 1
Date:	30 May 2017
Client name:	ConocoPhillips
Project manager:	Chris Teasdale
Author:	Celeste Wilson
File name:	T:\Transfer\May2017\WVES\TMiley\Barossa Toxicity Report _ Rev 1.docx

Jacobs Group (Australia) Pty Limited ABN 37 001 024 095 11th Floor, Durack Centre 263 Adelaide Terrace PO Box H615 Perth WA 6001 Australia T +61 8 9469 4400 F +61 8 9469 4488 www.jacobs.com

© Copyright 2017 Jacobs Group (Australia) Pty Limited. The concepts and information contained in this document are the property of Jacobs. Use or copying of this document in whole or in part without the written permission of Jacobs constitutes an infringement of copyright.

Limitation: This report has been prepared on behalf of, and for the exclusive use of Jacobs' Client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the Client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this report by any third party.

Document history and status

Revision	Date	Description	Ву	Review	Approved
А	14/12/2015	Technical Review	C Wilson	M Huber	C Teasdale
0	4/01/2016	Final report	C Wilson	C Teasdale	C Teasdale
1	30/05/2017	Update report for inclusion in technical appendices of the Barossa OPP	C Wilson	T Miley	T Miley

Contents

Abbr	eviations and Glossary	2
Exec	cutive Summary	4
1.	Introduction	
1.1	Background	6
1.2	Overview of existing regional environment	6
1.3	Scope of work	6
2.	Methods	8
2.1	Quality assurance	9
2.2	Chemical analyses	10
2.3	Data presentation and statistical analysis	11
3.	Results	13
4.	Conclusions	
5.	References	20

Appendix A. Summary of Quality Assurance for Ecotox Tests

Appendix B. Laboratory Reports

Appendix C. Burrlioz Output Report

Tables

Table 2-1: Analytical methods, test species, life stages, durations and test end-points for ecotoxicology	8
Table 2-2: Test dilutions used in toxicity tests	9
Table 2-3: Laboratory practical quantitation limits for each of the hydrocarbons analysed	11
Table 3-1: Summary of toxicity tests for un-weathered Barossa-3 condensate (concentrations in µg/L)	15
Table 3-2: Summary of toxicity tests for weathered Barossa-3 condensate (concentrations in µg/L)	15
Table 3-3: Moderate reliability guideline values derived from Burrlioz species sensitivity distribution curve for	un-
weathered Barossa-3 condensate	17
Table 3-4: Hydrocarbon concentrations of weathered and un-weathered Barossa-3 condensate	18
Table A.1: Specific quality assurance (QA) criteria for the Microalga Growth Test	22
Table A.2: Specific quality assurance (QA) criteria for the Macroalgal Growth Test	. 22
Table A.3: Specific quality assurance (QA) criteria for the Sea Urchin Fertilisation Success Test	22
Table A.4: Specific quality assurance (QA) criteria for the Sea Urchin Larval Development Test	22
Table A.5: Specific quality assurance (QA) criteria for the Milky Oyster Larval Development Test	22
Table A.6: Specific quality assurance (QA) criteria for the Acute Copepod Development Toxicity Test	23
Table A.7: Specific quality assurance (QA) criteria for the Sea Anemone Pedal Lacerate Development Test	. 23
Table A.8: Specific quality assurance (QA) criteria for the Larval Fish Imbalance and Growth (Biomass) Test	. 23

Figures

Figure 1-1: Barossa field location	7
Figure 3-1: Burrlioz distribution fitting for 95% species protection of un-weathered Barossa-3 condensate	. 16
Figure 3-2: Burrlioz distribution fitting for 99% species protection of un-weathered Barossa-3 condensate	. 17

Important note about your report

The sole purpose of this report and the associated services performed by Jacobs is to assess the toxicity of the Barossa-3 condensate in accordance with the scope of services set out in the contract between Jacobs and the Client. That scope of services, as described in this report, was developed with the Client.

In preparing this report, Jacobs has relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, Jacobs has not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

Jacobs derived the data in this report from toxicity tests undertaken by Ecotox Services Australasia (ESA) and information sourced from the Client (including client provision of condensate samples to ESA for testing) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination of the project and subsequent data analysis, and re-evaluation of the data, findings, observations and conclusions expressed in this report. Jacobs has prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

This report should be read in full and no excerpts are to be taken as representative of the findings. No responsibility is accepted by Jacobs for use of any part of this report in any other context.

This report has been prepared on behalf of, and for the exclusive use of, Jacobs' Client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the Client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this report by any third party.

Abbreviations and Glossary

ADDIEVIATIONS a	nu olossaly
ACR	acute to chronic ratio
Acute toxicity	A lethal or adverse sub-lethal effect that occurs after a short exposure period relative to the organism's life span.
ANZECC	Australian and New Zealand Environment and Conservation Council
ARMCANZ	Agricultural and Resource Management Council of Australia and New Zealand
Chronic toxicity	An adverse effect that occurs after exposure for a substantial proportion of the organism's life span or an adverse sub-lethal effect on a sensitive early life stage.
Contaminant	A substance, inorganic or organic, at or near levels that could be toxic to some organisms.
BTEX	Benzene, toluene, ethylbenzene, and xylenes (meta-, para- and ortho-xylene)
EC 50	The concentration of a given contaminant that will cause a sub-lethal effect in 50% of a collection of organisms over a given period of time. Effects can be larval abnormalities, reproductive impairment, and growth inhibition or fertilisation success.
ESA	Ecotox Services Australasia
FSW	Filtered seawater
IC 10	The concentration of a given contaminant that will cause the inhibition of growth or reproduction in 10% of a collection of organisms over a given period of time.
IC 50	The concentration of a given contaminant that will cause the inhibition of growth or reproduction in 50% of a collection of organisms over a given period of time.
Larva(e)	The early free-living, immature form of any animal that changes structurally when it becomes an adult.
LC 50	The concentration of a given contaminant that will cause a lethal effect in 50% of a collection of organisms over a given period of time.
LOEC	(Lowest Observed Effect Concentration). The lowest concentration of a material used in a toxicity test that has a statistically significant adverse effect on the exposed population of test organisms as compared with the controls.
MAH	Monocyclic aromatic hydrocarbons
NATA	National Association of Testing Authorities
NOEC	(No Observed Effect Concentration). The highest concentration of a toxicant at which no statistically significant effect is observable, compared to the controls; the statistical significance is measured at the 95% confidence level.
PAH	Polycyclic aromatic hydrocarbons
PQL	Practical quantitation limit
QA	Quality assurance
SSD	Species sensitivity distribution
Toxicity	The quality or degree of being poisonous or harmful, to humans or biota.

Toxicity Assessment of Barossa-3 Condensate

TRH WAF Total recoverable hydrocarbons Water accommodated fraction

Executive Summary

ConocoPhillips Australia Exploration Pty Ltd (ConocoPhillips) are proposing to develop natural gas resources as part of the Barossa area development, located in waters up to 300 m deep in the Bonaparte Basin, in Commonwealth waters offshore of northern Australia. Numerous shoals (submerged calcareous banks or 'seamounts') exist in the broader region around the Barossa area development; the closest being Evans Shoal, 60 km to the west, Tassie Shoal, 70 km south-west and Lynedoch Bank, 40 km to the south-east. In addition, the new Oceanic Shoals Commonwealth marine reserve (multiple use zone) lies to the south and south-east of the permit area.

ConocoPhillips intends to derive threshold concentrations of un-weathered and weathered Barossa-3 condensate to inform the assessment of the potential for toxicity impacts from hydrocarbon from the Barossa field to sensitive marine biota. The aim of this study is to assess the toxicity of the following:

- 1. Un-weathered Barossa-3 condensate (full suite of toxicants)
- 2. Weathered Barossa-3 condensate (limited tests involving fish only).

The toxicity tests were undertaken on a broad range of taxa of ecological relevance for which accepted standard test protocols are well established. These ecotoxicology tests are mainly focused on the early life stages of test organisms, when organisms are typically at their most sensitive to hydrocarbons. For the unweathered condensate, static toxicity tests were conducted on seven mainly tropical species, representing seven taxonomic groups. It was considered that fish would be the more likely receptor to be exposed to the weathered condensate during a hydrocarbons spill, and consequently fish were the focus species for the weathered condensate study.

The moderate guideline value for 95% species protection of un-weathered Barossa-3 condensate was 1146 μ g/L and the moderate guideline value for 99% species protection was 456 μ g/L. The IC₁₀ values for the un-weathered Barossa-3 condensate ranged from 1,051 to 15,875 μ g/L. According to the GESAMP (2002) classification, un-weathered Barossa-3 condensate has almost negligible chronic aquatic toxicity.

Neither the un-weathered nor weathered Barossa-3 condensate was particularly toxic to fish larvae. A lower concentration of un-weathered condensate was required to affect the balance of 10% of fish larvae compared with the weathered condensate while a lower concentration of weathered condensate was required to affect the biomass of 10% of fish larvae compared to the un-weathered condensate.

The un-weathered Barossa-3 condensate was more toxic to copepod development and macroalgal growth and less toxic to fish larvae and oyster larval development. Neff (1979) also found that toxicity was most pronounced among crustaceans and least among telesost or ray finned fishes.

From the chemical analysis of the Barossa-3 condensate the most obvious difference between the unweathered and weathered condensate was in the benzene, toluene, ethylbenzene, and xylenes (BTEX) results. BTEX falls into the class of monocyclic aromatic hydrocarbons (MAHs). The weathered Barossa-3 condensate had much lower concentrations than the un-weathered Barossa-3 condensate, particularly benzene and toluene. BTEX compounds are acutely toxic to aquatic organisms if exposure is sustained. Because of the volatility of BTEX, aquatic organisms typically only experience short exposure times in the order of 12 hours which may circumvent toxic effects.

Of the polycyclic aromatic hydrocarbons (PAH's) analysed for this study, naphthalene was the only chemical that was higher in the weathered condensate compared to the un-weathered condensate. All other PAHs

measured were below the laboratory detection limit or in the case of fluorene and phenanthrene was similar between weathered and un-weathered condensate. However, the myriad of other chemicals present in the condensate were not required to be measured for the purposes of this exercise. Neff et al. (2000) demonstrated that the MAHs are the most important contributors to the acute toxicity of the water accommodated fractions (WAFs) of fresh oils, while the contribution of PAHs to WAF toxicity increases with weathering. However it is generally not well understood which of the many components of oil are responsible for the many toxicity effects induced by oil.

1. Introduction

1.1 Background

ConocoPhillips Australia Exploration Pty Ltd (ConocoPhillips), as proponent on behalf of the current and future joint ventures, are proposing to develop natural gas resources as part of the Barossa area development, located approximately 300 kilometres (km) north of Darwin, Northern Territory (**Figure 1-1**). The Barossa field is situated in petroleum retention lease permit NT/RL5 (referred to as the 'permit area' in this report).

1.2 Overview of existing regional environment

The Barossa area is located in the Northern Marine Region, which comprises the Commonwealth waters of the Gulf of Carpentaria, Arafura Sea and Timor Sea as far west as the Northern Territory and Western Australian border. The Northern Marine Region contains internationally significant breeding and/or feeding grounds for a number of listed threatened and migratory marine species, including nearshore dolphins, turtles, dugongs, seabirds and migratory shorebirds afforded protection under national legislation and international conventions.

The Timor and Arafura Seas support a variety of shark, pelagic finfish and crustacean species of commercial and recreational game-fishing importance, e.g. trawl and various finfish fisheries. The shelf break and slope of the Arafura Shelf is characterised by patch reefs and hard substrate pinnacles that support a diverse array of invertebrate groups, with polychaetes and crustaceans being the most prolific (Heyward et al. 1997, CEE 2002). Surveys indicate that between 50 m and 200 m depth, the seabed consists of predominantly soft, easily resuspended sediments (Heyward et al. 1997, URS 2005, 2007). The diversity and coverage of epibenthos is low and organisms present are predominantly sponges, gorgonians and soft corals (Heyward et al. 1997, URS 2005, 2007).

Numerous shoals (submerged calcareous banks or 'seamounts') exist in the broader region around the permit area; the closest being Evans Shoal, 60 km to the west, Tassie Shoal, 70 km south-west and Lynedoch Bank, 40 km to the south-east. In addition, the new Oceanic Shoals Commonwealth marine reserve (multiple use zone) lies to the south and south-east of the permit area.

1.3 Scope of work

ConocoPhillips intends to derive species sensitivity guideline values (99%, 95% etc.) of un-weathered and weathered Barossa-3 condensate, which have toxic effects on sensitive marine biota, to inform the assessment of the potential for toxicity impacts from hydrocarbons from the Barossa field. The scope consisted of the following components:

Definition of Scope of Ecotoxicity Testing

• Jacobs provided advice on ecotoxicity testing methods including sample collection and numbers of species to test, and liaised with the NATA accredited laboratory that undertook the testing. For this study, Jacobs used the services of Ecotox Services Australasia (ESA).

Interpretation of the Ecotoxicological Data

• Following the ecotoxicity assessment, Jacobs interpreted the ecotoxicity data to inform definition of species protection guideline values as relevant to the Barossa field.

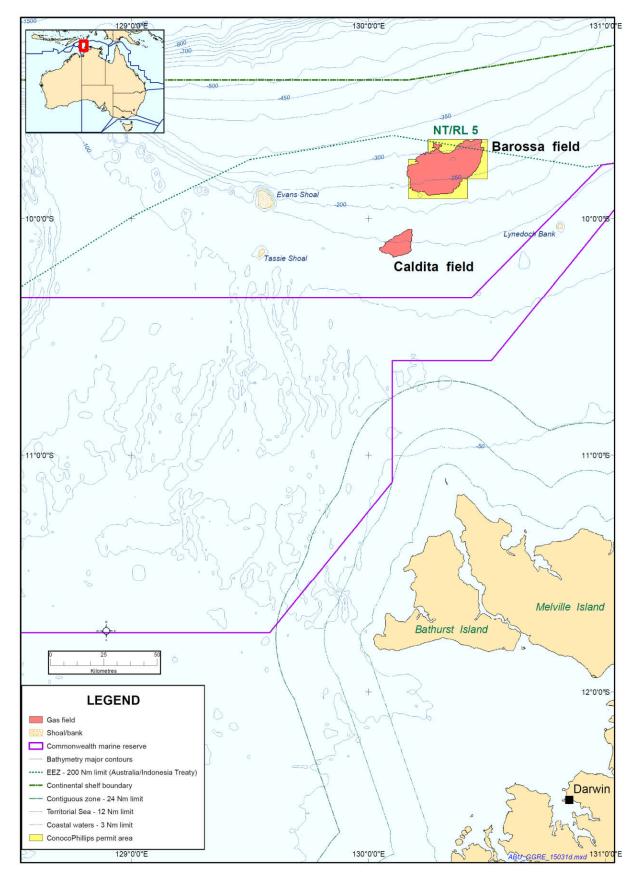


Figure 1-1: Barossa field location

2. Methods

ConocoPhillips sent samples of Barossa-3 condensate to the ESA laboratory in September 2015 for detailed ecotoxicological studies and hydrocarbon chemical analysis. The laboratory-based toxicity tests used a range of Water Accommodated Fraction (WAF) concentrations of weathered and un-weathered condensate to expose the different test organisms.

The toxicity tests were undertaken on a broad range of taxa of ecological relevance for which accepted standard test protocols are well-established. These ecotoxicology tests are mainly focused on the early life stages of test organisms, when organisms are typically at their most sensitive to hydrocarbons. For the unweathered condensate, static toxicity tests were conducted on seven mainly tropical species, representing seven taxonomic groups demonstrating different levels if the food chain (**Table 2-1**).

Test Species	Life Stage	Test Duration and End-Point	Туре*	Protocol
Microalga (Isochrysis aff. galbana)	-	72-hour Growth inhibition (cell yield)	Chronic	ESA SOP 110 (ESA, 2014a). Based on Stauber <i>et al</i> . (1994)
Macroalage (Ecklonia radiata)	Gametophyte	14-day Growth rate	Chronic	ESA SOP 116 (ESA, 2014f). Based on Bidwell <i>et al</i> . (1998) and Burridge et al. (1999)
Sea Urchin (<i>Heliocidaris</i> <i>tuberculata</i>)	Gamete	1-hour Fertilisation rate	Chronic	ESA SOP 104 (ESA, 2014b). Based on USEPA (2002a), Simon and Laginestra (1997)
Sea Urchin (<i>Heliocidaris</i> <i>tuberculata</i>)	Larvae	72-hour Development rate	Chronic	ESA SOP 105 (ESA, 2014c). Based on APHA (1998), Simon and Laginestra (1997) and Doyle <i>et. al.</i> (2003)
Milky Oyster (Saccostrea echinata)	Embryo	48-hour Development rate	Chronic	ESA SOP 106 (ESA, 2014d). Based on APHA (1998) and Krassoi (1995)
Copepod (Parvocalanus crassirostris)	Juveniles	5-day Development rate	Acute	ESA SOP 124 (ESA, 2014e).
Sea anemone (<i>Aiptasia pulchella</i>)	Pedal lacerate	8-day Development rate	Chronic	ESA SOP 128 (ESA, 2014g) based on Howe et al. (2014)
Fish (Barramundi) (<i>Lates calcarifer</i>)	Larvae	7-day Biomass	Chronic	ESA SOP 122 (ESA, 2012). Based on USEPA (2002a)
Fish (Barramundi) (<i>Lates calcarifer</i>)	Larvae	7-day Imbalance	Chronic	ESA SOP 122 (ESA, 2012). Based on USEPA (2002a)

Table 2-1: Analytical methods, test species, life stages, durations and test end-points for ecotoxicology

*Based on test classification according to Warne et al. (2014) guidelines

Based on stochastic modelling results from the RPS APASA (2015) hydrocarbon spill modelling study, the minimum contact time of moderate dissolved aromatic hydrocarbon exposure from a subsea well blowout to the nearest submerged receptors of Evans Shoal, Tassie Shoal and Lynedoch Bank (all less than 100 km from the Barossa Field) was greater than 24 hours in all seasons. Due mainly to the evaporative loss of volatiles, less than 20% of the original volume of condensate would remain after this time. However, the open waters of the Timor Reef Fishery could be affected during a well blowout event during any season, given the Barossa Field is located within this fishery. The times to contact with dissolved aromatic hydrocarbons (90 - 100 m depth layer) were 2.4 hrs for all seasons, with the probability of exposure ranging between 14% and 37%. Considering the predicted exposure to the nearest submerged receptors and the Timor Reef Fishery, it was decided that fish

would be the most likely receptor to be exposed to the weathered condensate, and consequently were the focus species for the weathered condensate study.

Aliquots of the Barossa-3 condensate sample were weathered by ESA using the Mackay Chamber Testing techniques for a 12 hour weathering period, with a wind speed of 5.5 m/s (10.7 knots) and water temperature of 28.8°C. The weathering information was based upon the season in which spawning occurs for goldband snapper (*Pristipomoides multidens*), which is the key target species of the Timor Reef Fishery. The most vulnerable life stages for fish are their egg and larval life stages, therefore goldband snapper are most susceptible to hydrocarbons during the spawning period, which is January to April with a peak during March (Newman 2003).

ESA prepared the WAF by combining a prescribed quality of weathered or un-weathered condensate to 0.45 µm filtered seawater in a 1:9 ratio. The combined samples were mixed for 24 hrs using a magnetic stirrer. The WAF and condensate mixture was allowed to settle for 1 hour before the WAF was siphoned off into clean amber glass reagent bottles until required for toxicity testing and total recoverable hydrocarbon (TRH) analysis. The WAFs were serially diluted with filtered seawater (FSW) to prepare the remaining test concentrations.

For each toxicity test, sub-samples of the WAF were sent to Envirolab Services Pty Ltd to be analysed for the determination of TRH, polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene and xylenes (BTEX) concentrations of the solution. Total recoverable hydrocarbon concentration is representative of the sum of the hydrocarbons in each test solution for C_{6} – C_{40} .

ESA performed a full suite of toxicity testing (nine tests with seven test species as detailed in **Table 2-1**) on the un-weathered Barossa-3 condensate and a limited number of tests (7-day fish imbalance and biomass toxicity test) on the weathered Barossa-3 condensate.

Toxicity test results for the WAF are expressed in terms of loading rate of condensate (grams of oil per litre of seawater; **Table 2-2**) and TRH concentrations (μ g/L).

Dilution Factor	1X	2X	4X	8X	16X	32X	64X	128X	Filtered Seawater
% of treatment	100%	50%	25%	12.5%	6.25%	3.125%	1.56%	0.78%	0%
Loading Rate (g/L)- Barossa-3	77.2	38.6	19.3	9.7	4.8	2.4	1.2	0.6	0
Loading Rate (g/L)- Barossa-3 weathered	79.5	39.8	19.9	9.9	5	2.5	1.2	0.6	0

Table 2-2: Test dilutions use	d in	toxicity tests
-------------------------------	------	----------------

2.1 Quality assurance

Specific quality assurance (QA) procedures for undertaking toxicity testing, procurement and culturing of test organisms, maintenance and calibration of instrument, cleaning, chain of custody and sample handling procedures were in accordance with ESA standard laboratory procedures. ESA is the only National Association of Testing Authorities (NATA) accredited laboratory undertaking toxicity testing in Australia and five of the nine toxicity tests conducted for this study were NATA certified. The 8-day sea anemone pedal lacerate development test using *Aiptasia pulchella*, the 5-day copepod development toxicity test using *Parvocalanus crassirostris*, the

7-day fish imbalance and 7-day fish biomass tests involving barramundi (*Lates calcarifer*) are not NATA certified but only because these are new tests developed by ESA; the quality assurance procedures for these tests are similar to the certified tests.

The pH, salinity and dissolved oxygen concentration of a representative sample from each concentration/treatment was measured. A FSW control and a WAF control were tested concurrently with each test. The WAF control is a way of determining if the process of creating a WAF causes toxicity to test animals. **Appendix A** gives specific quality assurance controls for each of the toxicity tests. The acceptance criteria for each of these measures had to be met in order for the tests to be considered valid. Tests that were invalid were repeated with un-weathered treatment and test organisms, therefore the results presented here represent the final tests in which all acceptance criteria were met.

2.2 Chemical analyses

A total of 39 sub-samples of the WAF were sent by ESA to Envirolab Services for testing in three separate batches. **Table 2-3** lists the practical quantitation limits (PQLs) for the hydrocarbons analysed during this study. The laboratory used for analysis is NATA certified for the parameters measured. As part of their procedures the Envirolab undertakes the required blanks, testing of standards and replicate tests to the satisfaction of NATA requirements.

Analyte	PQL (µg/L)
BTEX	
Benzene	1
Toluene	1
Ethylbenzene	1
<i>m</i> + <i>p</i> xylene	2
o-xylene	1
Total Recoverable Hydrocarbons	
C6-C10	10
>C ₁₀ -C ₁₆	50
>C ₁₆ -C ₃₄	100
>C ₃₄ -C ₄₀	100
Polycyclic Aromatic Hydrocarbons	
Naphthalene	1
Acenaphthylene	1
Acenaphthene	1
Fluorene	1
Phenanthrene	1
Anthracene	1
Fluoranthene	1
Pyrene	1
Benzo(a)anthracene	1
Chrysene	1
Benzo(b,j+k)fluoranthene	2
Benzo(a)pyrene	1
Indeno(1,2,3-c,d)pyrene	1
Dibenzo(a,h)anthracene	1
Benzo(g,h,i)perylene	1

Table 2-3: Laboratory practical quantitation limits for each of the hydrocarbons analysed

2.3 Data presentation and statistical analysis

The toxicity test data are presented in several ways. Firstly the concentration at which no observed effects are noted (no observed effect concentration, NOEC) is generally used as the most conservative measure of toxicity in that it is the lowest concentration at which no test organisms are affected. The lowest observed effects concentration (LOEC) is the concentration where the first statistically detectable toxicity is observed. The concentration that causes one or more specified effects in 50% of the test organisms in the prescribed test duration (EC_{50}) or which inhibits growth or reproduction of 50% of the test organisms in the prescribed test duration (IC_{50}) are statistically calculated. Similarly IC/EC_{10} values are statistically calculated.

Burrlioz 2.0 is a statistical software package for use in environmental management of species with regard to understanding the effects of levels of toxins in an environment. Depending on the number of observations, Burrlioz 2.0 uses either the log-logistic (n < 8) or the Burr Type III (n \ge 8) model, to estimate the greatest concentration of a toxin at which no observed effect to a species will be detected. The ANZECC/ARMCANZ (2000) guidelines recommend using the Burrlioz program and stipulate that:

The program determines by statistical means the distribution that best fits the available toxicity data and calculates the 95% protection level (with median confidence) or any other nominated protection level.

For this assessment, the Burrlioz 2.0 program was used to analyse the toxicity results and to plot species sensitivity distributions (SSD) to derive the concentration that protects 80%, 90%, 95% and 99% of species with 50% confidence (PC80(50), PC90(50), PC95(50) and PC99(50) respectively). Analysis by the Burrlioz 2.0

program is designed to utilise EC/IC₁₀ values derived from chronic toxicity tests to provide high reliability guideline values. Warne et al (2014) recommend:

EC/IC/LCx where $x \le 10$ are to be used in preference to NOEC and then NOEC estimated values derived from LOEC and LC₅₀ values.

In cases where there are insufficient chronic data to derive a guideline value, acute toxicity data can be converted to provide an estimate of chronic toxicity. ANZECC/ARMCANZ (2000) guidelines use LC_{50} or EC_{50} data derived from acute tests in the Burrlioz 2.0 program; however, a chemical-specific acute to chronic ratio (ACR) must be applied to convert the data to a chronic equivalent. A chemical-specific ACR is derived from chronic and acute tests performed on a given species for a test chemical or solution. If this has not been undertaken, the ANZECC/ARMCANZ (2000) guidelines suggest the use of a default value of 10 be applied, meaning that the LC_{50} or EC_{50} data are divided by ten (10) before they are entered into the Burrlioz 2.0 program. The default ACR value of ten was applied to the EC_{50} result for the Acute Copepod Development Test.

It is also worth noting that the Burrlioz 2.0 program is a distribution-fitting application and the more ecotoxicity tests used, the more reliable the guideline values calculated. As a minimum, Warne et al. (2014) state:

The minimum data requirements for using a SSD have not changed from the ANZECC/ARMCANZ (2000) Guidelines i.e. toxicity data for at least five species that belong to at least four taxonomic groups, but using toxicity data from at least 8 species is strongly encouraged and from more than 15 species is considered optimal.

For this investigation, nine tests comprised of seven different taxonomic groups (microalga, macroalga, echinoderm, crustacean, mollusc, cnidarian and fish) were used. As a number of the tests used the same species (e.g. sea urchin *Heliocidaris tuberculata*) a single toxicity value needed to be obtained for each species. At this point in time the laboratory has a limit on the number of tropical test species available, as the new guidelines become more prevalent this will likely change. The lowest value for all combinations of a species and endpoint is adopted as the toxicity value to represent the sensitivity of the species in the SSD calculations (Warne et al. 2014). Therefore, from the nine tests used in the assessment, seven values were used to derive the species protection guideline values. Of the input values, six were derived from chronic tests and one from an acute test.

Burrlioz 2.0 calculates the species protection levels (99%, 95%, etc) based on toxicity data, which are either an EC/IC₁₀ or an EC/IC₅₀ divided by a factor of ten (10). For a 99% species protection value the Burrlioz 2.0 program assimilates all the test data to derive a value that protects an even higher proportion of the species (i.e. where only one species is affected rather than 10% or 50% of individuals); hence, the values derived will routinely be much lower than the input values from the toxicity testing.

3. Results

The laboratory reports from ESA for each of the toxicity tests are presented in **Appendix B** for un-weathered and weathered treatments of Barossa-3 condensate.

The statistical outputs for the Barossa-3 condensate un-weathered and weathered toxicity tests are summarised in **Table 3-1** and **Table 3-2** respectively. Note that for the chronic tests the IC/EC₁₀ values were used as inputs to the Burrlioz 2.0 program, whereas for the Acute Copepod Development Test the EC₅₀ value was divided by 10. This factor is applied to ensure that a conservative approach is taken to derive PC95 and PC99 percentages and dilutions in the absence of sufficient chronic toxicity data. The Burrlioz distribution fitting for 95% and 99% species protection of un-weathered Barossa-3 condensate are graphed in **Figure 3-1** to **Figure 3-2**; however, guideline values for all species protection levels (80, 90, 95 and 99%) are highlighted in **Table 3-3**. The Burrlioz output reports are located in **Appendix C**.

Microalga Growth Inhibition Test (72 hour)

For the un-weathered Barossa-3 condensate, algal cell yield was significantly inhibited in the WAF with a loading density corresponding to a TRH concentration of 12,850 μ g/L. There was zero cell yield in higher concentrations of the un-weathered condensate (**Appendix B**). The IC₁₀ value for the un-weathered condensate was 4,355 μ g/L (**Table 3-1**).

Macroalgal Growth Test (14 day)

The WAF of un-weathered Barossa-3 condensate caused significantly lower gametophyte length of the macroalgae *Ecklonia radiata* at a TRH concentration of 3180 μ g/L (**Appendix B**). The IC₁₀ value for the un-weathered condensate was 1,873 μ g/L (**Table 3-1**).

Sea Urchin Fertilisation Success Test (1 hour)

The un-weathered Barossa-3 condensate caused a significantly lower percentage of sea urchin eggs to be fertilised at a TRH concentration of 720 μ g/L and no eggs were fertilised at concentrations of 30,860 μ g/L or higher (**Appendix B**). The EC₁₀ value for the un-weathered condensate was 9,206 μ g/L (**Table 3-1**).

Sea Urchin Larval Development Test (72 hour)

The WAF of un-weathered Barossa-3 condensate caused a significant decrease in the number of normally developed sea urchin larvae. No normally developed larvae were observed in the WAF with the highest loading density (corresponding to a TRH concentration of 69,620 μ g/L) and a TRH of concentration of 30,860 μ g/L caused significantly fewer normally developed larvae (**Appendix B**). The EC₁₀ value for the un-weathered condensate was 15,481 μ g/L (**Table 3-1**).

Oyster Larval Development Test (48 hour)

Significantly fewer normally developed milky oyster larvae were observed in the WAF's containing a TRH of 14,060 μ g/L of un-weathered Barossa-3 condensate and no larvae developed normally with higher concentrations of un-weathered condensate (**Appendix B**). The IC₁₀ value for the un-weathered condensate was 11,478 μ g/L (**Table 3-1**).

Copepod Acute Development Toxicity Test (5 day)

There was a significant change to the number of healthy copepods affected by un-weathered Barossa-3 at a TPH concentration of 15,830 μ g/L compared with the WAF control and at this and higher concentrations of un-weathered condensate all copepods were affected (**Appendix B**). The IC₁₀ value for the un-weathered condensate was 27.2 μ g/L (**Table 3-1**).

Sea Anemone Pedal Lacerate Development Test (8 day)

The WAF of un-weathered Barossa-3 condensate caused a significant decrease in the number of normally developed sea anemone pedal lacerates. No normally developed larvae were observed in the WAF with the highest loading density (corresponding to a TRH concentration of 63,990 μ g/L; **Appendix B**). The IC₁₀ value for the un-weathered condensate was 8,862 μ g/L (**Table 3-1**).

Fish Imbalance Test (7 day)

The number of healthy fish larvae (unhealthy larvae measured as a loss of balance or equilibrium when swimming and inability to catch prey) in the WAF of un-weathered Barossa-3 condensate was significantly less at a TRH concentration of 29,770 μ g/L and there were no healthy fish larvae at higher concentrations (**Appendix B**). The number of healthy fish larvae exposed to weathered Barossa-3 condensate at the highest loading density was not significantly different compared to the FSW control (i.e. 0%; **Appendix B**). The IC₁₀ values for the un-weathered and weathered condensate were 15,875 and 19,596 μ g/L respectively (**Table 3-1** and **Table 3-2**).

Fish Biomass Toxicity Test (7 day)

The biomass of fish larvae in the WAF of un-weathered Barossa-3 condensate was significantly lower at a TRH concentration of 29,770 µg/L and there were no unaffected fish larvae at higher concentrations (**Appendix B**). The biomass of the fish larvae exposed to weathered Barossa-3 condensate at the highest loading density was not significantly different compared to the FSW control (i.e. 0%; **Appendix B**). The IC₁₀ values for the un-weathered and weathered condensate were 17,016 and 13,908 µg/L respectively (**Table 3-1** and **Table 3-2**).

99 and 95% Species Protection

The 95% species protection guideline value of un-weathered Barossa-3 condensate was 456 μ g/L (**Figure 3-1** and **Table 3-3**), while the 99% species protection guideline values of un-weathered Barossa-3 condensate was 1146 μ g/L (**Figure 3-2** and **Table 3-3**). The IC₁₀ values for the un-weathered Barossa-3 condensate ranged from 1,051 to 15,875 μ g/L. The reliability of the guideline value was moderate based on the classification scheme outlined in Warne et al. (2014) based on the number of species in which toxicity data are available (n=7), type of toxicity data (mixture of chronic and estimated chronic) and visual assessment of the goodness of fit of the SSD to the toxicity data (good).

Neither the un-weathered nor weathered Barossa-3 condensate was particularly toxic to fish larvae. A lower concentration of un-weathered condensate was required to affect the balance of 10% of fish larvae compared with the weathered condensate (**Table 3-1** and **Table 3-2**) while a lower concentration of weathered condensate was required to affect the biomass of 10% of fish larvae compared to the un-weathered condensate (**Table 3-1** and **Table 3-2**).

Hydrocarbon Concentrations of Weathered and Un-weathered Condensate

The major difference between the hydrocarbon components of the Barosssa-3 weathered and un-weathered condensate was the large reduction in benzene and toluene after 12 hours of weathering (**Table 3-4**). Ethylbenzene and xylenes also decreased but to a much smaller degree. The aliphatic fraction C_{16} - C_{34} and naphthalene increased in weathered condensate but the other PAHs remained unchanged, with most being below the detection limit of the laboratory in both weathered and un-weathered condensates.

Test	NOEC	EC ₁₀ or IC ₁₀	EC ₅₀ or IC ₅₀	Burrlioz Input Values
Microalgal Growth	6670	4355.2	8529.3	4355.2
Macroalgal Germination Success	1673	1873.9	1873.9 57196.9	
Sea Urchin Fertilisation	350	9206.2	13202.7	9206.2
Sea Urchin Larval Development	14060	15481.6	20104.4	-
Milky Oyster Larval Development	7160	11478.4	18747.2	11478.4
Copepod Development	8560	27.2	10506.9	1050.7*
Sea Anemone Pedal Lacerate Development	28040	8862.4	30720.0	8862.4
Fish Imbalance	15830	15875.5	23182.2	15875.5
Fish Growth (Biomass)	15830	17016.3	24006.3	-

Table 3-1: Summary of toxicity tests for un-weathered Barossa-3 condensate (concentrations in µg/L)

- indicates that the lowest value for the species was used

* indicates a default acute to chronic ratio was applied to the EC50 value

Table 3-2: Summary of toxicity tests for weathered Barossa-3 condensate (concentrat	ions in µg/L)
---	---------------

Test	NOEC	EC ₁₀ or IC ₁₀	EC ₅₀ or IC ₅₀
Fish Imbalance 22480		19596.3	>22480
Fish Growth (Biomass)	22480	13908.1	>22480

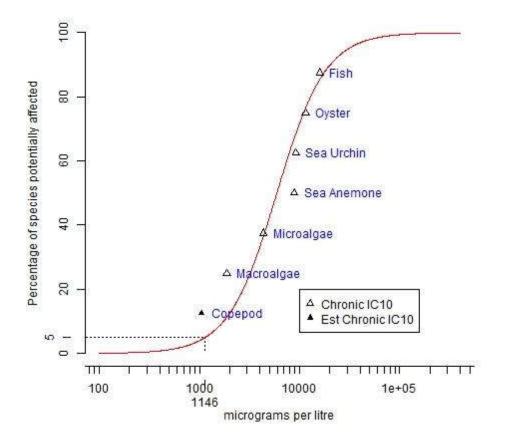


Figure 3-1: Burrlioz distribution fitting for 95% species protection of un-weathered Barossa-3 condensate

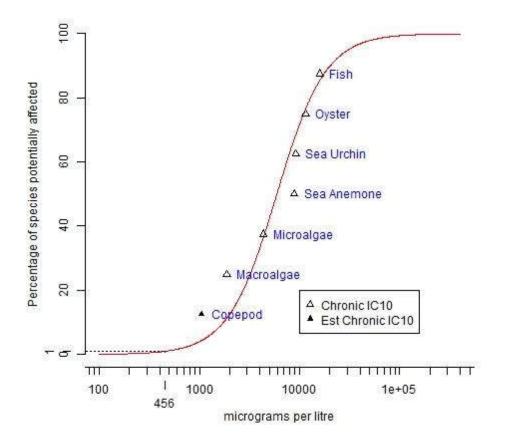


Figure 3-2: Burrlioz distribution fitting for 99% species protection of un-weathered Barossa-3 condensate

Table 3-3: Moderate reliability guideline values derived from Burrlioz species sensitivity distribution curve for un-weathered Barossa-3 condensate

Treatment	Level of Species Protection	Derived Guideline Value for TRH concentration (µg/L)
Un-weathered Barossa-3 condensate	99%	456
	95%	1146
	90%	1739
	80%	2735

Analyte	100% Un-weathered Condensate (μg/L)	100% Weathered Condensate (µg/L)
BTEX		
Benzene	27000	630
Toluene	21000	7400
Ethylbenzene	490	400
<i>m</i> + <i>p</i> xylene	5000	4000
<i>o</i> -xylene	1500	1400
Total Recoverable Hydrocarbons		
C6-C10 (less BTEX)	7000	5200
>C10-C16 (less naphthalene)	1200	800
>C ₁₆ -C ₃₄	1900	2600
>C ₃₄ -C ₄₀	140	<100
Polycyclic Aromatic Hydrocarbons		
Naphthalene	250	400
Acenaphthylene	<1	<1
Acenaphthene	<1	<1
Fluorene	3	4
Phenanthrene	2	2
Anthracene	<1	<1
Fluoranthene	<1	<1
Pyrene	<1	<1
Benzo(a)anthracene	<1	<1
Chrysene	<1	<1
Benzo(b,j+k)fluoranthene	<2	<1
Benzo(a)pyrene	<1	<1
Indeno(1,2,3-c,d)pyrene	<1	<1
Dibenzo(a,h)anthracene	<1	<1
Benzo(g,h,i)perylene	<1	<1

Table 3-4: Hydrocarbon concentrations of weathered and un-weathered Barossa-3 condensate

4. Conclusions

A large number of studies have been published describing the toxicity of total petroleum hydrocarbon and hydrocarbon components (including French-McCay, 2002; Lewis and Pryor, 2013; Neff et al. 2000). The common theme in the findings is that the observed toxicity of crude and refined hydrocarbons is primarily attributable to volatile and water-soluble aromatic hydrocarbons (MAHs) including BTEX, low molecular weight PAHs such as naphthalene and phenanthrene and higher molecular weight PAHs).

The moderate reliability guideline value for 95% species protection of un-weathered Barossa-3 condensate was 1,146 μ g/L and the moderate guideline value for 99% species protection was 456 μ g/L. The IC₁₀ values for the un-weathered Barossa-3 condensate ranged from 1,051 to 15,875 μ g/L. According to the GESAMP (2002) classification, un-weathered Barossa-3 condensate has almost negligible chronic aquatic toxicity.

Neither the un-weathered nor weathered Barossa-3 condensate was particularly toxic to fish larvae. A lower concentration of un-weathered condensate was required to affect the balance of 10% of fish larvae compared with the weathered condensate while a lower concentration of weathered condensate was required to affect the biomass of 10% of fish larvae compared to the un-weathered condensate.

The un-weathered Barossa-3 condensate was more toxic to copepod development and macroalgal growth and less toxic to fish larvae and oyster larvae development. Neff (1979) also found that toxicity was most pronounced among crustaceans and least among teleost or ray-finned fishes.

From the chemical analysis of the Barossa-3 condensate undertaken by Envirolab Services (**Appendix B**), the most obvious difference between the un-weathered and weathered condensate was in the BTEX results. BTEX is the collective name for benzene, toluene, ethylbenzene, and xylenes and falls into the class of MAH. The weathered Barossa-3 condensate had much lower concentrations than the un-weathered Barossa-3 condensate and toluene. BTEX compounds are acutely toxic to aquatic organisms if exposure is sustained. Because of the volatility of BTEX, aquatic organisms typically only experience short exposure times in the order of 12 hours which may circumvent toxic effects.

Of the PAHs analysed for this study, naphthalene was the only one measured by Envirolab Services that was higher in the weathered condensate compared to the un-weathered condensate. All other PAHs measured were below the laboratory detection limit or in the case of fluorene and phenanthrene were similar between weathered and un-weathered condensate. However, the myriad of other chemicals present in the condensate were not required to be measured for the purposes of this exercise. Neff et al. (2000) demonstrated that the MAHs are the most important contributors to the acute toxicity of the WAFs of fresh oils, while the contribution of PAHs to WAF toxicity increases with weathering. However it is generally not well understood which of the many components of oil are responsible for the many toxicity effects induced by oil.

5. References

ANZECC & ARMCANZ (2000) National Water Quality Management Strategy: Paper No 4 – Australian and New Zealand Guidelines for Un-weathered and Marine Water Quality. Volume 1 – The Guidelines (Chapters 1–7). Australian and New Zealand Environment and Conservation Council and Agricultural and Resource Management Council of Australia and New Zealand, Canberra, Australian Capital Territory, October 2000.

APHA (1998). *Standard Methods for the Examination of Water and Wastewater*. 20th Ed. American Public Health Association, American Water Works Association and the Water Environment Federation, Washington, DC.

Bidwell JR, Wheeler KW and Burridge TR (1998). Toxicant effects on the zoospore stage of the marine macroalga *Ecklonia radiata* (Phaeophyta:Laminariales). *Marine Ecology Progress Series* **163**: 259-265.

Burridge TR, Karistanios M and Bidwell J (1999). The use of aquatic macrophyte ecotoxicological assays in monitoring coastal effluent discharges in southern Australia. *Marine Pollution Bulletin* **39**: 1-12.

Doyle CJ, Pablo F, Lim RP and Hyne RV (2003). Assessment of metal toxicity in sediment pore water from Lake Macquarie, Australia. *Archives of Environmental Contamination and Toxicology*, **44(3)**: 343-350.

ESA (2012). SOP 122 –7 day Fish Imbalance and Growth Test. Issue No 2. Ecotox Services Australasia, Sydney, NSW.

ESA (2014a). SOP 110 - Marine Algal Growth Test. Issue No. 11. Ecotox Services Australasia, Sydney NSW.

ESA (2014b). ESA SOP 104 – Sea Urchin Fertilisation Success Test. Issue No. 13. Ecotox Services Australasia, Sydney, NSW.

ESA (2014c). ESA SOP 105 - Sea Urchin Larval Development Test. Issue No. 10. Ecotox Services Australasia, Sydney, NSW.

ESA (2014d). SOP 106 – *Bivalve Larval Development Test*. Issue No 13. Ecotox Services Australasia, Sydney, NSW.

ESA (2014e). SOP 124 – Acute Toxicity Test Using the Copepod Gladioferens imparipes. Issue No 3. Ecotox Services Australasia, Sydney, NSW.

ESA (2014f). SOP 116 – *Macroalgal Germination Success Test.* Issue No. 14. Ecotox Services Australasia, Sydney, NSW.

ESA (2014g). SOP 128 – Sea Anemone Pedal Lacerate Development Test. Issue No. 1. Ecotox Services Australasia, Sydney, NSW.

French-McCay, D (2002). Development and application of an oil toxicity and exposure model, oiltoxex. Environmental Toxicology and Chemistry. 21 (10): pp: 2080-2092.

GESAMP (IMO/FAO/UNESCO-IOC/WMO/WHO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection), 2002. Revised GESAMP Hazard Evaluation Procedure for Chemical Substances Carried by Ships. Rep. Stud. GESAMP No. 64, 126 pp.

Krassoi FR (1995). Salinity adjustment of effluents for use with marine bioassays: effects on the larvae of the doughboy scallop *Chlamys asperrimus* and the Sydney rock oyster *Saccostrea commercialis*. *Australasian Journal of Ecotoxicology* **1**: 143-148.

Lewis, M. and Pryor, R. 2013. Toxicities of oils, dispersants and dispersed oils to algae and aquatic plants: review and database value to resource sustainability. Environmental Pollution **180**: 345-67.

Neff JM (1979). Polycyclic aromatic hydrocarbons in the aquatic environment. Applied Science Publ. Ltd., London. 262pp.

Neff JM, Ostazeski S, Gardiner W and Stejskal I (2000). Effects of weathering on the toxicity of three offshore Australian crude oil and a diesel fuel to marine animals. *Environmental Toxicology and Chemistry* **19**:1809–1821.

Newman SJ (2003). Research and management systems for tropical deepwater demersal fish resources – a case study from northwestern Australia. In Deep Sea 2003: Conference of the Governance and Management of Deep-sea Fisheries Part 2: Conference poster papers and workshop papers. Ed Ross Shotton. Food and Agriculture Organisation of the United Nations.

RPS APASA (2015). Barossa Field Appraisal Drilling Campaign: Hydrocarbon Spill Modelling Study. Report number Q0384. Draft prepared for ConocoPhillips Australia Exploration Pty Ltd by RPS APASA, November 2015.

Simon J and Laginestra E (1997). Bioassay for testing sublethal toxicity in effluents, using gametes of the sea urchin *Heliocidaris tuberculata*. National Pulp Mills Research Program, Technical Report No. 20, CSIRO, Canberra, ACT.

Stauber JL, Tsai J, Vaughan GT, Peterson SM and Brockbank CI (1994). Algae as Indicators of Toxicity of the Effluent From Bleached Eucalypt Kraft Paper Mills. Technical Report No 3, National Pulp Mills Research Program, CSIRO, Canberra, ACT, Australia.

USEPA (2002a). Short-term methods for measuring the chronic toxicity of effluents and receiving waters to marine and estuarine organisms. Third Edition. United States Environmental Protection Agency, Office of Water, Washington DC, EPA-821-R-02-014.

Warne MStJ, Batley GE, van Dam RA, Chapman JC, Fox DR, Hickey CW and Stauber JL (2014). Revised Method for Deriving Australian and New Zealand Water Quality Guideline Values for Toxicants. Department of Science, Information Technology, Innovation and the Arts, Brisbane, Queensland. 36pp.

Appendix A. Summary of Quality Assurance for Ecotox Tests

Table A.1: Specific quality assurance (QA) criteria for the Microalga Growth Test

QA Measure	Acceptance Criteria	This Test	Criterion Met?
FSW control mean cell density	≥ 160,000 cells/mL	202,000 ± 32,000 cells/mL	Yes
Control coefficient of variation	< 20%	16.0%	Yes
Reference toxicant test within Cusum chart limits	15.1-46.7 μg/L Cu/L	19.0 µg/L Cu/L	Yes

Table A.2: Specific quality assurance (QA) criteria for the Macroalgal Growth Test

QA Measure	Acceptance Criteria	This Test	Criterion Met?
FSW control mean % germination @ 72 hrs	≥ 70%	90.3 ± 1.12	Yes
Reference toxicant test	86.0-1262.1 μg/L Cu/L	408.5 μg/L Cu/L	Yes

Table A.3: Specific quality assurance (QA) criteria for the Sea Urchin Fertilisation Success Test

QA Measure	Acceptance Criteria	This Test	Criterion Met?
FSW control mean % fertilised eggs	≥ 70%	78.8 ± 3.2%	Yes
Reference toxicant test within Cusum chart limits	23.7-105.6 µg/L Cu/L	26.7 μg/L Cu/L	Yes

Table A.4: Specific quality assurance (QA) criteria for the Sea Urchin Larval Development Test

QA Measure	Acceptance Criteria	This Test	Criterion Met?
FSW control mean % normal larvae	≥ 70%	80.8 ± 5.0%	Yes
Reference toxicant test within Cusum chart limits	10.5-23.1 µg/L Cu/L	12.2 µg/L Cu/L	Yes

Table A.5: Specific quality assurance (QA) criteria for the Milky Oyster Larval Development Test

QA Measure	Acceptance Criteria	This Test	Criterion Met?
FSW control mean % normal larvae	≥ 70%	74.5 ± 4.8%	Yes
Reference toxicant test within Cusum chart limits	10.2-20.0 µg/L Cu/L	14.5 μg/L Cu/L	Yes

Table A.6: Specific quality assurance (QA) criteria for the Acute Copepod Development Toxicity Test

QA Measure	Acceptance Criteria	This Test	Criterion Met?
FSW control mean % unaffected larvae	≥ 70%	70 0 ± 10.7%	Yes
Reference toxicant test within Cusum chart limits*	n/a	2.8 µg/L Cu/L	n/a

* Cusum chart data unavailable due to insufficient tests conducted to build database

Table A.7: Specific quality assurance (QA) criteria for the Sea Anemone Pedal Lacerate Development Test

FSW control mean % normal pedal lacerates	≥ 90%	100 ± 0.0%	Yes
Reference toxicant test within Cusum chart limits*	n/a	11.5 µg/L Cu/L	n/a

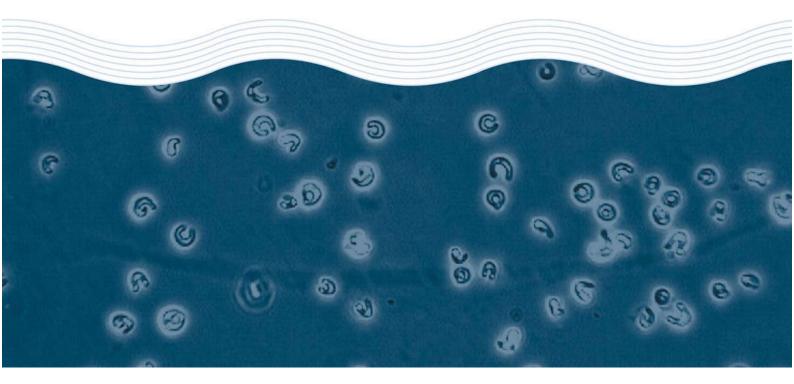
* Cusum chart data unavailable due to insufficient tests conducted to build database

Table A.8: Specific quality assurance (QA) criteria for the Larval Fish Imbalance and Growth (Biomass) Test

FSW control mean % unaffected larvae	≥ 80%	100.0 ± 0.0%	Yes
Control Mean Growth	≥ 20% of initial weight	52.6%	Yes
Reference toxicant test within Cusum chart limits	n/a	17.3 mg NH₄⁺/L	n/a

* Cusum chart data unavailable due to insufficient tests conducted to build database

Appendix B. Laboratory Reports



Toxicity Assessment of Fresh and Weathered Barossa Field Condensate

Jacobs SKM

Comprehensive Test Report

November 2015

Toxicity Assessment of Fresh and Weathered Barossa Field Condensate

Jacobs SKM

Comprehensive Test Report

November 2015

ECOTOX Services Australasia Pty LtdABN>45 094 714 904unit 27/2 chaplin drive lane cove nsw 2066T>61 2 9420 9481

61 2 9420 9484 W>www.ecotox.com.au

C

Contents

1.	Exec	utive Summary	3
	1.1	Executive Summary	3
	1.2	Glossary of Terms	8
2.	Introd	Juction	10
3.	1-hr \$	Sea Urchin Fertilisation Test	12
	3.1	Summary of Test Methodology	12
	3.2	Results	13
	3.3	Quality Assurance	14
4.	72-hr	Sea Urchin Larval Development Test	15
	4.1	Summary of Test Methodology	15
	4.2	Results	16
	4.3	Quality Assurance	17
5.	48-hr	Oyster Larval Development Test	18
	5.1	Summary of Test Methodology	18
	5.2	Results	19
	5.3	Quality Assurance	20
6.	72-hr	Micro-Algal Growth Inhibition Test	21
	6.1	Summary of Test Methodology	21
	6.2	Results	22
	6.3	Quality Assurance	23
7.	14-d	Macro-Alagl Growth Toxicity Test	24
	7.1	Summary of Test Methodology	
	7.2	Results	25
	7.3	Quality Assurance	26
8.	8-day	Sea Anemone Toxicity Test	27
	8.1	Summary of Test Methodology	27
	8.2	Results	28
	8.3	Quality Assurance	29
9.	5-d J	uvenile Copepodid Development Test	30
	9.1	Summary of Test Methodology	30
	9.2	Results	31
	9.3	Quality Assurance	32
10.	7-day	Fish Imbalance and Growth Test	33
	10.1	Summary of Test Methodology	33
		Results	
		Quality Assurance	
11.		rences	
•••		nain of Custody	
		est Report for TRH Analyses	
••		st Report for the Sea Urchin Fertilisation Test	
Appendix	D: Te	st Report for the Sea Urchin Larval Development Test	42

PR1244

Appendix E: Test Report for the Milky Oyster Larval Development Test	. 43
Appendix F: Test Report for the Micro-Algal Growth Inhibition Test	. 44
Appendix G: Test Report for the Macro-Algal Growth Test	. 45
Appendix H: Test Report for the Sea Anemone Development Test	. 46
Appendix I: Test Report for the Copepodid Development Test	. 47
Appendix J: Test Report for the Fish Imbalance and Growth Test	. 48
Appendix K: Statistical Analyses of the Sea Urchin Fertilisation Test	. 49
Appendix L: Statistical Analyses of the Sea Urchin Larval Development Test	. 50
Appendix M: Statistical Analyses of the Milky Oyster Larval Development Test	. 51
Appendix N: Statistical Analyses of Micro-Algal Growth Inhibition Test	. 52
Appendix O: Statistical Analyses of Macro-Algal Growth Test	. 53
Appendix P: Statistical Analyses of Sea Anemone Development Test	. 54
Appendix Q: Statistical Analyses of Copepodid Development Test	. 55
Appendix R: Statistical Analyses of the Fish Imbalance and Growth Test	. 56

1. Executive Summary

1.1 Executive Summary

Ecotox Services Australasia Pty Ltd (ESA) was commissioned by Jacobs Group (Australia) Pty Ltd to undertake marine toxicity tests with a condensate sample from the Barossa field development site.

The following toxicity tests were undertaken on Water Accommodated Fractions (WAFs) of Barossa Field Condensate:

- I-hr fertilisation test using the sea urchin *Heliocidaris tuberculata* (based on USEPA Method 1008 and Environment Canada (1992), modified for use with *H. tuberculata* by Simon and Laginestra 1997, and Doyle *et al.* 2003).
- 72-hr larval development test using the sea urchin Heliocidaris tuberculata (based on APHA Method 8810D, modified for use with H. tuberculata by Simon and Laginestra 1997)
- 48-hr larval abnormality test using the milky oyster Saccostrea echinata (based on APHA Method 8610 and USEPA OPPTS 850.1055, Krassoi 1995)
- □ 72-hr growth (cell-yield) test using the marine micro-alga *lsochrysis aff. galbana* (based on Stauber *et al.*, 1994 for *N. closterium*.)
- □ 14-day macroalgal growth test using *Ecklonia radiata* (based on Bidwell *et al.* 1998 and Burridge *et al.* 1999).
- □ 8-day sea anemone pedal lacerate development toxicity test using *Aiptasia pulchella* (based on Howe *et al.* 2014)
- □ 5-day copepodid development toxicity test using the juvenile calanoid copepod *Parvocalanus crassiostris* (based on Rose *et al* 2006).
- □ 7-d fish imbalance and growth test with barramundi *Lates calcarifer* (based on USEPA 2002b).

All eight toxicity tests were performed on WAFs generated from either the fresh or weathered Barossa Field Condensate (ESA identification number 7323). Sub-samples of the WAFs and individual dilution treatments were shipped to Envirolab Services Pty Ltd for Total Recoverable Hydrocarbons (TRH, C6-C36), Total Petroleum Hydrocarbons (TPHs) and BTEX. The TRH data, in addition to loading rate of condensate in the WAF generation systems, were used to determine toxicity test endpoints.

Test data for the Barossa Field Condensate, based on loading rates, are summarised in **Table 1.1**. The bioassays were performed at the ESA laboratory in Lane Cove. This report describes the results of each of the toxicity tests performed. Test reports for each of the tests are given in **Appendices C to J.** Statistical printouts for each test are given in **Appendices K** to **R**. The analytical reports for TRH analysis of the WAF samples are provided in **Appendix B** of this report.

Test results indicated the following:

• 1-hr Sea Urchin Fertilisation Test:

Based on the loading rate, the WAF of the Barossa Field Condensate had an EL10, EL50, NOEL and LOEL of 14.6, 18.6 (8.97-19.12), 0.6 and 1.2g/L, respectively. Expressed as TRH concentration, the corresponding EC10, EC50, NOEC and LOEC were 9206.2 (7702.42-10203.00), 13202.7 (12495.20-13763.40)µg/L, 350 and 720µg/L, respectively.

• 72-hr Sea Urchin Larval Development Test:

Based on the loading rate, the WAF of the Barossa Field Condensate had an EL10, EL50, NOEL and LOEL of 21.0 (18.90-2276), 26.5 (24.67-28.01), 19.3 and 38.6g/L, respectively. Expressed as TRH concentration, the corresponding EC10, EC50, NOEC and LOEC were 15481.6 (13727.10-16947.80), 20104.4 (18575.70-21450.10), 14060 and 30860µg/L, respectively.

• 48-hr Milky Oyster Larval Development Test:

Based on the loading rate, the WAF of the Barossa Field Condensate sample had an EL10, EL50, NOEL and LOEL 15.7 (11.78-18.35), 24.7 (24.11-25.32), 9.7 and 19.3g/L, respectively. Expressed as TRH concentration, the corresponding EC10, EC50, NOEC and LOEC were 11478.4 (9026.54-13230.50), 18747.2 (18266.80-19240.30), 7160 and 14060µg/L, respectively.

• 72-hr Micro-algal Growth Inhibition Test:

Based on the loading rate, the WAF of the Barossa Field Condensate had an IL10, IL50, NOEL and LOEL of 6.4 (2.18-10.68), 12.6 (7.45-15.09), 9.7 and 19.3g/L, respectively. Expressed as TRH concentration, the corresponding IC10, IC50, NOEC and LOEC were 4355.2 (1641.13-7401.38), 8529.3 (5094.77-10126.00), 6670 and 12850µg/L, respectively.

• 14-d Macroalgal Growth Test:

Based on the loading rate, the WAF of the Barossa Field Condensate had an IL10, IL50, NOEL and LOEL of 2.7, 64.8, 2.4 and 4.8g/L, respectively. Expressed as TRH concentration, the corresponding IC10, IC50, NOEC and LOEC were 1873.9, 57196.9, 1673 and 3180µg/L, respectively.

• 8-dSea Anemone Development Test:

Based on the loading rate, the WAF of the Barossa Field Condensate had an EL10, EL50, NOEL and LOEL of 11.2, 40.1 (31.78-50.60), 38.6 and 77.2g/L, respectively. Expressed as TRH concentration, the corresponding EC10, EC50, NOEC and LOEC were 8862.4, 30720.0 (23961.00-39385.50), 28040, 63990µg/L, respectively.

• 5-d Copepodid development Test

Based on the loading rate, the WAF of the Barossa Field Condensate had an EL10, EL50, NOEL and LOEL of 1.0, 12.2 (10.84-13.73), 9.7 and 19.3g/L, respectively. Expressed as TRH concentration, the corresponding EC10, EC50, NOEC and LOEC were 27.2, 10506.9 (9451.82-11679.80), 8560 and 15830µg/L, respectively.

7-d Fish Imbalance and Growth Test: Based on the loading rate, the WAF of the fresh Barossa Field Condensate had an EL10, EL50, NOEL and LOEL of 19.4 (13.58-23.28), 29.3 (24.71-34.66),

PR1244

19.3 and 38.6g/L, respectively, for the imbalance endpoint. Expressed as TRH concentration, the corresponding EC10, EC50, NOEC and LOEC were 15875.5 (11275.40-18756.60). 23182.2 (19851.60-27226.80), 15830 and 29770µg/L, respectively. The EL10, EL50, NOEL and LOEL for the biomass endpoint were 20.9 (8.44-22.09), 30.6 (27.79-31.44), 19.3 and 38.6g/L, respectively expressed as loading rate, and 17016.3 (7373.18-18757.60), 24006.3 (21800.80-24621.00), 15830 and 29770µg/L, respectively, expressed as TRH concentration.

Based on the loading rate, the WAF of the Weathered Barossa Field Condensate had an EL10, EL50, NOEL and LOEL of 69.1, >79.5, 79.5 and >79.5g/L, respectively, for the imbalance endpoint. Expressed as TRH concentration, the corresponding EC10, EC50, NOEC and LOEC were 19596.3, >22480, 22480 and >22480µg/L, respectively. The EL10, EL50, NOEL and LOEL for the biomass endpoint were 48.6, >79.5, 79.5 and >79.5g/L, respectively expressed as loading rate, and 13908.1, >22480.0, 22480 and >22480µg/L, respectively, expressed as TRH concentration.

		Barossa Fi	Barossa Field Condensate	Weathered Baros	Weathered Barossa Field Condensate
Toxicity Test	Endpoint	Loading Rate (g/L)	TRH Concentration (µg/L)	Loading Rate (g/L)	TRH Concentration (µg/L)
1-hr sea urchin	1-hr EL10	14.6*	9206.2 (7702.42-10203.00)		
fertilisation	1-hr EL50	18.6 (8.97-19.12)	13202.7 (12495.20-13763.40)		
	NOEL	0.6	350		
	LOEL	1.2	720		
72-hr sea urchin	72-hr EL 10	21.0 (18.90-22.76)	15481.6 (13727.10-16947.80)	ı	·
larval development	72-hr EL50	26.5 (24.67-28.01)	20104.4 (18575.70-21450.10)		
	NOEL	19.3	14060		
	LOEL	38.6	30860		
48-hr milky oyster	48-hr EL 10	15.7 (11.78-18.35)	11478.4 (9026.54-13230.50)	·	
larval development	48-hr EL50	24.7 (24.11-25.32)	18747.2 (18266.80-19240.30)		
	NOEL	9.7	7160		
	LOEL	19.3	14060	ı	ı
72-hr micro-algal	72-hr IL10	6.4 (2.18-10.68)	4355.2 (1641.13-7401.38)	ı	ı
growth	72-hr IL50	12.6 (7.45-15.09)	8529.3 (5094.77-10126.00)	ı	ı
	NOEL	9.7	6670		
	LOEL	19.3	12850	·	
14-d macroalgal	14-d IL10	2.7*	1873.9*		
growth	14-d IL50	64.8*	57196.9*	ı	·
	NOEL	2.4	1673	ı	ı
	LOEL	4.8	3180		

Table 1.1. Summary of toxicity test data for the Barossa Field Condensate

Ecotox Services Australasia Barossa Field Development: Ecotoxicity Studies

9

PR1244

		Barossa F	Barossa Field Condensate	Weathered Barc	Weathered Barossa Field Condensate
Toxicity Test	Endpoint	Loading Rate (g/L)	TRH Concentration (µg/L)	Loading Rate (g/L)	TRH Concentration (µg/L)
8-d sea anemone	8-d EL10	11.2*	8862.4*		
development	8-d EL50	40.1 (31.78-50.60)	30720.0 (23961.00-39385.50)		
	NOEL	38.6	28040		
	LOEL	77.2	63990		
5-d copepodid	5-d EL10	1.0**	27.2*		
development	5-d EL50	12.2 (10.84-13.73)	10506.9 (9451.82-11679.80)		
	NOEL	9.7	8560		
	LOEL	19.3	15830		
7-d fish imbalance	7-d EL10	19.4 (13.58-23.28)	15875.5 (11275.40-18756.60)	69.1*	19596.3*
	7-d EL50	29.3 (24.71-34.66)	23182.2 (19851.60-27226.80)	>79.5	>22480.0
	NOEL	19.3	15830	79.5	22480
	LOEL	38.6	29770	>79.5	>22480
7-d fish biomass	7-d EL10	20.9 (8.44-22.09)	17016.3 (7373.18-18757.6)	48.6*	13908.1
	7-d EL50	30.6 (27.79-31.44)	24006.3 (21800.80-24621.00)	>79.5	>22480.0
	NOEL	19.3	15830	79.5	22480
	LOEL	38.6	29770	>79.5	>22480

Ecotox Services Australasia Barossa Field Development: Ecotoxicity Studies

PR1244

7

1.2 Glossary of Terms

The following glossary is based on that provided by Environment Canada (1997)

Acute toxicity is an adverse effect (lethal or sub-lethal) induced in the test organisms within a short period of exposure to a test material, usually a few days.

Bioassay is a test (=assay) in which the strength or potency of a substance is measured by the response of living organisms or living system. **Toxicity test** is a more specific and preferred term for environmental work.

Chronic toxicity implies long-term effects that are related to changes in metabolism, growth, reproduction, or ability to survive

Control is a treatment in an investigation that duplicates all the factors that might affect results, except the specific condition being studied. In toxicity tests, the control must duplicate all the conditions in the exposure treatment(s) but must contain no test material. The control is used as a check for toxicity due to basic conditions such as quality of dilution water or health and handling of the test organisms. Control is synonymous with **negative control**. See also **positive control**.

ECx is the median effective concentration. That is the concentration of material in water that is estimated to cause a specified percent effect (eg. EC10, EC50) of the test organisms. In most instances the EC50 and its 95% confidence limits are statistically derived by analysing the percentages of organisms affected at various test concentrations, after a fixed period of exposure. The duration of exposure must be specified (eg. 48h).

ELx is the median effective loading rate. That is the loading rate of material in water (eg. mg/L) that is estimated to cause cause a specified percent effect (eg. EC10, EC50) of the test organisms. In most instances the EL50 and its 95% confidence limits are statistically derived by analysing the percentages of organisms affected at various test loading densities, after a fixed period of exposure. The duration of exposure must be specified (eg. 48h).

Endpoint means the measurement(s) or value(s) that characterise the results of a test (LL50, EL50, IL50). It also means the reaction of the organism to show the effect which is intended to mark completion of the test (eg. death, number of shell abnormalities).

ILx is the inhibiting loading rate for a specified percent effect (eg. IL50). It represents a point estimate of a loading rate of test material that causes a designated percent inhibition (*p*) compared to the control, in a quantitative biological measurement such as microalgal cell yield attained at the end of a test.

ICx is the inhibiting concentrations for a specified percent effect (eg. IC50). It represents a point estimate of a concentration of test material that causes a designated percent inhibition (*p*) compared to the control, in a quantitative biological measurement such as microalgal cell yield attained at the end of a test.

LOEC is the lowest-observed-effect concentration. This represents the lowest concentration of a test material for which a statistically significant effect on the test organisms was observed, relative to the control.

LOEL is the lowest-observed-effect loading rate. This represents the lowest loading densities of a test material for which a statistically significant effect on the test organisms was observed, relative to the control.

NOEC is the no-observed-effect concentration. This represents the highest test concentration of a test material for which no statistically significant effect on the test organisms was observed, relative to the control.

NOEL is the no-observed-effect loading rate. This represents the highest test loading rate of a test material for which no statistically significant effect on the test organisms was observed, relative to the control.

Positive Control is a toxicity test with a reference toxicant, used to assess the sensitivity of the organisms at the time of the test material is evaluated and the precision of the results obtained by the laboratory for that chemical.

Reference toxicant is a standard chemical used to measure the sensitivity of the test organisms to establish confidence in the toxicity data obtained for a test material. In most instances, a toxicity test with a reference toxicant is performed to assess the sensitivity of the organisms at the time the test material is evaluated and the precision of the results obtained by the laboratory for that chemical.

Replicate is a single test chamber containing a prescribed number of test organisms in either one loading rate of test solution or in dilution water as a control. In a toxicity test comprising five test concentrations and a control, and using four replicates, 24 test chambers would be used. For each loading rate or control, there would be 4 test chambers or replicates. A replicate must be an independent unit, and therefore, any transfer of test material or organisms from one replicate to another would invalidate a statistical analysis based on replication.

Static describes toxicity tests in which test solutions are not renewed during the test.

Sub-lethal means detrimental to the organism, but below the level that directly causes death within the test period.

Toxic means poisonous. A toxic material can cause adverse effects on living organisms, if present in sufficient amount at the right location.

Toxicant is a toxic material.

2. Introduction

Ecotox Services Australasia Pty Ltd (ESA) was commissioned by Jacobs Group (Australia) Pty Ltd to undertake marine toxicity tests with a condensate sample from the Barossa field development site.

The following toxicity tests were undertaken on Water Accommodated Fractions (WAFs) of Barossa Field condensate:

- □ 1-hr fertilisation test using the sea urchin *Heliocidaris tuberculata* (based on USEPA Method 1008 and Environment Canada (1992), modified for use with *H. tuberculata* by Simon and Laginestra 1997, and Doyle *et al.* 2003).
- 72-hr larval development test using the sea urchin Heliocidaris tuberculata (based on APHA Method 8810D, modified for use with H. tuberculata by Simon and Laginestra 1997)
- 48-hr larval abnormality test using the milky oyster Saccostrea echinata (based on APHA Method 8610C and USEPA OPPTS 850.1055, Krassoi 1995)
- □ 72-hr growth (cell-yield) test using the marine micro-alga *Isochrysis aff. galbana* (based on Stauber *et al.*, 1994 for *N. closterium*.)
- □ 14-day macroalgal growth test using *Ecklonia radiata* (based on Bidwell *et al.* 1998 and Burridge *et al.* 1999).
- □ 8-day sea anemone pedal lacerate development toxicity test using *Aiptasia pulchella* (based on Howe *et al.* 2014)
- □ 5-day copepodid development toxicity test using the juvenile calanoid copepod *Parvocalanus crassiostris* (based on Rose *et al* 2006).
- □ 7-d fish imbalance and growth test with barramundi *Lates calcarifer* (based on USEPA 2002b).

The condensate sample was shipped to ESA in 20L steel cans and was received in good condition (**Appendices A**). The Barossa Field Condensate was assigned ESA identification number 7323. The condensate sample was stored at room temperature until used for preparing Water Accommodated Fractions (WAFs).

WAFs of the condensate sample were prepared by adding a prescribed quantity of condensate to 0.45μ m filtered seawater (FSW) in 2 litre glass bottles in general accordance with CONSERF procedures (Singer *et al.*, 2000). The mixing ratio was 1 part condensate: 9 parts filtered seawater. The preparations were stirred for 24 hours using a magnetic stirrer in such a manner as to avoid the formation of a vortex that may form dispersed droplets. The WAF and the overlying condensate layer were allowed to settle for 1 hour before the underlying WAF was siphoned off into clean glass bottles and tested on the day of preparation.

The WAFs were prepared in general accordance with CONSERF procedures (Singer *et al.*, 2000), the principal departure being the individual WAFs were not prepared for each test treatment. After consideration, it was determined that a dilution of a single or combined WAF was to be undertaken to prepare test solutions for each toxicity test. The results reported herein are for toxicity tests where dilutions were prepared from a WAF at a mixing ratio of 1 part condensate: 9 parts filtered seawater.

The bioassays were performed at the ESA laboratory in Lane Cove, NSW. This report describes the results of each of the toxicity tests performed. Test reports for each test performed are given in **Appendices C to J**. The statistical printouts from the Toxcalc

analytical software for each test are given in **Appendices K** to **R**. Toxicity tests reported herein were undertaken in September to October 2015.

The toxicity test endpoints reported herein are expressed as loading rate of condensate (expressed in terms of grams of condensate/L), and as Total Recoverable Hydrocarbon (TRH, total of C6-C36) determined by subcontracted chemical analyses of each test treatment. Sub-samples of the test treatments (ie dilutions of each WAF) were sent by same-day express courier to Envirolab Services Pty Ltd, Chatswood NSW. The analytical report for the TRH analyses is provided in **Appendix B** of this report.

3. 1-hr Sea Urchin Fertilisation Test

3.1 Summary of Test Methodology

The 1-hr sea urchin fertilisation test using the gametes of *Heliocidaris tuberculata* was undertaken in accordance with ESA Standard Operating Procedure 104, which is based on methods described by USEPA method 1008 (2002) and Environment Canada (1992), ASRM (1995) and APGHA (1998), modified for use by Simon and Langistera (1996) and adapted for use with *H. tuberculata* by Simon and Laginestra (1997). Tests were performed in a constant temperature chamber of $20\pm1^{\circ}$ C with a 16:8h light: dark photoperiod for the entire exposure. Clean seawater was collected from the Sydney region and filtered to 0.45μ m on return to the laboratory. Sea urchins used for the tests were obtained by field collection from South Maroubra, NSW and spawned within 6-hr of collection.

The definitive test reported here was initiated on 10 September 2015. The tests were undertaken in 9mL borosilicate glass tissue culture tubes, with four replicate tubes per treatment. A filtered seawater (FSW) control and a Water Accommodated Fraction (WAF) control were tested concurrently with the prepared WAF.

The pH, salinity and dissolved oxygen concentration of a representative sample from each concentration/treatment was measured. Salinity was measured using a WTW Cond330 salinity/conductivity meter with a WTW Tetracon 325 probe. The pH was measured using a WTW pH330 meter with a WTW SenTix 41 electrode. Dissolved oxygen was measured using a WTW Oxi 330 Oximeter, with a WTW CellOx 325 probe. Sub-samples for TRH (Total Recoverable Hydrocarbons, C6-C36), PAHs (Polycyclic aromatic hydrocarbons) and BTEX (benzene, toluene, ethylbenzene, and xylenes) were collected for each WAF dilution and controls and stored at 4°C in the dark until it was determined that the corresponding toxicity tests met QA criteria, upon which samples were forwarded to Envirolab Services Pty Ltd by same-day express courier.

Sperm were exposed to each of the test treatments for 1 hour, after which eggs were added to the test solutions and incubated with the sperm for 20 minutes. The test was then terminated by the addition of buffered formalin. One milliliter of test solution was drawn directly from the bottom of each test vessel and placed in a Sedgwick-Rafter counting chamber. The first 100 eggs were examined and the number of fertilised eggs was recorded. Toxicity test end-points were determined using loading rates and TRH concentrations. The loading rate and TRH concentration of WAF resulting in reductions in fertilisation to 10% and 50% of the test population (1-hr EL and EC values) was determined by either Maximum Liklihood Probit or Trimmed Spearman Karber or Probit Method using Toxcalc v5.0 software. The loading rate and TRH concentration – NOEL/NOEC), and the lowest loading rate causing significant toxicity (Lowest Observed Effect Loading Rate/Concentration – LOEL/LOEC) were determined by performing a Dunnett's or non-parametric test, depending on the data being normally distributed and homoscedastic.

Test species	Sea urchin Heliocidaris tuberculata
Test type	Static, non-renewal
Test duration	1-hour
Test end-point	Fertilisation
Test temperature	20±1°C
Test salinity	35±1‰
Test chamber size / volume	5mL in 9 mL tissue culture tube
Source of test organisms	Field collection, Sydney coastal region
Test concentrations	WAF dilutions of 100, 50, 25, 12.5 and 6.3% or lower
Test acceptability criteria	\geq 70% fertilisation in controls, reference toxicant results within prescribed range

Table 3.1. Summary of test conditions for the sea urchin fertilisation test

To test the relative sensitivity of the test organisms and the proficiency of the Laboratory Technician, a separate positive control test was conducted using copper. The test was performed in the same manner as the test with the WAF. The results of the reference toxicant test were compared with the results from previous testing using a control chart.

3.2 Results

The results for the WAF of the Barossa Field Condensate using the sea urchin fertilisation test are summarised in **Table 3.2** below. The mean and standard deviation of the responses of test organisms to each test treatment are given in the summary reports given in **Appendix C**. The statistical output from the Toxcalc statistical analyses are given in **Appendix K**.

Table 3.2. The 1-hr EL/EC10 and EL/EC50 (with 95% confidence limits), NOEL/NOEC and LOEL/NOEC (based on loading rates and TRH concentrations) for Water Accommodated Fractions (WAFs) of the Barossa Field Condensate sample using the sea urchin fertilisation success test.

Sample	1-hr EL/EC10	1-hr EL/EC50	NOEL/ NOEC	LOEL/ LOEC
Barossa Field Condensate – Loading rate (g/L)	14.6*	18.6 (8.97-19.12)	0.6	1.2
Barossa Field Condensate – TRH concentration (μg/L)	9206.2 (7702.42-10203.00)	13202.7 (12495.20-13763.40)	350	720

*95% confidence limits are not reliable

Based on the loading rate, the WAF of the Barossa Field Condensate had an EL10, EL50, NOEL and LOEL of 14.6, 18.6 (8.97-19.12), 0.6 and 1.2g/L, respectively. Expressed as TRH concentration, the corresponding EC10, EC50, NOEC and LOEC were 9206.2 (7702.42-10203.00), 13202.7 (12495.20-13763.40), 350 and 720 μ g/L, respectively.

The WAF control was not toxic to sea urchin fertilisation.

3.3 Quality Assurance

The sea urchin fertilisation test undertaken with the pepared WAF met all quality assurance criteria. The mean percentage of fertilised eggs in the laboratory control in the test was 78.8%, exceeding the minimum control criteria of 70%. Water quality parameters were also within test acceptability ranges.

The 1-hr EC50 estimate for the copper reference toxicant tests run concurrently with the WAF sample fell within the reference toxicant cusum chart control limits (**Table 3.3**). This indicated that the toxicity test was within the expected range with respect to performance and sensitivity.

Table 3.3 The Quality Assurance limits for the sea urchin fertilisation test.

QA Measure	Criterion	This Test
Control % normally developed	<u>></u> 70%	78.8%
Reference toxicant EC50	23.7-105.6µg Cu/L	26.7µg Cu/L

4.1 Summary of Test Methodology

The 72-hr sea urchin larval development test using the fertilised eggs of *Heliocidaris tuberculata* was undertaken in accordance with ESA Standard Operating Procedure 105, which is based on methods described by ASTM (1995) and APHA (1998), and adapted for use with *H. tuberculata* by Simon and Laginestra (1997) and Doyle *et al.* (2002). Tests were performed in a constant temperature chamber of $20\pm1^{\circ}$ C with a 16:8h light: dark photoperiod for the entire 72-hr exposure. Clean seawater was collected from the Sydney region and filtered to 0.45μ m on return to the laboratory. Sea urchins used for the tests were obtained by field collection from South Maroubra, NSW and spawned within 6-hr of collection.

The definitive test reported here was initiated on 10 September 2015. The tests were undertaken in 9mL borosilicate glass tissue culture tubes, with four replicate tubes per treatment. A filtered seawater (FSW) control and a Water Accommodated Fraction (WAF) control were tested concurrently with the prepared WAF.

The pH, salinity and dissolved oxygen concentration of a representative sample from each concentration/treatment was measured. Salinity was measured using a WTW Cond330 salinity/conductivity meter with a WTW Tetracon 325 probe. The pH was measured using a WTW pH330 meter with a WTW SenTix 41 electrode. Dissolved oxygen was measured using a WTW Oxi 330 Oximeter, with a WTW CellOx 325 probe. Sub-samples for TRH (Total Recoverable Hydrocarbons, C6-C36), PAHs (Polycyclic aromatic hydrocarbons) and BTEX (benzene, toluene, ethylbenzene, and xylenes) were collected for each WAF dilution and controls and stored at 4°C in the dark until it was determined that the corresponding toxicity tests met QA criteria, upon which samples were forwarded to Envirolab Services Pty Ltd by same-day express courier.

Fertilised eggs were exposed to each of the test treatments for 72 hours, after which the test was terminated by the addition of buffered formalin. One milliliter of test solution was drawn directly from the bottom of each test vessel and placed in a Sedgwick-Rafter counting chamber. The first 100 larvae were examined and the number of normally developed larvae was recorded. Toxicity test end-points were determined using loading rates and TRH concentrations. The loading rate and TRH concentration of WAF resulting in reductions in normal development to 10% and 50% of the test population (72-hr EL and EC values) was determined by either Maximum Liklihood Probit or Trimmed Spearman Karber or Probit Method using Toxcalc v5.0 software. The loading rate and TRH concentration causing no significant toxicity (No Observed Effect Loading Rate/Concentration – NOEL/NOEC), and the lowest loading rate causing significant toxicity (Lowest Observed Effect Loading Rate/Concentration – LOEL/LOEC) were determined by performing a Dunnett's or non-parametric test, depending on the data being normally distributed and homoscedastic.

Test species	Sea urchin Heliocidaris tuberculata
Test type	Static, non-renewal
Test duration	72-hour
Test end-point	Normal pluteus larvae
Test temperature	20±1°C
Test salinity	35±1‰
Test chamber size / volume	5mL in 9 mL tissue culture tube
Source of test organisms	Field collection, Sydney coastal region
Test concentrations	WAF dilutions of 100, 50, 25, 12.5 and 6.3% or lower
Test acceptability criteria	$\geq\!\!70\%$ normal larvae in controls, reference toxicant results within prescribed range

Table 4.1. Summary of test conditions for the sea urchin larval development test

To test the relative sensitivity of the test organisms and the proficiency of the Laboratory Technician, a separate positive control test was conducted using copper. The test was performed in the same manner as the test with the WAF. The results of the reference toxicant test were compared with the results from previous testing using a control chart.

4.2 Results

The results for the WAF of the Barossa Field Condensate using the sea urchin larval development test are summarised in **Table 4.2** below. The mean and standard deviation of the responses of test organisms to each test treatment are given in the summary reports given in **Appendix D**. The statistical output from the Toxcalc statistical analyses are given in **Appendix L**.

Table 4.2. The 72-hr EL/EC10 and EL/EC50 (with 95% confidence limits), NOEL/NOEC and LOEL/NOEC (based on loading rates and TRH concentrations) for Water Accommodated Fractions (WAFs) of the Barossa Field Condensate sample using the sea urchin larval development test.

Sample	72-hr EL/EC10	72-hr EL/EC50	NOEL/ NOEC	LOEL/ LOEC
Barossa field condensate – Loading rate (g/L)	21.0 (18.90-22.76)	26.5 (24.67-28.01)	19.3	38.6
Barossa field condensate – TRH concentration (μg/L)	15481.6 (13727.10-16947.80)	20104.4 (18575.70-21450.10)	14060	30860

Based on the loading rate, the WAF of the Barossa Field Condensate had an EL10, EL50, NOEL and LOEL of 21.0 (18.90-2276), 26.5 (24.67-28.01), 19.3 and 38.6g/L, respectively. Expressed as TRH concentration, the corresponding EC10, EC50, NOEC and LOEC were 15481.6 (13727.10-16947.80), 20104.4 (18575.70-21450.10), 14060 and 30860µg/L, respectively.

PR1244

The WAF control was not toxic to sea urchin larvae.

4.3 Quality Assurance

The sea urchin larval development test undertaken with the prepared WAF met all quality assurance criteria. The mean percentage of normal pluteus larvae in the laboratory control in the test was 80.8%, exceeding the minimum control criteria of 70%. Water quality parameters were also within test acceptability ranges.

The 72-hr EC50 estimate for the copper reference toxicant tests run concurrently with the WAF sample fell within the reference toxicant cusum chart control limits (**Table 4.3**). This indicated that the toxicity test was within the expected range with respect to performance and sensitivity.

Table 4.3 The Quality Assurance limits for the sea urchin larval development test.

QA Measure	Criterion	This Test
Control % normally developed	<u>></u> 70%	80.8%
Reference toxicant EC50	10.5-23.1µg Cu/L	12.2µg Cu/L

5.1 Summary of Test Methodology

The 48-hr larval development toxicity test using the larvae of the milky oyster *Saccostrea echinata* was undertaken in accordance with ESA Standard Operating Procedure 106, which is based on methods described by USEPA (1996) and APHA (1998), with *S. glomerata* by Krassoi (1995). Tests were performed in a constant temperature chamber of $29\pm1^{\circ}$ C with a 16:8h light: dark photoperiod for the entire 48-hr exposure. Clean seawater was collected from the Sydney region and filtered to 0.45µm on return to the laboratory. Oysters used for the tests were obtained from a rocky shore oyster lease in Mackay, QLD.

The definitive test reported here was initiated on 10 September 2015. The tests were undertaken in 9mL borosilicate glass tissue culture vials, with four replicate vials per treatment. A filtered seawater (FSW) control and a Water Accommodated Fraction (WAF) control were tested concurrently with the prepared WAF.

Oysters were spawned by gonad stripping. Viable gametes were selected on the basis of fertilisation success trials and visual examination of gamete maturity. The eggs were fertilised by adding spermatozoa to the egg suspension.

The pH, salinity and dissolved oxygen concentration of a representative sample from each concentration/treatment was measured. Salinity was measured using a WTW Cond330 salinity/conductivity meter with a WTW Tetracon 325 probe. The pH was measured using a WTW pH330 meter with a WTW SenTix 41 electrode. Dissolved oxygen was measured using a WTW Oxi 330 Oximeter, with a WTW CellOx 325 probe. Sub-samples for TRH (Total Recoverable Hydrocarbons, C6-C36), PAHs (Polycyclic aromatic hydrocarbons) and BTEX (benzene, toluene, ethylbenzene, and xylenes) were collected for each WAF dilution and controls and stored at 4°C in the dark until it was determined that the corresponding toxicity tests met QA criteria, upon which samples were forwarded to Envirolab Services Pty Ltd by same-day express courier.

Fertilised eggs were exposed to each test treatment for 48 hours after which a formalin solution was added to each vessel. One mL of test solution was drawn directly from the bottom of each test vessel and placed in a Sedgwick-Rafter counting chamber. The first 100 oyster larvae were examined and the number of normal and abnormal D-veliger larvae was recorded. Toxicity test end-points were determined using loading rates and TRH concentrations. The loading rate and TRH concentration of WAF resulting in reductions in normal development to 10% and 50% of the test population (48-hr EL and EC values) was determined by either Maximum Liklihood Probit or Trimmed Spearman Karber or Probit Method using Toxcalc v5.0 software. The loading rate and TRH concentration – NOEL/NOEC), and the lowest loading rate causing significant toxicity (Lowest Observed Effect Loading Rate/Concentration – LOEL/LOEC) were determined by performing a Dunnett's or non-parametric test, depending on the data being normally distributed and homoscedastic.

Test species	Milky oyster Saccostrea echinata
Test type	Static, non-renewal
Test duration	48 hours
Test end-point	Larval development to D-veliger stage
Test temperature	29±1°C
Test salinity	35±1‰
Test chamber size / volume	5mL in 9 mL tissue culture tube
Source of test organisms	Oyster farms, Mackay QLD
Test concentrations	WAF dilutions of 100, 50, 25, 12.5 and 6.3% or lower
Test acceptability criteria	>70% normally developed larvae in controls, reference toxicant results within prescribed range

Table 5.1. Summary of test conditions for the milky oyster larval development test

To test the relative sensitivity of the test organisms and the proficiency of the Laboratory Technician, a separate positive control test was conducted, using copper. The test was performed in the same manner as for the test with the WAF. The results of this test were compared with the results from previous testing using a control chart.

5.2 Results

The results for the WAF of the Barossa Field Condensate using the milky oyster larval development test are summarised in **Table 5.2** below. The mean and standard deviation of the responses of test organisms to each test treatment are given in the summary reports given in **Appendix E**. The statistical output from the Toxcalc statistical analyses are given in **Appendix M**.

Table 5.2. The 48-hr EL/EC10 and EL/EC50 (with 95% confidence limits), NOEL/NOEC and LOEL/NOEC (based on loading rates and TRH concentrations) for Water Accommodated Fractions (WAFs) of the Barossa Field Condensate sample using the sea urchin larval development test.

Sample	48-hr EL/EC10	48-hr EL/EC50	NOEL/ NOEC	LOEL/ LOEC
Barossa Field Condensate – Loading rate (g/L)	15.7 (11.78-18.35)	24.7 (24.11-25.32)	9.7	19.3
Barossa Field Condensate – TRH concentration (µg/L)	11478.4 (9026.54-13230.50)	18747.2 (18266.80-19240.30)	7160	14060

Based on the loading rate, the WAF of the Barossa Field Condensate sample had an EL10, EL50, NOEL and LOEL 15.7 (11.78-18.35), 24.7 (24.11-25.32), 9.7 and 19.3g/L, respectively. Expressed as TRH concentration, the corresponding EC10, EC50, NOEC and LOEC were 11478.4 (9026.54-13230.50), 18747.2 (18266.80-19240.30), 7160 and 14060µg/L, respectively.

The WAF control was not toxic to the oyster larvae.

5.3 Quality Assurance

The milky oyster larval development toxicity test met all quality assurance criteria. The mean percentage of normally developed D-veliger larvae in the filtered seawater controls in the test was 74.5%, which exceeded the minimum control criteria of 70%. Water quality parameters for control samples were also within test acceptability ranges.

The 48-hr EC50 estimates for the copper reference toxicant tests run concurrently with the prepared WAF fell within the reference toxicant cusum chart control limits (**Table 5.3**). This indicated that the toxicity tests were within the expected range with respect to performance and sensitivity.

Table 5.3. Quality Assurance limits for the 48-hr milky oyster larval development test.

QA Measure	Criterion	This Test
Control % normally developed	<u>></u> 70%	74.5%
Reference toxicant EC50	10.2-20.0µg Cu/L	14.5µg Cu/L

6.1 Summary of Test Methodology

The 72-hr micro-algal growth inhibition (cell yield) test using Isochrysis *aff. galbana* was undertaken in accordance with ESA Standard Operating Procedure 110 which is based on methods described by Stauber *et al.* (1994). Tests were performed in a constant temperature of $29\pm1^{\circ}$ C. Clean seawater was collected from the Sydney region and filtered to 0.45μ m on return to the laboratory. *Isochrysis* used for the tests were obtained from the CSIRO Marine Algal Supply Service, Hobart and cultured in the ESA laboratory using Guillards F/2 culture media.

The definitive test reported here was initiated on 11 September 2015. Guillards F/2 nutrient stock solutions were added to each of the WAF treatments and control treatment at a quarter of the usual concentration added to algal culture media so as to provide the minimum nutrients required for micro-algal growth. The tests were undertaken in 20mL borosilicate glass scintillation vials containing 10mL of test solution, with four replicate vials per treatment. A filtered seawater (FSW) control and a Water Accommodated Fraction (WAF) control were tested concurrently with the prepared WAF.

Micro-algae used to inoculate the test vessels were first concentrated from cultures in log-growth phase by centrifugation, and then re-suspended using dilution water. This process was repeated a second time to remove all traces of original culture medium. The density of the micro-algae was determined using a haemocytometer, and test vessels were inoculated with the micro-algae such that the final concentration at t=0 was 10,000 cells/ml. The test vessels were incubated for 72-hr in a constant temperature cabinet equipped with cool-white fluorescent tubes to provide 4440-8880 Lux lighting on a 12:12 light:dark cycle.

The pH and salinity of a representative sample from each concentration/treatment was measured. Salinity was measured using a WTW Cond330 salinity/conductivity meter with a WTW Tetracon 325 probe. The pH was measured using a WTW pH330 meter with a WTW SenTix 41 electrode. Sub-samples for TRH (Total Recoverable Hydrocarbons, C6-C36), PAHs (Polycyclic aromatic hydrocarbons) and BTEX (benzene, toluene, ethylbenzene, and xylenes) were collected for each WAF dilution and controls and stored at 4°C in the dark until it was determined that the corresponding toxicity tests met QA criteria, upon which samples were forwarded to Envirolab Services Pty Ltd by same-day express courier

At the end of the incubation period, algal density for each replicate vial was determined by measuring absorbance at 750nm using a spectrophotometer. The algal counts were recorded as the number of cells per mL based on a standard curve of cell density against absorbance at 750nm. Toxicity test end-points were determined using loading rates and TRH concentrations. The loading rate and TRH concentration of WAF resulting in inhibition of growth to 10% and 50% of the test population (72-hr IL and IC values) was determined by the Non-Linear Interpolation Method using Toxcalc v5.0 software. The loading rate and TRH concentration – NOEL/NOEC), and the lowest loading rate causing significant toxicity (Lowest Observed Effect Loading Rate/Concentration – LOEL/LOEC) were determined by performing a Dunnett's or non-parametric test, depending on the data being normally distributed and homoscedastic.

Test species	Isochrysis aff. galbana (Tahitian isolate)
Test type	Static, non-renewal
Test duration	72-hour
Test end-point	Cell yield (density)
Test temperature	$29 \pm 1^{\circ}C$
Test salinity	35 ± 1 ‰
Test chamber size / volume	10mL in 20mL scintillation vials
Source of test organisms	Laboratory culture
Test concentrations	WAF dilutions of 100, 50, 25, 12.5 and 6.3% or lower
Test acceptability criteria	>160,000 cells/mL in controls, reference toxicant results within prescribed range, CV <20% for control replicates

Table 6.1 Summary of test conditions for the micro-algal growth inhibition test

To test the relative sensitivity of the test organisms and the proficiency of the Laboratory Technician, a positive (toxic) control test was conducted using copper. The test was performed in the same manner as the WAF test. The results of this test were compared with the results from previous testing using a control chart.

6.2 Results

The results for the WAF of the Barossa Field condensate using the micro-algal growth inhibition assay are summarised in **Table 6.2** below. The mean and standard deviation of the responses of test organisms to each test treatment are given in the summary reports given in **Appendix F**. The statistical output from the Toxcalc statistical analyses are given in **Appendix N**.

Table 6.2. The 72-hr IL/IC10 and IL/IC50 (with 95% confidence limits), NOEL/NOEC and LOEL/NOEC (based on loading rates and TRH concentrations) for Water Accommodated Fractions (WAFs) of the Barossa Field Condensate sample using the micro-algal growth inhibition test.

Sample	72-hr IL/IC10	72-hr IL/IC50	NOEL/ NOEC	LOEL/ LOEC
Barossa Field Condensate – Loading rate (g/L)	6.4 (2.18-10.68)	12.6 (7.45-15.09)	9.7	19.3
Barossa Field Condensate – TRH concentration (µg/L)	4355.2 (1641.13-7401.38)	8529.3 (5094.77-10126.00)	6670	12850

Based on the loading rate, the WAF of the Barossa Field Condensate had an IL10, IL50, NOEL and LOEL of 6.4 (2.18-10.68), 12.6 (7.45-15.09), 9.7 and 19.3g/L,

respectively. Expressed as TRH concentration, the corresponding IC10, IC50, NOEC and LOEC were 4355.2 (1641.13-7401.38), 8529.3 (5094.77-10126.00), 6670 and 12850µg/L, respectively.

The WAF control was not toxic to the micro-alga.

6.3 Quality Assurance

The microalgal growth inhibition test undertaken with the prepared WAF met all quality assurance criteria for the test. The mean cell density per 1mL in the filtered seawater control treatment in the test was 212 000, exceeding the minimum control criteria of 160,000 cells/mL. The coefficient of variation was 16.0% and below the criteria of \leq 20%. Water quality parameters for control samples were also within test acceptability ranges.

The 72-hr IC50 estimate for the copper reference toxicant test run concurrently with the WAF test fell within the reference toxicant cusum chart control limits (**Table 6.3**). This indicated that the toxicity test was within the expected range with respect to performance and sensitivity.

Table 6.3 The Quality Assurance limits for the marine microalga *l.galbana* growth inhibition test.

QA Measure	Criterion	This Test
Control density x 10 ⁴ cells/mL	16.0	21.2
Control coefficient of variation	<20%	16.0%
Reference toxicant Cusum limits	15.1-46.7µg Cu/L	19.0µg Cu/L

7. 14-d Macro-Alagl Growth Toxicity Test

7.1 Summary of Test Methodology

The 14-day growth toxicity test using the zoospores of the brown kelp *Ecklonia radiata* was undertaken in accordance with ESA Standard Operating Procedure 116, which is based on methods described by Bidwell *et al.* (1998) and Burridge *et al.* (1999). The test was extended to 14 days to encompass the growth endpoint. Tests were performed in a constant temperature chamber of $18\pm1^{\circ}$ C with ambient laboratory lumination for the entire 14-d exposure. Clean seawater was collected from the Sydney region and filtered to 0.45 μ m on return to the laboratory.

The definitive test reported here was initiated on 10 September 2015. The test was undertaken in 9mL borosilicate glass tissue culture petri dishes, with four replicate vials per treatment. A filtered seawater (FSW) control and a Water Accommodated Fraction (WAF) control were tested concurrently with the prepared WAF.

Kelp used for the test was obtained from Mercury Passage, Tasmania and shipped via overnight freight to the ESA laboratory. The kelp was induced to spawn using temperature shock. A concentrated suspension of motile zoospores a density of 20,000 – 75,000 zoospores/mL was prepared in FSW, using a haemocytometer. The zoospore suspension was added to the test vessels and allowed to settle on to cover slips placed on the bottom of the test vessels for 1 hour, before the excess FSW was pipetted from the dishes, and the WAF sample and controls pipetted in. After the sample had been added to the test vessels, the petri dishes were arranged randomly in a temperature controlled chamber for the duration of the test.

The pH, salinity and dissolved oxygen concentration of a representative sample from each concentration/treatment was measured. Salinity was measured using a WTW Cond330 salinity/conductivity meter with a WTW Tetracon 325 probe. The pH was measured using a WTW pH330 meter with a WTW SenTix 41 electrode. Dissolved oxygen was measured using a WTW Oxi 330 Oximeter, with a WTW CellOx 325 probe. Sub-samples for TRH (Total Recoverable Hydrocarbons, C6-C36), PAHs (Polycyclic aromatic hydrocarbons) and BTEX (benzene, toluene, ethylbenzene, and xylenes) were collected for each WAF dilution and controls and stored at 4°C in the dark until it was determined that the corresponding toxicity tests met QA criteria, upon which samples were forwarded to Envirolab Services Pty Ltd by same-day express courier.

After 14 days exposure, each cover slip containing the settled zoospores was drawn directly from the bottom of each petri dish and placed on a clean microscope slide. The first 10 individuals were examined under 400x magnification and photographed. The length of the gametophyte was recorded. The average length of the 10 gaemetophyte were calculated for each replicate. Toxicity test end-points were determined using loading rates and TRH concentrations. The loading rate and TRH concentration of WAF resulting in reductions in growth to 10% and 50% of the test population (14-d IL and IC values) was determined by the Non-Linear Interpolation Method using Toxcalc v5.0 software. The loading rate and TRH concentration – NOEL/NOEC), and the lowest loading rate causing significant toxicity (Lowest Observed Effect Loading Rate/Concentration – LOEL/LOEC) were determined by performing a Dunnett's or non-parametric test, depending on the data being normally distributed and homoscedastic.

,	
Test species	Brown kelp Ecklonia Radiata
Test type	Static, non-renewal
Test duration	14 days
Test end-point	Growth of gametophyte
Test temperature	18 ± 1°C
Test salinity	35±1‰.
Test chamber size / volume	5mL in 9 mL petri dish
Source of test organisms	Mercury Passage, Tasmania
Test concentrations	WAF dilutions of 100, 50, 25, 12.5 and 6.3% or lower
Test acceptability criteria	>70% of zoospores germinated in controls after 72 hours, reference toxicant results within prescribed range

Table 7.1. Summary of test conditions for the macro-algal growth germination test

To test the relative sensitivity of the test organisms and the proficiency of the Laboratory Technician, a separate positive (toxic) control test was conducted, using copper. The test was performed in the same manner as for the test with the WAF. The results of this test were compared with the results from previous testing using a control chart.

7.2 Results

The results for the WAF of the Barossa Field Condensate using the macro-algal growth test are summarised in **Table 7.2** below. The mean and standard deviation of the responses of test organisms to each test treatment are given in the summary reports given in **Appendix G**. The statistical output from the Toxcalc statistical analyses are given in **Appendix O**.

Table 7.2. The 14-d IL/IC10 and IL/IC50 (with 95% confidence limits), NOEL/NOEC and LOEL/NOEC (based on loading rates and TRH concentrations) for Water Accommodated Fractions (WAFs) of the Barossa Field Condensate sample using the macro-algal growth test.

Sample	14-d IL/IC10	14-d IL/IC50	NOEL/ NOEC	LOEL/ LOEC
Barossa Field Condensate – Loading rate (g/L)	2.7*	64.8*	2.4	4.8
Barossa Field Condensate – TRH concentration (µg/L)	1873.9*	57196.9*	1673	3180

*95% confidence limits are not reliable

Based on the loading rate, the WAF of the Barossa Field Condensate had an IL10, IL50, NOEL and LOEL of 2.7, 64.8, 2.4 and 4.8g/L, respectively. Expressed as TRH

concentration, the corresponding IC10, IC50, NOEC and LOEC were 1873.9, 57196.9, 1673 and 3180 μ g/L, respectively.

The WAF control was not toxic to the zoospores.

7.3 Quality Assurance

The macro-algal growth toxicity test met all quality assurance criteria. The mean percentage of germinated zoospores after 72 hours in the filtered seawater controls was 90.3%, which exceeded the minimum control criteria of 70.0%. Water quality parameters for the control sample were also within test acceptability ranges.

The 72-hr EC50 estimate for the copper reference toxicant test run concurrently with the WAF sample fell within the reference toxicant cusum chart control limits (**Table 7.3**). This indicated that the toxicity test was within the expected range with respect to performance and sensitivity.

Table 7.3. Quality Assurance limits for the 72-hr macro-algal germination test.

QA Measure	Criterion	This Test
Control % spore germination	<u>></u> 70%	90.3%
Reference toxicant EC50	86.0-1262.1µg Cu/L	408.5µg Cu/L

8. 8-day Sea Anemone Toxicity Test

8.1 Summary of Test Methodology

The 8-day toxicity test using the sea anemone *Aiptasia pulchella* was undertaken in accordance with ESA Standard Operating Procedure 128, which is based on general methods described by the Howe *et al.* (2014). Tests were performed in a constant temperature chamber at m25±1°C with a 16:8h light: dark photoperiod for the entire 96-hr exposure. Clean seawater was collected from the Sydney region and filtered to 0.45µm on return to the laboratory. Pedal lacerates were sourced from in-house laboratory cultures.

The definitive tests reported here were initiated on 27 October 2015. The tests were undertaken in 100 mL borosilicate glass beakers containing 80mL of test solution. WAFs were prepared for the condensate sample and tested using 3 replicate beakers. A filtered seawater (FSW) control and a Water Accommodated Fraction (WAF) control were tested concurrently with the prepared WAF.

The pH, salinity and dissolved oxygen concentration of a representative sample from each concentration/treatment was measured. Salinity was measured using a WTW Cond330 salinity/conductivity meter with a WTW Tetracon 325 probe. The pH was measured using a WTW pH330 meter with a WTW SenTix 41 electrode. Dissolved oxygen was measured using a WTW Oxi 330 Oximeter, with a WTW CellOx 325 probe. Sub-samples for TRH (Total Recoverable Hydrocarbons, C6-C36), PAHs (Polycyclic aromatic hydrocarbons) and BTEX (benzene, toluene, ethylbenzene, and xylenes) were collected for each WAF dilution and controls and stored at 4°C in the dark until it was determined that the corresponding toxicity tests met QA criteria, upon which samples were forwarded to Envirolab Services Pty Ltd by same-day express courier.

A. pulchella pedal lacerates were isolated from in-house laboratory cultures at random and 5 lacerates were placed into each test vessel containing FSW using a Pasteur pipette. Lacerates were allowed to acclimate and re-attach to the test vessel before test solutions were placed in each beaker. The beakers were covered with cling-wrap film to minimise evaporation of test solutions. The sea anemones were observed at on three occasions during the test period and the number of surviving sea anemones were recorded.

After 8 days, the number of surviving and normally developed juvenile sea anemones and physico-chemical parameters recorded. Toxicity test end-points were determined using loading rates and TRH concentrations. The loading rate and TRH concentration of WAF resulting in reductions in normal development to 10% and 50% of the test population (48-hr EL and EC values) was determined by either Maximum Liklihood Probit or Trimmed Spearman Karber or Probit Method using Toxcalc v5.0 software. The loading rate and TRH concentration causing no significant toxicity (No Observed Effect Loading Rate/Concentration – NOEL/NOEC), and the lowest loading rate causing significant toxicity (Lowest Observed Effect Loading Rate/Concentration – LOEL/LOEC) were determined by performing a Dunnett's or non-parametric test, depending on the data being normally distributed and homoscedastic.

Test species	Sea anemone Aptasia pulchella
Test type	Static, non-renewal
Test duration	8 days
Test end-point	Normally developed juveniles
Test temperature	25±1°C
Test salinity	35±1‰
Test chamber size / volume	80mL in 100mL borosilicate glass beakers
Source of test organisms	In-house laboratory culture
Test concentrations	WAF dilutions of 100, 50, 25, 12.5 and 6.3% or lower
Test acceptability criteria	>90% developed in controls, reference toxicant results within prescribed range

Table 8.1. Summary of test conditions for the 8-d sea anemone toxicity test

To test the relative sensitivity of the test organisms and the proficiency of the Laboratory Technician, a separate positive control test was conducted using copper. The test was performed in the same manner as for the test conducted with the WAF sample. The results of this test were compared with the results from previous testing using a control chart.

8.2 Results

The results for the WAF of the Barossa Field Condensate using the sea anemone development toxicity tests are summarised in **Table 8.2** below. The mean and standard deviation of the responses of test organisms to the test treatment are given in the summary reports given in **Appendix H**. The statistical output from the Toxcalc statistical analyses are given in **Appendix P**.

Table 8.2. The 8-d EL/EC10 and EL/EC50 (with 95% confidence limits), NOEL/NOEC and LOEL/NOEC (based on loading rates and TRH concentrations) for Water Accommodated Fractions (WAFs) of the Barossa Field Condensate sample using the sea anemone *A. pulchella* toxicity test.

Sample	8-d EL/EC10	8-d EL/EC50	NOEL/ NOEC	LOEL/ LOEC
Barossa Field Condensate – Loading rate (g/L)	11.2*	40.1 (31.78-50.60)	38.6	77.2
Barossa Field Condensate – TRH concentration (μg/L)	8862.4*	30720.0 (23961.00-39385.50)	28040	63990

*95% confidence limits are not reliable

Based on the loading rate, the WAF of the Barossa Field Condensate had an EL10, EL50, NOEL and LOEL of 11.2, 40.1 (31.78-50.60), 38.6 and 77.2g/L, respectively. Expressed as TRH concentration, the corresponding EC10, EC50, NOEC and LOEC were 8862.4, 30720.0 (23961.00-39385.50), 28040, 63990µg/L, respectively.

The WAF control was not toxic to the sea anemone.

8.3 Quality Assurance

The 8-d sea anemone development test undertaken with the WAF sample met all quality assurance criteria. The mean percentage normally developed in the laboratory controls in the test was 100%, meeting the minimum control normally developed criteria of \geq 90%. Water quality parameters for control samples were also within test acceptability ranges (**Table 8.3**).

Table 8.3. Quality Assurance limits for the 8-d sea anemone A. pulchella test.

QA Measure	Criterion	This Test
Control % normally developed	<u>></u> 90%	100%
Reference toxicant Cusum limits	n/a*	11.5µg Cu/L

* Reference toxicant cusum chart limits are not available due to limited testing

9.1 Summary of Test Methodology

The 5-day chronic toxicity test using the juvenile tropical copepod *Parvocalanus crassiostris* was undertaken in accordance with ESA Standard Operating Procedure 124, which is based on general methods described by the USEPA (2002) for marine crustaceans, and also following the methods described for the Australian copepod *Acartia sinjiensis* (Rose *et al.*, 2006). Tests were performed in a constant temperature chamber of $28\pm1^{\circ}$ C with a 16:8h light: dark photoperiod for the entire 5-d exposure. Clean seawater was collected from the Sydney region and filtered to 0.45µm on return to the laboratory. Freshly fertilised eggs used for testing were obtained from in-house laboratory cultures, originally sourced from the Queensland Department of Primary Industries Northern Fisheries Centre, Cairns QLD.

The definitive test reported here was initiated on 22 September 2015. The test was undertaken in 24-well polycarbonate tissue culture plates, where each well contained 4mL of test solution. WAFs were prepared for the condensate sample and tested using 4 replicate wells per concentration. A filtered seawater (FSW) control and a Water Accommodated Fraction (WAF) control were tested concurrently with the prepared WAF.

The pH, salinity and dissolved oxygen concentration of a representative sample from each concentration/treatment was measured. Salinity was measured using a WTW Cond330 salinity/conductivity meter with a WTW Tetracon 325 probe. The pH was measured using a WTW pH330 meter with a WTW SenTix 41 electrode. Dissolved oxygen was measured using a WTW Oxi 330 Oximeter, with a WTW CellOx 325 probe. Sub-samples for TRH (Total Recoverable Hydrocarbons, C6-C36), PAHs (Polycyclic aromatic hydrocarbons) and BTEX (benzene, toluene, ethylbenzene, and xylenes) were collected for each WAF dilution and controls and stored at 4°C in the dark until it was determined that the corresponding toxicity tests met QA criteria, upon which samples were forwarded to Envirolab Services Pty Ltd by same-day express courier.

Freshly fertilised copepod eggs were isolated from 30L laboratory mass cultures. Eggs were triple rinsed in FSW to remove debris and ciliates from the water and eggs. Five eggs were transferred to each tissue culture well using a Pasteur pipette and a dissecting microscope. Once seeded, the tissue culture plates were transferred to the constant temperature chamber.

After five days exposure, the number of non-immobilised normally developed copepodids in each test well was counted under a dissecting microscope. Toxicity test end-points were determined using loading rates and TRH concentrations. The loading rate and TRH concentration of WAF resulting in reductions in normal development to 10% and 50% of the test population (48-hr EL and EC values) was determined by either Maximum Liklihood Probit or Trimmed Spearman Karber or Probit Method using Toxcalc v5.0 software. The loading rate and TRH concentration causing no significant toxicity (No Observed Effect Loading Rate/Concentration – NOEL/NOEC), and the lowest loading rate causing significant toxicity (Lowest Observed Effect Loading Rate/Concentration – LOEL/LOEC) were determined by performing a Dunnett's or non-parametric test, depending on the data being normally distributed and homoscedastic.

Test species	Calanoid copepod Parvocalanus crassiostris
Test type	Static, non-renewal
Test duration	5 day
Test end-point	Normally developed coepodids
Test temperature	28±1°C
Test salinity	35±1‰
Test chamber size / volume	4mL well in 24-well tissue culture plates
Feeding	Isochrysis @ 16,000 cells/ copepod daily
Source of test organisms	In-house laboratory culture
Test concentrations	WAF dilutions of 100, 50, 25, 12.5 and 6.3% or lower
Test acceptability criteria	>70% non-immobilised copepodids in controls, reference toxicant results within prescribed range where range determined

Table 9.1. Summary of test conditions for the 5-d copepodid development toxicity test

To test the relative sensitivity of the test organisms and the proficiency of the Laboratory Technician, a separate positive control test was conducted using copper. The test was performed in the same manner as for the test conducted with the WAF sample. The results of this test were compared with the results from previous testing using a control chart.

9.2 Results

The results for the WAF of the Barossa Field Condensate using the sea anemone development toxicity tests are summarised in **Table 9.2** below. The mean and standard deviation of the responses of test organisms to the test treatment are given in the summary reports given in **Appendix I**. The statistical output from the Toxcalc statistical analyses are given in **Appendix Q**.

Table 9.2. The 5-d EL/EC10 and EL/EC50 (with 95% confidence limits), NOEL/NOEC and LOEL/NOEC (based on loading rates and TRH concentrations) for Water Accommodated Fractions (WAFs) of the Barossa Field Condensate sample using the copepod *P. crassirostris* toxicity test.

Sample	5-d EL/EC10	5-d EL/EC50	NOEL/ NOEC	LOEL/ LOEC
Barossa Field Condensate – Loading rate (g/L)	1.0*^	12.2 (10.84-13.73)	9.7	19.3
Barossa Field Condensate – TRH concentration (µg/L)	27.2*^	10506.8 (9451.82-11679.80)	8560	15830

Based on the loading rate, the WAF of the Barossa Field condensate had an EL10, EL50, NOEL and LOEL of 1.0, 12.2 (10.84-13.73), 9.7 and 19.3g/L, respectively. Expressed as TRH concentration, the corresponding EC10, EC50, NOEC and LOEC were 27.2, 10506.9 (9451.82-11679.80), 8560 and 15830µg/L, respectively.

The WAF control was not toxic to the copepod.

9.3 Quality Assurance

The 5-d copepodid development test undertaken with the WAF samples met all quality assurance criteria. The mean percentage non-immobilised normally developed copepodids in the laboratory controls was 70%, meeting the minimum control criteria of \geq 70%. Water quality parameters for the control were also within test acceptability ranges (**Table 9.3**).

Table 10.4. Quality Assurance limits for the 5-d tropical copepod test.

QA Measure	Criterion Thi	
Control % normal	<u>></u> 70%	70.0%
Reference toxicant Cusum limits	n/a*	2.8µg Cu/L

* Reference toxicant cusum chart limits are not available due to limited testing

10.1 Summary of Test Methodology

The 7-day toxicity test using juveniles of the barramundi *Lates calcarifer* was undertaken in accordance with ESA Standard Operating Procedure 122, which is based on methods described by USEPA (2002b). Research with invertebrates in the state of New South Wales is subject to the Animal Research Act, and the toxicity test with juvenile fish was performed by ESA under the Animal Research Authority issued to ESA by the Director-General of NSW Department of Primary Industries (valid from 28 July 2014 to 28 July 2017) and Certificate of Approval from the Animal Care and Ethics Committee of the Director-General of the NSW Department of Primary Industries (valid from 16 May 2014 and 16 May 2017).

The definitive test reported here was initiated on 22 September 2015. Juvenile fish of approximately 10-30 mm in length used for the tests were obtained from a commercial hatchery in South Australia. The juvenile fish were shipped same-day express in a foam box and fish were contained within an air inflated bag containing approximately 4 litres of seawater. Upon arrival at ESA, the fish were transferred to test room of 25°C and provided gentle aeration using a Schego air pump. Clean seawater for holding the fish was collected from the Sydney region and filtered to 0.45 μ m on return to the laboratory. The seawater was acclimated to 25°C prior to use.

Toxicity tests were undertaken in 600mL glass beakers containing 500mL of test solution, with 4 replicates per treatment. A filtered seawater (FSW) control and a Water Accommodated Fraction (WAF) control were tested concurrently with the prepared WAF of the fresh and weathered condensate.

The pH, salinity and dissolved oxygen concentration of a representative sample from each concentration/treatment was measured. Salinity was measured using a WTW Cond330 salinity/conductivity meter with a WTW Tetracon 325 probe. The pH was measured using a WTW pH330 meter with a WTW SenTix 41 electrode. Dissolved oxygen was measured using a WTW Oxi 330 Oximeter, with a WTW CellOx 325 probe. Sub-samples for TRH (Total Recoverable Hydrocarbons, C6-C36), PAHs (Polycyclic aromatic hydrocarbons) and BTEX (benzene, toluene, ethylbenzene, and xylenes) were collected for each WAF dilution and controls and stored at 4°C in the dark until it was determined that the corresponding toxicity tests met QA criteria, upon which samples were forwarded to Envirolab Services Pty Ltd by same-day express courier.

Five juvenile fish were randomly selected and introduced into each of the test beakers. The beakers were covered with cling-wrap film to minimise evaporation and placed in a constant temperature room of $25\pm1^{\circ}$ C. The test vessels were monitored daily to examine fish for signs of distress or imbalance. Juvenile fish demonstrating such signs were to be removed and euthanased in accordance with ESA SOP 122. Test vessels were also routinely checked to ensure aeration was being provided.

The beakers were examined every 24 hours and the number of surviving and apparently healthy juvenile fish recorded. The test was terminated after 7 days, and the temperature, pH, salinity and dissolved oxygen concentration of a representative sample from each concentration/treatment was measured, as detailed above. At the termination of the test, the juvenile fish were euthanased by the addition of AQUI-S solution. The euthanized fish were then dried at 60°C for 24 hours and then weighed.

Toxicity test end-points were determined using loading rates and TRH concentrations. The loading rate and TRH concentration of WAF resulting in reductions in unaffected fish and biomass to 10% and 50% of the test population (7-d EL and EC values) was determined by either Maximum Liklihood Probit, Trimmed Spearman Karber or Non-Linear Interpolation method using Toxcalc v5.0 software. The loading rate and TRH concentration causing no significant toxicity (No Observed Effect Loading Rate/Concentration – NOEL/NOEC), and the lowest loading rate causing significant toxicity (Lowest Observed Effect Loading Rate/Concentration – LOEL/LOEC) were determined by performing a Dunnett's or non-parametric test, depending on the data being normally distributed and homoscedastic.

Table 10.1 Summary of test conditions for the 7-day fish imbalance and growth test using *Lates calcarifer*

Test species	Barramundi Lates calcarifer
Test type	Static, non-renewal
Test duration	7 day
Test end-point	Imbalance, including survival, and biomass.
Test temperature	$25 \pm 1^{\circ}C$
Test salinity	$35\pm2\%$
Test chamber size / volume	500 mL in 600mL borosilicate glass beakers
Test Feeding	800 brine shrimp per fish, daily
Test concentrations	WAF dilutions of 100, 50, 25, 12.5 and 6.3% or lower
Source of test organisms	Hatchery reared, SA
Test acceptability criteria	≥80% survival in controls

To test the relative sensitivity of the test organisms and the proficiency of the Laboratory Technician, a separate positive control test was conducted using ammonium. The test was performed in the same manner as for the test conducted with the WAF sample. The results of this test were compared with the results from previous testing using a control chart.

10.2 Results

The results for the WAF of the fresh and weathered Barossa Field Condensate using the fish imbalance test are summarised in **Tables 10.2 and 10.3** below. The mean and standard deviation of the responses of test organisms to each test treatment are given in the summary reports given in **Appendix J**. The statistical output from the Toxcalc statistical analyses are given in **Appendix R**.

Table 10.2. The 7-d EL/EC10 and EL/EC50 (with 95% confidence limits), NOEL/NOEC and LOEL/NOEC (based on loading rates and TRH concentrations) for Water Accommodated Fractions (WAFs) of the Barossa Field Condensate sample using the Barramundi fish imbalance and growth test - Imbalance.

Sample	7-d EL/EC10	7-d EL/EC50	NOEL/ NOEC	LOEL/ LOEC
Barossa Field Condensate – Loading rate (g/L)	19.4 (13.58-23.28)	29.3 (24.71-34.66)	19.3	38.6
Barossa Field Condensate – TRH concentration (µg/L)	15875.5 (11275.40-18756.60)	23182.2 (19851.60-27226.80)	15830	29770
Weathered Barossa Field Condensate – Loading rate (g/L)	69.1*	>79.5	79.5	>79.5
Weathered Barossa Field Condensate – TRH concentration (µg/L)	19596.3*	>22480.0	22480	>22480

*95% confidence limits are not reliable/available

Table 10.3. The 7-d IL/IC10 and EL/EC50 (with 95% confidence limits), NOEL/NOEC and LOEL/NOEC (based on loading rates and TRH concentrations) for Water Accommodated Fractions (WAFs) of the Barossa Field Condensate sample using the Barramundi fish imbalance and growth test - Biomass.

Sample	7-d IL/IC10	7-d IL/IC50	NOEL/ NOEC	LOEL/ LOEC
Barossa Field Condensate – Loading rate (g/L)	20.9 (8.44-22.09)	30.6 (27.79-31.44)	19.3	38.6
Barossa Field Condensate – TRH concentration (µg/L)	17016.3 (7373.18-18757.60)	24006.3 (21800.80-24621.00)	15830	29770
Weathered Barossa Field Condensate – Loading rate (g/L)	48.6*	>79.5	79.5	>79.5
Weathered Barossa Field Condensate – TRH concentration (µg/L)	13908.1*	>22480	22480	>22480

*95% confidence limits are not reliable/available

Based on the loading rate, the WAF of the fresh Barossa Field Condensate had an EL10, EL50, NOEL and LOEL of 19.4 (13.58-23.28), 29.3 (24.71-34.66), 19.3 and 38.6g/L, respectively, for the imbalance endpoint. Expressed as TRH concentration, the corresponding EC10, EC50, NOEC and LOEC were 15875.5 (11275.40-18756.60). 23182.2 (19851.60-27226.80), 15830 and 29770µg/L, respectively. The EL10, EL50, NOEL and LOEL for the biomass endpoint were 20.9 (8.44-22.09), 30.6 (27.79-31.44), 19.3 and 38.6g/L, respectively expressed as loading rate, and 17016.3 (737.18-18757.60), 24006.3 (21800.80-24621.00), 15830 and 29770µg/L, respectively, expressed as TRH concentration.

Based on the loading rate, the WAF of the Weathered Barossa Field Condensate had an EL10, EL50, NOEL and LOEL of 69.1, >79.5, 79.5 and >79.5g/L, respectively, for the imbalance endpoint. Expressed as TRH concentration, the corresponding EC10, EC50, NOEC and LOEC were 19596.3, >22480.0, 22480 and >22480µg/L, respectively. The EL10, EL50, NOEL and LOEL for the biomass endpoint were 48.6, >79.5, 79.5 and >79.5g/L, respectively expressed as loading rate, and 13908.1, >22480.0, 22480 and >22480µg/L, respectively, expressed as TRH concentration.

The WAF control was not toxic to the juvenile fish.

10.3 Quality Assurance

The 7-d juvenile fish imbalance and growth test undertaken with the prepared WAFs met all quality assurance criteria. The percentage survival in the controls was 100%, which met the minimum control survival criteria of \geq 80%. Water quality parameters for control samples were also within test acceptability ranges (**Table 8.4**).

Table 8.4. Quality Assurance limits for the 7-d barramundi fish imbalance and growth test (1 August 2014).

QA Measure	Criterion	This Test
Control % unaffected	<u>></u> 80%	100%
Control mean growth	≥20% of initial weight	52.6%
Reference toxicant within cusum chart limits	n/a	17.3 mg NH₄⁺/L

11. References

APHA (1998) Standard Methods for the Examination of Water and Wastewater. 20th Ed. American Public Health Association, American Water Works Association and the Water Environment Federation, Washington, DC.

ASTM (1995) Standard guide for the acute toxicity tests with echinoid embryos. Designation E 1563-95. Annual Book of ASTM Standards, American Society for Testing Materials

Bidwell, J. R., Wheeler, K. W., & Burridge, T. R. (1998). Toxicant effects on the zoospore stage of the marine maroalga Ecklonia radiata (Phaeophyta:Laminariales). *Marine Ecology Progress Series.Vol 163*, 259-265.

Burridge, T. R., Karistanios, M., & Bidwell, J. (1999). The use of aquatic macrophyte ecotoxicological assays inmonitoring coastal effluent discharges in southern Australia. *Marine Pollution Bulletin. Vol* 39, 1-12.

Doyle, C.J., Pablo, F., Lim, R.P. and Hyne, R.V. (2003) Assessment of metal toxicity in sediment pore water from Lake Macquarie, Australia. *Arch. Environ. Contam. Toxicology*, 44(3): 343-350

Environment Canada (1992) Biological Test Method: Fertilisation Assay Using Echinoids Sea urchins and Sand dollars EPS 1/RM/27.

Environment Canada (1997) Environmental Assessments of Priority Substances Under the Canadian Environmental Protection Act. EPS 2/CC/3E

Howe, Pelli L., Reichelt-Brushett, Amanda J. and Clark, Malcolm W (2014) Development of a chronic, early life-stage sub-lethal toxicity test and recovery assessment for the tropical zooxanthellate sea anemone Aiptasia pulchella. *Ecotoxicology and Environmental Safety* 100: 138-147.

Krassoi, F.R. (1995) Salinity adjustments of effluents for use with marine bioassays: effects on the larvae of the doughboy scallop *Chlamys asperrimus* and the Sydney rock oyster *Saccostrea commercialis*. *Australasian journal of Ecotoxicology* 1:143-148

Rose A, Carruthers A-M, Stauber J, Lim R and Blockwell S. (2006). Development of an acute toxicity test with the marine copepod *Acartia sinjiensis*. *Australasian Journal of Ecotoxicology*, 12: 73-81.

Simon, J. and Laginestra, E. (1997) Bioassay for testing sublethal toxicity in effluents, using gametes of the sea urchin *Heliocidaris tuberculata*. National Pulp Mills Research Program, Technical Report No. 20, CSIRO, Canberra.

Stauber, J.L., Tsai, J., Vaughan, G.T., Peterson, S.M. and Brockbank, C.I. (1994). Algae as indicators of toxicity of the effluent from bleached eucalypt kraft papermills. National Pulp Mills Research Program Technical Report No.3, Canberra: CSIRO, 146pp.

USEPA (1996) Bivalve acute toxicity test (embryo larval) OPPTS 850.1055. *Ecological Effects Test Guidelines*. United States Environmental Protection Agency. Prevention, Pesticides and Toxic Substances. EPA/712/C-96/137

USEPA (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. Fifth Edition. United States Environmental Protection Agency, Office of Research and Development, Washington DC, EPA/600/4-90/027F

USEPA (2002b) Sheepshead minnow, *Cyprinodon variegatus*, larval survival and growth test. Method 1004.0. In: Short-term methods for estimating the chronic toxicity of effluents and receiving waters to marine and estuarine organisms. Third edition EPA-821-R-02-014. United States Environmental Protection Agency, Office of Research and Development, Washington FC, USA.

Sample Receipt Notification

Attention	: Celeste Wilson			
Client	: Jacobs Group (Austral 11th Floor, Durack Cer 263 Adelaide Terrace			
Telephone	: CXXWilson@skm.com : 08 9469 4438 : 08 9469 4488	.au		
Date	: 27/08/2015			
Re	: Receipt of Samples		Pages :	2
ESA Project	: PR1244	✓ For Review	Additional Documen	tation Required - Please Respond

Sample Delivery Details

Completed Chain of Custody accompanied samples:	YES
Samples received in apparent good condition and correctly bottled:	YES
Security seals on sample bottles and esky intact:	YES

Date samples received	: 27/08/2015
Time samples received	: 13:00
No. of samples received	: 1
Sample matrix	: Other
Sample temperature	: room temperature

Comments : Includes 2x20L Barossa Field Condensate (ESA ID# 7323)

Contact Details

Customer Services Officer :Tina MicevskaTelephone:61 2 9420 9481Facsimile:61 2 9420 9484Email:tmicevska@ecotox.com.au

Please contact customer services officer for all queries or issues regarding samples

Note that the chain-of-custody provides definitive information on the tests to be performed

Ecotox Services Australia ABN 45 094 714 904 Unit 27, 2 Chaplin Drive Lane Cove NSW 2066 Australia

Phone : 61 2 9420 9481 Fax : 61 2 9420 9484 Email : info@ecotox.com.au

Core Laboratories Australia Pty Ltd Reservoir Fluids Laboratory 24 Hour Service Subout and Chain of Custody Record	447-449 Belmont Avenue Kewdale, W.A. 6105 Phone: (61 8) 9353 3944 Fax: (61 8) 9353 1369 rd SCCR Number: 701
Client Information: Conoco Phillips Highway 60 & 123 (661 S Highway 123), Bartlesville, OK, United States - 74004.	Consignee Information: Ecotox Service Australia Pty Ltd 27/2 Chaplin Drive, Lane Cove, NSW, Australia - 2066.
Subout Authorized By: Brenton Chatfield Phone Number: 08 6363 2666	Contact: Tina Micevska Phone Number: 02 9420 9481
ounting Code:	-
Sub Sample Date Sample Type Sample Container Size Cyl No Pressure Temp (°F) (P) (P) (P) (P) (P) (P)	Sample Sample Sand Name Notes Volume (cc) Depth (Ft.)
2015003-29 27/12/2014 Condensate Can 20L 2015003-30 27/12/2014 Condensate Can 20L 0 0	18000 Surge Tank 18000 Surge Tank
Notes: 2x 20L cans of Dead Condensate	
Client: Conoco Phillips Well: Barossa-3 Job No: 2015003	
Kate Hughes Relinquishe	Relinquished By: Kate Hughes
Billing Code: Third Party Shipper: Enlog-RGM #AU20124283 Received By:	Date: 20-Aug-2015 11:20 AM d By: The CESA
Packaging/Handling: GO-15-429 Received Date:	Date: 27/8/15 5 1300
	# 7523
Page 1 of 1	

Summary of Analytical Results for Total Recoverable Hydrocarbons (TRH's)

Barossa- Fresh

	Sea urchin fert						
	Sea urchin larval						
	Milky oyster		7-d Barramundi				
Tests	Ecklonia	Isochrysis	Copepod	Sea Anemone			
Test Date	10/09/2015	11/09/2015	22/09/2015	27/10/2015			
Envirolab Report #	134814	134814	135588	137174			
Loading rate (g/L)		TRH's (C6-C36), μg/L					
0	0	0	0	0			
0.6	350	-	-	-			
1.2	720	650	-	-			
2.4	1673	1400	-	-			
4.8	3180	3248	3860	2492			
9.7	7160	6670	8560	7660			
19.3	14060	12850	15830	15840			
38.6	30860	27960	29770	28040			
77.2	69620	65830	68390	63990			

Barossa- Weathered

Tests	7-d Barramundi
Test Date	22/09/2015
Envirolab Report #	135588
	TRH's (C6-C36),
Loading rate (g/L)	μg/L
0	0
5	1410
9.9	2770
19.9	4850
39.8	11450
79.5	22480

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS 137174 Client: **Ecotox Services Australasia Pty Ltd** Unit 27, 2 Chaplin Dr Lane Cove NSW 2066 Attention: Tina Sample log in details: Your Reference: PR1244 No. of samples: 8 Waters Date samples received / completed instructions received 10/11/15 1 10/11/15 Analysis Details: Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

 Date results requested by: / Issue Date:
 17/11/15
 17/11/15

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Laboratory Manager

vTRH(C6-C10)/BTEXN in Water						
Our Reference:	UNITS	137174-1	137174-2	137174-3	137174-4	137174-5
Your Reference		FSWControl	WAF Control	Condensate	Condensate	Condensate
		27/10/15	27/10/15	6.3% 27/10/15	12.5% 27/10/15	25% 27/10/15
Date Sampled		27/10/2015	27/10/2015	27/10/2015	27/10/2015	27/10/2015
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	11/11/2015	11/11/2015	11/11/2015	11/11/2015	11/11/2015
Date analysed	-	13/11/2015	13/11/2015	13/11/2015	13/11/2015	13/11/2015
TRHC6 - C9	µg/L	<10	<10	2,400	7,300	15,000
TRHC6 - C 10	µg/L	<10	<10	2,800	7,600	16,000
TRHC6 - C10 less BTEX (F1)	µg/L	<10	<10	190	2,300	6,000
Benzene	μg/L	<1	<1	1,300	2,600	4,800
Toluene	µg/L	<1	<1	980	2,000	4,000
Ethylbenzene	µg/L	<1	<1	23	50	93
m+p-xylene	μg/L	<2	<2	230	480	860
o-xylene	μg/L	<1	<1	76	160	290
Naphthalene	µg/L	<1	<1	12	27	79
Surrogate Dibromofluoromethane	%	120	118	113	113	101
Surrogate toluene-d8	%	94	94	98	96	99
Surrogate 4-BFB	%	89	87	88	88	102

vTRH(C6-C10)/BTEXN in Water			
Our Reference:	UNITS	137174-6	137174-7
Your Reference		Condensate	Condensate
		50% 27/10/15	100%
Data Sampled		27/10/2015	27/10/15 27/10/2015
Date Sampled		27/10/2015 Water	27/10/2015 Water
		vvater	water
Date extracted	-	11/11/2015	11/11/2015
Date analysed	-	13/11/2015	13/11/2015
TRHC6 - C9	µg/L	26,000	60,000
TRHC6 - C 10	µg/L	27,000	62,000
TRHC6 - C10 less BTEX (F1)	µg/L	4,300	7,000
Benzene	µg/L	11,000	27,000
Toluene	µg/L	8,700	21,000
Ethylbenzene	µg/L	210	490
m+p-xylene	µg/L	2,100	5,000
o-xylene	µg/L	650	1,500
Naphthalene	µg/L	110	210
Surrogate Dibromofluoromethane	%	113	111
Surrogate toluene-d8	%	98	97
Surrogate 4-BFB	%	88	90

svTRH (C10-C40) in Water						
Our Reference:	UNITS	137174-1	137174-2	137174-3	137174-4	137174-5
Your Reference		FSW Control	WAF Control	Condensate	Condensate	Condensate
		27/10/15	27/10/15	6.3% 27/10/15	12.5% 27/10/15	25% 27/10/15
Date Sampled		27/10/2015	27/10/2015	27/10/2015	27/10/2015	27/10/2015
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	13/11/2015	13/11/2015	13/11/2015	13/11/2015	13/11/2015
Date analysed	-	15/11/2015	15/11/2015	15/11/2015	15/11/2015	15/11/2015
TRHC 10 - C 14	µg/L	<50	<50	92	190	410
TRHC 15 - C28	µg/L	<100	<100	<100	170	320
TRHC29 - C36	µg/L	<100	<100	<100	<100	110
TRH>C10 - C16	µg/L	<50	<50	74	160	330
TRH>C10 - C16 less Naphthalene (F2)	µg/L	<50	<50	62	130	250
TRH>C16 - C34	μg/L	<100	<100	100	160	360
TRH>C34 - C40	µg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	87	95	89	93	98

svTRH (C10-C40) in Water			
Our Reference:	UNITS	137174-6	137174-7
Your Reference		Condensate	Condensate
		50% 27/10/15	100%
			27/10/15
Date Sampled		27/10/2015	27/10/2015
Type of sample		Water	Water
Date extracted	-	13/11/2015	13/11/2015
Date analysed	-	15/11/2015	15/11/2015
TRHC 10 - C 14	µg/L	860	1,800
TRHC 15 - C28	µg/L	900	1,700
TRHC29 - C36	µg/L	280	490
TRH>C10 - C16	µg/L	720	1,400
TRH>C10 - C16 less Naphthalene (F2)	µg/L	610	1,200
TRH>C16 - C34	µg/L	1,000	1,900
TRH>C34 - C40	µg/L	<100	140
Surrogate o-Terphenyl	%	106	96

PAHs in Water						
Our Reference:	UNITS	137174-1	137174-2	137174-3	137174-4	137174-5
Your Reference		FSWControl	WAF Control	Condensate	Condensate	Condensate
		27/10/15	27/10/15	6.3% 27/10/15	12.5% 27/10/15	25% 27/10/15
Date Sampled		27/10/2015	27/10/2015	27/10/2015	27/10/2015	27/10/2015
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	13/11/2015	13/11/2015	13/11/2015	13/11/2015	13/11/2015
Date analysed	-	13/11/2015	13/11/2015	13/11/2015	13/11/2015	13/11/2015
Naphthalene	µg/L	<1	<1	11	23	50
Acenaphthylene	µg/L	<1	<1	<1	<1	<1
Acenaphthene	µg/L	<1	<1	<1	<1	<1
Fluorene	µg/L	<1	<1	<1	<1	<1
Phenanthrene	µg/L	<1	<1	<1	<1	<1
Anthracene	µg/L	<1	<1	<1	<1	<1
Fluoranthene	µg/L	<1	<1	<1	<1	<1
Pyrene	µg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	µg/L	<1	<1	<1	<1	<1
Chrysene	µg/L	<1	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	µg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	µg/L	<1	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	µg/L	<1	<1	<1	<1	<1
Benzo(a)pyrene TEQ	µg/L	<5	<5	<5	<5	<5
Total +ve PAH's	µg/L	NIL(+)VE	NIL(+)VE	11	23	50
Surrogate p-Terphenyl-d14	%	84	88	87	94	89

PAHs in Water Our Reference: Your Reference	UNITS	137174-6 Condensate 50% 27/10/15	137174-7 Condensate 100% 27/10/15
Date Sampled Type of sample		27/10/2015 Water	27/10/2015 Water
Date extracted	-	13/11/2015	13/11/2015
Date analysed	-	13/11/2015	13/11/2015
Naphthalene	µg/L	91	250
Acenaphthylene	µg/L	<1	<1
Acenaphthene	µg/L	<1	<1
Fluorene	µg/L	2	3
Phenanthrene	µg/L	2	2
Anthracene	µg/L	<1	<1
Fluoranthene	µg/L	<1	<1
Pyrene	µg/L	<1	<1
Benzo(a)anthracene	µg/L	<1	<1
Chrysene	µg/L	<1	<1
Benzo(b,j+k)fluoranthene	µg/L	<2	<2
Benzo(a)pyrene	µg/L	<1	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1
Benzo(g,h,i)perylene	µg/L	<1	<1
Benzo(a)pyrene TEQ	µg/L	<5	<5
Total +ve PAH's	µg/L	95	260
Surrogate p-Terphenyl-d14	%	94	80

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.

		Clie	ent Referenc	e: Pl	R1244			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Water						Base II Duplicate II %RPD		
Date extracted	-			11/11/2 015	137174-1	11/11/2015 11/11/2015	LCS-W3	11/11/2015
Date analysed	-			13/11/2 015	137174-1	13/11/2015 13/11/2015	LCS-W3	13/11/2015
TRHC6 - C9	µg/L	10	Org-016	<10	137174-1	<10 <10	LCS-W3	94%
TRHC6 - C10	µg/L	10	Org-016	<10	137174-1	<10 <10	LCS-W3	94%
Benzene	µg/L	1	Org-016	<1	137174-1	<1 <1	LCS-W3	98%
Toluene	µg/L	1	Org-016	<1	137174-1	<1 <1	LCS-W3	99%
Ethylbenzene	µg/L	1	Org-016	<1	137174-1	<1 <1	LCS-W3	101%
m+p-xylene	µg/L	2	Org-016	2	137174-1	<2 <2	LCS-W3	86%
o-xylene	µg/L	1	Org-016	<1	137174-1	<1 <1	LCS-W3	106%
Naphthalene	µg/L	1	Org-013	<1	137174-1	<1 <1	[NR]	[NR]
<i>Surrogate</i> Dibromofluoromethane	%		Org-016	110	137174-1	120 127 RPD:6	LCS-W3	97%
Surrogate toluene-d8	%		Org-016	95	137174-1	94 90 RPD:4	LCS-W3	101%
Surrogate 4-BFB	%		Org-016	88	137174-1	89 80 RPD:11	LCS-W3	106%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH(C10-C40)in Water						Base II Duplicate II %RPD		
Date extracted	-			13/11/2 015	[NT]	[NT]	LCS-W1	13/11/2015
Date analysed	-			13/11/2 015	[NT]	[NT]	LCS-W1	13/11/2015
TRHC 10 - C 14	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	107%
TRHC 15 - C28	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	104%
TRHC 29 - C 36	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	93%
TRH>C10 - C16	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	107%
TRH>C16 - C34	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	104%
TRH>C34 - C40	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	93%
Surrogate o-Terphenyl	%		Org-003	72	[NT]	[NT]	LCS-W1	125%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II %RPD		
Date extracted	-			13/11/2 015	[NT]	[NT]	LCS-W1	13/11/2015
Date analysed	-			13/11/2 015	[NT]	[TN]	LCS-W1	13/11/2015
Naphthalene	µg/L	1	Org-012	<1	[NT]	[NT]	LCS-W1	91%
Acenaphthylene	µg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	µg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Fluorene	µg/L	1	Org-012	<1	[NT]	[NT]	LCS-W1	111%
Phenanthrene	µg/L	1	Org-012	<1	[NT]	[NT]	LCS-W1	98%
Anthracene	µg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	μg/L	1	Org-012	<1	[NT]	[NT]	LCS-W1	101%
Pyrene	µg/L	1	Org-012	<1	[NT]	[NT]	LCS-W1	106%
Benzo(a)anthracene	μg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]

Client Reference: PR1244										
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery		
PAHs in Water						Base II Duplicate II % RPD				
Chrysene	µg/L	1	Org-012	<1	[NT]	[NT]	LCS-W1	111%		
Benzo(b,j+k) fluoranthene	µg/L	2	Org-012	2	[NT]	[NT]	[NR]	[NR]		
Benzo(a)pyrene	µg/L	1	Org-012	<1	[NT]	[NT]	LCS-W1	97%		
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]		
Dibenzo(a,h)anthracene	µg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]		
Benzo(g,h,i)perylene	µg/L	1	Org-012	<1	[NT]	[NT]	[NR]	[NR]		
<i>Surrogate p</i> -Terphenyl- d14	%		Org-012	83	[NT]	[NT]	LCS-W1	92%		

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS 135588 Client: **Ecotox Services Australasia Pty Ltd** Unit 27, 2 Chaplin Dr Lane Cove NSW 2066 Attention: Tina Sample log in details: Your Reference: PR1244 No. of samples: 12 Waters Date samples received / completed instructions received 08/10/15 1 08/10/15

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 15/10/15
 / 14/10/15

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Laboratory Manager

vTRH(C6-C10)/BTEXN in Water						
Our Reference:	UNITS	135588-1	135588-2	135588-3	135588-4	135588-5
Your Reference		FSW Control	WAF Control	Condensate	Condensate	Condensate
		22/09/15	22/09/15	6.3% 22/09/15	12.5% 22/09/15	25% 22/09/15
Date Sampled		22/09/2015	22/09/2015	22/09/2015	22/09/2015	22/09/2015
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	12/10/2015	12/10/2015	12/10/2015	12/10/2015	12/10/2015
Date analysed	-	12/10/2015	12/10/2015	12/10/2015	12/10/2015	12/10/2015
TRHC6 - C9	µg/L	<10	<10	3,400	7,500	14,000
TRHC6 - C 10	µg/L	<10	<10	3,400	7,700	14,000
TRHC6 - C10 less BTEX (F1)	µg/L	<10	<10	480	1,800	2,700
Benzene	µg/L	<1	<1	1,400	2,800	5,500
Toluene	µg/L	<1	<1	1,100	2,300	4,400
Ethylbenzene	µg/L	<1	<1	23	51	90
m+p-xylene	µg/L	<2	<2	300	560	990
o-xylene	µg/L	<1	<1	93	180	330
Naphthalene	µg/L	<1	<1	28	63	110
Surrogate Dibromofluoromethane	%	103	103	101	99	99
Surrogate toluene-d8	%	87	87	94	97	98
Surrogate 4-BFB	%	88	87	102	102	102

vTRH(C6-C10)/BTEXN in Water						
Our Reference:	UNITS	135588-6	135588-7	135588-8	135588-9	135588-10
Your Reference		Condensate 50% 22/09/15	Condensate 100% 22/09/15	Condensate weathered 6.3% 22/09/15	Condensate weathered 12.5% 22/09/15	Condensate weathered 25% 22/09/15
Date Sampled Type of sample		22/09/2015 Water	22/09/2015 Water	22/09/2015 Water	22/09/2015 Water	22/09/2015 Water
Date extracted	-	12/10/2015	12/10/2015	12/10/2015	12/10/2015	12/10/2015
Date analysed	-	12/10/2015	12/10/2015	12/10/2015	12/10/2015	13/10/2015
TRHC6 - C9	µg/L	26,000	60,000	1,100	2,200	3,600
TRHC6 - C 10	µg/L	26,000	60,000	1,300	2,500	4,000
TRHC6 - C10 less BTEX (F1)	µg/L	4,000	11,000	450	850	1,000
Benzene	µg/L	11,000	26,000	35	64	140
Toluene	µg/L	8,200	19,000	450	870	1,500
Ethylbenzene	µg/L	200	290	26	47	87
m+p-xylene	µg/L	1,900	2,900	250	490	900
o-xylene	µg/L	660	960	89	180	330
Naphthalene	µg/L	220	210	48	82	140
Surrogate Dibromofluoromethane	%	98	98	99	97	96
Surrogate toluene-d8	%	100	100	101	103	107
Surrogate 4-BFB	%	102	101	109	108	108

vTRH(C6-C10)/BTEXN in Water			
Our Reference:	UNITS	135588-11	135588-12
Your Reference		Condensate	Condensate
		weathered	weathered
		50% 22/09/15	100% 22/09/15
Date Sampled		22/09/2015	22/09/2015
Type of sample		Water	Water
Date extracted	-	12/10/2015	12/10/2015
Date analysed	-	13/10/2015	13/10/2015
TRHC6 - C9	µg/L	7,900	18,000
TRHC6 - C 10	µg/L	8,700	19,000
TRHC6 - C10 less BTEX (F1)	µg/L	2,600	5,200
Benzene	µg/L	270	630
Toluene	µg/L	3,200	7,400
Ethylbenzene	µg/L	190	400
m+p-xylene	µg/L	1,800	4,000
o-xylene	μg/L	650	1,400
Naphthalene	μg/L	240	400
Surrogate Dibromofluoromethane	%	100	89
Surrogate toluene-d8	%	135	101
Surrogate 4-BFB	%	106	107

svTRH (C10-C40) in Water						
Our Reference:	UNITS	135588-1	135588-2	135588-3	135588-4	135588-5
Your Reference		FSW Control 22/09/15	WAF Control 22/09/15	Condensate 6.3% 22/09/15	Condensate 12.5% 22/09/15	Condensate 25% 22/09/15
Date Sampled		22/09/2015	22/09/2015	22/09/2015	22/09/2015	22/09/2015
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	12/10/2015	12/10/2015	12/10/2015	12/10/2015	12/10/2015
Date analysed	-	12/10/2015	12/10/2015	13/10/2015	13/10/2015	13/10/2015
TRHC 10 - C 14	µg/L	<50	<50	240	460	780
TRHC 15 - C28	µg/L	<100	<100	220	600	910
TRHC29 - C36	μg/L	<100	<100	<100	<100	140
TRH>C10 - C16	µg/L	<50	<50	230	480	780
TRH>C10 - C16 less Naphthalene (F2)	µg/L	<50	<50	200	420	670
TRH>C16 - C34	µg/L	<100	<100	170	540	830
TRH>C34 - C40	µg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	73	87	106	120	118
svTRH (C10-C40) in Water						
Our Reference:	UNITS	135588-6	135588-7	135588-8	135588-9	135588-10
Your Reference		Condensate 50% 22/09/15	Condensate 100% 22/09/15	Condensate weathered 6.3% 22/09/15	Condensate weathered 12.5% 22/09/15	Condensate weathered 25% 22/09/15
Date Sampled		22/09/2015	22/09/2015	22/09/2015	22/09/2015	22/09/2015
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	12/10/2015	12/10/2015	12/10/2015	12/10/2015	12/10/2015
Date analysed	-	13/10/2015	13/10/2015	13/10/2015	13/10/2015	13/10/2015
TRHC 10 - C 14	µg/L	1,400	3,000	160	270	490
TRHC 15 - C28	µg/L	2,100	4,900	150	300	760
TRHC 29 - C 36	µg/L	270	490	<100	<100	<100
TRH>C10 - C16	µg/L	1,500	3,000	120	220	400
TRH>C10 - C16 less Naphthalene (F2)	µg/L	1,300	2,800	76	140	260
TRH>C16 - C34	µg/L	1,900	4,400	150	280	750
TRH>C34 - C40	µg/L	<100	170	<100	<100	<100
Surrogate o-Terphenyl	%	133	#	98	88	92

svTRH (C10-C40) in Water			
Our Reference:	UNITS	135588-11	135588-12
Your Reference		Condensate	Condensate
		weathered	weathered
		50% 22/09/15	100% 22/09/15
Date Sampled		22/09/2015	22/09/2015
Type of sample		Water	Water
Date extracted	-	12/10/2015	12/10/2015
Date analysed	-	13/10/2015	13/10/2015
TRHC 10 - C 14	µg/L	1,200	1,600
TRHC 15 - C28	µg/L	2,200	2,700
TRHC29 - C36	µg/L	150	180
TRH>C 10 - C 16	µg/L	990	1,200
TRH>C10 - C16 less Naphthalene (F2)	µg/L	750	800
TRH>C16 - C34	µg/L	2,100	2,600
TRH>C34 - C40	µg/L	<100	<100
Surrogate o-Terphenyl	%	#	#

PAHs in Water						
Our Reference:	UNITS	135588-1	135588-2	135588-3	135588-4	135588-5
Your Reference		FSW Control	WAF Control	Condensate	Condensate	Condensate
		22/09/15	22/09/15	6.3% 22/09/15	12.5% 22/09/15	25% 22/09/15
Date Sampled		22/09/2015	22/09/2015	22/09/2015	22/09/2015	22/09/2015
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	12/10/2015	12/10/2015	12/10/2015	12/10/2015	12/10/2015
Date analysed	-	12/10/2015	12/10/2015	12/10/2015	12/10/2015	12/10/2015
Naphthalene	µg/L	<1	<1	18	34	65
Acenaphthylene	µg/L	<1	<1	<1	<1	<1
Acenaphthene	µg/L	<1	<1	<1	<1	<1
Fluorene	µg/L	<1	<1	<1	1	3
Phenanthrene	µg/L	<1	<1	1	2	3
Anthracene	µg/L	<1	<1	<1	<1	<1
Fluoranthene	µg/L	<1	<1	<1	<1	<1
Pyrene	µg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	µg/L	<1	<1	<1	<1	<1
Chrysene	µg/L	<1	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	µg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	µg/L	<1	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	µg/L	<1	<1	<1	<1	<1
Benzo(a)pyrene TEQ	µg/L	<5	<5	<5	<5	<5
Total +ve PAH's	µg/L	NIL(+)VE	NIL(+)VE	19	37	70
Surrogate p-Terphenyl-d14	%	82	103	96	92	90

PAHs in Water						
Our Reference:	UNITS	135588-6	135588-7	135588-8	135588-9	135588-10
Your Reference		Condensate	Condensate	Condensate weathered	Condensate weathered	Condensate weathered
		50% 22/09/15	100% 22/09/15	6.3%	12.5%	25% 22/09/15
				22/09/15	22/09/15	
Date Sampled		22/09/2015	22/09/2015	22/09/2015	22/09/2015	22/09/2015
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	12/10/2015	12/10/2015	12/10/2015	12/10/2015	12/10/2015
Date analysed	-	12/10/2015	12/10/2015	12/10/2015	12/10/2015	12/10/2015
Naphthalene	µg/L	110	220	22	45	69
Acenaphthylene	µg/L	<1	<1	<1	<1	<1
Acenaphthene	µg/L	<1	<1	<1	<1	<1
Fluorene	µg/L	4	5	<1	<1	2
Phenanthrene	µg/L	4	5	<1	<1	1
Anthracene	µg/L	<1	<1	<1	<1	<1
Fluoranthene	µg/L	<1	<1	<1	<1	<1
Pyrene	μg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	µg/L	<1	<1	<1	<1	<1
Chrysene	µg/L	<1	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	µg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	µg/L	<1	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	µg/L	<1	<1	<1	<1	<1
Benzo(a)pyrene TEQ	µg/L	<5	<5	<5	<5	<5
Total +ve PAH's	µg/L	120	230	22	45	72
Surrogate p-Terphenyl-d14	%	92	74	93	91	83

PAHs in Water			
Our Reference:	UNITS	135588-11	135588-12
Your Reference		Condensate weathered	Condensate weathered
		50% 22/09/15	100%
			22/09/15
Date Sampled		22/09/2015	22/09/2015
Type of sample		Water	Water
Date extracted	-	12/10/2015	12/10/2015
Date analysed	-	12/10/2015	12/10/2015
Naphthalene	µg/L	130	220
Acenaphthylene	µg/L	<1	<1
Acenaphthene	µg/L	<1	<1
Fluorene	µg/L	3	4
Phenanthrene	µg/L	2	2
Anthracene	µg/L	<1	<1
Fluoranthene	μg/L	<1	<1
Pyrene	μg/L	<1	<1
Benzo(a)anthracene	μg/L	<1	<1
Chrysene	μg/L	<1	<1
Benzo(b,j+k)fluoranthene	μg/L	<2	<2
Benzo(a)pyrene	μg/L	<1	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1
Benzo(a)pyrene TEQ	μg/L	<5	<5
Total +ve PAH's	μg/L	140	230
Surrogate p-Terphenyl-d14	%	77	62

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.

		Clie	ent Referenc	e: P	R1244			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Water						Base II Duplicate II %RPD		
Date extracted	-			12/10/2 015	135588-1	12/10/2015 13/10/2015	LCS-W1	12/10/2015
Date analysed	-			12/10/2 015	135588-1	12/10/2015 14/10/2015	LCS-W1	12/10/2015
TRHC6 - C9	µg/L	10	Org-016	<10	135588-1	<10 <10	LCS-W1	108%
TRHC6 - C 10	µg/L	10	Org-016	<10	135588-1	<10 <10	LCS-W1	108%
Benzene	µg/L	1	Org-016	<1	135588-1	<1 <1	LCS-W1	107%
Toluene	µg/L	1	Org-016	<1	135588-1	<1 <1	LCS-W1	98%
Ethylbenzene	µg/L	1	Org-016	<1	135588-1	<1 <1	LCS-W1	107%
m+p-xylene	µg/L	2	Org-016	< 2	135588-1	<2 <2	LCS-W1	113%
o-xylene	µg/L	1	Org-016	<1	135588-1	<1 <1	LCS-W1	114%
Naphthalene	µg/L	1	Org-013	<1	135588-1	<1 <1	[NR]	[NR]
<i>Surrogate</i> Dibromofluoromethane	%		Org-016	101	135588-1	103 102 RPD:1	LCS-W1	102%
Surrogate toluene-d8	%		Org-016	88	135588-1	87 92 RPD:6	LCS-W1	90%
Surrogate 4-BFB	%		Org-016	90	135588-1	88 88 RPD:0	LCS-W1	104%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH(C10-C40)in Water						Base II Duplicate II %RPD		
Date extracted	-			12/10/2 015	[NT]	[TM]	LCS-W3	12/10/2015
Date analysed	-			12/10/2 015	[NT]	[TN]	LCS-W3	12/10/2015
TRHC 10 - C 14	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W3	100%
TRHC 15 - C28	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W3	83%
TRHC 29 - C 36	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W3	83%
TRH>C10 - C16	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W3	100%
TRH>C16 - C34	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W3	83%
TRH>C34 - C40	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W3	83%
Surrogate o-Terphenyl	%		Org-003	84	[NT]	[NT]	LCS-W3	95%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II %RPD		
Date extracted	-			12/10/2 015	[NT]	[NT]	LCS-W3	12/10/2015
Date analysed	-			12/10/2 015	[NT]	[TN]	LCS-W3	12/10/2015
Naphthalene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W3	77%
Acenaphthylene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluorene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W3	70%
Phenanthrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W3	78%

		Clie	ent Referenc	e: P	R1244			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II %RPD		
Anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W3	77%
Pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W3	79%
Benzo(a)anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Chrysene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W3	100%
Benzo(b,j+k) fluoranthene	µg/L	2	Org-012 subset	2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W3	94%
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate p</i> -Terphenyl- d14	%		Org-012 subset	95	[NT]	[NT]	LCS-W3	80%

Report Comments:

TRH_W(semi vol):# Percent recovery is not possible to report as the high concentration of analytes in the sample/s have caused interference.

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NA: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

134814

Client: Ecotox Services Australasia Pty Ltd Unit 27, 2 Chaplin Dr Lane Cove NSW 2066

Attention: Tina

Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received

PR1244 19 Waters 23/09/2015

/ 23/09/2015

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 30/09/15
 /
 30/09/15

 Date of Preliminary Report:
 Not Issued
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.
 Accredited for compliance with ISO/IEC 17025.
 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Laboratory Manager

vTRH(C6-C10)/BTEXN in Water						
Our Reference:	UNITS	134814-1	134814-2	134814-3	134814-4	134814-5
Your Reference		FSW Control	WAF Control	Condensate	Condensate	Condensate
		10/9/2015	10/9/2015	0.8%	1.6% 10/9/2015	3.1% 10/9/2015
Date Sampled		10/09/2015	10/09/2015	10/9/2015	10/9/2015	10/9/2015
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	28/09/2015	28/09/2015	28/09/2015	28/09/2015	28/09/2015
Date analysed	-	29/09/2015	29/09/2015	29/09/2015	29/09/2015	29/09/2015
TRHC6 - C9	µg/L	<10	<10	350	720	1,500
TRHC6 - C 10	µg/L	<10	<10	370	770	1,600
TRHC6 - C10 less BTEX (F1)	µg/L	<10	<10	56	110	250
Benzene	µg/L	<1	<1	160	330	650
Toluene	µg/L	<1	<1	120	260	550
Ethylbenzene	µg/L	<1	<1	2	5	11
m+p-xylene	µg/L	<2	<2	23	49	100
o-xylene	µg/L	<1	<1	8	17	35
Naphthalene	µg/L	<1	<1	2	4	9
Surrogate Dibromofluoromethane	%	98	98	98	96	96
Surrogate toluene-d8	%	102	100	100	101	100
Surrogate 4-BFB	%	97	96	98	99	100
		1	1	1	1	1
vTRH(C6-C10)/BTEXN in Water						
Our Reference:	UNITS	134814-6	134814-7	134814-8	134814-9	134814-10

Our Reference:	UNITS	134814-6	134814-7	134814-8	134814-9	134814-10
Your Reference		Condensate 6.3%	Condensate 12.5%	Condensate 25%	Condensate 50%	Condensate 100%
		10/9/2015	10/9/2015	10/9/2015	10/9/2015	10/9/2015
Date Sampled		10/09/2015	10/09/2015	10/09/2015	10/09/2015	10/09/2015
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	28/09/2015	28/09/2015	28/09/2015	28/09/2015	28/09/2015
Date analysed	-	29/09/2015	29/09/2015	29/09/2015	29/09/2015	29/09/2015
TRHC6 - C9	µg/L	2,900	6,600	13,000	29,000	66,000
TRHC6 - C 10	µg/L	3,000	6,800	13,000	29,000	66,000
TRHC6 - C10 less BTEX (F1)	µg/L	340	1,200	2,000	4,800	9,800
Benzene	µg/L	1,300	2,700	5,400	12,000	28,000
Toluene	µg/L	1,100	2,200	4,400	9,600	22,000
Ethylbenzene	µg/L	23	47	81	180	430
m+p-xylene	µg/L	170	460	850	1,800	4,400
o-xylene	µg/L	71	150	280	600	1,400
Naphthalene	µg/L	19	21	30	50	110
Surrogate Dibromofluoromethane	%	97	97	99	98	98
Surrogate toluene-d8	%	99	100	99	98	97
Surrogate 4-BFB	%	101	99	95	98	96

	-	1	1	1	1	I
vTRH(C6-C10)/BTEXN in Water						
Our Reference:	UNITS	134814-11	134814-12	134814-13	134814-14	134814-15
Your Reference		FSW Control 11/9/2015	WAF Control 11/9/2015	Condensate 1.6%	Condensate 3.1%	Condensate 6.3%
		11/0/2010	11/0/2010	11/9/2015	11/9/2015	11/9/2015
Date Sampled		11/09/2015	11/09/2015	11/09/2015	11/09/2015	11/09/2015
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	28/09/2015	28/09/2015	28/09/2015	28/09/2015	28/09/2015
Date analysed	-	29/09/2015	29/09/2015	29/09/2015	29/09/2015	29/09/2015
TRHC6 - C9	μg/L	<10	<10	650	1,400	3,000
TRHC6 - C10	μg/L	<10	<10	690	1,400	3,100
TRHC6 - C10 less BTEX (F1)	μg/L	<10	<10	110	170	670
Benzene	μg/L	<1	<1	290	600	1,200
Toluene	μg/L	<1	<1	230	500	980
Ethylbenzene	µg/L	<1	<1	4	9	21
m+p-xylene	µg/L	<2	<2	43	89	160
o-xylene	µg/L	<1	<1	15	31	65
Naphthalene	µg/L	<1	<1	4	7	17
Surrogate Dibromofluoromethane	%	100	100	97	97	96
Surrogate toluene-d8	%	99	99	102	100	99
Surrogate 4-BFB	%	96	95	100	101	102
		1	1	1	1	
vTRH(C6-C10)/BTEXN in Water Our Reference:	UNITS	134814-16	134814-17	134814-18	134814-19	
Your Reference		Condensate	Condensate	Condensate	Condensate	
		12.5%	25%	50%	100%	
		11/9/2015	11/9/2015	11/9/2015	11/9/2015	
Date Sampled		11/09/2015	11/09/2015	11/09/2015	11/09/2015	
Type of sample		Water	Water	Water	Water	_
Date extracted	-	28/09/2015	28/09/2015	28/09/2015	28/09/2015	
Dateanalysed	-	29/09/2015	29/09/2015	29/09/2015	29/09/2015	
TRHC6 - C9	μg/L	6,200	12,000	26,000	62,000	
TRHC6 - C10	μg/L	6,400	12,000	26,000	62,000	
TRHC6 - C10 less BTEX (F1)	μg/L	1,200	1,600	3,900	8,500	
Benzene	µg/L	2,500	5,100	11,000	27,000	
Toluene	µg/L	2,100	4,100	8,700	21,000	
Ethylbenzene	µg/L	42	78	160	380	
m+p-xylene	µg/L	410	820	1,700	3,900	
o-xylene	µg/L	140	270	530	1,200	
Naphthalene	µg/L	19	33	43	110	
Surrogate Dibromofluoromethane	%	97	100	100	98	
	1	1	1	1	1	1
Surrogate toluene-d8	%	99	99	98	97	

	1					
svTRH (C10-C40) in Water Our Reference:	UNITS	134814-1	134814-2	134814-3	134814-4	134814-5
Your Reference		FSW Control	WAF Control	Condensate	Condensate	Condensate
		10/9/2015	10/9/2015	0.8%	1.6%	3.1%
				10/9/2015	10/9/2015	10/9/2015
Date Sampled		10/09/2015	10/09/2015	10/09/2015	10/09/2015	10/09/2015
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015	24/09/2015
Date analysed	-	25/09/2015	25/09/2015	25/09/2015	25/09/2015	25/09/2015
TRHC 10 - C 14	µg/L	<50	<50	<50	<50	53
TRHC 15 - C28	μg/L	<100	<100	<100	<100	120
TRHC 29 - C 36	µg/L	<100	<100	<100	<100	<100
TRH>C10 - C16	μg/L	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	µg/L	<50	<50	<50	<50	<50
TRH>C16 - C34	µg/L	<100	<100	<100	<100	120
TRH>C34 - C40	µg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	87	79	83	88	97
	1	1				
svTRH (C10-C40) in Water						1010110
Our Reference: Your Reference	UNITS	134814-6 Condensate	134814-7 Condensate	134814-8 Condensate	134814-9 Condensate	134814-10 Condensate
Your Reference		6.3%	12.5%	25%	50%	100%
		10/9/2015	10/9/2015	10/9/2015	10/9/2015	10/9/2015
Date Sampled		10/09/2015	10/09/2015	10/09/2015	10/09/2015	10/09/2015
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015	24/09/2015
Date analysed	-	25/09/2015	25/09/2015	25/09/2015	25/09/2015	25/09/2015
TRHC 10 - C 14	µg/L	120	240	490	880	1,900
TRHC 15 - C 28	µg/L	160	320	570	980	1,600
TRHC29 - C36	µg/L	<100	<100	<100	<100	120
TRH>C 10 - C 16	µg/L	98	200	380	660	1,300
TRH>C10 - C16 less Naphthalene (F2)	µg/L	79	180	350	610	1,200
TRH>C16 - C34	µg/L	150	300	540	930	1,600
TRH>C34 - C40	µg/L	<100	<100	<100	<100	<100
	%	95	93	94	84	84

svTRH (C10-C40) in Water						
Our Reference:	UNITS	134814-11	134814-12	134814-13	134814-14	134814-15
Your Reference		FSW Control 11/9/2015	WAF Control 11/9/2015	Condensate 1.6% 11/9/2015	Condensate 3.1% 11/9/2015	Condensate 6.3% 11/9/2015
Date Sampled		11/09/2015	11/09/2015	11/09/2015	11/09/2015	11/09/2015
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015	24/09/2015
Date analysed	-	29/09/2015	29/09/2015	29/09/2015	29/09/2015	29/09/2015
TRHC 10 - C 14	µg/L	<50	<50	<50	<50	78
TRHC 15 - C28	µg/L	<100	<100	<100	<100	170
TRHC29 - C36	µg/L	<100	<100	<100	<100	<100
TRH>C10 - C16	µg/L	<50	<50	<50	<50	63
TRH>C10 - C16 less Naphthalene (F2)	µg/L	<50	<50	<50	<50	<50
TRH>C16 - C34	µg/L	<100	<100	<100	<100	170
TRH>C34 - C40	µg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	102	98	91	100	83
svTRH (C10-C40) in Water						7
Our Reference:	UNITS	134814-16	134814-17	134814-18	134814-19	

svikh (Ciu-C40) in water					
Our Reference:	UNITS	134814-16	134814-17	134814-18	134814-19
Your Reference		Condensate	Condensate	Condensate	Condensate
		12.5%	25%	50%	100%
		11/9/2015	11/9/2015	11/9/2015	11/9/2015
Date Sampled		11/09/2015	11/09/2015	11/09/2015	11/09/2015
Type of sample		Water	Water	Water	Water
Date extracted	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015
Date analysed	-	29/09/2015	29/09/2015	29/09/2015	29/09/2015
TRHC 10 - C 14	µg/L	190	410	960	1,900
TRHC 15 - C28	µg/L	280	440	1,000	1,800
TRHC29 - C36	µg/L	<100	<100	<100	130
TRH>C10 - C16	µg/L	160	320	750	1,400
TRH>C10 - C16 less Naphthalene (F2)	µg/L	140	290	710	1,300
TRH>C16 - C34	µg/L	260	410	950	1,700
TRH>C34 - C40	µg/L	<100	<100	<100	<100
Surrogate o-Terphenyl	%	99	99	128	101

PAHs in Water						
Our Reference:	UNITS	134814-1	134814-2	134814-3	134814-4	134814-5
Your Reference		FSW Control 10/9/2015	WAF Control 10/9/2015	Condensate 0.8%	Condensate 1.6%	Condensate 3.1%
		10/9/2013	10/9/2013	10/9/2015	10/9/2015	10/9/2015
Date Sampled		10/09/2015	10/09/2015	10/09/2015	10/09/2015	10/09/2015
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015	24/09/2015
Date analysed	-	25/09/2015	25/09/2015	25/09/2015	25/09/2015	25/09/2015
Naphthalene	µg/L	<1	<1	2	4	8
Acenaphthylene	μg/L	<1	<1	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1	<1	<1
Fluorene	μg/L	<1	<1	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1	<1	<1
Anthracene	µg/L	<1	<1	<1	<1	<1
Fluoranthene	µg/L	<1	<1	<1	<1	<1
Pyrene	µg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1	<1
Chrysene	μg/L	<1	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	µg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	µg/L	<1	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	µg/L	<1	<1	<1	<1	<1
Benzo(a)pyrene TEQ	µg/L	<5	<5	<5	<5	<5
Total +ve PAH's	µg/L	NIL(+)VE	NIL(+)VE	2.1	4.3	8.2
Surrogate p-Terphenyl-d14	%	93	89	87	93	91

PAHs in Water						
Our Reference:	UNITS	134814-6	134814-7	134814-8	134814-9	134814-10
Your Reference		Condensate	Condensate	Condensate	Condensate	Condensate
		6.3% 10/9/2015	12.5% 10/9/2015	25% 10/9/2015	50% 10/9/2015	100% 10/9/2015
Date Sampled		10/09/2015	10/09/2015	10/09/2015	10/09/2015	10/09/2015
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	24/09/2015	24/09/2015	24/09/2015	24/09/2015	24/09/2015
Date analysed	-	25/09/2015	25/09/2015	25/09/2015	25/09/2015	25/09/2015
Naphthalene	µg/L	16	29	58	110	220
Acenaphthylene	µg/L	<1	<1	<1	<1	<1
Acenaphthene	µg/L	<1	<1	<1	<1	<1
Fluorene	µg/L	<1	<1	1	2	4
Phenanthrene	µg/L	<1	<1	1	2	3
Anthracene	µg/L	<1	<1	<1	<1	<1
Fluoranthene	µg/L	<1	<1	<1	<1	<1
Pyrene	µg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	µg/L	<1	<1	<1	<1	<1
Chrysene	µg/L	<1	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	µg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	µg/L	<1	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	µg/L	<1	<1	<1	<1	<1
Benzo(a)pyrene TEQ	µg/L	<5	<5	<5	<5	<5
Total +ve PAH's	µg/L	16	29	61	110	230
Surrogate p-Terphenyl-d14	%	98	89	90	87	94

PAHs in Water						
Our Reference: Your Reference	UNITS	134814-11 FSW Control 11/9/2015	134814-12 WAF Control 11/9/2015	134814-13 Condensate 1.6% 11/9/2015	134814-14 Condensate 3.1% 11/9/2015	134814-15 Condensate 6.3% 11/9/2015
Date Sampled Type of sample		11/09/2015 Water	11/09/2015 Water	11/09/2015 Water	11/09/2015 Water	11/09/2015 Water
Date extracted	-	25/09/2015	25/09/2015	25/09/2015	25/09/2015	25/09/2015
Date analysed	-	25/09/2015	25/09/2015	25/09/2015	25/09/2015	25/09/2015
Naphthalene	µg/L	<1	<1	4	7	14
Acenaphthylene	µg/L	<1	<1	<1	<1	<1
Acenaphthene	µg/L	<1	<1	<1	<1	<1
Fluorene	μg/L	<1	<1	<1	<1	<1
Phenanthrene	µg/L	<1	<1	<1	<1	<1
Anthracene	µg/L	<1	<1	<1	<1	<1
Fluoranthene	µg/L	<1	<1	<1	<1	<1
Pyrene	µg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1	<1
Chrysene	µg/L	<1	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	µg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	µg/L	<1	<1	<1	<1	<1
Benzo(a)pyrene TEQ	µg/L	<5	<5	<5	<5	<5
Total +ve PAH's	µg/L	NIL(+)VE	NIL(+)VE	3.6	7.1	14
Surrogate p-Terphenyl-d14	%	104	107	103	107	94

PAHs in Water					
Our Reference:	UNITS	134814-16	134814-17	134814-18	134814-19
Your Reference		Condensate	Condensate	Condensate	Condensate
		12.5% 11/9/2015	25% 11/9/2015	50% 11/9/2015	100% 11/9/2015
Date Sampled		11/09/2015	11/09/2015	11/09/2015	11/09/2015
Type of sample		Water	Water	Water	Water
Date extracted	-	25/09/2015	25/09/2015	25/09/2015	25/09/2015
Date analysed	-	25/09/2015	25/09/2015	25/09/2015	25/09/2015
Naphthalene	µg/L	29	55	100	200
Acenaphthylene	μg/L	<1	<1	<1	<1
Acenaphthene	µg/L	<1	<1	<1	<1
Fluorene	µg/L	<1	1	3	3
Phenanthrene	µg/L	<1	<1	2	2
Anthracene	µg/L	<1	<1	<1	<1
Fluoranthene	µg/L	<1	<1	<1	<1
Pyrene	µg/L	<1	<1	<1	<1
Benzo(a)anthracene	µg/L	<1	<1	<1	<1
Chrysene	µg/L	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	µg/L	<2	<2	<2	<2
Benzo(a)pyrene	µg/L	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1	<1	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1	<1
Benzo(a)pyrene TEQ	µg/L	<5	<5	<5	<5
Total +ve PAH's	µg/L	29	57	110	210
Surrogate p-Terphenyl-d14	%	104	106	115	100

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.

		Clie	ent Referenc	e: P	R1244			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Water						Base II Duplicate II %RPD		
Date extracted	-			28/09/2 015	134814-1	28/09/2015 29/09/2015	LCS-W2	28/09/2015
Date analysed	-			29/09/2 015	134814-1	29/09/2015 29/09/2015	LCS-W2	29/09/2015
TRHC6 - C9	µg/L	10	Org-016	<10	134814-1	<10 <10	LCS-W2	101%
TRHC6 - C10	µg/L	10	Org-016	<10	134814-1	<10 <10	LCS-W2	101%
Benzene	µg/L	1	Org-016	<1	134814-1	<1 <1	LCS-W2	101%
Toluene	µg/L	1	Org-016	<1	134814-1	<1 <1	LCS-W2	103%
Ethylbenzene	µg/L	1	Org-016	<1	134814-1	<1 <1	LCS-W2	99%
m+p-xylene	µg/L	2	Org-016	2	134814-1	<2 <2	LCS-W2	100%
o-xylene	µg/L	1	Org-016	<1	134814-1	<1 <1	LCS-W2	97%
Naphthalene	μg/L	1	Org-013	<1	134814-1	<1 <1	[NR]	[NR]
<i>Surrogate</i> Dibromofluoromethane	%		Org-016	97	134814-1	98 103 RPD: 5	LCS-W2	96%
Surrogate toluene-d8	%		Org-016	102	134814-1	102 95 RPD: 7	LCS-W2	105%
Surrogate 4-BFB	%		Org-016	97	134814-1	97 89 RPD: 9	LCS-W2	101%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH(C10-C40)in Water						Base II Duplicate II %RPD		
Date extracted	-			25/09/2 015	[NT]	[NT]	LCS-W2	24/09/2015
Date analysed	-			29/09/2 015	[NT]	[NT]	LCS-W2	25/09/2015
TRHC 10 - C 14	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W2	90%
TRHC 15 - C28	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W2	81%
TRHC 29 - C 36	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W2	83%
TRH>C10 - C16	μg/L	50	Org-003	<50	[NT]	[NT]	LCS-W2	90%
TRH>C16 - C34	μg/L	100	Org-003	<100	[NT]		LCS-W2	81%
TRH>C34 - C40	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W2	83%
Surrogate o-Terphenyl	%		Org-003	90	[NT]	[NT]	LCS-W2	79%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
PAHs in Water					Sm#	Base II Duplicate II %RPD		Recovery
Date extracted	-			25/09/2 015	[NT]	[NT]	LCS-W1	24/09/2015
Date analysed	-			25/09/2 015	[NT]	[NT]	LCS-W1	25/09/2015
Naphthalene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	76%
Acenaphthylene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	µg/L	1	Org-012 subset	<1	[NT]	[TM]	[NR]	[NR]
Fluorene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	77%
Phenanthrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	80%

ent Reference:	
----------------	--

	.		ent Reference	1	R1244	I	1	1
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
Anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	80%
Pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	85%
Benzo(a)anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Chrysene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	80%
Benzo(b,j+k) fluoranthene	µg/L	2	Org-012 subset	2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	85%
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate p</i> -Terphenyl- d14	%		Org-012 subset	84	[NT]	[NT]	LCS-W1	69%
QUALITY CONTROL vTRH(C6-C10)/BTEXN in Water	UNITS	5	Dup. Sm#	Base+I	Duplicate Duplicate + %RP	D		
Date extracted	-		134814-11	28/09/2	2015 29/09/201	5		
Date analysed	-		134814-11	29/09/2	2015 29/09/201	5		
TRHC6 - C9	µg/L		134814-11		<10 <10			
TRHC6 - C10	µg/L		134814-11		<10 <10			
Benzene	µg/L		134814-11		<1 <1			
Toluene	µg/L		134814-11		<1 <1			
Ethylbenzene	µg/L		134814-11		<1 <1			
m+p-xylene	µg/L		134814-11		<2 <2			
o-xylene	µg/L		134814-11		<1 <1			
Naphthalene	µg/L		134814-11		<1 <1			
<i>Surrogate</i> Dibromofluoromethane	%		134814-11	100	103 RPD:3			
Surrogate toluene-d8	%		134814-11	99	95 RPD:4			
Surrogate 4-BFB	%		134814-11	96	88 RPD:9			

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NA: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

(Page 1 of 2)

Accredited for compliance with ISO/IEC 17025

Client:	Jacobs Group (Au		ESA Job #:	PR1244	
	263 Adelaide Terra	ace	Date Sampled:	27 December 2014	
	Perth WA 6001		Date Received:	27 August 2015	
Attention:	Celeste Wilson		Sampled By:	Client	
Client Ref:	Not Supplied		ESA Quote #:	PL1244_q03	
Lab ID No.:	Sample Name:	Sample Descripti	on:		
7323	Barossa Field	Condensate samp	le received at room tem	perature in apparent good	
	Condensate	condition.			
Test Performe	d:	1-hr sea urchin fer	1-hr sea urchin fertilisation success test using Heliocidaris tuberculata		
Test Protocol:		ESA SOP 104 (ES	ESA SOP 104 (ESA 2014), based on USEPA (2002) and Simon and		
		Laginestra (1996)			
Test Temperat	ure:	The test was performed at 20±1°C.			
Deviations from	m Protocol:	Nil			
Comments on	Solution	Pre-weighed aliquot of condensate were added to filtered seawater			
Preparation:		(FSW) at a single loading rate of 1 part oil to 9 parts FSW. The			
-		samples were mixed for 24 hours using a magnetic stirrer so that the			
				king, the solutions were left	
				er-accommodated fractions	
		(WAF) were sipho	ned off. The WAF was s	serially diluted with FSW to	
			ning test concentrations.	-	
		A FSW control and a WAF control were tested concurrently with the			
				essed as loading rates and	
			ydrocarbon (TRH) conce		
Source of Test	Organisms:		n South Maroubra, NSW.		
Test Initiated:	-	10 September 201	5 at 1130h		

Sample 7323: Barossa Field	Condensate	Sample 7323: Barossa Field	Condensate	
Loading Rate	% Fertilised Eggs	Concentration	% Fertilised Eggs	
(g/L)	(Mean ± SD)	(µg/L)	(Mean ± SD)	
FSW Control	78.8 ± 3.2	FSW Control	78.8 ± 3.2	
WAF Control	90.0 ± 2.6	WAF Control	90.0 ± 2.6	
0.6	84.3 ± 6.5	350	84.3 ± 6.5	
1.2	82.3 ± 3.4 *	720	82.3 ± 3.4 *	
2.4	80.5 ± 5.2 *	1673	80.5 ± 5.2 *	
4.8	80.5 ± 4.1 *	3180	80.5 ± 4.1 *	
9.7	80.0 ± 2.2 *	7160	80.0 ± 2.2 *	
19.3	34.8 ± 8.8 *	14060	34.8 ± 8.8 *	
38.6	0.0 ± 0.0	30860	0.0 ± 0.0	
77.2	0.0 ± 0.0	69620	0.0 ± 0.0	
EC10 = 14.6g/L**		EC10 = 9206.2 (7702.42-102	203.00)µg/L	
EC50 = 18.6 (8.97-19.12)g/L		EC50 = 13202.7 (12495.20-	13763.40)µg/L	
NOEC = 0.6g/L		NOEC = 350µg/L	-	
LOEC = 1.2g/L		LOEC = 720µg/L		

*Significantly lower percentage fertilised eggs compared with the WAF Control (Dunnett's Test, 1-tailed, P=0.05) **95% Confidence Limits not reliable

 ECOTOX Services Australasia Pty Ltd
 ABN>45 094 714 904

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61 2 9420 9481

(Page 2 of 2)

QA/QC Parameter	Criterion	This Test	Criterion met?
Control mean % fertilised eggs	≥70.0%	78.8%	Yes
Reference Toxicant within cusum chart limits	23.7-105.6µg Cu/L	26.7µg Cu/L	Yes

K/ lano

Test Report Authorised by:

Dr Rick Krassoi, Director on 9 November 2015

Results are based on the samples in the condition as received by ESA.

NATA Accredited Laboratory Number: 14709

This document shall not be reproduced except in full.

Citations:

- ESA (2014) ESA SOP 104 Sea Urchin Fertilisation Success Test. Issue No. 13. Ecotox Services Australasia, Sydney NSW.
- Simon, J. and Laginestra, E.(1997) Bioassay for testing sublethal toxicity in effluents, using gametes of sea urchin *Heliocidaris tuberculata*. National Pulp Mills Research Program Technical Report No. 20. CSIRO, Canberra ACT
- USEPA (2002) Short-term methods for measuring the chronic toxicity of effluents and receiving waters to marine and estuarine organisms. Third Edition. United States Environmental Protection Agency, Office of Water, Washington DC, EPA-821-R-02-014.

 ECOTOX Services Australasia Pty Ltd
 ABN>45
 0.94
 7.14
 9.04

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61
 2
 9420
 9481

Appendix D: Test Report for the Sea Urchin Larval Development Test

(Page 1 of 2)

Accredited for compliance with ISO/IEC 17025

Client: Attention: Client Ref:	Jacobs Group (Au 263 Adelaide Terra Perth WA 6001 Celeste Wilson Not Supplied		ESA Job #: Date Sampled: Date Received: Sampled By: ESA Quote #:	PR1244 27 December 2014 27 August 2015 Client PL1244_q03
Lab ID No.: 7323	Sample Name: Barossa Field Condensate	Sample Descript Condensate sam condition.		perature in apparent good
Test Performe Test Protocol: Test Tempera Deviations fro Comments on Preparation:	ture: m Protocol:	ESA SOP 105 Laginestra (1996) The test was perf Nil Pre-weighed aliq (FSW) at a sing samples were mi peak of a vortex to settle for 1 hou (WAF) were siph prepare the rema A FSW control a sample. The test	(ESA 2014), based on a and Doyle <i>et al.</i> (2003) ormed at 20±1°C. uot of condensate were le loading rate of 1 part xed for 24 hours using a is achieved. Following mix ur, after which time the wat oned off. The WAF was s ining test concentrations. nd a WAF control were to	ng Heliocidaris tuberculata APHA (1998), Simon and added to filtered seawater to il to 9 parts FSW. The magnetic stirrer so that the king, the solutions were left er-accommodated fractions serially diluted with FSW to ested concurrently with the essed as loading rates and parations
Source of Tes Test Initiated:	-		om South Maroubra, NSW.	

Sample 7323: Barossa Field Condensate		Sample 7323: Barossa Field	Condensate		
Loading Rate	% Normal larvae	Concentration % Normal larva			
(g/L)	(Mean ± SD)	(µg/L)	(Mean ± SD)		
FSW Control	80.8 ± 5.0	FSW Control	80.8 ± 5.0		
WAF Control	87.8 ± 2.2	WAF Control	87.8 ± 2.2		
1.2	83.0 ± 3.2	720	83.0 ± 3.2		
2.4	83.0 ± 5.4	1673	83.0 ± 5.4		
4.8	84.3 ± 6.7	3180	84.3 ± 6.7		
9.7	83.8 ± 4.8	7160	83.8 ± 4.8		
19.3	81.0 ± 4.2	14060	81.0 ± 4.2		
38.6	1.5 ± 1.3 *	30860	1.5 ± 1.3 *		
77.2	$0.0 \hspace{0.2cm} \pm \hspace{0.2cm} 0.0$	69620	0.0 ± 0.0		
EC10 = 21.0 (18.90-22.76)g/L		EC10 = 15481.6 (13727.10-	16947.80)µg/L		
EC50 = 26.5 (24.67-28.01)g/L		EC50 = 20104.40 (18575.70)-21450.10)µg/L		
NOEC = 19.3g/L		NOEC = 14060µg/L			
LOEC = 38.6g/L		LOEC = 30860µg/L			

*Significantly lower percentage of normally developed larvae compared with the WAF Control (Dunnett's Test, 1-tailed, P=0.05)

 ECOTOX Services Australasia Pty Ltd
 ABN>45 094 714 904

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61 2 9420 9481

(Page 2 of 2)

QA/QC Parameter	Criterion	This Test	Criterion met?
Control mean % normal larvae	≥70.0%	80.8%	Yes
Reference Toxicant within cusum chart limits	10.5-23.1µg Cu/L	12.2µg Cu/L	Yes

Ellamo

Test Report Authorised by:

Dr Rick Krassoi, Director on 9 November 2015

Results are based on the samples in the condition as received by ESA.

NATA Accredited Laboratory Number: 14709

This document shall not be reproduced except in full.

Citations:

- APHA (1998) Method 8810 D. Echinoderm Embryo Development Test. In Standard Methods for the Examination of Water and Wastewater, 20th Ed. American Public Health Association, American Water Works Association and the Water Environment Federation, USA.
- Doyle, C.J., Pablo, F., Lim, R.P. and Hyne, R.V. (2003) Assessment of metal toxicity in sediment pore water from Lake Macquarie, Australia. *Arch. Environ. Contam. Toxicology*, 44(3): 343-350.
- ESA (2014) ESA SOP 105 Sea Urchin Larval Development Test. Issue No. 10. Ecotox Services Australasia, Sydney NSW.
- Simon, J. and Laginestra, E.(1997) Bioassay for testing sublethal toxicity in effluents, using gametes of sea urchin *Heliocidaris tuberculata*. National Pulp Mills Research Program Technical Report No. 20. CSIRO, Canberra, ACT.

ECOTOX Services Australasia Pty Ltd ABN>45 094 714 904 unit 27/2 chaplin drive lane cove nsw 2066 T>61 2 9420 9481

Appendix E: Test Report for the Milky Oyster Larval Development Test

(Page 1 of 2)

Accredited for compliance with ISO/IEC 17025

Client:	Jacobs Group (Au		ESA Job #:	PR1244	
	263 Adelaide Terra	ace	Date Sampled:	27 December 2014	
	Perth WA 6001		Date Received:	27 August 2015	
Attention:	Celeste Wilson		Sampled By:	Client	
Client Ref:	Not Supplied		ESA Quote #:	PL1244_q03	
Lab ID No.:	Sample Name:	Sample Descript	tion:		
7323	Barossa Field	Condensate sam	ple received at room tem	perature in apparent good	
	Condensate	condition.	-		
-					
Test Performe	d:		48-hr larval development test using the milky oyster Saccostrea		
		echinata			
Test Protocol:		ESA SOP 106 (ESA 2014), based on APHA (1998) and Krassoi (1995)			
Test Temperat	ure:	The test was performed at 29±1°C.			
Deviations from	m Protocol:	Nil			
Comments on	Solution	Pre-weighed aliquot of condensate were added to filtered seawater			
Preparation:		(FSW) at a single loading rate of 1 part oil to 9 parts FSW. The			
•		samples were mixed for 24 hours using a magnetic stirrer so that the			
				king, the solutions were left	
			5	er-accommodated fractions	
				erially diluted with FSW to	
			ining test concentrations.		
			0	ested concurrently with the	
				ssed as loading rates and	
			hydrocarbon (TRH) concer		
Source of Test	Organisms	Field collected fro	, , ,		
Test Initiated:	organisins.	10 September 20			
rest initiated.		to September 20	15 at 100011		

Sample 7323: Barossa Field Condensate		Sample 7323: Barossa Field	d Condensate	
Loading Rate	% Normal larvae	Concentration % Normal lar		
(g/L)	(Mean ± SD)	(µg/L)	(Mean ± SD)	
FSW Control	74.5 ± 4.8	FSW Control	74.5 ± 4.8	
WAF Control	72.5 ± 3.1	WAF Control	72.5 ± 3.1	
1.2	70.8 ± 3.6	720	70.8 ± 3.6	
2.4	72.5 ± 3.1	1673	72.5 ± 3.1	
4.8	72.3 ± 4.2	3180	72.3 ± 4.2	
9.7	73.5 ± 2.1	7160	73.5 ± 2.1	
19.3	62.0 ± 2.2 *	14060	62.0 ± 2.2 *	
38.6	0.0 ± 0.0	30860	0.0 ± 0.0	
77.2	$0.0 \hspace{0.1in} \pm \hspace{0.1in} 0.0$	69620	0.0 ± 0.0	
IC10 = 15.7(11.78-18.35)g/L EC50 = 24.7 (24.11-25.32)g/L NOEC = 9.7g/L LOEC = 19.3g/L		IC10 = 11478.4 (9026.54-13230.50)μg/L EC50 = 18747.2 (18266.80-19240.30)μg/L NOEC = 7160μg/L LOEC = 14060μg/L		

*Significantly lower percentage of normal larvae compared with the WAF Control (Dunnett's Test, 1-tailed, P=0.05)

 ECOTOX Services Australasia Pty Ltd
 ABN>45
 094
 714
 904

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61
 2
 9420
 9481

(Page 2 of 2)

QA/QC Parameter	Criterion	This Test	Criterion met?
FSW Control mean % normal	≥70%	74.5%	Yes
Reference Toxicant within cusum chart limits	10.2-20.0µg Cu/L	14.5µg Cu/L	Yes

Kha Vano

Test Report Authorised by:

Dr Rick Krassoi, Director on 9 November 2015

Results are based on the samples in the condition as received by ESA.

NATA Accredited Laboratory Number: 14709

This document shall not be reproduced except in full.

Citations:

- APHA (1998) Standard Methods for the Examination of Water and Wastewater. 20th Ed. American Public Health Association, American Water Works Association and the Water Environment Federation, Washington, DC.
- ESA (2014) SOP 106 *Bivalve Larval Development Test.* Issue No. 14. Ecotox Services Australasia, Sydney, NSW.
- Krassoi, R (1995) Salinity adjustment of effluents for use with marine bioassays: effects on the larvae of the doughboy scallop Chlamys asperrimus and the Sydney rock oyster *Saccostrea commercialis*. *Australasian Journal of Ecotoxicology*, 1: 143-148.

 ECOTOX Services Australasia Pty Ltd
 ABN>45 094 714 904

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61 2 9420 9481

Appendix F: Test Report for the Micro-Algal Growth Inhibition Test

(Page 1 of 2)

Accredited for compliance with ISO/IEC 17025

Client:	Jacobs Group (Au	, ,	ESA Job #:	PR1244	
	263 Adelaide Terra	ace	Date Sampled:	27 December 2014	
	Perth WA 6001		Date Received:	27 August 2015	
Attention:	Celeste Wilson		Sampled By:	Client	
Client Ref:	Not Supplied		ESA Quote #:	PL1244_q03	
Lab ID No.:	Sample Name:	Sample Descript	ion:		
7323	Barossa Field	Condensate sam	ple received at room tem	perature in apparent good	
	Condensate	condition.			
*NATA accreditat	ion does not cover the	performance of this ser	vice		
Test Performe	d:		72-hr marine algal growth test using Isochrysis aff. galbana		
Test Protocol:		ESA SOP 110 (ESA 2014), based on Stauber et al. (1994)			
Test Temperat		The test was performed at 29±1°C.			
Deviations from	m Protocol:	Nil			
Comments on	Solution	Pre-weighed aliquot of condensate were added to filtered seawater			
Preparation:		(FSW) at a single loading rate of 1 part oil to 9 parts FSW. The			
-		samples were mix	samples were mixed for 24 hours using a magnetic stirrer so that the		
		peak of a vortex i	s achieved. Following mix	king, the solutions were left	
				er-accommodated fractions	
		(WAF) were siphoned off. The WAF was serially diluted with FSW to			
		prepare the remaining test concentrations.			
		A FSW control and a WAF control were tested concurrently with the			
				essed as loading rates and	
			•	5	
Source of Test Organisms: total recoverable hydrocarbon (TRH) concentrations. In-house culture, originally sourced from CSIRO Microal					
	. organionio.	Service, TAS		interministerigae oupply	
Test Initiated:		11 September 20	15 at 1110h		
rest miliateu.		in ceptember 20			

Sample 7323: Barossa Field Condensate		Sample 7323: Barossa Field Condensate		
Loading Rate	Cell Yield	Concentration	Cell Yield	
(g/L)	(Mean number of	(µg/L)	(Mean number of	
	cells/mL x10 ⁴ ± SD)		cells/mL x10⁴ ± SD)	
FSW Control	20.2 ± 3.2	FSW Control	20.2 ± 3.2	
WAF Control	17.8 ± 1.0	WAF Control	17.8 ± 1.0	
1.2	18.9 ± 4.3	650	18.9 ± 4.3	
2.4	21.4 ± 7.3	1400	21.4 ± 7.3	
4.8	20.8 ± 6.2	3248	20.8 ± 6.2	
9.7	13.6 ± 5.1	6670	13.6 ± 5.1	
19.3	1.1 ± 0.5 *	12850	1.1 ± 0.5 *	
38.6	0.0 ± 0.0	27960	0.0 ± 0.0	
77.2	0.0 \pm 0.0	65830	0.0 ± 0.0	
IC10 = 6.39 (2.18-10.68)g/L IC50 = 12.6 (7.45-15.09)g/L NOEC = 9.7q/L		IC10 = 4355.2 (1641.13-7 IC50 = 8529.3 (5094.77-1 NOEC = 6670µq/L	401.38)μg/L 0126.00)μg/L	
LOEC = 19.3g/L		LOEC = 12850µg/L		

*Significantly lower cell yield compared with the WAF Control (Steel's Many-One Rank Test, 1-tailed, P=0.05)

 ECOTOX Services Australasia Pty Ltd
 ABN>45
 0.94
 7.14
 9.04

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61
 2
 9420
 9481

e

(Page 2 of 2)

QA/QC Parameter	Criterion	This Test	Criterion met?
Control mean cell density	≥16.0x10 ⁴ cells/mL	21.2x10 ⁴ cells/mL	Yes
Control coefficient of variation	<20%	16.0%	Yes
Reference Toxicant within cusum chart limits	15.1-46.7µg Cu/L	19.0µg Cu/L	Yes

K/2 Van

Test Report Authorised by:

Dr Rick Krassoi, Director on 9 November 2015

Results are based on the samples in the condition as received by ESA.

NATA Accredited Laboratory Number: 14709

This document shall not be reproduced except in full.

Citations:

ESA (2014) SOP 110 - Marine Algal Growth Test. Issue No. 11. Ecotox Services Australasia, Sydney NSW

Stauber, J.L., Tsai, J., Vaughan, G.T., Peterson, S.M. and Brockbank, C.I. (1994) Algae as indicators of toxicity of the effluent from bleached eucalypt kraft pulp mills. National Pulp Mills Research Program, Technical Report No. 3. CSIRO, Canberra, ACT

 ECOTOX Services Australasia Pty Ltd
 ABN>45
 0.94
 7.14
 9.04

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61
 2
 9.420
 9.481

(Page 1 of 2)

Client:	Jacobs Group (Australia) Pty Ltd		ESA Job #:	PR1244			
	263 Adelaide Terra	ace	Date Sampled:	27 December 2014			
A 44 41	Perth WA 6001		Date Received:	27 August 2015			
Attention:	Celeste Wilson		Sampled By:	Client			
Client Ref:	Not Supplied		ESA Quote #:	PL1244_q03			
Lab ID No.:	Sample Name:	Sample Descripti					
7323	Barossa Field		le received at room tem	perature in apparent good			
	Condensate	condition.					
Test Performe	d:		growth test using Ecklor				
Test Protocol:			ESA SOP 116 (ESA 2010), based on Bidwell et al. (1998) and				
		Burridge <i>et al.</i> (1999)					
Test Temperat		The test was performed at 18±1°C.					
Deviations fro	m Protocol:	Test extended from 72 hours to 14 days to encompass growth					
		endpoint.					
Comments on	Solution	Pre-weighed aliquot of condensate were added to filtered seawater					
Preparation:		(FSW) at a single loading rate of 1 part oil to 9 parts FSW. The					
		samples were mixed for 24 hours using a magnetic stirrer so that the					
		peak of a vortex is achieved. Following mixing, the solutions were left					
		to settle for 1 hour	, after which time the wat	er-accommodated fractions			
		(WAF) were sipho	ned off. The WAF was s	serially diluted with FSW to			
			prepare the remaining test concentrations.				
		A FSW control and a WAF control were tested concurrently with the					
			sample. The test concentrations are expressed as loading rates and				
		total recoverable h	ydrocarbon (TRH) conce	ntrations.			
Source of Test	t Organisms:	Field collected from Mercury Passage, TAS					
Test Initiated:	·	10 September 201	5 at 1400h				

Sample 7323: Barossa Fiel	d Condensate	Sample 7323: Barossa Field	Condensate
Loading Rate	Gametophyte Length,	Concentration	Gametophyte Length,
(g/L)	μm	(µg/L)	μm
	(Mean ± SD)		(Mean ± SD)
FSW Control	23.65 ± 1.12	FSW Control	23.65 ± 1.12
WAF Control	24.90 ± 2.80	WAF Control	24.90 ± 2.80
1.2	22.93 ± 1.35	720	22.93 ± 1.35
2.4	22.60 ± 3.28	1673	22.60 ± 3.28
4.8	21.18 ± 1.14 *	3180	21.18 ± 1.14 *
9.7	18.63 ± 1.04 *	7160	18.63 ± 1.04 *
19.3	15.00 ± 0.85 *	14060	15.00 ± 0.85 *
38.6	13.78 ± 1.51 *	30860	13.78 ± 1.51 *
77.2	11.83 ± 1.11 *	69620	11.83 ± 1.11 *
14-day IC10 = 2.7g/L**		14-day IC10 = 1873.9µg/L**	
14-day IC50 = 64.8g/L**		14-day IC50 = 57196.9µg/L	**
NOEC = 2.4g/L		NOEC = 1673µg/L	
LOEC = 4.8g/L		LOEC = 3180µg/L	

*Significantly lower gametophyte length compared with the WAF Control (Dunnett's Test, 1-tailed, P=0.05) **95% confidence limits are not reliable

 ECOTOX Services Australasia Pty Ltd
 ABN>45
 094
 714
 904

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61
 2
 9420
 9481

(Page 2 of 2)

QA/QC Parameter	Criterion	This Test	Criterion met?
FSW Control mean % germination @ 72hrs 72-hr germination reference Toxicant within cusum chart limits	≥70% 86.0-1262.1µg Cu/L	90.3% 408.5µg Cu/L	Yes Yes

Allamoni Test Report Authorised by:

Dr Rick Krassoi, Director on 9 November 2015

Results are based on the samples in the condition as received by ESA. This document shall not be reproduced except in full.

Citations:

- Bidwell, J. R., Wheeler, K. W., & Burridge, T. R. (1998). Toxicant effects on the zoospore stage of the marine maroalga Ecklonia radiata (Phaeophyta:Laminariales). *Marine Ecology Progress Series.Vol 163*, 259-265.
- Burridge, T. R., Karistanios, M., & Bidwell, J. (1999). The use of aquatic macrophyte ecotoxicological assays inmonitoring coastal effluent discharges in southern Australia. *Marine Pollution Bulletin. Vol* 39, 1-12.
- ESA (2010) SOP 116 Macroalgal Germination Success Test. Issue No. 11. Ecotox Services Australasia, Sydney NSW

 ECOTOX Services Australasia Pty Ltd
 ABN>45 094 714 904

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61 2 9420 9481

Appendix H: Test Report for the Sea Anemone Development Test

(Page 1 of 2)

Client:	Jacobs Group (Au	etrolia) Dtv I td	ESA Job #:	PR1244		
chent.	263 Adelaide Terr	, ,	Date Sampled:	27 December 2014		
	Perth WA 6001	ace	Date Sampled.			
Attention:	Celeste Wilson			27 August 2015 Client		
Client Ref:	Not Supplied		Sampled By: ESA Quote #:			
Chefit Ref.	Not Supplied		ESA Quote #.	PL1244_q03		
Lab ID No.:	Sample Name:	Sample Descrip	tion:			
7323	Barossa Field			perature in apparent good		
1525	Condensate	condition.	iple received at room ten	perature in apparent good		
	Condensate	condition.				
Test Perform	ed:	8-day Sea anem	none pedal lacerate develo	poment test using Aiptasia		
		pulchella				
Test Protocol	:	ESA SOP 128 (ESA 2014), based on Howe <i>et al.</i> (2014)				
Test Tempera	ature:	The test was performed at 20±1°C.				
Deviations fro		Three replicate were used for the sample concentrations.				
Comments or	n Solution	Pre-weighed aliquot of condensate were added to filtered seawater				
Preparation:		(FSW) at a single loading rate of 1 part oil to 9 parts FSW. The				
opul ulloin		samples were mixed for 24 hours using a magnetic stirrer so that the				
				king, the solutions were left		
			0	er-accommodated fractions		
			- ,	serially diluted with FSW to		
		· · ·	aining test concentrations.	senary unded with 1 SW to		
				ested concurrently with the		
				essed as loading rates and		
Source of Tor	ot Organiama		hydrocarbon (TRH) conce			
Test Initiated	st Organisms:	In house cultures 27 October 2015 at 1130h				
rest initiated:	•		aliisun			

Sample 7323: Barossa Fie	ld Condensate	Sample 7323: Barossa Fie	ld Condensate
Loading Rate	% Normal	Concentration	% Normal
(g/L)	(Mean ± SD)	(µg/L)	(Mean ± SD)
FSW Control	100 ± 0.0	FSW Control	100 ± 0.0
WAF Control	95.0 ± 10.0	WAF Control	95.0 ± 10.0
4.8	93.3 ± 11.6	2492	93.3 ± 11.6
9.7	86.7 ± 11.6	7660	86.7 ± 11.6
19.3	80.0 ± 20.0	15840	80.0 ± 20.0
38.6	73.3 ± 11.6	28040	73.3 ± 11.6
77.2	0.0 \pm 0.0	63990	0.0 ± 0.0
8-day IC10 = 11.2g/L* 8-day EC50 = 40.1 (31.78- NOEC = 38.6g/L LOEC = 77.2g/L	50.60)g/L	8-day IC10 = 8862.4µg/L* 8-day EC50 = 30720.0 (23 NOEC = 28040µg/L LOEC = 63990µg/L	
*95% confidence limits are no	t reliable	Criterion This	Test Criterien met?

QA/QC Parameter	Criterion	This Test	Criterion met?
Control mean % normal pedal lacerates	≥90.0%	100%	Yes
Reference Toxicant within cusum chart limits	n/a	11.5µg Cu/L	n/a

C

ECOTOX Services Australasia Pty LtdABN>45 094 714 904unit 27/2 chaplin drive lane cove nsw 2066T>61 2 9420 9481

60

a

(Page 2 of 2)

Test Report Authorised by:

Ela Vamoi

Dr Rick Krassoi, Director on 7 December 2015

Results are based on the samples in the condition as received by ESA. This document shall not be reproduced except in full.

Citations:

Cary, L.R. (1911) A study of pedal laceration in actinians. The Biological Bulletin 20, 81-107.

- ESA (2014) ESA SOP 128 Sea Anemone Pedal Lacerate Development Test. Issue No. 1. Ecotox Services Australasia, Sydney NSW.
- Howe, Pelli L., Reichelt-Brushett, Amanda J. and Clark, Malcolm W (2014) Development of a chronic, early life-stage sub-lethal toxicity test and recovery assessment for the tropical zooxanthellate sea anemone Aiptasia pulchella. Ecotoxicology and Environmental Safety 100: 138-147.

Stauber, Jennifer L, Julie Tsai, Gary T Vaughan, Sharon M Peterson, and Christopher I Brockbank. Algae as indicators of toxicity of the effluent from bleached eucalypt kraft pulp mills. Technical Report Series No. 3. Fyshwick: National Pulp Mills Research Program, 1994.

ECOTOX Services Australasia Pty Ltd ABN>45 094 714 904 unit 27/2 chaplin drive lane cove nsw 2066 T>61 2 9420 9481

(Page 1 of 2)

Client:	Jacobs Group (Australia) Pty Ltd		ESA Job #:	PR1244			
	263 Adelaide Terrace		Date Sampled:	27 December 2014			
Perth	WA 600		Date Received:	27 August 2015			
Attention:	Celeste Wilso		Sampled By:	Client			
Client Ref:	Not Supplied		ESA Quote #:	PL1244_q03			
Lab ID No.:	Sample Nam	ne: Sample Descr	intion:				
7323 B	arossa Field			mperature in apparent good			
1020 0	Condensate	condition.		iperature in apparent good			
Test Performe	ed:		d development toxicity test	using the copepod			
		Parvocalanus c					
Test Protocol	-		SOP 124 (2014)				
Test Tempera		The test was pe	erformed at 27±1°C.				
Deviations fro	om Protocol:	Test extended t	Test extended to 5 days. Copepod eggs added to test solutions at test				
			initiation, and copepodid development counted at test termination. Test				
			run at 28±1°C. Fed Isochrysis at a rate of 16,000 cells/copepod daily.				
Comments or	1 Solution		Pre-weighed aliquot of c ondensate were added to filtere d s eawater				
Preparation:			(FSW) at a single loa ding rate of 1 part oil t o 9 p arts F SW. The				
				magnetic stirrer so that the			
		peak of a vorte	x is achieved. Following m	ixing, the solutions were left			
		to settle for 1 h	our, after which time the wa	ater-accommodated fractions			
		(WAF) were sig	phoned off. The WAF was	serially diluted with FSW to			
		prepare the rem	naining test concentrations.				
			A FSW control and a WAF c ontrol were tested concurrently with the				
		sample. The te	sample. The test con centrations are expressed as loading rates and				
		total recoverabl	total recoverable hydrocarbon (TRH) concentrations.				
Source of Tes	st Organisms:	In house culture	In house culture				
Test Initiated:		22 September 2	22 September 2015 at 1400h				
•	Barossa Field C		Sample 7323: Barossa F				
Loading Rate % Normal		% Normal	Concentration	% Normal			
(g/L))	(Mean ± SD)	(µg/L)	(Mean ± SD)			
	a fuel = c).0 ± 10.7	FSW Control	()			
FSW Co	introl 70	.0 10.7	FSW Control	70 .0 ± 10.7			
FSW Co WAF Co		10.0 ± 10.7	WAF Control				
	ntrol 60			70 .0 ± 10.7			

%95% confidence limits are not reliable

^ Based on extrapolated data

e

QA/QC Parameter	Criterion	This Test	Criterion met?
Control mean % Normal	<u>></u> 70.0%	70.0% Ye	S
Reference Toxicant within cusum chart limits	n/a*	2.8µg Cu/L	n/a
*Reference toxicant cusum chart limits are not available d	ue to limited testing		

*Reference toxicant cusum chart limits are not available due to limited testing

 ECOTOX Services Australasia Pty Ltd
 ABN>45 094 714 904

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61 2 9420 9481

(Page 2 of 2)

E /2 Vanoi

Test Report Authorised by:

Dr Rick Krassoi, Director on 12 November 2015

Results are based on the samples in the condition as received by ESA.

NATA Accredited Laboratory Number: 14709 This document shall not be reproduced except in full.

Citations:

ESA (2014) SOP 124 – Acute toxicity test using the copepod Gladioferens imparipes. Issue No. 3. Ecotox Services Australasia, Sydney, New South Wales.

Appendix J: Test Report for the Fish Imbalance and Growth Test

(Page 1 of 3)

Client:	Jacobs Group (Australia) Pty Ltd 263 Adelaide Terrace		ESA Job #: Date Sampled:	PR1244 27 December 2014		
Perth	WA 6001		Date Received:	27 August 2015		
Attention:	Celeste Wilson		Sampled By:	Client		
Client Ref:	Not Supplied		ESA Quote #:	PL1244_q03		
Lab ID No.:	Sample Name:	Sample Descrip	tion:			
7323 B	arossa Field	Condensate san	ple received at room tem	perature in apparent good		
	Condensate	condition.				
Test Performe	ed:	7-day fish imbala calcarifer	nce and biomass toxicity te	est using barramundi <i>Lates</i>		
Test Protocol	:	ESA SOP 122 (ESA 2012), based on USEPA (2002)				
Test Tempera	ture:	The test was performed at 25±2°C.				
Deviations fro	om Protocol:	Nil				
Comments or	Solution	Pre-weighed aliquot of c ondensate were added to filtere d s eawater				
Preparation:		(FSW) at a single loa ding rate of 1 part oil to 9 p arts F SW. The				
•				magnetic stirrer so that the		
		peak of a vortex	peak of a vortex is achieved. Following mixing, the solutions were left			
		to settle for 1 hour, after which time the water-accommodated fractions				
		(WAF) were siph	oned off. The WAF was s	erially diluted with FSW to		
		prepare the remaining test concentrations.				
		A FSW control and a WAF c ontrol were tested concurrently with the				
			sample. The test con centrations are expressed as loading rates and			
		total recoverable hydrocarbon (TRH) concentrations.				
Source of Test Organisms:		Hatchery reared, SA				
Test Initiated:	-	22 September 20				
Sample 7323:	Barossa Field Conde	nsate	Sample 7323: Barossa Fie	eld Condensate		
	Rato %	Unaffected	Loading Rate	Biomass mo		

Sam	ple 7323: Barossa	Field Cond	ensate		Sample 7323: Barossa Field Condensate			sate
	Loading Rate	% Unaffected			Loading Rate	Bio	omass, mg	
	(g/L)		(Mean ± SD)			(g/L)	(M	lean ± SD)
	FSW Control	100	± 0.0			FSW Control	8.3	± 1.3
	WAF Control	100	± 0.0			WAF Control	8.0	± 0.8
4.	8	100	± 0.0		4.8		7.7	± 0.4
9.	7	100	± 0.0		9.7		8.3	± 0.3
19.3	3	90	.0 ± 11.6		19	.3	7.7	± 1.2
38.6	6	20	.0 ± 0.0	*	38	.6	1.4	±0. 2 **
77.2	2	0.0	± 0.0		77	.2	0.0	± 0.0
7 da NOE	7 day EC10 (unaffected) = 19.4 (13.58-23.28)g/L 7 day EC50 (unaffected) = 29.3 (24.71-34.66)g/L NOEC = 19.3g/L LOEC = 38.6g/L					y IC10 (biomass y IC50 (biomass C = 19.3g/L C = 38.6g/L	· · ·	

*Significantly lower percentage of unaffected larval fish compared with the WAF Control (Steel's Many-One Rank Test, 1-tailed, P=0.05) **Significantly lower fish biomass compared with the WAF Control (Dunnett's Test, 1-tailed, P=0.05)

ECOTOX Services Australasia Pty Ltd ABN>45 094 714 904 unit 27/2 chaplin drive lane cove nsw 2066 T>61 2 9420 9481

9420 9484 W>www.ecotox.com.au

(Page 2 of 3)

Sample 7323: Barossa Field Condensate			Sample 7323: Barossa Field Condensate		
Concentration % Unaffected		Concentration	Bi	Biomass, mg	
(µg/L)	(Mean ± SD)		(µg/L)	(1	Mean ± SD)
FSW Control	100 ± 0.0		FSW Control	8.3	± 1.3
WAF Control	100 ± 0.0		WAF Control	8.0	± 0.8
3860	100 ± 0.0		3 860	7.7	± 0.4
8560	100 ± 0.0		8 560	8.3	± 0.3
1 5830	90 .0 ± 11.6		15830	7.7	± 1.2
2 9770	20 .0 ± 0.0	*	29770	1.4	± 0. 2 **
6 8390	0.0 ± 0.0		68390	0.0	± 0.0
7 day EC10 (unaffected) 18756.60)µg/L 7 day EC50 (unaffected) 27226.80)µg/L NOEC = 15830µg/L LOEC = 29770µg/L	•	7 day IC10 (biomass) = 18757.60)µg/L 7 day IC50 (biomass) = 24621.00)µg/L NOEC = 15830µg/L LOEC = 29770µg/L	·		

*Significantly lower percentage of unaffected larval fish compared with the WAF Control (Steel's Many-One Rank Test, 1-tailed, P=0.05) **Significantly lower fish biomass compared with the WAF Control (Dunnett's Test, 1-tailed, P=0.05)

Sample 73	323: Weathered	Barossa	Field Condensate	Sam	ple 7323: Weather	ed Barossa F	ield Condensate
Load	ding Rate (g/L)		Unaffected Mean ± SD)		Loading Rate (g/L)		omass, mg /lean ± SD)
FSV	V Control	100	± 0.0		FSW Control	8.3	± 1.3
WA	F Control	100	± 0.0		WAF Control	8.0	± 0.8
5.	0	100	± 0.0	5.0		8.7	± 0.6
9.	9	100	± 0.0	9.9		8.0	± 1.0
19.9		100	± 0.0	19	.9	8.1	± 0.3
39.8		100	± 0.0	39	.8	8.6	± 0.7
79.5		60	.0 ± 49.0	79	.5	5.0	\pm 3.8
7 day EC NOEC = 7 LOEC = >	•	= >79.5g	/L	7 da NOE	y IC10 (biomass) y IC50 (biomass) C = 79.5g/L C = >79.5g/L	•	

*95% confidence limits are not available

Sample 7323: Weather	ed Barossa	Field Condensate	Samp	le 7323: Weathere	ed Barossa F	ield Condensate		
Concentration	%	Unaffected		Concentration	Biomass, mg			
(µg/L)	(Mean ± SD)		(µg/L)	(Mean ± SD)			
FSW Control	100	± 0.0		FSW Control	8.3	± 1.3		
WAF Control	100	± 0.0		WAF Control	8.0	± 0.8		
1410	100	± 0.0	1	410	8.7	± 0.6		
2770	100	± 0.0	2	770	8.0	± 1.0		
4850	100	± 0.0	4	850	8.1	± 0.3		
1 1450	100	± 0.0	1145	0	8.6	± 0.7		
2 2480	60	.0 ± 49.0	2248	0	5.0	± 3.8		
7 day EC10 (unaffecte 7 day EC50 (unaffecte NOEC = 22480µg/L LOEC = >22480µg/L	,	10	7 day NOE	r IC10 (biomass) = r IC50 (biomass) = C = 22480μg/L C = >22480μg/L				

ECOTOX Services Australasia Pty Ltd ABN>45 094 714 904 unit 27/2 chaplin drive lane cove nsw 2066 T>61 2 9420 9481

9420 9484

W>www.ecotox.com.au

(Page 3 of 3)

QA/QC Parameter	Criterion	This Test	Criterion met?
Control mean % unaffected	<u>></u> 80.0%	100% Y	es
Control mean growth	20% of initial weight	52.6% Ye	S
Reference Toxicant within cusum chart limits	n/a	17.3mg NH4+/L n/a	1

For Vamor

Test Report Authorised by:

Dr Rick Krassoi, Director on 9 November 2015

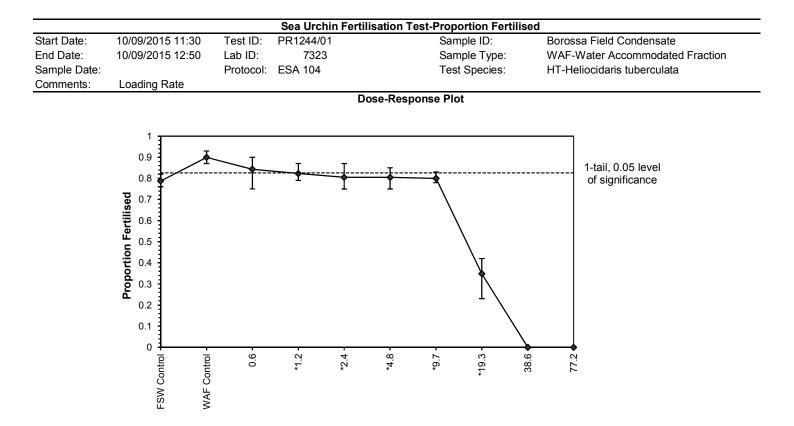
Results are based on the samples in the condition as received by ESA. This document shall not be reproduced except in full.

Citations:

ESA (2012) SOP 122 – 7-day Fish Imbalance and Growth Test. Issue No 2. Ec otox Services Australasia, Sydney, NSW

7

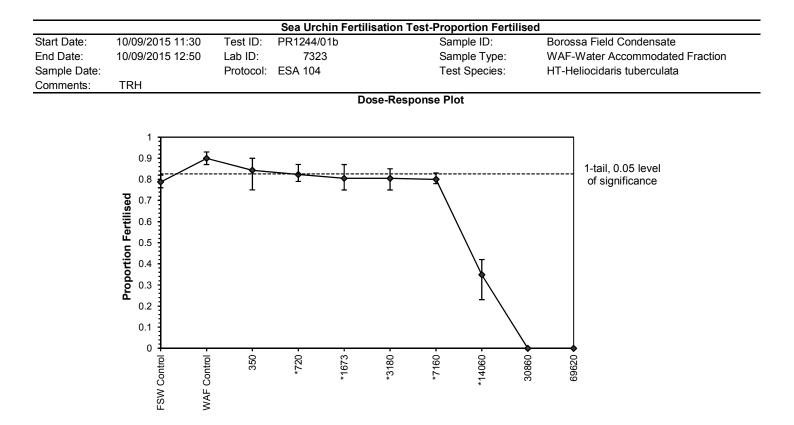
USEPA (2002) Short-term methods for estimating the chr onic toxicity of effluents and receiving waters to marine and estuarine organisms. Third edition EPA-821-R-02-014. United States Environmental Protection Agency, Office of Research and Development, Washington FC, USA


ECOTOX Services Australasia Pty LtdABN>45 094 714 904unit 27/2 chaplin drive lane cove nsw 2066T>61 2 9420 9481

Appendix K: Statistical Analyses of the Sea Urchin Fertilisation Test

				Sea Urchi	n Fertilisati	on Test-F	Proportion	Fertilised				
Start Date:	10/09/2015	11:30	Test ID:	PR1244/01			Sample ID		Borossa F	ield Conder	isate	
End Date:	10/09/2015	12:50	Lab ID:	7323			Sample Ty	/pe:	WAF-Wate	er Accommo	odated Frac	tion
Sample Date:			Protocol:	ESA 104			Test Speci	ies:	HT-Helioci	daris tubero	culata	
Comments:	Loading Ra	ate					•					
Conc-gm/L	1	2	3	4								
FSW Control	0.7600	0.7600	0.8200	0.8100								
WAF Control	0.9300	0.8900	0.8700	0.9100								
0.6	0.7500	0.9000	0.8500	0.8700								
1.2	0.8700	0.8100	0.7900	0.8200								
2.4	0.7800	0.8700	0.7500	0.8200								
4.8	0.8100	0.8500	0.8100	0.7500								
9.7	0.8000	0.7800	0.7900	0.8300								
19.3	0.4100	0.2300	0.4200	0.3300								
38.6	0.0000	0.0000	0.0000	0.0000								
77.2	0.0000	0.0000	0.0000	0.0000								
	Transform: Arcsin Sq								1-Tailed		Number	Total
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Resp	Number
FSW Control	0.7875	0.8750	1.0925	1.0588	1.1326	3.593	4					
WAF Control	0.9000	1.0000	1.2510	1.2019	1.3030	3.477	4	*			40	400
0.6	0.8425	0.9361	1.1678	1.0472	1.2490	7.389	4	1.847	2.451	0.1104	63	400
*1.2	0.8225	0.9139	1.1373	1.0948	1.2019	4.034	4	2.525	2.451	0.1104	71	400
*2.4	0.8050	0.8944	1.1161	1.0472	1.2019	6.013	4	2.996	2.451	0.1104	78	400
*4.8	0.8050	0.8944	1.1150	1.0472	1.1731	4.637	4	3.021	2.451	0.1104	78	400
*9.7	0.8000	0.8889	1.1076	1.0826	1.1458	2.473	4	3.185	2.451	0.1104	80	400
*19.3	0.3475	0.3861	0.6280	0.5002	0.7051	15.109	4	13.837	2.451	0.1104	261	400
38.6	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	4				400	400
77.2	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	4				400	400
Auxiliary Tests							Statistic		Critical		Skew	Kurt
Shapiro-Wilk's T	est indicates	s normal c	istribution (o > 0.05)			0.956873		0.924		-0.47569	0.016491
Bartlett's Test in	dicates equa	al variance	es (p = 0.50))			5.347583		16.81189			
The control mea	ns are signif	icantly dif	ferent (p = 1	.65E-03)			5.407685		2.446912			
Hypothesis Tes	st (1-tail, 0.0	5)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test			0.6	1.2	0.848528		0.075077	0.083314	0.16506	0.004053	1.7E-10	6, 21
	VAF Control											

					Maximu	m Likeliho	od-Probit					
Parameter	Value	SE	95% Fiducia	al Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	12.13036	5.86011	0.644542	23.61617		0.1	6.328178	12.59159	0.39	1.268647	0.082438	47
Intercept	-10.3891	7.536889	-25.1614	4.383164								
TSCR	0.170772	0.00769	0.155699	0.185845			^{1.0} T			*		
Point	Probits	gm/L	95% Fiducia	al Limits			0.9			/		
EC01	2.674	11.93624	0.002224	15.10118			-					
EC05	3.355	13.58465	0.025375	16.14361			0.8					
EC10	3.718	14.55454	0.092886	16.73032			0.7					
EC15	3.964	15.24774	0.222909	17.13974			a 0.6					
EC20	4.158	15.82214	0.446931	17.47387			ŝĘ.		/			
EC25	4.326	16.33214	0.811669	17.76765			0.5 0.4					
EC40	4.747	17.69136	3.64624	18.55218			S 0.4					
EC50	5.000	18.56294	8.966176	19.11728			۲					
EC60	5.253	19.47745	18.64012	23.30117			0.5					
EC75	5.674	21.09843	20.12496	101.2331			0.2					
EC80	5.842	21.77851	20.48029	183.6966			0.1		****			
EC85	6.036	22.59893	20.88954	368.1345			-		••			
EC90	6.282	23.67527	21.40736	883.1808			+ 0.0 0.0	01 0.1	10	1000	100000	
EC95	6.645	25.36558	22.19035	3232.15			0.00	0.1	10	1000	100000	
EC99	7.326	28.8686	23.72618	36865.22					D			
	7.020	_0.0000	2011 2010	00000.LL					Dose g	m/L		


Dose gm/L

			Sea Urchin	Ferunsau	on rest-r		ertiliseu		
Start Date:	10/09/2015 11:30	Test ID:	PR1244/01			Sample ID:			ield Condensate
End Date:	10/09/2015 12:50	Lab ID:	7323			Sample Type			er Accommodated Fractior
Sample Date:		Protocol:	ESA 104			Test Species	s:	HT-Helioc	idaris tuberculata
Comments:	Loading Rate								
					-	ta Summary			-
Conc-gm/L	Parameter		Mean	Min	Max	SD	CV%	N	
FSW Control			78.75	76.00	82.00	3.20	2.27		
WAF Control			90.00	87.00	93.00	2.58	1.79		
0.6			84.25	75.00	90.00	6.50	3.03		
1.2			82.25	79.00	87.00	3.40	2.24		
2.4			80.50	75.00	87.00	5.20	2.83		
4.8			80.50	75.00	85.00	4.12	2.52		
9.7			80.00	78.00	83.00	2.16	1.84		
19.3			34.75	23.00	42.00	8.81	8.54		
38.6			0.00	0.00	0.00	0.00		4	
77.2			0.00	0.00	0.00	0.00		4	-
FSW Control			8.10	8.10	8.10	0.00	0.00		
WAF Control			8.10	8.10	8.10	0.00	0.00		
0.6			8.10	8.10	8.10	0.00	0.00		
1.2			8.10	8.10	8.10	0.00	0.00		
2.4			8.10	8.10	8.10	0.00	0.00		
4.8			8.10	8.10	8.10	0.00	0.00		
9.7	,		8.00	8.00	8.00	0.00	0.00	1	
19.3	1		7.90	7.90	7.90	0.00	0.00	1	
38.6	i		7.70	7.70	7.70	0.00	0.00	1	
77.2			7.40	7.40	7.40	0.00	0.00		_
FSW Control	Salinity ppt		35.40	35.40	35.40	0.00	0.00	1	
WAF Control			35.60	35.60	35.60	0.00	0.00	1	
0.6			35.40	35.40	35.40	0.00	0.00	1	
1.2			35.40	35.40	35.40	0.00	0.00	1	
2.4			35.40	35.40	35.40	0.00	0.00	1	
4.8	ł		35.40	35.40	35.40	0.00	0.00	1	
9.7			35.50	35.50	35.50	0.00	0.00	1	
19.3	ł		35.50	35.50	35.50	0.00	0.00	1	
38.6			35.60	35.60	35.60	0.00	0.00	1	
77.2			35.80	35.80	35.80	0.00	0.00		-
FSW Control			100.20	100.20	100.20	0.00	0.00		
WAF Control			100.90	100.90	100.90	0.00	0.00		
0.6			100.00	100.00	100.00	0.00	0.00		
1.2			99.60	99.60	99.60	0.00	0.00	1	
2.4			91.80	91.80	91.80	0.00	0.00		
4.8	1		96.10	96.10	96.10	0.00	0.00	1	
9.7	,		98.70	98.70	98.70	0.00	0.00	1	
19.3			90.10	90.10	90.10	0.00	0.00	1	
38.6			90.20	90.20	90.20	0.00	0.00	1	
77.2			87.20	87.20	87.20	0.00	0.00	1	

				Sea Urchi	n Fertilisati	on Test-F	Proportion	Fertilised				
Start Date:	10/09/2015	11:30	Test ID:	PR1244/01	b		Sample ID		Borossa F	ield Conden	isate	
End Date:	10/09/2015	12:50	Lab ID:	7323			Sample Ty	pe:	WAF-Wate	er Accommo	odated Frac	ction
Sample Date:			Protocol:	ESA 104			Test Speci	es:	HT-Helioci	daris tubero	culata	
Comments:	TRH						-					
Conc-ug/L	1	2	3	4								
FSW Control	0.7600	0.7600	0.8200	0.8100								
WAF Control	0.9300	0.8900	0.8700	0.9100								
350	0.7500	0.9000	0.8500	0.8700								
720	0.8700	0.8100	0.7900	0.8200								
1673	0.7800	0.8700	0.7500	0.8200								
3180	0.8100	0.8500	0.8100	0.7500								
7160	0.8000	0.7800	0.7900	0.8300								
14060	0.4100	0.2300	0.4200	0.3300								
30860	0.0000	0.0000	0.0000	0.0000								
69620	0.0000	0.0000	0.0000	0.0000								
	Transform: Arcsin Sc								1-Tailed		Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Resp	Number
FSW Control	0.7875	0.8750	1.0925	1.0588	1.1326	3.593	4					
WAF Control	0.9000	1.0000	1.2510	1.2019	1.3030	3.477	4	*			40	400
350	0.8425	0.9361	1.1678	1.0472	1.2490	7.389	4	1.847	2.451	0.1104	63	400
*720	0.8225	0.9139	1.1373	1.0948	1.2019	4.034	4	2.525	2.451	0.1104	71	400
*1673	0.8050	0.8944	1.1161	1.0472	1.2019	6.013	4	2.996	2.451	0.1104	78	400
*3180	0.8050	0.8944	1.1150	1.0472	1.1731	4.637	4	3.021	2.451	0.1104	78	400
*7160	0.8000	0.8889	1.1076	1.0826	1.1458	2.473	4	3.185	2.451	0.1104	80	400
*14060	0.3475	0.3861	0.6280	0.5002	0.7051	15.109	4	13.837	2.451	0.1104	261	400
30860	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	4				400	400
69620	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	4				400	400
Auxiliary Tests							Statistic		Critical		Skew	Kurt
Shapiro-Wilk's T	est indicates	s normal d	istribution (p > 0.05)			0.956873		0.924		-0.47569	0.016491
Bartlett's Test in	dicates equa	al variance	es (p = 0.50))			5.347583		16.81189			
The control mea	ins are signif	icantly dif	ferent (p = 1	1.65E-03)			5.407685		2.446912			
Hypothesis Tes	st (1-tail, 0.0	5)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test			350	720	501.996		0.075077	0.083314	0.16506	0.004053	1.7E-10	6, 21
Treatments vs V												

					Maximur	n Likeliho	od-Probit					
Parameter	Value	SE	95% Fiduc	ial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	8.184476	1.175402	5.880688	10.48826		0.1	6.111686	12.59159	0.41	4.120661	0.122183	15
Intercept	-28.7255	4.881007	-38.2922	-19.1587								
TSCR	0.168365	0.007944	0.152795	0.183936			^{1.0} T				→ • 1	
Point	Probits	ug/L	95% Fiduc	ial Limits			0.9					
EC01	2.674	6861.551	5129.257	8091.332			-					
EC05	3.355	8311.683	6688.936	9409.815			0.8					
EC10	3.718	9206.152	7702.422	10203.02			0.7 -					
EC15	3.964	9863.415	8468.76	10779.25			a 06				.	
EC20	4.158	10419.09	9128.97	11263.89			9 0.6 0.5					
EC25	4.326	10920.7	9732.943	11700.96			ō ^{0.5}					
EC40	4.747	12294.38	11406.6	12914.51			Se 0.4					
EC50	5.000	13202.66	12495.25	13763.39			0.3 -					
EC60	5.253	14178.03	13586.08	14777.9			0.3					
EC75	5.674	15961.44	15266.99	17010.68			0.2 -					
EC80	5.842	16729.88	15906.41	18082.49			0.1					
EC85	6.036	17672.39	16656.57	19451.22			-		•	•		
EC90	6.282	18934.09	17624.56	21353.38			0.0 +		100	1000	0	
EC95	6.645	20971.7	19133.71	24558.6			1		100	1000	0	
EC99	7.326	25403.9	22273.69	31994.42					-			
									Dose u	g/L		

			Sea Urchin	Fertilisati	on Test-	Proportion F	ertilised		
Start Date:	10/09/2015 11:30	Test ID:	PR1244/01b			Sample ID:		Borossa F	Field Condensate
End Date:	10/09/2015 12:50	Lab ID:	7323			Sample Typ		WAF-Wat	er Accommodated Fraction
Sample Date:		Protocol:	ESA 104			Test Specie	s:	HT-Helioc	cidaris tuberculata
Comments:	TRH								
						ta Summary			_
Conc-ug/L	Parameter		Mean	Min	Max	SD	CV%	<u>N</u>	
FSW Control			78.75	76.00	82.00	3.20	2.27		
WAF Control			90.00	87.00	93.00	2.58	1.79		
350			84.25	75.00	90.00	6.50	3.03		
720			82.25	79.00	87.00	3.40	2.24		
1673			80.50	75.00	87.00	5.20	2.83		
3180			80.50	75.00	85.00	4.12	2.52		
7160			80.00	78.00	83.00	2.16	1.84		
14060			34.75	23.00	42.00	8.81	8.54		
30860			0.00	0.00	0.00	0.00		4	
69620			0.00	0.00	0.00	0.00		4	-
FSW Control			8.10	8.10	8.10	0.00	0.00		
WAF Control			8.10	8.10	8.10	0.00	0.00		
350			8.10	8.10	8.10	0.00	0.00		
720			8.10	8.10	8.10	0.00	0.00		
1673			8.10	8.10	8.10	0.00	0.00		
3180			8.10	8.10	8.10	0.00	0.00		
7160			8.00	8.00	8.00	0.00	0.00		
14060			7.90	7.90	7.90	0.00	0.00		
30860			7.70	7.70	7.70	0.00	0.00		
69620			7.40	7.40	7.40	0.00	0.00		-
FSW Control	• • •		35.40	35.40	35.40	0.00	0.00		
WAF Control			35.60	35.60	35.60	0.00	0.00		
350			35.40	35.40	35.40	0.00	0.00		
720			35.40	35.40	35.40	0.00	0.00		
1673			35.40	35.40	35.40	0.00	0.00		
3180			35.40	35.40	35.40	0.00	0.00		
7160			35.50	35.50	35.50	0.00	0.00		
14060			35.50	35.50	35.50	0.00	0.00		
30860			35.60	35.60	35.60	0.00	0.00		
69620			35.80	35.80	35.80	0.00	0.00		_
FSW Control			100.20	100.20	100.20	0.00	0.00		
WAF Control			100.90	100.90	100.90	0.00	0.00		
350			100.00	100.00	100.00	0.00	0.00		
720			99.60	99.60	99.60	0.00	0.00		
1673			91.80	91.80	91.80	0.00	0.00		
3180			96.10	96.10	96.10	0.00	0.00		
7160			98.70	98.70	98.70	0.00	0.00		
14060			90.10	90.10	90.10	0.00	0.00		
30860			90.20	90.20	90.20	0.00	0.00		
69620			87.20	87.20	87.20	0.00	0.00	1	_

Appendix L: Statistical Analyses of the Sea Urchin Larval Development Test

				ea Urchin L								
Start Date:	10/09/2015	5 12:45	Test ID:	PR1244/02			Sample ID		Borossa F	ield Conder	nsate	
End Date:	13/09/2015	5 12:45	Lab ID:	7323			Sample Ty		WAF-Wate	er Accomm	odated Frac	ction
Sample Date:			Protocol:	ESA 105			Test Spec	ies:	HT-Helioci	daris tubero	culata	
Comments:	Loading R											
Conc-gm/L	1	2	3	4								
FSW Contro	0.8600	0.8400	0.7600	0.7700								
WAF Contro	0.9000	0.8700	0.8500	0.8900								
1.2	2 0.8500	0.8600	0.8200	0.7900								
2.4	4 0.7800	0.7900	0.8600	0.8900								
4.8	0.9100	0.7500	0.8500	0.8600								
9.7	0.8900	0.8600	0.7800	0.8200								
19.3	3 0.8400	0.8400	0.8100	0.7500								
38.6		0.0300										
77.2		0.0000	0.0000	0.0000								
				Transform:	Arcsin Sa	uare Root			1-Tailed		Number	Total
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Resp	Number
FSW Contro	ol 0.8075	0.9202		1.0588	1.1873	5.710	4				•	
WAF Contro	0.8775	1.0000	1.2142		1.2490	2.772	4	*			49	40
1.2	2 0.8300	0.9459	1.1470	1.0948	1.1873	3.644	4	1.552	2.451	0.1062	68	40
2.4		0.9459	1.1493		1.2327	6.320	4	1.497	2.451	0.1062	68	40
4.8		0.9601	1.1684		1.2661	7.752	4	1.056	2.451	0.1062	63	40
9.7		0.9544			1.2327	5.630	4	1.278	2.451	0.1062	65	40
19.3		0.9231	1.1214		1.1593	4.713	4	2.142	2.451	0.1062	76	40
*38.6		0.0171	0.1165		0.1741	46.067	4	25.329	2.451	0.1062	394	40
77.2		0.0000	0.0500		0.0500	0.000	4	20.020	2.401	0.1002	400	40
Auxiliary Test		0.0000	0.0000	0.0000	0.0000	0.000	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's		es normal d	listribution ((n > 0.05)			0.9702		0.924		-0.29751	-0.48312
Bartlett's Test in							3.405559		16.81189		0.20101	0.10011
The control me							2.636326		2.446912			
Hypothesis Te			NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	,ot (1 tuil, 0.	00)	19.3	38.6	27.29432	10		0.088239	0.62519	0.003756	1.4E-16	6, 21
Treatments vs	WAF Contro	1	10.0	00.0	21.20402		0.011400	0.000200	0.02010	0.000700	1.46 10	0, 21
		•			Maximum	Likelihoo	d-Probit					
Parameter	Value	SE	95% Fiduo	cial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	12.80885	1.109446	10.63434	14.98337		0.1225	1.216596	11.0705	0.94	1.422494	0.078071	8
Intercept	-13.2205	1.676767	-16.507	-9.93405								
TSCR	0.1565	0.008124	0.140576	0.172424			1.0 T				_	
Point	Probits	gm/L		cial Limits						/		
EC01	2.674	17.41299		19.30053			0.9					
EC05			17.49698				0.8 -					
EC10				22.75572			·					
EC15				23.66218			0.7					
EC20		22.73984		24.41245			o 0.6 -					
EC25				25.07866			suo					
EC40				26.85922			ōd 0.5			11		
EC50				28.00939			e 0.6 0.5 e 0.5					
EC30 EC60				20.00939			<u></u>			11		

100

10

Dose gm/L

0.3

0.2

0.1

0.0

EC60

EC75

EC80

EC85

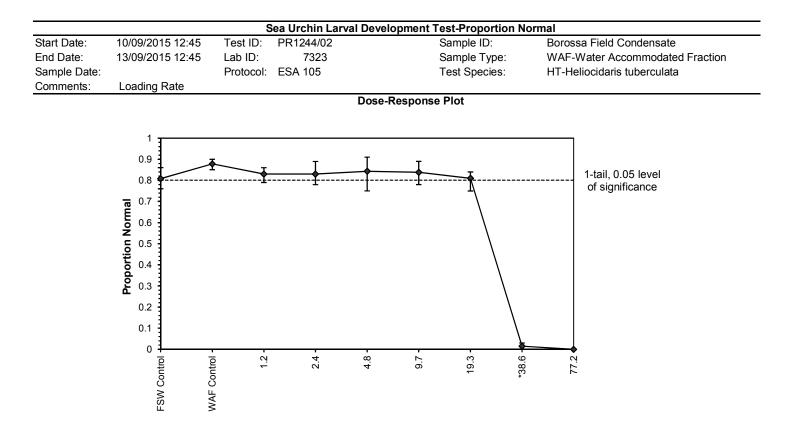
EC90

EC95

EC99

5.253 27.68679 25.96848 29.22808

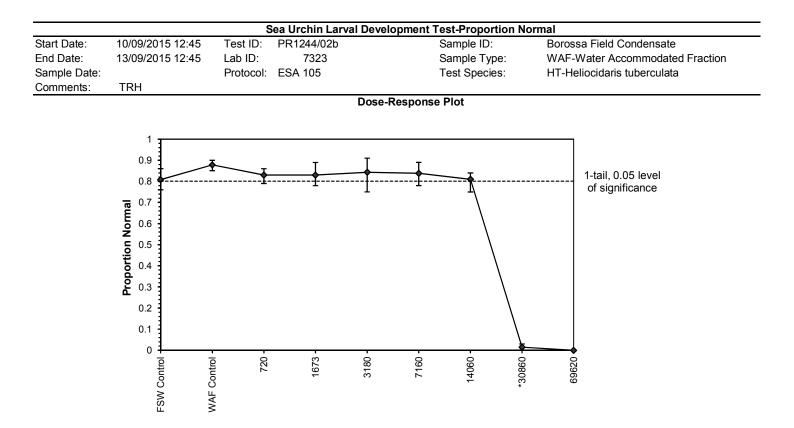
5.674 29.86425 28.22241 31.43128


5.842 30.77512 29.14738 32.37631

6.036 31.87198 30.24463 33.53511

 $6.282 \ \ 33.30777 \ \ 31.65174 \ \ 35.08805$

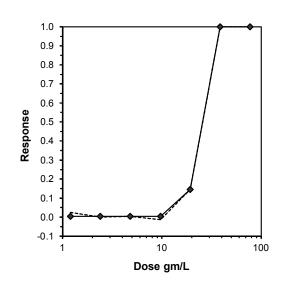
 $6.645 \hspace{0.1in} 35.55568 \hspace{0.1in} 33.78822 \hspace{0.1in} 37.6012$

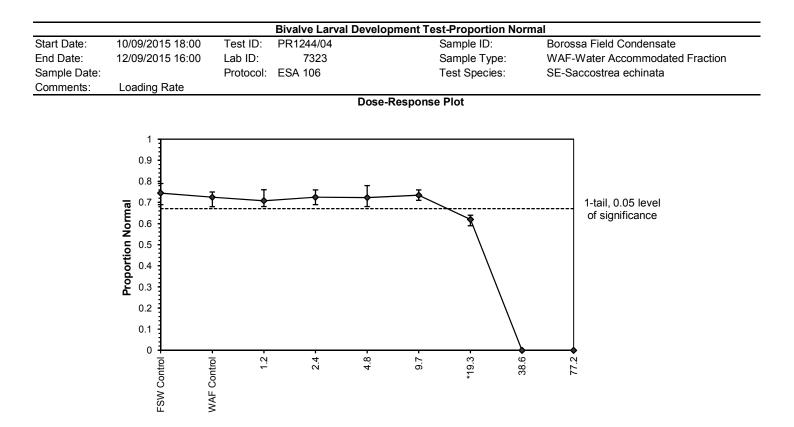

7.326 40.18962 37.97549 43.05577

			ea Urchin La	rval Devel	opment Te	st-Proport	tion Norm		
Start Date:	10/09/2015 12:45	Test ID:	PR1244/02			Sample ID:		Borossa F	ield Condensate
End Date:	13/09/2015 12:45	Lab ID:	7323			Sample Typ		WAF-Wate	er Accommodated Fraction
Sample Date:		Protocol:	ESA 105		٦	est Specie	S:	HT-Helioci	daris tuberculata
Comments:	Loading Rate								
						a Summary			
Conc-gm/L	Parameter		Mean	Min	Max	SD	CV%	Ν	
FSW Control			80.75	76.00	86.00	4.99	2.77		
WAF Control			87.75	85.00	90.00	2.22	1.70		
1.2			83.00	79.00	86.00	3.16	2.14		
2.4			83.00	78.00	89.00	5.35	2.79		
4.8			84.25	75.00	91.00	6.70	3.07		
9.7			83.75	78.00	89.00	4.79	2.61		
19.3			81.00	75.00	84.00	4.24	2.54		
38.6			1.50	0.00	3.00	1.29	75.75	4	
77.2			0.00	0.00	0.00	0.00		4	
FSW Control	•		8.10	8.10	8.10	0.00	0.00	1	
WAF Control			8.10	8.10	8.10	0.00	0.00	1	
1.2			8.10	8.10	8.10	0.00	0.00	1	
2.4			8.10	8.10	8.10	0.00	0.00	1	
4.8			8.10	8.10	8.10	0.00	0.00	1	
9.7			8.00	8.00	8.00	0.00	0.00	1	
19.3			7.90	7.90	7.90	0.00	0.00	1	
38.6			7.70	7.70	7.70	0.00	0.00	1	
77.2			7.40	7.40	7.40	0.00	0.00	1	
FSW Control	Salinity ppt		35.40	35.40	35.40	0.00	0.00	1	
WAF Control			35.60	35.60	35.60	0.00	0.00	1	
1.2			35.40	35.40	35.40	0.00	0.00	1	
2.4			35.40	35.40	35.40	0.00	0.00	1	
4.8			35.40	35.40	35.40	0.00	0.00	1	
9.7			35.50	35.50	35.50	0.00	0.00	1	
19.3			35.50	35.50	35.50	0.00	0.00	1	
38.6			35.60	35.60	35.60	0.00	0.00	1	
77.2			35.80	35.80	35.80	0.00	0.00	1	
FSW Control			100.20	100.20	100.20	0.00	0.00	1	
WAF Control			100.90	100.90	100.90	0.00	0.00	1	
1.2			99.60	99.60	99.60	0.00	0.00	1	
2.4			91.80	91.80	91.80	0.00	0.00	1	
4.8			96.10	96.10	96.10	0.00	0.00	1	
9.7			98.70	98.70	98.70	0.00	0.00	1	
19.3			90.10	90.10	90.10	0.00	0.00		
38.6			90.20	90.20	90.20	0.00	0.00		
77.2			87.20	87.20	87.20	0.00	0.00		

			S	ea Urchin La	arval Deve	lopment 1	est-Propo	rtion Norm	al			
Start Date:	10/09/2015	5 12:45	Test ID:	PR1244/02b			Sample ID			eld Conder	isate	
End Date:	13/09/2015	5 12:45	Lab ID:	7323			Sample Ty	/pe:	WAF-Wate	er Accommo	odated Frac	tion
Sample Date:			Protocol:	ESA 105			Test Spec	ies:	HT-Helioci	daris tubero	culata	
Comments:	TRH											
Conc-ug/L	1	2	3	4								
FSW Control	0.8600	0.8400	0.7600	0.7700								
WAF Control	0.9000	0.8700	0.8500	0.8900								
720	0.8500	0.8600	0.8200	0.7900								
1673	0.7800	0.7900	0.8600	0.8900								
3180	0.9100	0.7500	0.8500	0.8600								
7160	0.8900	0.8600	0.7800	0.8200								
14060	0.8400	0.8400	0.8100	0.7500								
30860	0.0200	0.0300	0.0000	0.0100								
69620	0.0000	0.0000										
				Transform:					1-Tailed		Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
FSW Control		0.9202			1.1873	5.710	4					
WAF Control		1.0000			1.2490	2.772	4	*			49	400
720		0.9459			1.1873	3.644	4	1.552	2.451	0.1062	68	400
1673		0.9459			1.2327	6.320	4	1.497	2.451	0.1062	68	400
3180		0.9601			1.2661	7.752	4	1.056	2.451	0.1062	63	400
7160		0.9544			1.2327	5.630	4	1.278	2.451	0.1062	65	400
14060		0.9231			1.1593	4.713	4	2.142		0.1062	76	400
*30860	0.0150	0.0171			0.1741	46.067	4	25.329	2.451	0.1062	394	400
69620		0.0000	0.0500	0.0500	0.0500	0.000	4				400	400
Auxiliary Tests				0.05			Statistic		Critical		Skew	Kurt
Shapiro-Wilk's T							0.9702		0.924		-0.29751	-0.48312
Bartlett's Test in				,			3.405559		16.81189			
The control mea			u u		051	T 11	2.636326	MOD	2.446912	MOE	E Duch	-14
Hypothesis Test	st (1-tall, 0.0	05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
	VAE Control		14060	30860	20830.06		0.077480	0.088239	0.62519	0.003756	1.4E-16	6, 21
Treatments vs V		I			Movimum	n Likelihoo	d Drobit					
Parameter	Value	SE	95% Fidu	cial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope				13.21119		0.1225	1.216603	11.0705	0.94	4.30329	0.088544	8
Intercept	-43.6008	4.30439		-35.1642		0.1220	1.210000	11.07.00	0.01	1.00020	0.000011	Ũ
TSCR				0.172424			1.0 т					
Point	Probits	ug/L		cial Limits			-				<u>7</u>	
EC01			10670.46				0.9					
EC05		14376.36					0.8					
EC10		15481.64		16947.82			0.7					
EC15		16274.99		17715.52								
EC20		16934.41		18353.93			esu o .6 0.5 0.4					
EC25			15863.37				0 .5					
EC40		19092.29		20453.87			5 0.4					
EC50			18575.71	21450.06			_					
EC60			19686.28				0.3					
EC75			21635.17				0.2					
EC80	5.842		22441.11				0.1					
EC85			23401.61				-		•	> * * * * *		
EC90			24640.21				0.0 +		100	4000		
EC95			26534.89				1		100	10000	J	
EC99			30294.34						_			
	7.020	32000.20	00201104	0.000.0					Dose ug	g/L		

Dose ug/L

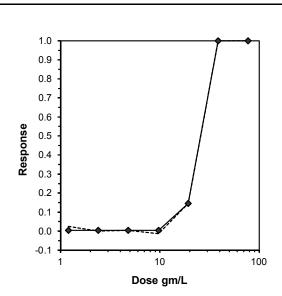


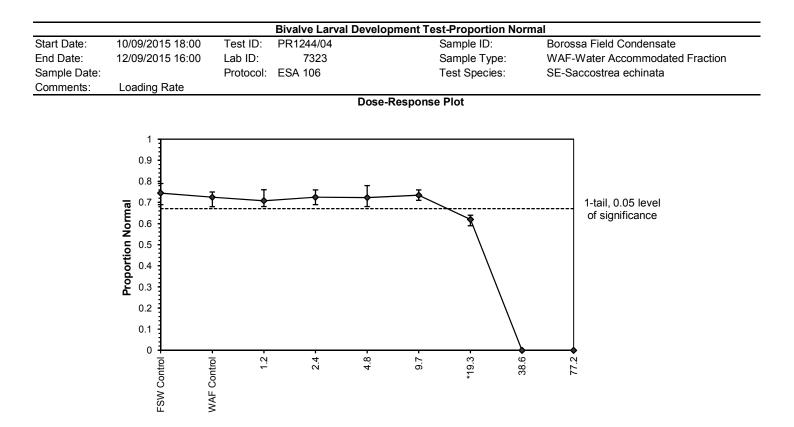

			ea Urchin La	rval Devel			ion Norm		
Start Date:	10/09/2015 12:45	Test ID:	PR1244/02b			Sample ID:			eld Condensate
End Date:	13/09/2015 12:45	Lab ID:	7323			Sample Typ		WAF-Wate	r Accommodated Fraction
Sample Date:		Protocol:	ESA 105		٦	Fest Specie	s:	HT-Helioci	daris tuberculata
Comments:	TRH								
_	_					a Summary			
Conc-ug/L	Parameter		Mean	Min	Max	SD	CV%	N	
FSW Control			80.75	76.00	86.00	4.99	2.77		
WAF Control			87.75	85.00	90.00	2.22	1.70		
720			83.00	79.00	86.00	3.16	2.14		
1673			83.00	78.00	89.00	5.35	2.79		
3180			84.25	75.00	91.00	6.70	3.07		
7160			83.75	78.00	89.00	4.79	2.61	4	
14060			81.00	75.00	84.00	4.24	2.54		
30860			1.50	0.00	3.00	1.29	75.75		
69620			0.00	0.00	0.00	0.00		4	
FSW Control			8.10	8.10	8.10	0.00	0.00		
WAF Control			8.10	8.10	8.10	0.00	0.00		
720			8.10	8.10	8.10	0.00	0.00		
1673			8.10	8.10	8.10	0.00	0.00		
3180			8.10	8.10	8.10	0.00	0.00		
7160			8.00	8.00	8.00	0.00	0.00		
14060			7.90	7.90	7.90	0.00	0.00		
30860			7.70	7.70	7.70	0.00	0.00		
69620			7.40	7.40	7.40	0.00	0.00		
FSW Control	211		35.40	35.40	35.40	0.00	0.00		
WAF Control			35.60	35.60	35.60	0.00	0.00		
720			35.40	35.40	35.40	0.00	0.00		
1673			35.40	35.40	35.40	0.00	0.00		
3180			35.40	35.40	35.40	0.00	0.00		
7160			35.50	35.50	35.50	0.00	0.00		
14060			35.50	35.50	35.50	0.00	0.00		
30860			35.60	35.60	35.60	0.00	0.00		
69620			35.80	35.80	35.80	0.00	0.00		
FSW Contro			100.20	100.20	100.20	0.00	0.00		
WAF Control			100.90	100.90	100.90	0.00	0.00		
720			99.60	99.60	99.60	0.00	0.00		
1673			91.80	91.80	91.80	0.00	0.00		
3180			96.10	96.10	96.10	0.00	0.00		
7160			98.70	98.70	98.70	0.00	0.00		
14060			90.10	90.10	90.10	0.00	0.00		
30860			90.20	90.20	90.20	0.00	0.00		
69620			87.20	87.20	87.20	0.00	0.00	1	

Appendix M: Statistical Analyses of the Milky Oyster Larval Development Test

				<u>Bivalve La</u>	rval Develo	oment Te	st-Proport	ion Norma	<u> </u>			
Start Date:	10/09/2015	18:00	Test ID:	PR1244/04	ļ.		Sample ID	:	Borossa F	ield Conder	nsate	
End Date:	12/09/2015	16:00	Lab ID:	7323			Sample Ty	/pe:	WAF-Wate	er Accommo	odated Frac	tion
Sample Date:			Protocol:	ESA 106			Test Spec	ies:	SE-Saccos	strea echina	ata	
Comments:	Loading R	ate										
Conc-gm/L	1	2	3	4								
FSW Control	0.7200	0.7900	0.7800	0.6900								
WAF Control	0.6800	0.7300	0.7400	0.7500								
1.2	0.7600	0.7000	0.6800	0.6900								
2.4	0.6900	0.7400	0.7100	0.7600								
4.8	0.7800	0.7200	0.6800	0.7100								
9.7	0.7100	0.7600	0.7400	0.7300								
19.3	0.6300	0.5900	0.6400	0.6200								
38.6	0.0000	0.0000	0.0000	0.0000								
77.2	0.0000	0.0000	0.0000	0.0000								
				Transform:	: Arcsin Sq	uare Root	t	_	1-Tailed		Number	Total
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Resp	Number
FSW Control	0.7450	1.0276	1.0427	0.9803	1.0948	5.272	4					
WAF Control		1.0000		0.9695	1.0472	3.376	4	*			110	40
1.2		0.9759	1.0000	0.9695	1.0588	4.023	4	0.779	2.410	0.0596	117	40
2.4	0.7250	1.0000	1.0192	0.9803	1.0588	3.421	4	-0.001	2.410	0.0596	110	40
4.8	0.7225	0.9966	1.0169	0.9695	1.0826	4.679	4	0.095	2.410	0.0596	111	40
9.7		1.0138	1.0303	1.0021	1.0588	2.291	4	-0.447		0.0596	106	40
*19.3		0.8552	0.9067	0.8759	0.9273	2.448	4	4.553	2.410	0.0596	152	40
38.6	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	4				400	40
77.2	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	4				400	400
Auxiliary Tests							Statistic		Critical		Skew	Kurt
Shapiro-Wilk's 1	est indicate	s normal d	listribution (p > 0.05)			0.974316		0.916		0.369425	-0.29632
Bartlett's Test in	idicates equ	al variance	es (p = 0.82))			2.211731		15.08627			
The control mea			/ different (p) = 0.50)			0.724702		2.446912			
Hypothesis Te	st (1-tail, 0.0	05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test			9.7	19.3	13.68247		0.054646	0.075334	0.008512	0.001222	8.8E-04	5, 18
Treatments vs V	VAF Control											

Trim Level	EC50	95%	CL
0.0%			
5.0%	25.222	24.515	25.950
10.0%	25.608	24.672	26.579
20.0%	25.738	25.313	26.171
Auto-0.3%	24.709	24.110	25.323

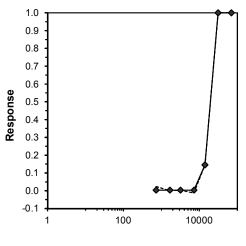


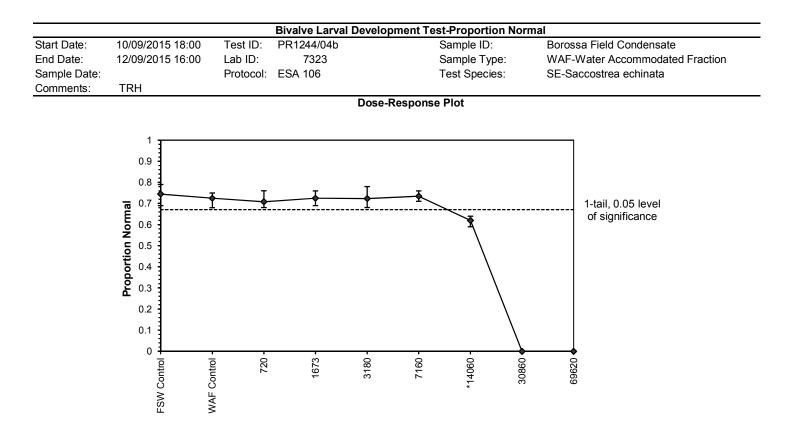


			Bivalve Larv	al Develo	oment Tes	t-Proportic	on Norma		
Start Date:	10/09/2015 18:00	Test ID:	PR1244/04			Sample ID:		Borossa F	ield Condensate
End Date:	12/09/2015 16:00	Lab ID:	7323			Sample Typ		WAF-Wate	er Accommodated Fraction
Sample Date:		Protocol:	ESA 106		٦	Test Specie	S:	SE-Sacco	strea echinata
Comments:	Loading Rate								
					xiliary Data				
Conc-gm/L	Parameter		Mean	Min	Max	SD	CV%	N	
FSW Control			74.50	69.00	79.00	4.80	2.94		
WAF Control			72.50	68.00	75.00	3.11	2.43		
1.2			70.75	68.00	76.00	3.59	2.68		
2.4			72.50	69.00	76.00	3.11	2.43		
4.8			72.25	68.00	78.00	4.19	2.83		
9.7			73.50	71.00	76.00	2.08	1.96	4	
19.3			62.00	59.00	64.00	2.16	2.37		
38.6			0.00	0.00	0.00	0.00		4	
77.2			0.00	0.00	0.00	0.00		4	
FSW Control	pН		8.10	8.10	8.10	0.00	0.00	1	-
WAF Control			8.10	8.10	8.10	0.00	0.00	1	
1.2			8.10	8.10	8.10	0.00	0.00	1	
2.4			8.10	8.10	8.10	0.00	0.00	1	
4.8			8.10	8.10	8.10	0.00	0.00	1	
9.7			8.00	8.00	8.00	0.00	0.00	1	
19.3			7.90	7.90	7.90	0.00	0.00	1	
38.6			7.70	7.70	7.70	0.00	0.00	1	
77.2			7.40	7.40	7.40	0.00	0.00	1	
FSW Control	Salinity ppt		35.40	35.40	35.40	0.00	0.00	1	
WAF Control			35.60	35.60	35.60	0.00	0.00	1	
1.2			35.40	35.40	35.40	0.00	0.00	1	
2.4			35.40	35.40	35.40	0.00	0.00	1	
4.8			35.40	35.40	35.40	0.00	0.00	1	
9.7			35.50	35.50	35.50	0.00	0.00		
19.3			35.50	35.50	35.50	0.00	0.00		
38.6			35.60	35.60	35.60	0.00	0.00		
77.2			35.80	35.80	35.80	0.00	0.00		
FSW Control			100.20	100.20	100.20	0.00	0.00		-
WAF Control			100.90	100.90	100.90	0.00	0.00		
1.2			99.60	99.60	99.60	0.00	0.00		
2.4			91.80	91.80	91.80	0.00	0.00		
4.8			96.10	96.10	96.10	0.00	0.00		
9.7			98.70	98.70	98.70	0.00	0.00		
19.3			90.10	90.10	90.10	0.00	0.00		
38.6			90.20	90.20	90.20	0.00	0.00		
77.2			87.20	87.20	87.20	0.00	0.00		

				Bivalve La	rval Develo	pment Te	st-Proport	ion Norma				
Start Date:	10/09/2015	5 18:00	Test ID:	PR1244/04	Ļ		Sample ID	:	Borossa F	ield Conder	isate	
End Date:	12/09/2015	5 16:00	Lab ID:	7323			Sample Ty	/pe:	WAF-Wate	er Accommo	odated Frac	tion
Sample Date:			Protocol:	ESA 106			Test Spec	ies:	SE-Saccos	strea echina	ita	
Comments:	Loading R	ate					-					
Conc-gm/L	1	2	3	4								
FSW Control	0.7200	0.7900	0.7800	0.6900								
WAF Control	0.6800	0.7300	0.7400	0.7500								
1.2	0.7600	0.7000	0.6800	0.6900								
2.4	0.6900	0.7400	0.7100	0.7600								
4.8	0.7800	0.7200	0.6800	0.7100								
9.7	0.7100	0.7600	0.7400	0.7300								
19.3	0.6300	0.5900	0.6400	0.6200								
38.6	0.0000	0.0000	0.0000	0.0000								
77.2	0.0000	0.0000	0.0000	0.0000								
				Transform	: Arcsin Sq	uare Root	t		1-Tailed		lsot	onic
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Mean	N-Mean
FSW Control	0.7450	1.0276	1.0427	0.9803	1.0948	5.272	4					
WAF Control	0.7250	1.0000	1.0192	0.9695	1.0472	3.376	4	*			0.7250	1.0000
1.2	0.7075	0.9759	1.0000	0.9695	1.0588	4.023	4	0.779	2.410	0.0596	0.7225	0.9966
2.4	0.7250	1.0000	1.0192	0.9803	1.0588	3.421	4	-0.001	2.410	0.0596	0.7225	0.9966
4.8	0.7225	0.9966	1.0169	0.9695	1.0826	4.679	4	0.095	2.410	0.0596	0.7225	0.9966
9.7	0.7350	1.0138	1.0303	1.0021	1.0588	2.291	4	-0.447	2.410	0.0596	0.7225	0.9966
*19.3	0.6200	0.8552	0.9067	0.8759	0.9273	2.448	4	4.553	2.410	0.0596	0.6200	0.8552
38.6	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	4				0.0000	0.0000
77.2	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	4				0.0000	0.0000
Auxiliary Tests							Statistic		Critical		Skew	Kurt
Shapiro-Wilk's 1	Fest indicate	s normal d	istribution (p > 0.05)			0.974316		0.916		0.369425	-0.29632
Bartlett's Test in	ndicates equ	al variance	es (p = 0.82))			2.211731		15.08627			
The control mea	ans are not s	significantly		o = 0.50)			0.724702		2.446912			
Hypothesis Te	st (1-tail, 0.0	05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test			9.7	19.3	13.68247		0.054646	0.075334	0.008512	0.001222	8.8E-04	5, 18
Treatments vs V	VAF Control											
					Logit Interp	olation (2	00 Resam	ples)				
Point	gm/L	SD	95% C	L(Exp)	Skew							

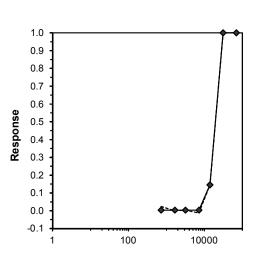
				•	
Point	gm/L	SD	95% CL	(Exp)	Skew
IC05	12.371	1.054	9.095	13.474	-5.6672
IC10	15.745	1.017	11.783	18.345	-0.1579
IC15	19.322	0.819	14.886	19.494	-1.6728
IC20	19.535	0.082	19.253	19.698	-1.9600
IC25	19.744	0.071	19.470	19.901	-0.5760
IC40	20.378	0.066	20.122	20.523	-0.5922
IC50	20.829	0.064	20.582	20.970	-0.5981

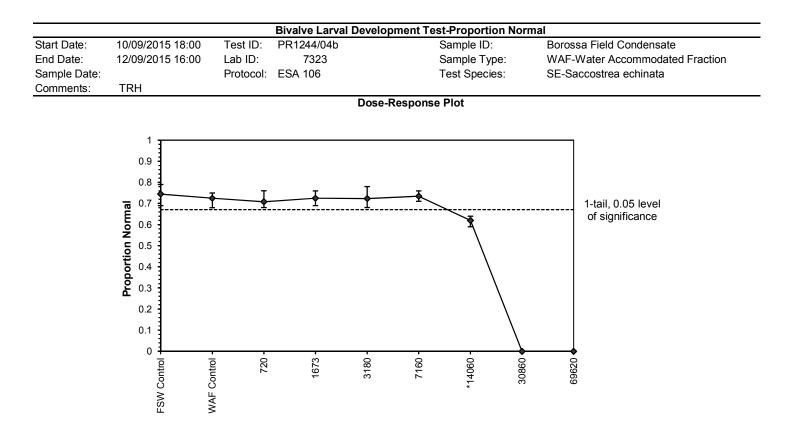



			Bivalve Larv	al Develo	oment Tes	t-Proportic	on Norma		
Start Date:	10/09/2015 18:00	Test ID:	PR1244/04			Sample ID:		Borossa F	ield Condensate
End Date:	12/09/2015 16:00	Lab ID:	7323			Sample Typ		WAF-Wate	er Accommodated Fraction
Sample Date:		Protocol:	ESA 106		٦	Test Specie	S:	SE-Sacco	strea echinata
Comments:	Loading Rate								
					xiliary Data				
Conc-gm/L	Parameter		Mean	Min	Max	SD	CV%	N	
FSW Control			74.50	69.00	79.00	4.80	2.94		
WAF Control			72.50	68.00	75.00	3.11	2.43		
1.2			70.75	68.00	76.00	3.59	2.68		
2.4			72.50	69.00	76.00	3.11	2.43		
4.8			72.25	68.00	78.00	4.19	2.83		
9.7			73.50	71.00	76.00	2.08	1.96	4	
19.3			62.00	59.00	64.00	2.16	2.37		
38.6			0.00	0.00	0.00	0.00		4	
77.2			0.00	0.00	0.00	0.00		4	
FSW Control	pН		8.10	8.10	8.10	0.00	0.00	1	-
WAF Control			8.10	8.10	8.10	0.00	0.00	1	
1.2			8.10	8.10	8.10	0.00	0.00	1	
2.4			8.10	8.10	8.10	0.00	0.00	1	
4.8			8.10	8.10	8.10	0.00	0.00	1	
9.7			8.00	8.00	8.00	0.00	0.00	1	
19.3			7.90	7.90	7.90	0.00	0.00	1	
38.6			7.70	7.70	7.70	0.00	0.00	1	
77.2			7.40	7.40	7.40	0.00	0.00	1	
FSW Control	Salinity ppt		35.40	35.40	35.40	0.00	0.00	1	
WAF Control			35.60	35.60	35.60	0.00	0.00	1	
1.2			35.40	35.40	35.40	0.00	0.00	1	
2.4			35.40	35.40	35.40	0.00	0.00	1	
4.8			35.40	35.40	35.40	0.00	0.00	1	
9.7			35.50	35.50	35.50	0.00	0.00		
19.3			35.50	35.50	35.50	0.00	0.00		
38.6			35.60	35.60	35.60	0.00	0.00		
77.2			35.80	35.80	35.80	0.00	0.00		
FSW Control			100.20	100.20	100.20	0.00	0.00		-
WAF Control			100.90	100.90	100.90	0.00	0.00		
1.2			99.60	99.60	99.60	0.00	0.00		
2.4			91.80	91.80	91.80	0.00	0.00		
4.8			96.10	96.10	96.10	0.00	0.00		
9.7			98.70	98.70	98.70	0.00	0.00		
19.3			90.10	90.10	90.10	0.00	0.00		
38.6			90.20	90.20	90.20	0.00	0.00		
77.2			87.20	87.20	87.20	0.00	0.00		

				Bivalve Lar	val Develo	oment Te	st-Proport	ion Norma	<u> </u>			
Start Date:	10/09/2015	18:00	Test ID:	PR1244/04	b		Sample ID	:	Borossa F	ield Conder	nsate	
End Date:	12/09/2015	16:00	Lab ID:	7323			Sample Ty	/pe:	WAF-Wate	er Accommo	odated Frac	tion
Sample Date:			Protocol:	ESA 106			Test Spec	ies:	SE-Saccos	strea echina	ata	
Comments:	TRH											
Conc-ug/L	1	2	3	4								
FSW Control	0.7200	0.7900	0.7800	0.6900								
WAF Control	0.6800	0.7300	0.7400	0.7500								
720	0.7600	0.7000	0.6800	0.6900								
1673	0.6900	0.7400	0.7100	0.7600								
3180	0.7800	0.7200	0.6800	0.7100								
7160	0.7100	0.7600	0.7400	0.7300								
14060	0.6300	0.5900	0.6400	0.6200								
30860	0.0000	0.0000	0.0000	0.0000								
69620	0.0000	0.0000	0.0000	0.0000								
				Transform:	Arcsin Sq	uare Root	:		1-Tailed		Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Resp	Number
FSW Control	0.7450	1.0276	1.0427	0.9803	1.0948	5.272	4					
WAF Control	0.7250	1.0000	1.0192	0.9695	1.0472	3.376	4	*			110	40
720	0.7075	0.9759	1.0000	0.9695	1.0588	4.023	4	0.779	2.410	0.0596	117	40
1673	0.7250	1.0000	1.0192	0.9803	1.0588	3.421	4	-0.001	2.410	0.0596	110	40
3180	0.7225	0.9966	1.0169	0.9695	1.0826	4.679	4	0.095	2.410	0.0596	111	40
7160	0.7350	1.0138	1.0303	1.0021	1.0588	2.291	4	-0.447	2.410	0.0596	106	40
*14060	0.6200	0.8552	0.9067	0.8759	0.9273	2.448	4	4.553	2.410	0.0596	152	40
30860	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	4				400	40
69620	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	4				400	400
Auxiliary Tests							Statistic		Critical		Skew	Kurt
Shapiro-Wilk's 1	est indicate	s normal d	listribution (p > 0.05)			0.974316		0.916		0.369425	-0.29632
Bartlett's Test in	dicates equ	al variance	es (p = 0.82))			2.211731		15.08627			
The control mea	ans are not s	ignificantly		o = 0.50)			0.724702		2.446912			
Hypothesis Te	st (1-tail, 0.0)5)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test			7160	14060	10033.42		0.054646	0.075334	0.008512	0.001222	8.8E-04	5, 18
Treatments vs V	VAF Control											

Trim Level	EC50	95%	CL	
0.0%				
5.0%	19116.99	18552.77	19698.36	
10.0%	19394.51	18656.02	20162.23	
20.0%	19488.61	19123.45	19860.75	
Auto-0.3%	18747.24	18266.79	19240.34	

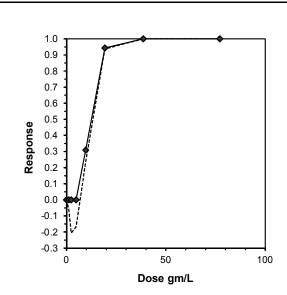

Dose ug/L

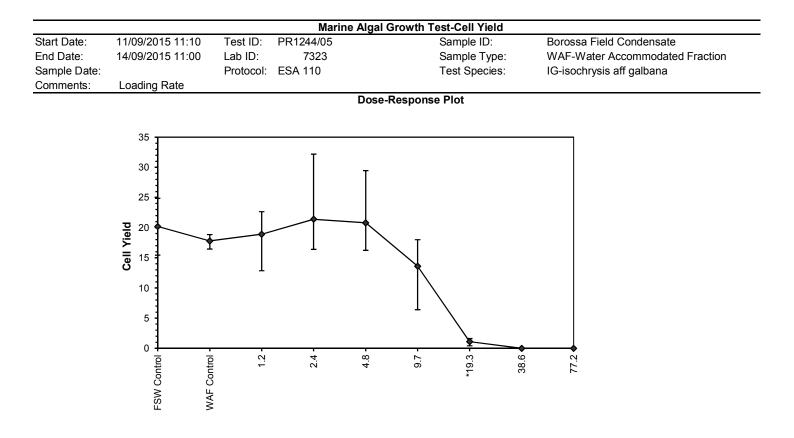

			Bivalve Larva	al Develo	oment Tes	t-Proportic	on Norma		
Start Date:	10/09/2015 18:00	Test ID:	PR1244/04b			Sample ID:		Borossa Fi	eld Condensate
End Date:	12/09/2015 16:00	Lab ID:	7323			Sample Typ		WAF-Wate	er Accommodated Fraction
Sample Date:		Protocol:	ESA 106			Fest Specie	S:	SE-Saccos	strea echinata
Comments:	TRH								
						a Summary			
Conc-ug/L	Parameter		Mean	Min	Max	SD	CV%	N	
FSW Control			74.50	69.00	79.00	4.80	2.94		
WAF Control			72.50	68.00	75.00	3.11	2.43		
720			70.75	68.00	76.00	3.59	2.68		
1673			72.50	69.00	76.00	3.11	2.43		
3180			72.25	68.00	78.00	4.19	2.83		
7160			73.50	71.00	76.00	2.08	1.96		
14060			62.00	59.00	64.00	2.16	2.37		
30860			0.00	0.00	0.00	0.00		4	
69620			0.00	0.00	0.00	0.00		4	
FSW Control			8.10	8.10	8.10	0.00	0.00		
WAF Control			8.10	8.10	8.10	0.00	0.00		
720			8.10	8.10	8.10	0.00	0.00		
1673			8.10	8.10	8.10	0.00	0.00	1	
3180	I		8.10	8.10	8.10	0.00	0.00	1	
7160	I		8.00	8.00	8.00	0.00	0.00	1	
14060			7.90	7.90	7.90	0.00	0.00	1	
30860	1		7.70	7.70	7.70	0.00	0.00	1	
69620			7.40	7.40	7.40	0.00	0.00	1	
FSW Control	Salinity ppt		35.40	35.40	35.40	0.00	0.00	1	
WAF Control			35.60	35.60	35.60	0.00	0.00	1	
720	1		35.40	35.40	35.40	0.00	0.00	1	
1673	i		35.40	35.40	35.40	0.00	0.00	1	
3180			35.40	35.40	35.40	0.00	0.00	1	
7160	1		35.50	35.50	35.50	0.00	0.00	1	
14060	1		35.50	35.50	35.50	0.00	0.00	1	
30860	1		35.60	35.60	35.60	0.00	0.00	1	
69620			35.80	35.80	35.80	0.00	0.00	1	
FSW Control			100.20	100.20	100.20	0.00	0.00	1	
WAF Control			100.90	100.90	100.90	0.00	0.00	1	
720	1		99.60	99.60	99.60	0.00	0.00	1	
1673			91.80	91.80	91.80	0.00	0.00	1	
3180	1		96.10	96.10	96.10	0.00	0.00	1	
7160	1		98.70	98.70	98.70	0.00	0.00	1	
14060	I		90.10	90.10	90.10	0.00	0.00	1	
30860	I		90.20	90.20	90.20	0.00	0.00	1	
69620	1		87.20	87.20	87.20	0.00	0.00	1	

End Date: 1 Sample Date: Comments: FSW Control WAF Control 720 1673 3180 7160 14060 30860 69620 Conc-ug/L FSW Control WAF Control	10/09/2015 12/09/2015 TRH 0.7200 0.6800 0.7600 0.6900 0.7800 0.7100 0.6300	16:00	Lab ID: Protocol: 3 0.7800 0.7400 0.6800 0.7100	PR1244/04 7323 ESA 106 4 0.6900 0.7500 0.6900	b		Sample ID Sample Ty Test Speci	pe:	Borossa Fi WAF-Wate SE-Saccos	er Accommo	dated Frac	tion
Sample Date: <u>Comments:</u> FSW Control WAF Control 720 1673 3180 7160 14060 30860 69620 <u>Conc-ug/L</u> FSW Control WAF Control	TRH 0.7200 0.6800 0.7600 0.6900 0.7800 0.7100	2 0.7900 0.7300 0.7000 0.7400 0.7200	Protocol: 3 0.7800 0.7400 0.6800 0.7100	ESA 106 4 0.6900 0.7500								tion
Comments: Conc-ug/L FSW Control WAF Control 720 1673 3180 7160 14060 30860 69620 Conc-ug/L FSW Control WAF Control	1 0.7200 0.6800 0.7600 0.6900 0.7800 0.7100	2 0.7900 0.7300 0.7000 0.7400 0.7200	3 0.7800 0.7400 0.6800 0.7100	4 0.6900 0.7500			Test Speci	es:	SE-Saccos	strea echina	ta	
Conc-ug/L FSW Control WAF Control 720 1673 3180 7160 14060 30860 69620 Conc-ug/L FSW Control WAF Control	1 0.7200 0.6800 0.7600 0.6900 0.7800 0.7100	0.7900 0.7300 0.7000 0.7400 0.7200	0.7800 0.7400 0.6800 0.7100	0.6900 0.7500			-					
FSW Control WAF Control 720 1673 3180 7160 14060 30860 69620 Conc-ug/L FSW Control WAF Control	0.7200 0.6800 0.7600 0.6900 0.7800 0.7100	0.7900 0.7300 0.7000 0.7400 0.7200	0.7800 0.7400 0.6800 0.7100	0.6900 0.7500								
WAF Control 720 1673 3180 7160 14060 30860 69620 Conc-ug/L FSW Control WAF Control	0.6800 0.7600 0.6900 0.7800 0.7100	0.7300 0.7000 0.7400 0.7200	0.7400 0.6800 0.7100	0.7500								
720 1673 3180 7160 14060 30860 69620 Conc-ug/L FSW Control WAF Control	0.7600 0.6900 0.7800 0.7100	0.7000 0.7400 0.7200	0.6800 0.7100									
1673 3180 7160 14060 30860 69620 Conc-ug/L FSW Control WAF Control	0.6900 0.7800 0.7100	0.7400 0.7200	0.7100	0.6900								
3180 7160 14060 30860 <u>69620</u> Conc-ug/L FSW Control WAF Control	0.7800 0.7100	0.7200		0.0000								
7160 14060 30860 69620 Conc-ug/L FSW Control WAF Control	0.7100			0.7600								
14060 30860 69620 Conc-ug/L FSW Control WAF Control		0.7600	0.6800	0.7100								
30860 69620 Conc-ug/L FSW Control WAF Control	0.6300		0.7400	0.7300								
69620 Conc-ug/L FSW Control WAF Control	0.0000	0.5900	0.6400	0.6200								
Conc-ug/L FSW Control WAF Control	0.0000	0.0000	0.0000	0.0000								
FSW Control WAF Control	0.0000	0.0000	0.0000	0.0000								
FSW Control WAF Control				Transform:	Arcsin Squ	rcsin Square Root					lsoto	onic
WAF Control	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Mean	N-Mean
	0.7450	1.0276	1.0427	0.9803	1.0948	5.272	4					
700	0.7250	1.0000	1.0192	0.9695	1.0472	3.376	4	*			0.7250	1.0000
720	0.7075	0.9759	1.0000	0.9695	1.0588	4.023	4	0.779	2.410	0.0596	0.7225	0.9966
1673	0.7250	1.0000	1.0192	0.9803	1.0588	3.421	4	-0.001	2.410	0.0596	0.7225	0.9966
3180	0.7225	0.9966	1.0169	0.9695	1.0826	4.679	4	0.095	2.410	0.0596	0.7225	0.9966
7160	0.7350	1.0138	1.0303	1.0021	1.0588	2.291	4	-0.447	2.410	0.0596	0.7225	0.9966
*14060	0.6200	0.8552	0.9067	0.8759	0.9273	2.448	4	4.553	2.410	0.0596	0.6200	0.8552
30860	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	4				0.0000	0.0000
69620	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	4				0.0000	0.0000
Auxiliary Tests							Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Te	est indicate	s normal di	stribution (o > 0.05)			0.974316		0.916		0.369425	-0.29632
Bartlett's Test ind	icates equa	al variances	s (p = 0.82)	1			2.211731		15.08627			
The control mean	is are not s	ignificantly	different (p	= 0.50)			0.724702		2.446912			
Hypothesis Test	t (1-tail, 0.0)5)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test			7160	14060	10033.42		0.054646	0.075334	0.008512	0.001222	8.8E-04	5, 18
Treatments vs W	AF Control											
Point				Log-l	_ogit Interp	olation (2	00 Resam	nloe)				

					-ogic intorp
Point	ug/L	SD	95% CI	L(Exp)	Skew
IC05	9055.039	550.0583	6722.156	9886.09	-0.4671
IC10	11478.4	746.7707	9026.542	13230.49	0.0761
IC15	14078.12	576.9736	11380.46	14211.57	-1.1160
IC20	14251.33	59.23795	14048.25	14383.92	-0.1525
IC25	14422.52	57.71578	14222.15	14551.48	-0.1687
IC40	14942.4	54.40733	14753.36	15064.09	-0.2065
IC50	15313.95	52.80835	15128.32	15435.3	-0.2244

Dose ug/L

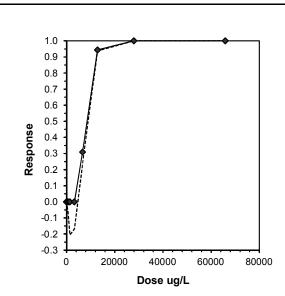


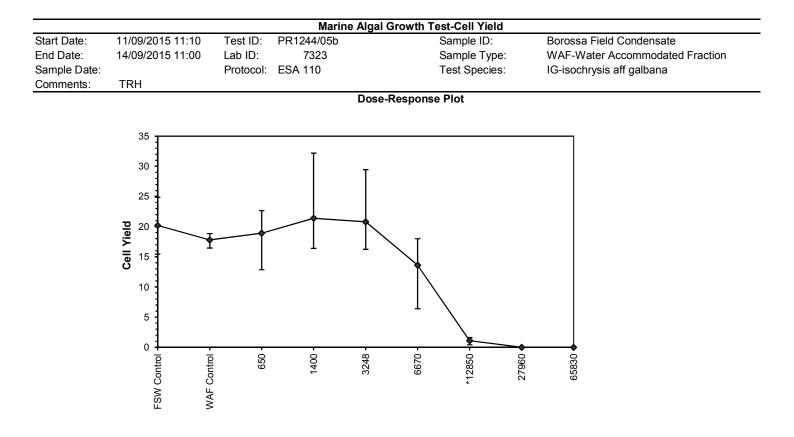

			Bivalve Larva	al Develo	oment Tes	t-Proportic	on Norma		
Start Date:	10/09/2015 18:00	Test ID:	· · · · · · · · · · · · · · · · · · ·						eld Condensate
End Date:	12/09/2015 16:00	Lab ID:	7323			Sample Typ		WAF-Wate	er Accommodated Fraction
Sample Date:		Protocol:	ESA 106			Fest Specie	S:	SE-Saccos	strea echinata
Comments:	TRH					a Summary			
Conc-ug/L	Parameter		Mean	Min	Max	SD	CV%	N	
FSW Control			74.50	69.00	79.00	4.80	2.94		
WAF Control			72.50	68.00	75.00	3.11	2.43		
720			70.75	68.00	76.00	3.59	2.68		
1673			72.50	69.00	76.00	3.11	2.43		
3180			72.25	68.00	78.00	4.19	2.83		
7160			73.50	71.00	76.00	2.08	1.96		
14060			62.00	59.00	64.00	2.16	2.37		
30860			0.00	0.00	0.00	0.00		4	
69620			0.00	0.00	0.00	0.00		4	
FSW Control			8.10	8.10	8.10	0.00	0.00		
WAF Control			8.10	8.10	8.10	0.00	0.00		
720			8.10	8.10	8.10	0.00	0.00		
1673			8.10	8.10	8.10	0.00	0.00	1	
3180	I		8.10	8.10	8.10	0.00	0.00	1	
7160	I		8.00	8.00	8.00	0.00	0.00	1	
14060			7.90	7.90	7.90	0.00	0.00	1	
30860	1		7.70	7.70	7.70	0.00	0.00	1	
69620			7.40	7.40	7.40	0.00	0.00	1	
FSW Control	Salinity ppt		35.40	35.40	35.40	0.00	0.00	1	
WAF Control			35.60	35.60	35.60	0.00	0.00	1	
720	1		35.40	35.40	35.40	0.00	0.00	1	
1673	i		35.40	35.40	35.40	0.00	0.00	1	
3180			35.40	35.40	35.40	0.00	0.00	1	
7160	1		35.50	35.50	35.50	0.00	0.00	1	
14060	1		35.50	35.50	35.50	0.00	0.00	1	
30860	1		35.60	35.60	35.60	0.00	0.00	1	
69620			35.80	35.80	35.80	0.00	0.00	1	
FSW Control			100.20	100.20	100.20	0.00	0.00	1	
WAF Control			100.90	100.90	100.90	0.00	0.00	1	
720	1		99.60	99.60	99.60	0.00	0.00	1	
1673			91.80	91.80	91.80	0.00	0.00	1	
3180	1		96.10	96.10	96.10	0.00	0.00	1	
7160	1		98.70	98.70	98.70	0.00	0.00	1	
14060	I		90.10	90.10	90.10	0.00	0.00	1	
30860	I		90.20	90.20	90.20	0.00	0.00	1	
69620	1		87.20	87.20	87.20	0.00	0.00	1	

Appendix N: Statistical Analyses of Micro-Algal Growth Inhibition Test

						Growth To	est-Cell Yiel	d			
Start Date:	11/09/2015	11:10	Test ID:	PR1244/05			Sample ID:		Borossa Field (Condensate	
End Date:	14/09/2015	11:00	Lab ID:	7323			Sample Typ	e:	WAF-Water Ac	commodated Frac	tion
Sample Date:			Protocol:	ESA 110			Test Specie	S:	IG-isochrysis at	ff galbana	
Comments:	Loading R	ate									
Conc-gm/L	1	2	3	4	5	6	7	8			
FSW Control	24.809	22.609	15.409	21.609	17.009	22.609	18.409	18.809			
WAF Control	18.209	17.609	16.409	18.809							
1.2	19.009	22.609	12.809	21.009							
2.4	32.209	16.409	18.209	18.809							
4.8	16.409	16.209	29.409	21.009							
9.7	14.009	6.409	18.009	16.009							
19.3	0.409	1.409	1.609	1.009							
38.6	0.000	0.000	0.000	0.000							
77.2	0.000	0.000	0.000	0.000							
				Transfor		Untransformed Rank			1-Tailed	lsoto	onic
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
FSW Control	20.159	1.1351	20.159	15.409	24.809	16.030	8				
WAF Control	17.759	1.0000	17.759	16.409	18.809	5.770	4	*		19.697	1.0000
1.2		1.0619	18.859	12.809	22.609	22.768	4	22.00	10.00	19.697	1.0000
2.4		1.2055	21.409	16.409	32.209	33.966	4	20.50	10.00	19.697	1.0000
4.8		1.1689	20.759	16.209	29.409	29.761	4	18.50	10.00	19.697	1.0000
9.7	13.609	0.7663	13.609	6.409	18.009	37.256	4	12.00	10.00	13.609	0.6909
*19.3	1.109	0.0624	1.109	0.409	1.609	47.713	4	10.00	10.00	1.109	0.0563
38.6		0.0000	0.000	0.000	0.000	0.000	4			0.000	0.0000
77.2	0.000	0.0000	0.000	0.000	0.000	0.000	4			0.000	0.0000
Auxiliary Tests							Statistic		Critical	Skew	Kurt
Shapiro-Wilk's T	est indicate	s normal c	istribution (p > 0.05)			0.940018		0.916	0.707398	1.092201
Bartlett's Test in		•	N N	,			16.46936		15.08627		
The control mea				o = 0.19)			1.419305		2.228139		
Hypothesis Te			NOEC	LOEC	ChV	TU					
Steel's Many-Or			9.7	19.3	13.68247						
Treatments vs V	VAF Control										
				Line	•	lation (20	0 Resample	s)			
Point	gm/L	SD	95% C	L(Exp)	Skew						

Point	gm/L	SD	95% CL	(Exp)	Skew
IC05	5.593	1.260	0.093	7.552	-0.6336
IC10	6.385	1.313	2.183	10.675	0.1652
IC15	7.178	1.381	3.325	11.694	0.4336
IC20	7.971	1.427	4.320	12.176	0.2373
IC25	8.764	1.374	5.558	12.659	0.1009
IC40	11.076	1.350	6.896	14.139	-0.3797
IC50	12.588	1.286	7.448	15.094	-0.8271

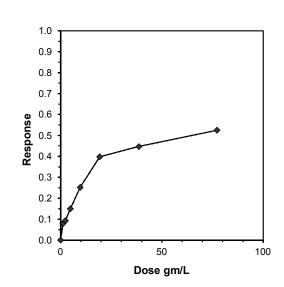


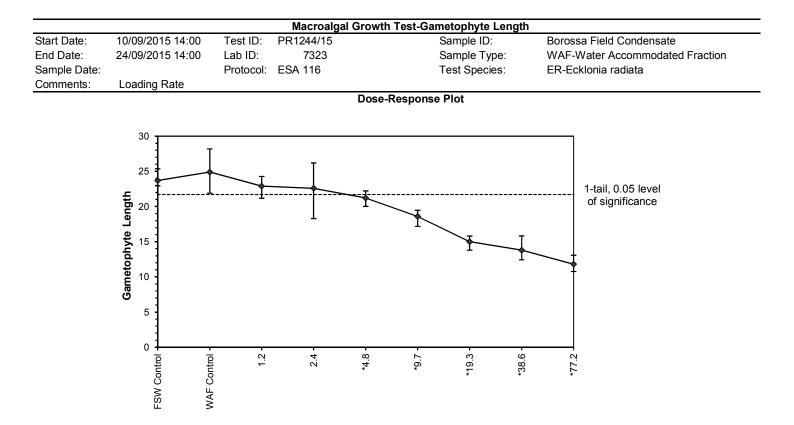


		-		ine Algal (Growth Tes	st-Cell Yiel	d		
Start Date:	11/09/2015 11:10	Test ID:	PR1244/05		5	Sample ID:		Borossa Fie	ld Condensate
End Date:	14/09/2015 11:00	Lab ID:	7323		5	Sample Type	e:	WAF-Water	Accommodated Fractio
Sample Date:		Protocol:	ESA 110		٦	Fest Species	s:	IG-isochrysi	s aff galbana
Comments:	Loading Rate					a Summary			
Conc-gm/L	Parameter		Mean	Min	Max	SD	CV%	N	
FSW Control	Cell Yield		20.16	15.41	24.81	3.23	8.92	8	
WAF Control			17.76	16.41	18.81	1.02	5.70	4	
1.2			18.86	12.81	22.61	4.29	10.99	4	
2.4			21.41	16.41	32.21	7.27	12.60	4	
4.8			20.76	16.21	29.41	6.18	11.97	4	
9.7			13.61	6.41	18.01	5.07	16.55	4	
19.3			1.11	0.41	1.61	0.53	65.59	4	
38.6			0.00	0.00	0.00	0.00		4	
77.2			0.00	0.00	0.00	0.00		4	
FSW Control	pН		8.10	8.10	8.10	0.00	0.00	1	
WAF Control			8.10	8.10	8.10	0.00	0.00	1	
1.2			8.10	8.10	8.10	0.00	0.00	1	
2.4			8.10	8.10	8.10	0.00	0.00	1	
4.8			8.10	8.10	8.10	0.00	0.00	1	
9.7			8.10	8.10	8.10	0.00	0.00	1	
19.3			8.00	8.00	8.00	0.00	0.00	1	
38.6			7.80	7.80	7.80	0.00	0.00	1	
77.2			7.60	7.60	7.60	0.00	0.00	1	
FSW Control	Salinity ppt		34.90	34.90	34.90	0.00	0.00	1	
WAF Control			35.90	35.90	35.90	0.00	0.00	1	
1.2			35.60	35.60	35.60	0.00	0.00	1	
2.4			35.40	35.40	35.40	0.00	0.00	1	
4.8			35.30	35.30	35.30	0.00	0.00	1	
9.7			35.30	35.30	35.30	0.00	0.00	1	
19.3			35.60	35.60	35.60	0.00	0.00	1	
38.6			35.40	35.40	35.40	0.00	0.00		
77.2			35.40	35.40	35.40	0.00	0.00	1	

				Ма	rine Algal (Growth To	est-Cell Yiel	d			
Start Date:	11/09/2015	5 11:10	Test ID:	PR1244/05	b		Sample ID:		Borossa Field (Condensate	
End Date:	14/09/2015	5 11:00	Lab ID:	7323			Sample Typ	e:	WAF-Water Ac	commodated Frac	tion
Sample Date:			Protocol:	ESA 110			Test Specie	S:	IG-isochrysis a	ff galbana	
Comments:	TRH								-	-	
Conc-ug/L	1	2	3	4	5	6	7	8			
FSW Control	24.809	22.609	15.409	21.609	17.009	22.609	18.409	18.809			
WAF Control	18.209	17.609	16.409	18.809							
650	19.009	22.609	12.809	21.009							
1400	32.209	16.409	18.209	18.809							
3248	16.409	16.209	29.409	21.009							
6670	14.009	6.409	18.009	16.009							
12850	0.409	1.409	1.609	1.009							
27960	0.000	0.000	0.000	0.000							
65830	0.000	0.000	0.000	0.000							
				Transfor	m: Untrans	: Untransformed Rank				lsoto	onic
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Mean	N-Mean
FSW Control	20.159	1.1351	20.159	15.409	24.809	16.030	8				
WAF Control	17.759	1.0000	17.759	16.409	18.809	5.770	4	*		19.697	1.0000
650	18.859	1.0619	18.859	12.809	22.609	22.768	4	22.00	10.00	19.697	1.0000
1400	21.409	1.2055	21.409	16.409	32.209	33.966	4	20.50	10.00	19.697	1.0000
3248	20.759	1.1689	20.759	16.209	29.409	29.761	4	18.50	10.00	19.697	1.0000
6670	13.609	0.7663	13.609	6.409	18.009	37.256	4	12.00	10.00	13.609	0.6909
*12850	1.109	0.0624	1.109	0.409	1.609	47.713	4	10.00	10.00	1.109	0.0563
27960	0.000	0.0000	0.000	0.000	0.000	0.000	4			0.000	0.0000
65830	0.000	0.0000	0.000	0.000	0.000	0.000	4			0.000	0.0000
Auxiliary Tests							Statistic		Critical	Skew	Kurt
Shapiro-Wilk's T	Fest indicate	s normal d	istribution (p > 0.05)			0.940018		0.916	0.707398	1.092201
Bartlett's Test in	idicates une	qual varian	ces (p = 5.	62E-03)			16.46936		15.08627		
The control mea	ans are not s	significantly	different (o = 0.19)			1.419305		2.228139		
Hypothesis Tes	st (1-tail, 0.0	05)	NOEC	LOEC	ChV	TU					
Steel's Many-Or	ne Rank Tes	st	6670	12850	9257.943						
Treatments vs V	VAF Control										
				Line	ear Interpo	lation (20	0 Resample	s)			
Point	110/	en	050/ 0	l (Evn)	Skow						

				E00	ear milerpo
Point	ug/L	SD	95% CI	L(Exp)	Skew
IC05	3801.606	785.5934	207.0058	5212.784	-0.7487
IC10	4355.211	856.1277	1641.129	7401.379	0.2877
IC15	4908.817	918.0294	2434.842	8021.064	0.5678
IC20	5462.423	938.173	3189.309	8299.437	0.4571
IC25	6016.028	930.5002	3814.942	8577.81	0.2738
IC40	7555.524	913.1011	4589.661	9476.525	-0.1698
IC50	8529.32	856.3443	5094.774	10125.96	-0.5333

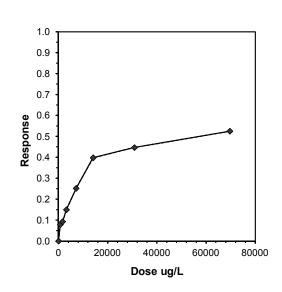


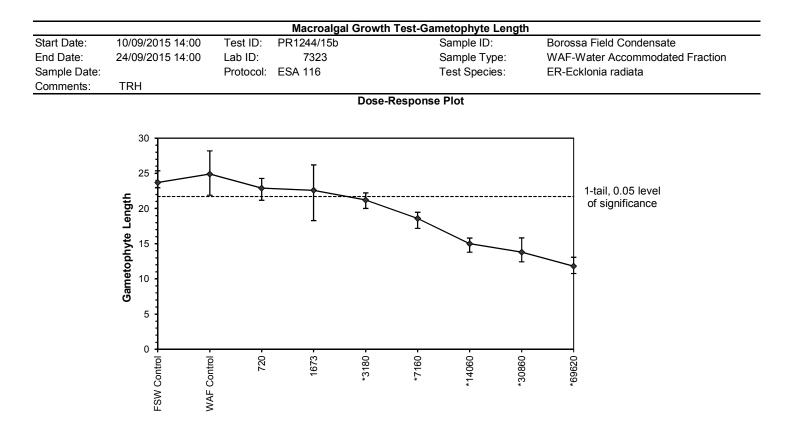

			Mari	ne Algal C	Growth Tes	st-Cell Yield	d			
Start Date:	11/09/2015 11:10	Test ID:	PR1244/05b		S	Sample ID:		Borossa Fie	eld Condensate	
End Date:	14/09/2015 11:00	Lab ID:	7323			Sample Type		WAF-Water Accommodated		
Sample Date:		Protocol:	ESA 110		Т	est Species	S:	IG-isochrys	is aff galbana	
Comments:	TRH					a Summary				
Conc-ug/L	Parameter		Mean	Min	Max	SD	CV%	Ν		
FSW Control	Cell Yield		20.16	15.41	24.81	3.23	8.92	8		
WAF Control			17.76	16.41	18.81	1.02	5.70	4		
650			18.86	12.81	22.61	4.29	10.99	4		
1400			21.41	16.41	32.21	7.27	12.60	4		
3248			20.76	16.21	29.41	6.18	11.97	4		
6670			13.61	6.41	18.01	5.07	16.55	4		
12850			1.11	0.41	1.61	0.53	65.59	4		
27960			0.00	0.00	0.00	0.00		4		
65830			0.00	0.00	0.00	0.00		4		
FSW Control	pН		8.10	8.10	8.10	0.00	0.00	1		
WAF Control			8.10	8.10	8.10	0.00	0.00	1		
650			8.10	8.10	8.10	0.00	0.00	1		
1400			8.10	8.10	8.10	0.00	0.00	1		
3248			8.10	8.10	8.10	0.00	0.00	1		
6670			8.10	8.10	8.10	0.00	0.00	1		
12850			8.00	8.00	8.00	0.00	0.00	1		
27960			7.80	7.80	7.80	0.00	0.00	1		
65830			7.60	7.60	7.60	0.00	0.00	1		
FSW Control	Salinity ppt		34.90	34.90	34.90	0.00	0.00	1		
WAF Control			35.90	35.90	35.90	0.00	0.00	1		
650			35.60	35.60	35.60	0.00	0.00	1		
1400			35.40	35.40	35.40	0.00	0.00	1		
3248			35.30	35.30	35.30	0.00	0.00	1		
6670			35.30	35.30	35.30	0.00	0.00	1		
12850			35.60	35.60	35.60	0.00	0.00	1		
27960			35.40	35.40	35.40	0.00	0.00	1		
65830			35.40	35.40	35.40	0.00	0.00	1		

				Macroa	Igal Growth	i Test-Gai	netophyte	Length				
Start Date:	10/09/2015	14:00	Test ID:	PR1244/1	5		Sample ID	:	Borossa Fi	ield Conden	isate	
End Date:	24/09/2015	14:00	Lab ID:	7323			Sample Ty	/pe:	WAF-Wate	er Accommo	odated Frac	tion
Sample Date:			Protocol:	ESA 116			Test Spec	ies:	ER-Ecklon	ia radiata		
Comments:	Loading R	ate										
Conc-gm/L	1	2	3	4								
FSW Control	23.400	22.900	23.000	25.300								
WAF Control	28.200	21.900	23.400	26.100								
1.2	23.600	22.600	21.200	24.300								
2.4	26.200	22.400	23.500	18.300								
4.8	20.400	22.100	22.200	20.000								
9.7	17.200	18.500	19.500	19.300								
19.3	15.800	15.300	15.100	13.800								
38.6	12.400	12.900	14.000	15.800								
77.2	13.100	10.800	12.400	11.000								
				Transfo	rm: Untrans	formed		_	1-Tailed		lsoto	onic
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Mean	N-Mean
FSW Control	23.650	0.9498	23.650	22.900	25.300	4.740	4					
WAF Control	24.900	1.0000	24.900	21.900	28.200	11.259	4	*			24.900	1.000
1.2	22.925	0.9207	22.925	21.200	24.300	5.867	4	1.519	2.480	3.224	22.925	0.920
2.4	22.600	0.9076	22.600	18.300	26.200	14.519	4	1.769	2.480	3.224	22.600	0.907
*4.8	21.175	0.8504	21.175	20.000	22.200	5.376	4	2.865	2.480	3.224	21.175	0.850
*9.7	18.625	0.7480	18.625	17.200	19.500	5.603	4	4.826	2.480	3.224	18.625	0.748
*19.3	15.000	0.6024	15.000	13.800	15.800	5.683	4	7.615	2.480	3.224	15.000	0.602
*38.6	13.775	0.5532	13.775	12.400	15.800	10.936	4	8.557	2.480	3.224	13.775	0.553
*77.2	11.825	0.4749	11.825	10.800	13.100	9.376	4	10.057	2.480	3.224	11.825	0.474
Auxiliary Tests							Statistic		Critical		Skew	Kurt
Shapiro-Wilk's 1	est indicate	s normal c	listribution (p > 0.05)			0.969423		0.93		-0.20116	1.06828
Bartlett's Test in	idicates equ	al variance	es (p = 0.20)			9.76692		18.47531			
The control mea	ans are not s	ignificantly	/ different (p	o = 0.44)			0.827984		2.446912			
Hypothesis Te	st (1-tail, 0.0)5)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test			2.4	4.8	3.394113		3.224348	0.129492	92.94603	3.380729	5.5E-10	7, 24
Treatments vs V	VAF Control											

				Line	ear interpol
Point	gm/L	SD	95% CL	(Exp)	Skew
IC05*	0.756	1.099	0.175	5.754	1.4236
IC10	2.720	1.551	0.000	7.717	0.6850
IC15	4.819	1.913	0.000	10.477	0.1349
IC20	7.212	2.030	0.601	13.586	0.0468
IC25	9.604	2.128	3.717	16.457	0.1881
IC40	20.245	7.848	11.624	55.512	1.4840
IC50	64.828				

* indicates IC estimate less than the lowest concentration



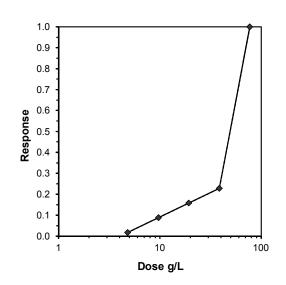

			Macroalg	al Growth	Test-Gan	netophyte L	ength		
Start Date:	10/09/2015 14:00	Test ID:	PR1244/15			Sample ID:		Borossa F	ield Condensate
End Date:	24/09/2015 14:00	Lab ID:	7323			Sample Typ		WAF-Wat	er Accommodated Fraction
Sample Date:		Protocol:	ESA 116			Test Specie	S:	ER-Ecklor	nia radiata
Comments:	Loading Rate								
						a Summary			_
Conc-gm/L	Parameter		Mean	Min	Max	SD	CV%	N	
FSW Control	•		23.65	22.90	25.30	1.12	4.48		
WAF Control	l		24.90	21.90	28.20	2.80	6.72		
1.2			22.93	21.20	24.30	1.35	5.06	4	
2.4			22.60	18.30	26.20	3.28	8.02		
4.8	}		21.18	20.00	22.20	1.14	5.04	4	
9.7	,		18.63	17.20	19.50	1.04	5.49	4	
19.3	}		15.00	13.80	15.80	0.85	6.16	4	
38.6	;		13.78	12.40	15.80	1.51	8.91	4	
77.2	2		11.83	10.80	13.10	1.11	8.90	4	
FSW Control	l pH		8.10	8.10	8.10	0.00	0.00	1	_
WAF Control	l		8.10	8.10	8.10	0.00	0.00	1	
1.2			8.10	8.10	8.10	0.00	0.00	1	
2.4	ļ		8.10	8.10	8.10	0.00	0.00	1	
4.8	}		8.10	8.10	8.10	0.00	0.00	1	
9.7	,		8.00	8.00	8.00	0.00	0.00	1	
19.3	}		7.90	7.90	7.90	0.00	0.00	1	
38.6			7.70	7.70	7.70	0.00	0.00	1	
77.2			7.40	7.40	7.40	0.00	0.00	1	
FSW Control			35.40	35.40	35.40	0.00	0.00	1	-
WAF Contro			35.60	35.60	35.60	0.00	0.00	1	
1.2			35.40	35.40	35.40	0.00	0.00	1	
2.4			35.40	35.40	35.40	0.00	0.00	1	
4.8			35.40	35.40	35.40	0.00	0.00	1	
9.7			35.50	35.50	35.50	0.00	0.00	1	
19.3			35.50	35.50	35.50	0.00	0.00	1	
38.6			35.60	35.60	35.60	0.00	0.00	1	
77.2			35.80	35.80	35.80	0.00	0.00	1	
FSW Control			100.20	100.20	100.20	0.00	0.00	1	-
WAF Control			100.90	100.90	100.90	0.00	0.00	1	
1.2			99.60	99.60	99.60	0.00	0.00	1	
2.4			91.80	91.80	91.80	0.00	0.00	1	
4.8			96.10	96.10	96.10	0.00	0.00	1	
9.7			98.70	98.70	98.70	0.00	0.00	1	
19.3			90.10	90.10	90.10	0.00	0.00	1	
38.6			90.20	90.20	90.20	0.00	0.00	1	
77.2			90.20 87.20	90.20 87.20	90.20 87.20	0.00	0.00	1	

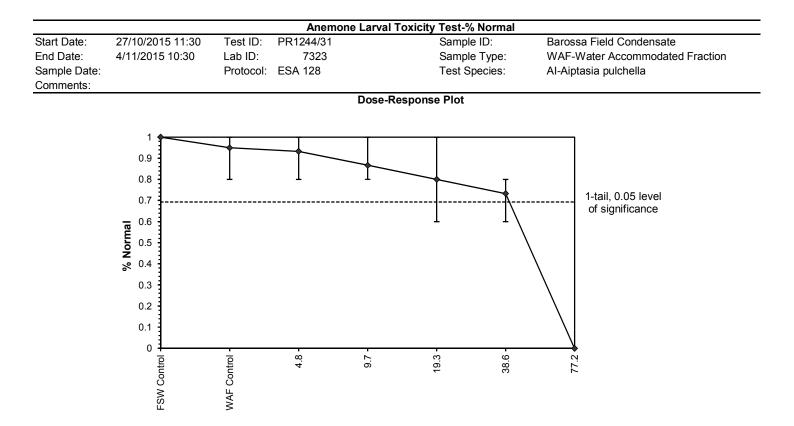
				Macroa	gal Growth	Test-Gai	netophyte	Length				
Start Date:	10/09/2015	14:00	Test ID:	PR1244/15	b		Sample ID	:	Borossa Fi	ield Conden	isate	
End Date:	24/09/2015	14:00	Lab ID:	7323		Sample Type:				er Accommo	odated Frac	tion
Sample Date:			Protocol:	ESA 116			Test Spec	ies:	ER-Ecklon	ia radiata		
Comments:	TRH											
Conc-ug/L	1	2	3	4								
FSW Control	23.400	22.900	23.000	25.300								
WAF Control	28.200	21.900	23.400	26.100								
720	23.600	22.600	21.200	24.300								
1673	26.200	22.400	23.500	18.300								
3180	20.400	22.100	22.200	20.000								
7160	17.200	18.500	19.500	19.300								
14060	15.800	15.300	15.100	13.800								
30860	12.400	12.900	14.000	15.800								
69620	13.100	10.800	12.400	11.000								
				Transfor	m: Untrans	formed		_	1-Tailed		lsoto	onic
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Mean	N-Mean
FSW Control	23.650	0.9498	23.650	22.900	25.300	4.740	4					
WAF Control	24.900	1.0000	24.900	21.900	28.200	11.259	4	*			24.900	1.000
720	22.925	0.9207	22.925	21.200	24.300	5.867	4	1.519	2.480	3.224	22.925	0.920
1673	22.600	0.9076	22.600	18.300	26.200	14.519	4	1.769	2.480	3.224	22.600	0.907
*3180	21.175	0.8504	21.175	20.000	22.200	5.376	4	2.865	2.480	3.224	21.175	0.850
*7160	18.625	0.7480	18.625	17.200	19.500	5.603	4	4.826	2.480	3.224	18.625	0.748
*14060	15.000	0.6024	15.000	13.800	15.800	5.683	4	7.615	2.480	3.224	15.000	0.602
*30860	13.775	0.5532	13.775	12.400	15.800	10.936	4	8.557	2.480	3.224	13.775	0.553
*69620	11.825	0.4749	11.825	10.800	13.100	9.376	4	10.057	2.480	3.224	11.825	0.474
Auxiliary Tests							Statistic		Critical		Skew	Kurt
Shapiro-Wilk's ⊺	Fest indicate	s normal d	listribution (p > 0.05)			0.969423		0.93		-0.20116	1.06828
Bartlett's Test ir			N	/			9.76692		18.47531			
The control mea	ans are not s	ignificantly	/ different (p	o = 0.44)			0.827984		2.446912			
-lypothesis Te	st (1-tail, 0.0)5)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test			1673	3180	2306.543		3.224348	0.129492	92.94603	3.380729	5.5E-10	7, 24
Treatments vs V	VAF Control											

					cui interpo
Point	ug/L	SD	95% CI	L(Exp)	Skew
IC05*	453.8734	743.0149	88.53384	3725.254	1.1789
IC10	1873.933	1097.594	0	5705.609	0.4406
IC15	3195.608	1427.685	0	7450.03	0.1707
IC20	5138.784	1630.032	0	9230.277	-0.0001
IC25	7081.961	1574.98	2817.731	11498.48	0.1329
IC40	14882.86	7355.097	9376.753	48927.62	1.1696
IC50	57196.92				

* indicates IC estimate less than the lowest concentration

			Macroalg	al Growth	Test-Gan	netophyte L	ength		
Start Date:	10/09/2015 14:00	Test ID:	PR1244/15b			Sample ID:		Borossa F	ield Condensate
End Date:	24/09/2015 14:00	Lab ID:	7323			Sample Typ		WAF-Wate	er Accommodated Fraction
Sample Date:		Protocol:	ESA 116			Test Specie	s:	ER-Ecklor	ia radiata
Comments:	TRH								
_	_					a Summary			
Conc-ug/L	Parameter		Mean	Min	Max	SD	CV%	N	
FSW Control	0		23.65	22.90	25.30	1.12	4.48		
WAF Control			24.90	21.90	28.20	2.80	6.72		
720			22.93	21.20	24.30	1.35	5.06	4	
1673			22.60	18.30	26.20	3.28	8.02	4	
3180			21.18	20.00	22.20	1.14	5.04	4	
7160			18.63	17.20	19.50	1.04	5.49	4	
14060			15.00	13.80	15.80	0.85	6.16	4	
30860			13.78	12.40	15.80	1.51	8.91	4	
69620			11.83	10.80	13.10	1.11	8.90	4	-
FSW Control			8.10	8.10	8.10	0.00	0.00	1	
WAF Control			8.10	8.10	8.10	0.00	0.00	1	
720			8.10	8.10	8.10	0.00	0.00	1	
1673			8.10	8.10	8.10	0.00	0.00	1	
3180			8.10	8.10	8.10	0.00	0.00	1	
7160			8.00	8.00	8.00	0.00	0.00	1	
14060			7.90	7.90	7.90	0.00	0.00	1	
30860			7.70	7.70	7.70	0.00	0.00	1	
69620			7.40	7.40	7.40	0.00	0.00	1	<u>.</u>
FSW Contro	2.1.1		35.40	35.40	35.40	0.00	0.00	1	
WAF Contro			35.60	35.60	35.60	0.00	0.00	1	
720			35.40	35.40	35.40	0.00	0.00	1	
1673			35.40	35.40	35.40	0.00	0.00	1	
3180			35.40	35.40	35.40	0.00	0.00	1	
7160			35.50	35.50	35.50	0.00	0.00	1	
14060			35.50	35.50	35.50	0.00	0.00	1	
30860			35.60	35.60	35.60	0.00	0.00	1	
69620			35.80	35.80	35.80	0.00	0.00	1	_
FSW Control	DO % sat		100.20	100.20	100.20	0.00	0.00	1	
WAF Control	l		100.90	100.90	100.90	0.00	0.00	1	
720	1		99.60	99.60	99.60	0.00	0.00	1	
1673			91.80	91.80	91.80	0.00	0.00	1	
3180	1		96.10	96.10	96.10	0.00	0.00	1	
7160	1		98.70	98.70	98.70	0.00	0.00	1	
14060	1		90.10	90.10	90.10	0.00	0.00	1	
30860	1		90.20	90.20	90.20	0.00	0.00	1	
69620)		87.20	87.20	87.20	0.00	0.00	1	

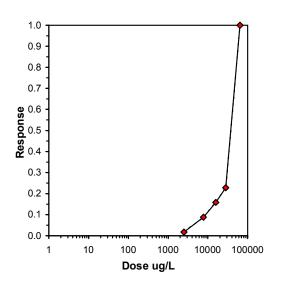

Appendix P: Statistical Analyses of Sea Anemone Development Test

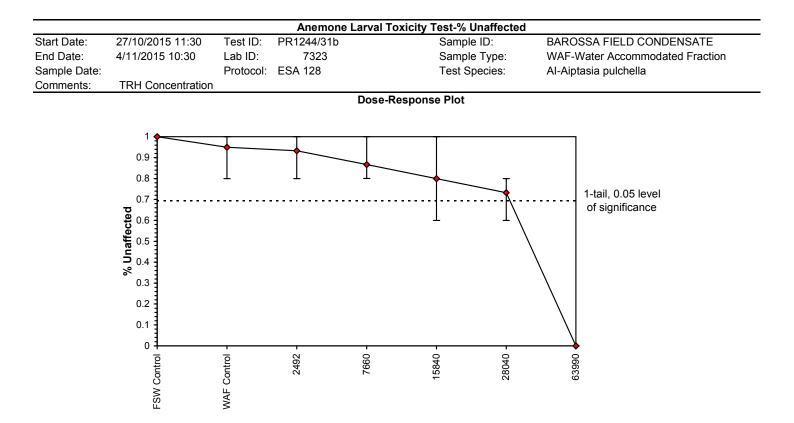

				Anemone	Larval Toxicity Test-	% Normal	
Start Date:	27/10/2015	11:30	Test ID:	PR1244/31	Samp	le ID:	Barossa Field Condensate
End Date:	4/11/2015 1	0:30	Lab ID:	7323	Samp	le Type:	WAF-Water Accommodated Fraction
Sample Date:			Protocol:	ESA 128	Test S	Species:	AI-Aiptasia pulchella
Comments:							
Conc-g/L	1	2	3	4			
FSW Control	1.0000	1.0000	1.0000	1.0000			
WAF Control	1.0000	1.0000	0.8000	1.0000			
4.8	0.8000	1.0000	1.0000				
9.7	0.8000	0.8000	1.0000				
19.3	0.6000	0.8000	1.0000				
38.6	0.8000	0.6000	0.8000				
77.2	0.0000	0.0000	0.0000				

			Transform: Arcsin Square Root						1-Tailed		Number	Total
Conc-g/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Resp	Number
FSW Control	1.0000	1.0526	1.3453	1.3453	1.3453	0.000	4					
WAF Control	0.9500	1.0000	1.2857	1.1071	1.3453	9.261	4	*			1	20
4.8	0.9333	0.9825	1.2659	1.1071	1.3453	10.861	3	0.170	2.593	0.3023	1	15
9.7	0.8667	0.9123	1.1865	1.1071	1.3453	11.587	3	0.851	2.593	0.3023	2	15
19.3	0.8000	0.8421	1.1128	0.8861	1.3453	20.637	3	1.483	2.593	0.3023	3	15
38.6	0.7333	0.7719	1.0335	0.8861	1.1071	12.350	3	2.164	2.593	0.3023	4	15
77.2	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	3				15	15

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norma	I distribution (p > 0.05)			0.931661		0.887		-0.22409	-0.77909
Bartlett's Test indicates equal variar	nces (p = 0.88))			1.183699		13.2767			
The control means are not significar	ntly different (p	o = 0.36)			1		2.446912			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Bonferroni t Test	38.6	77.2	54.58864		0.227972	0.247547	0.036184	0.023292	0.254275	4, 11
Treatments vs WAF Control										
			Trimmed	Spearm	an-Karber					

Trim Level	EC50	95%	CL
0.0%			
5.0%	42.079	33.018	53.627
10.0%	44.949	35.034	57.670
20.0%	48.986	36.746	65.302
Auto-1.8%	40.101	31.780	50.600

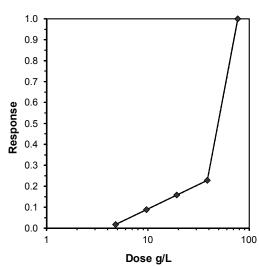

			Anem	one Larva	Toxicity	Test-% Norr	nal		
Start Date:	27/10/2015 11:30	Test ID:	PR1244/31			Sample ID:		Barossa Field Co	ondensate
End Date:	4/11/2015 10:30	Lab ID:	7323			Sample Type	e:	WAF-Water Acc	ommodated Fraction
Sample Date:		Protocol:	ESA 128			Test Species	s:	AI-Aiptasia pulch	ella
Comments:									
				Au	xiliary Da	ta Summary			
Conc-g/L	Parameter		Mean	Min	Max	SD	CV%	N	
FSW Control	I % Normal		100.00	100.00	100.00	0.00	0.00	4	
WAF Control	l		95.00	80.00	100.00	10.00	3.33	4	
4.8	3		93.33	80.00	100.00	11.55	3.64	3	
9.7	,		86.67	80.00	100.00	11.55	3.92	3	
19.3	3		80.00	60.00	100.00	20.00	5.59	3	
38.6	5		73.33	60.00	80.00	11.55	4.63	3	
77.2			0.00	0.00	0.00	0.00		3	
FSW Control	l pH		8.10	8.10	8.10	0.00	0.00	1	
WAF Control			8.10	8.10	8.10	0.00	0.00	1	
4.8	}		8.10	8.10	8.10	0.00	0.00	1	
9.7	,		8.10	8.10	8.10	0.00	0.00	1	
19.3	}		8.00	8.00	8.00	0.00	0.00	1	
38.6	3		7.90	7.90	7.90	0.00	0.00	1	
77.2	<u>)</u>		7.60	7.60	7.60	0.00	0.00	1	
FSW Control	I Salinity ppt		35.10	35.10	35.10	0.00	0.00	1	
WAF Control			35.10	35.10	35.10	0.00	0.00	1	
4.8	3		34.90	34.90	34.90	0.00	0.00	1	
9.7	,		34.90	34.90	34.90	0.00	0.00	1	
19.3	}		35.00	35.00	35.00	0.00	0.00	1	
38.6	;		35.00	35.00	35.00	0.00	0.00	1	
77.2	2		35.10	35.10	35.10	0.00	0.00	1	
FSW Control	I DO %		102.10	102.10	102.10	0.00	0.00	1	
WAF Control	I		101.60	101.60	101.60	0.00	0.00	1	
4.8			103.90	103.90	103.90	0.00	0.00	1	
9.7			105.10	105.10	105.10	0.00	0.00		
19.3			105.20	105.20	105.20	0.00	0.00		
38.6			104.50	104.50	104.50	0.00	0.00		
77.2			110.40	110.40	110.40	0.00	0.00	1	

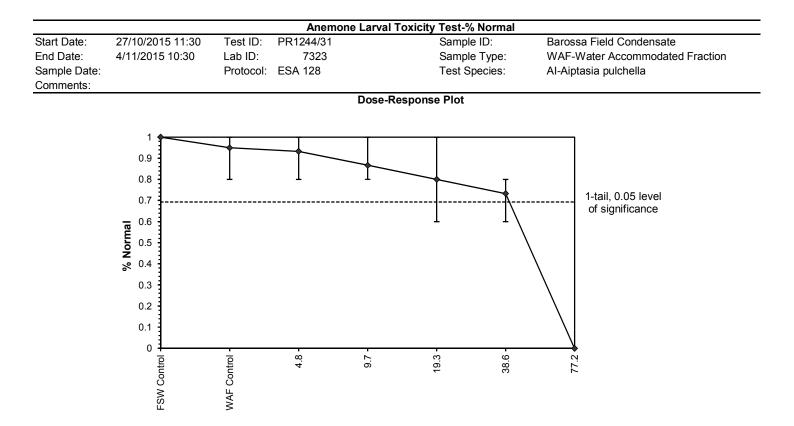

	Anemone Larval Toxicity Test-% Unaffected											
Start Date:	27/10/2015	11:30	Test ID:	PR1244/31b	Sample ID:	BAROSSA FIELD CONDENSATE						
End Date:	4/11/2015 1	0:30	Lab ID:	7323	Sample Type:	WAF-Water Accommodated Fraction						
Sample Date:			Protocol:	ESA 128	Test Species:	AI-Aiptasia pulchella						
Comments:	TRH Conce	entration										
Conc-ug/L	1	2	3	4								
FSW Control	1.0000	1.0000	1.0000	1.0000								
WAF Control	1.0000	1.0000	0.8000	1.0000								
2492	0.8000	1.0000	1.0000									
7660	0.8000	0.8000	1.0000									
15840	0.6000	0.8000	1.0000									
28040	0.8000	0.6000	0.8000									
63990	0.0000	0.0000	0.0000									

		_	Т	ransform:	Arcsin Sq	uare Root		_	1-Tailed		Number	Total	
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Resp	Number	
FSW Control	1.0000	1.0526	1.3453	1.3453	1.3453	0.000	4						
WAF Control	0.9500	1.0000	1.2857	1.1071	1.3453	9.261	4	*			1	20	
2492	0.9333	0.9825	1.2659	1.1071	1.3453	10.861	3	0.170	2.593	0.3023	1	15	
7660	0.8667	0.9123	1.1865	1.1071	1.3453	11.587	3	0.851	2.593	0.3023	2	15	
15840	0.8000	0.8421	1.1128	0.8861	1.3453	20.637	3	1.483	2.593	0.3023	3	15	
28040	0.7333	0.7719	1.0335	0.8861	1.1071	12.350	3	2.164	2.593	0.3023	4	15	
63990	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	3				15	15	

Auxiliary Tests					Statistic		Critical		Skew	Kurt			
Shapiro-Wilk's Test indicates normal	l distribution (p > 0.05)			0.931661		0.887		-0.22409	-0.77909			
Bartlett's Test indicates equal varian	ces (p = 0.88)			1.183699		13.2767						
The control means are not significan	itly different (p	o = 0.36)			1		2.446912						
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df			
Bonferroni t Test	28040	63990	42358.94		0.227972	0.247547	0.036184	0.023292	0.254275	4, 11			
Treatments vs WAF Control													
	Trimmed Spearman-Karber												

Trim Level	EC50	95%	CL
0.0%			
5.0%	32491.19	25241.84	41822.52
10.0%	34715.36	27194.92	44315.51
20.0%	37324.45	28220.84	49364.76
Auto-1.8%	30719.95	23960.98	39385.52


			Anemon	e Larval 1	oxicity T	est-% Unaff	ected		
Start Date:	27/10/2015 11:30	Test ID:	PR1244/31b			Sample ID:		BAROSSA	FIELD CONDENSATE
End Date:	4/11/2015 10:30	Lab ID:	7323			Sample Typ	e:	WAF-Water	Accommodated Fraction
Sample Date:		Protocol:	ESA 128			Test Species	s:	Al-Aiptasia	pulchella
Comments:	TRH Concentration								
				Au	xiliary Da	ta Summary	/		
Conc-ug/L	Parameter		Mean	Min	Max	SD	CV%	N	
FSW Contro	I % Normal		100.00	100.00	100.00	0.00	0.00	4	
WAF Contro	I		95.00	80.00	100.00	10.00	3.33	4	
2492	2		93.33	80.00	100.00	11.55	3.64	3	
7660)		86.67	80.00	100.00	11.55	3.92	3	
15840)		80.00	60.00	100.00	20.00	5.59	3	
28040)		73.33	60.00	80.00	11.55	4.63	3	
63990)		0.00	0.00	0.00	0.00		3	
FSW Contro	l pH		8.10	8.10	8.10	0.00	0.00	1	
WAF Contro	I		8.10	8.10	8.10	0.00	0.00	1	
2492	2		8.10	8.10	8.10	0.00	0.00	1	
7660)		8.10	8.10	8.10	0.00	0.00	1	
15840)		8.00	8.00	8.00	0.00	0.00	1	
28040)		7.90	7.90	7.90	0.00	0.00	1	
63990)		7.60	7.60	7.60	0.00	0.00	1	
FSW Contro	I Salinity ppt		35.10	35.10	35.10	0.00	0.00	1	
WAF Contro	1		35.10	35.10	35.10	0.00	0.00	1	
2492	2		34.90	34.90	34.90	0.00	0.00	1	
7660)		34.90	34.90	34.90	0.00	0.00	1	
15840)		35.00	35.00	35.00	0.00	0.00	1	
28040			35.00	35.00	35.00	0.00	0.00	1	
63990			35.10	35.10	35.10	0.00	0.00		
FSW Contro			102.10	102.10	102.10	0.00	0.00		
WAF Contro	I		101.60	101.60	101.60	0.00	0.00		
2492			103.90	103.90	103.90	0.00	0.00		
7660			105.10	105.10	105.10	0.00	0.00		
15840			105.20	105.20	105.20	0.00	0.00		
28040			104.50	104.50	104.50	0.00	0.00		
63990			110.40	110.40	110.40	0.00	0.00		

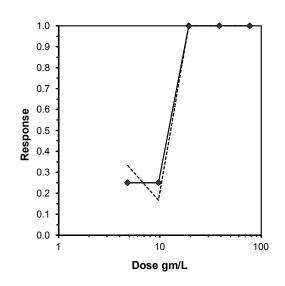

Anemone Larval Toxicity Test-% Normal											
Start Date:	27/10/2015	11:30	Test ID:	PR1244/31	Sample ID:	Barossa Field Condensate					
End Date:	4/11/2015 10:30		Lab ID:	7323	Sample Type:	WAF-Water Accommodated Fraction					
Sample Date:			Protocol:	ESA 128	Test Species:	AI-Aiptasia pulchella					
Comments:											
Conc-g/L	1	2	3	4							
FSW Control	1.0000	1.0000	1.0000	1.0000							
WAF Control	1.0000	1.0000	0.8000	1.0000							
4.8	0.8000	1.0000	1.0000								
9.7	0.8000	0.8000	1.0000								
19.3	0.6000	0.8000	1.0000								
38.6	0.8000	0.6000	0.8000								
77.2	0.0000	0.0000	0.0000								

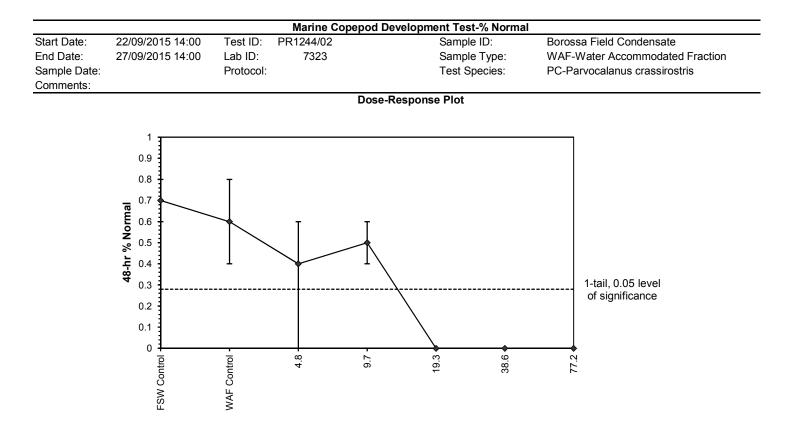
			Т	ransform:	Arcsin Sq	uare Root			1-Tailed		Isotonic	
Conc-g/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Mean	N-Mean
FSW Control	1.0000	1.0526	1.3453	1.3453	1.3453	0.000	4					
WAF Control	0.9500	1.0000	1.2857	1.1071	1.3453	9.261	4	*			0.9500	1.0000
4.8	0.9333	0.9825	1.2659	1.1071	1.3453	10.861	3	0.170	2.593	0.3023	0.9333	0.9825
9.7	0.8667	0.9123	1.1865	1.1071	1.3453	11.587	3	0.851	2.593	0.3023	0.8667	0.9123
19.3	0.8000	0.8421	1.1128	0.8861	1.3453	20.637	3	1.483	2.593	0.3023	0.8000	0.8421
38.6	0.7333	0.7719	1.0335	0.8861	1.1071	12.350	3	2.164	2.593	0.3023	0.7333	0.7719
77.2	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	3				0.0000	0.0000

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal	l distribution (o > 0.05)			0.931661		0.887		-0.22409	-0.77909
Bartlett's Test indicates equal varian	ces (p = 0.88)				1.183699		13.2767			
The control means are not significan	tly different (p	= 0.36)			1		2.446912			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Bonferroni t Test	38.6	77.2	54.58864		0.227972	0.247547	0.036184	0.023292	0.254275	4, 11
Treatments vs WAF Control										

g/L 7.069	SD 4.665	95% CL	(Exp)	Skew		
	4 665			ONEW		
		0.000	29.205	1.5128		
11.167	7.033	0.284	38.143	1.0232		
18.066	8.803	1.959	48.486	0.5551	1.0	
29.791	10.145	1.565	44.843	-0.1692	<u> </u>	
38.875	8.426	3.066	40.413	-1.1606	0.9	/
40.571	0.665	38.281	42.074	-0.1870	0.8 -	
41.642	0.649	39.342	43.120	-0.1869	0.7	
	0.010				0.7	
2 3 4	9.791 8.875 0.571	9.79110.1458.8758.4260.5710.665	9.79110.1451.5658.8758.4263.0660.5710.66538.281	9.79110.1451.56544.8438.8758.4263.06640.4130.5710.66538.28142.074	9.791 10.145 1.565 44.843 -0.1692 8.875 8.426 3.066 40.413 -1.1606 0.571 0.665 38.281 42.074 -0.1870	9.791 10.145 1.565 44.843 -0.1692 0.9 8.875 8.426 3.066 40.413 -1.1606 0.9 0.571 0.665 38.281 42.074 -0.1870 0.8

			Anemo	one Larva	Toxicity	Test-% Norr	nal		
Start Date:	27/10/2015 11:30	Test ID:	PR1244/31			Sample ID:		Barossa Field Co	ondensate
End Date:	4/11/2015 10:30	Lab ID:	7323			Sample Type	e:	WAF-Water Acc	ommodated Fraction
Sample Date:		Protocol:	ESA 128			Test Species	s:	AI-Aiptasia pulch	ella
Comments:									
				Au	xiliary Da	ta Summary			
Conc-g/L	Parameter		Mean	Min	Max	SD	CV%	N	
FSW Control			100.00	100.00	100.00	0.00	0.00	4	
WAF Control	l		95.00	80.00	100.00	10.00	3.33	4	
4.8	}		93.33	80.00	100.00	11.55	3.64	3	
9.7	,		86.67	80.00	100.00	11.55	3.92	3	
19.3	3		80.00	60.00	100.00	20.00	5.59	3	
38.6	5		73.33	60.00	80.00	11.55	4.63	3	
77.2	2		0.00	0.00	0.00	0.00		3	
FSW Control	I pH		8.10	8.10	8.10	0.00	0.00	1	
WAF Control	l		8.10	8.10	8.10	0.00	0.00	1	
4.8	}		8.10	8.10	8.10	0.00	0.00	1	
9.7	,		8.10	8.10	8.10	0.00	0.00	1	
19.3	}		8.00	8.00	8.00	0.00	0.00	1	
38.6	5		7.90	7.90	7.90	0.00	0.00	1	
77.2	<u>)</u>		7.60	7.60	7.60	0.00	0.00	1	
FSW Control	I Salinity ppt		35.10	35.10	35.10	0.00	0.00	1	
WAF Control			35.10	35.10	35.10	0.00	0.00	1	
4.8	5		34.90	34.90	34.90	0.00	0.00	1	
9.7	,		34.90	34.90	34.90	0.00	0.00	1	
19.3	}		35.00	35.00	35.00	0.00	0.00	1	
38.6	;		35.00	35.00	35.00	0.00	0.00	1	
77.2	2		35.10	35.10	35.10	0.00	0.00	1	
FSW Control	I DO %		102.10	102.10	102.10	0.00	0.00	1	
WAF Control	I		101.60	101.60	101.60	0.00	0.00	1	
4.8	3		103.90	103.90	103.90	0.00	0.00	1	
9.7			105.10	105.10	105.10	0.00	0.00		
19.3			105.20	105.20	105.20	0.00	0.00	1	
38.6			104.50	104.50	104.50	0.00	0.00		
77.2			110.40	110.40	110.40	0.00	0.00	1	


Appendix Q: Statistical Analyses of Copepodid Development Test

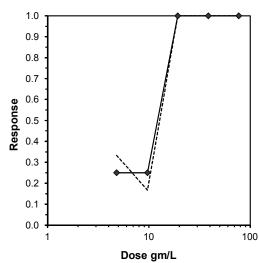

				Marine C	opepod D	evelopme	nt Test-% N	lormal	
Start Date:	22/09/2015	14:00	Test ID:	PR1244/02	I/02 Sample ID:				Borossa Field Condensate
End Date:	27/09/2015	14:00	Lab ID:	7323		Sample Type:			WAF-Water Accommodated Fraction
Sample Date:			Protocol:			Test Species:			PC-Parvocalanus crassirostris
Comments:									
Conc-gm/L	1	2	3	4	5	6	7	8	
FSW Control	0.6000	0.8000	0.6000	0.8000	0.6000	0.8000	0.6000	0.8000	
WAF Control	0.8000	0.4000	0.6000	0.6000					
4.8	0.4000	0.6000	0.6000	0.0000					
9.7	0.6000	0.6000	0.4000	0.4000					
19.3	0.0000	0.0000	0.0000	0.0000					
38.6	0.0000	0.0000	0.0000	0.0000					
77.2	0.0000	0.0000	0.0000	0.0000					

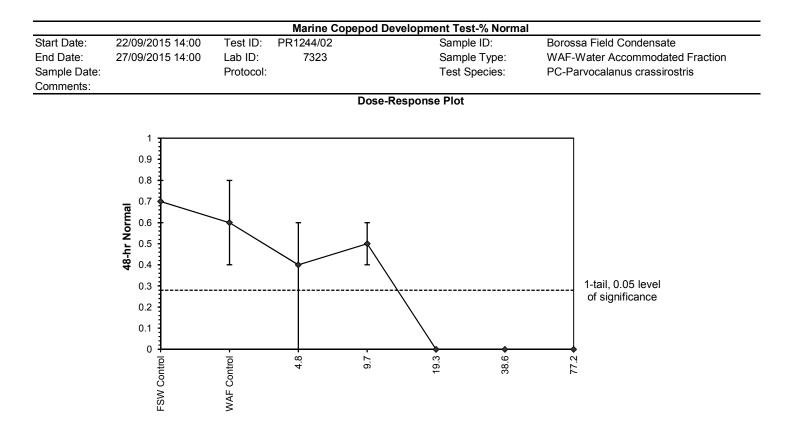
			Transform: Arcsin Square Root						1-Tailed		Number	Total
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Resp	Number
FSW Control	0.7000	1.1667	0.9966	0.8861	1.1071	11.857	8					
WAF Control	0.6000	1.0000	0.8910	0.6847	1.1071	19.366	4	*			8	20
4.8	0.4000	0.6667	0.6706	0.2255	0.8861	46.456	4	1.441	2.180	0.3334	12	20
9.7	0.5000	0.8333	0.7854	0.6847	0.8861	14.802	4	0.691	2.180	0.3334	10	20
19.3	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	4				20	20
38.6	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	4				20	20
77.2	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	4				20	20

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norma	I distribution (o > 0.05)			0.909212		0.859		-0.97373	1.125224
Bartlett's Test indicates equal variar	ices (p = 0.28)				2.518146		9.21034			
The control means are not significar	ntly different (p	= 0.24)			1.260902		2.228139			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	9.7	19.3	13.68247		0.324825	0.537057	0.048608	0.046781	0.392639	2, 9
Treatments vs WAF Control										
			Trimmed	Spearm	an-Karber					

Trim Level	EC50	95% (CL	
0.0%				
5.0%				
10.0%				
20.0%				
Auto-25.0%	12.200	10.838	13.734	

			Marine C	opepod D	evelopme	nt Test-% N	ormal		
Start Date:	22/09/2015 14:00	Test ID:	PR1244/02			Sample ID:		Borossa Fi	eld Condensate
End Date:	27/09/2015 14:00	Lab ID:	7323			Sample Type	e:	WAF-Wate	er Accommodated Fraction
Sample Date:		Protocol:				Test Species	s:	PC-Parvoc	alanus crassirostris
Comments:									
				Au	xiliary Dat	ta Summary			
Conc-gm/L	Parameter		Mean	Min	Max	SD	CV%	Ν	
FSW Contro	I % normal		70.00	60.00	80.00	10.69	4.67	8	
WAF Contro	l		60.00	40.00	80.00	16.33	6.74	4	
4.8			40.00	0.00	60.00	28.28	13.30	4	
9.7	,		50.00	40.00	60.00	11.55	6.80	4	
19.3	3		0.00	0.00	0.00	0.00		4	
38.6	6		0.00	0.00	0.00	0.00		4	
77.2			0.00	0.00	0.00	0.00		4	
FSW Contro	IрН		8.20	8.20	8.20	0.00	0.00	1	
WAF Contro	I		8.20	8.20	8.20	0.00	0.00	1	
4.8	3		8.10	8.10	8.10	0.00	0.00	1	
9.7	,		8.10	8.10	8.10	0.00	0.00	1	
19.3	3		8.00	8.00	8.00	0.00	0.00	1	
38.6	6		7.80	7.80	7.80	0.00	0.00	1	
77.2	2		7.30	7.30	7.30	0.00	0.00	1	
FSW Contro	I DO %		99.80	99.80	99.80	0.00	0.00	1	
WAF Contro	l		92.80	92.80	92.80	0.00	0.00	1	
4.8	3		96.30	96.30	96.30	0.00	0.00	1	
9.7	,		95.70	95.70	95.70	0.00	0.00	1	
19.3	3		96.70	96.70	96.70	0.00	0.00	1	
38.6	6		95.60	95.60	95.60	0.00	0.00	1	
77.2	2		85.10	85.10	85.10	0.00	0.00	1	
FSW Contro	I Salinity ppt		34.90	34.90	34.90	0.00	0.00	1	
WAF Contro			35.10	35.10	35.10	0.00	0.00	1	
4.8	}		35.10	35.10	35.10	0.00	0.00	1	
9.7	,		35.10	35.10	35.10	0.00	0.00	1	
19.3	}		35.20	35.20	35.20	0.00	0.00	1	
38.6			35.30	35.30	35.30	0.00	0.00	1	
77.2			35.30	35.30	35.30	0.00	0.00	1	

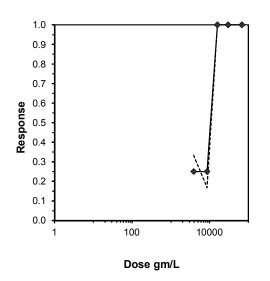

				Marine C	opepod D	evelopme	nt Test-% N	lormal	
Start Date:	22/09/2015	14:00	Test ID:	PR1244/02			Sample ID:		Borossa Field Condensate
End Date:	27/09/2015	14:00	Lab ID:	7323			Sample Typ	e:	WAF-Water Accommodated Fraction
Sample Date:			Protocol:				Test Specie	s:	PC-Parvocalanus crassirostris
Comments:									
Conc-gm/L	1	2	3	4	5	6	7	8	
FSW Control	0.6000	0.8000	0.6000	0.8000	0.6000	0.8000	0.6000	0.8000	
WAF Control	0.8000	0.4000	0.6000	0.6000					
4.8	0.4000	0.6000	0.6000	0.0000					
9.7	0.6000	0.6000	0.4000	0.4000					
19.3	0.0000	0.0000	0.0000	0.0000					
38.6	0.0000	0.0000	0.0000	0.0000					
77.2	0.0000	0.0000	0.0000	0.0000					

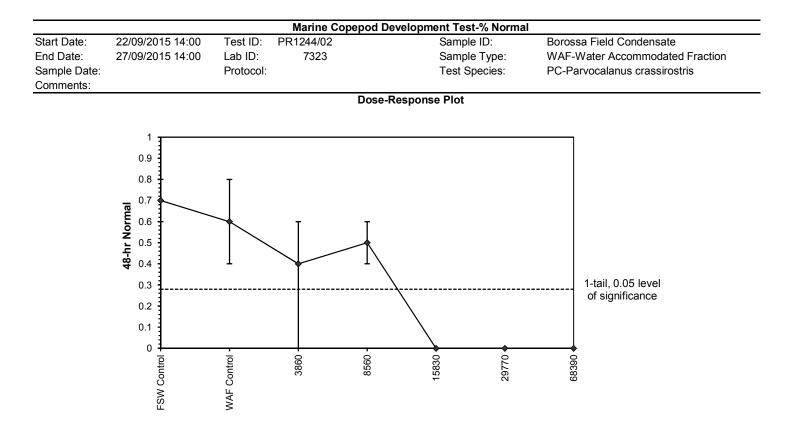

			Т	Transform: Arcsin Square Root				1-Tailed			Isotonic	
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Mean	N-Mean
FSW Control	0.7000	1.1667	0.9966	0.8861	1.1071	11.857	8					
WAF Control	0.6000	1.0000	0.8910	0.6847	1.1071	19.366	4	*			0.6000	1.0000
4.8	0.4000	0.6667	0.6706	0.2255	0.8861	46.456	4	1.441	2.180	0.3334	0.4500	0.7500
9.7	0.5000	0.8333	0.7854	0.6847	0.8861	14.802	4	0.691	2.180	0.3334	0.4500	0.7500
19.3	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	4				0.0000	0.0000
38.6	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	4				0.0000	0.0000
77.2	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	4				0.0000	0.0000

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal			0.909212		0.859		-0.97373	1.125224		
Bartlett's Test indicates equal varian	ces (p = 0.28)				2.518146		9.21034			
The control means are not significan	tly different (p	= 0.24)			1.260902		2.228139			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	9.7	19.3	13.68247		0.324825	0.537057	0.048608	0.046781	0.392639	2, 9
Treatments vs WAF Control										

	Log-Logit Interpolation (200 Resamples)													
Point	gm/L	SD	95% CL	(Exp)	Skew									
IC05*	0.431	3.000	0.067	14.446	1.9198									
IC10*	1.036	3.573	0.073	14.258	1.1432									
IC15*	1.886	3.723	0.004	13.948	0.6563	1.0	***							
IC20*	3.088	3.708	0.000	13.465	0.2468	0.9	1							
IC25	9.700	3.615	0.000	10.280	-0.2825	0.9								
IC40	9.989	2.233	0.000	10.530	-2.2276	0.8 -	1							
IC50	10.203	1.300	0.965	10.723	-4.2905	0.7	1							

* indicates IC estimate less than the lowest concentration

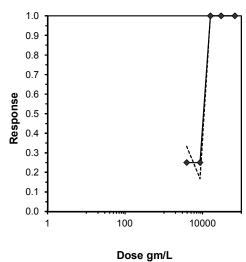

			Marine C	opepod D	evelopme	nt Test-% N	ormal		
Start Date:	22/09/2015 14:00	Test ID:	PR1244/02			Sample ID:		Borossa Fi	eld Condensate
End Date:	27/09/2015 14:00	Lab ID:	7323			Sample Type	e:	WAF-Wate	er Accommodated Fraction
Sample Date:		Protocol:				Test Species	s:	PC-Parvoc	alanus crassirostris
Comments:									
				Au	xiliary Dat	ta Summary			
Conc-gm/L	Parameter		Mean	Min	Max	SD	CV%	Ν	
FSW Contro	I % normal		70.00	60.00	80.00	10.69	4.67	8	
WAF Contro	l		60.00	40.00	80.00	16.33	6.74	4	
4.8			40.00	0.00	60.00	28.28	13.30	4	
9.7	,		50.00	40.00	60.00	11.55	6.80	4	
19.3	3		0.00	0.00	0.00	0.00		4	
38.6	6		0.00	0.00	0.00	0.00		4	
77.2			0.00	0.00	0.00	0.00		4	
FSW Contro	IрН		8.20	8.20	8.20	0.00	0.00	1	
WAF Contro	I		8.20	8.20	8.20	0.00	0.00	1	
4.8	3		8.10	8.10	8.10	0.00	0.00	1	
9.7	,		8.10	8.10	8.10	0.00	0.00	1	
19.3	3		8.00	8.00	8.00	0.00	0.00	1	
38.6	6		7.80	7.80	7.80	0.00	0.00	1	
77.2	2		7.30	7.30	7.30	0.00	0.00	1	
FSW Contro	I DO %		99.80	99.80	99.80	0.00	0.00	1	
WAF Contro	l		92.80	92.80	92.80	0.00	0.00	1	
4.8	3		96.30	96.30	96.30	0.00	0.00	1	
9.7	,		95.70	95.70	95.70	0.00	0.00	1	
19.3	3		96.70	96.70	96.70	0.00	0.00	1	
38.6	6		95.60	95.60	95.60	0.00	0.00	1	
77.2	2		85.10	85.10	85.10	0.00	0.00	1	
FSW Contro	I Salinity ppt		34.90	34.90	34.90	0.00	0.00	1	
WAF Contro			35.10	35.10	35.10	0.00	0.00	1	
4.8	}		35.10	35.10	35.10	0.00	0.00	1	
9.7	,		35.10	35.10	35.10	0.00	0.00	1	
19.3	}		35.20	35.20	35.20	0.00	0.00	1	
38.6			35.30	35.30	35.30	0.00	0.00	1	
77.2			35.30	35.30	35.30	0.00	0.00	1	

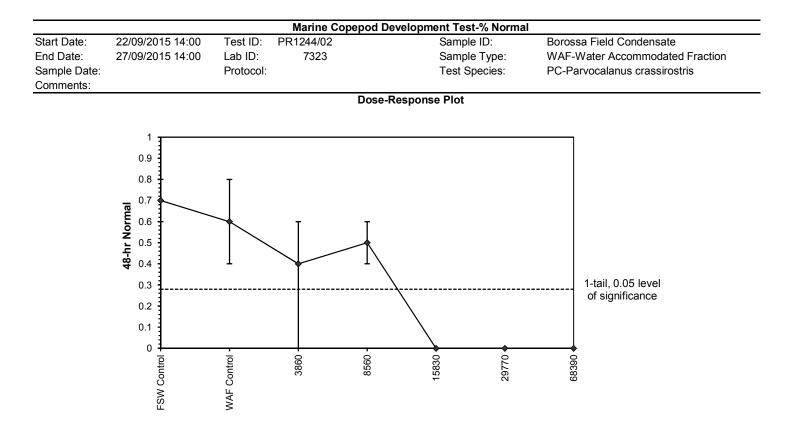

				Marine C	opepod D	evelopmeı	nt Test-% N	lormal	
Start Date:	22/09/2015	14:00	Test ID:	PR1244/02			Sample ID:	Borossa Field Condensate	
End Date:	27/09/2015	14:00	Lab ID:	7323		9	Sample Typ	e:	WAF-Water Accommodated Fraction
Sample Date:			Protocol:			1 71			PC-Parvocalanus crassirostris
Comments:									
Conc-gm/L	1	2	3	4	5	6	7	8	
FSW Control	0.6000	0.8000	0.6000	0.8000	0.6000	0.8000	0.6000	0.8000	
WAF Control	0.8000	0.4000	0.6000	0.6000					
3860	0.4000	0.6000	0.6000	0.0000					
8560	0.6000	0.6000	0.4000	0.4000					
15830	0.0000	0.0000	0.0000	0.0000					
29770	0.0000	0.0000	0.0000	0.0000					
68390	0.0000	0.0000	0.0000	0.0000					

			Т	Transform: Arcsin Square Root					1-Tailed		Number	Total
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Resp	Number
FSW Control	0.7000	1.1667	0.9966	0.8861	1.1071	11.857	8					
WAF Control	0.6000	1.0000	0.8910	0.6847	1.1071	19.366	4	*			8	20
3860	0.4000	0.6667	0.6706	0.2255	0.8861	46.456	4	1.441	2.180	0.3334	12	20
8560	0.5000	0.8333	0.7854	0.6847	0.8861	14.802	4	0.691	2.180	0.3334	10	20
15830	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	4				20	20
29770	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	4				20	20
68390	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	4				20	20

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norma	I distribution (o > 0.05)			0.909212		0.859		-0.97373	1.125224
Bartlett's Test indicates equal variar	ices (p = 0.28)				2.518146		9.21034			
The control means are not significar	ntly different (p	= 0.24)			1.260902		2.228139			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	8560	15830	11640.65		0.324825	0.537057	0.048608	0.046781	0.392639	2, 9
Treatments vs WAF Control										
			Trimmed	Spearm	an-Karber					

_	Trim Level	EC50	95%	CL	
	0.0%				
	5.0%				
	10.0%				
	20.0%				
	Auto-25.0%	10506.94	9451.822	11679.84	


			Marine C	opepod D	evelopme	nt Test-% N	ormal		
Start Date:	22/09/2015 14:00	Test ID:	PR1244/02			Sample ID:		Borossa Fie	eld Condensate
End Date:	27/09/2015 14:00	Lab ID:	7323			Sample Type	e:	WAF-Wate	r Accommodated Fraction
Sample Date:		Protocol:				Test Species	S:	PC-Parvoc	alanus crassirostris
Comments:									
			_	Au	xiliary Dat	a Summary			
Conc-gm/L	Parameter		Mean	Min	Max	SD	CV%	Ν	
FSW Contro	I % normal		70.00	60.00	80.00	10.69	4.67	8	
WAF Contro	I		60.00	40.00	80.00	16.33	6.74	4	
3860)		40.00	0.00	60.00	28.28	13.30	4	
8560)		50.00	40.00	60.00	11.55	6.80	4	
15830)		0.00	0.00	0.00	0.00		4	
29770)		0.00	0.00	0.00	0.00		4	
68390)		0.00	0.00	0.00	0.00		4	
FSW Contro	I pH		8.20	8.20	8.20	0.00	0.00	1	
WAF Contro	I		8.20	8.20	8.20	0.00	0.00	1	
3860)		8.10	8.10	8.10	0.00	0.00	1	
8560)		8.10	8.10	8.10	0.00	0.00	1	
15830)		8.00	8.00	8.00	0.00	0.00	1	
29770)		7.80	7.80	7.80	0.00	0.00	1	
68390)		7.30	7.30	7.30	0.00	0.00	1	
FSW Contro	I DO %		99.80	99.80	99.80	0.00	0.00	1	
WAF Contro	I		92.80	92.80	92.80	0.00	0.00	1	
3860)		96.30	96.30	96.30	0.00	0.00	1	
8560)		95.70	95.70	95.70	0.00	0.00	1	
15830)		96.70	96.70	96.70	0.00	0.00	1	
29770)		95.60	95.60	95.60	0.00	0.00	1	
68390)		85.10	85.10	85.10	0.00	0.00	1	
FSW Contro	I Salinity ppt		34.90	34.90	34.90	0.00	0.00	1	
WAF Contro	I		35.10	35.10	35.10	0.00	0.00	1	
3860)		35.10	35.10	35.10	0.00	0.00	1	
8560)		35.10	35.10	35.10	0.00	0.00	1	
15830)		35.20	35.20	35.20	0.00	0.00	1	
29770)		35.30	35.30	35.30	0.00	0.00	1	
68390)		35.30	35.30	35.30	0.00	0.00	1	

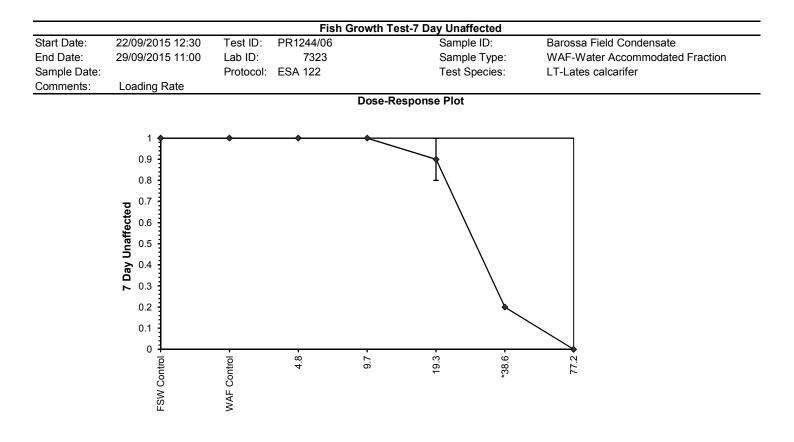

				Marine C	opepod D	evelopme	ent Test-% N	lormal	
Start Date:	22/09/2015	14:00	Test ID:	PR1244/02			Sample ID:		Borossa Field Condensate
End Date:	27/09/2015	14:00	Lab ID:	7323			Sample Typ	e:	WAF-Water Accommodated Fraction
Sample Date:			Protocol:				Test Specie	S:	PC-Parvocalanus crassirostris
Comments:									
Conc-gm/L	1	2	3	4	5	6	7	8	
FSW Control	0.6000	0.8000	0.6000	0.8000	0.6000	0.8000	0.6000	0.8000	
WAF Control	0.8000	0.4000	0.6000	0.6000					
3860	0.4000	0.6000	0.6000	0.0000					
8560	0.6000	0.6000	0.4000	0.4000					
15830	0.0000	0.0000	0.0000	0.0000					
29770	0.0000	0.0000	0.0000	0.0000					
68390	0.0000	0.0000	0.0000	0.0000					

			Т	ransform:	Arcsin Sq	uare Root			1-Tailed		lsote	onic
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Mean	N-Mean
FSW Control	0.7000	1.1667	0.9966	0.8861	1.1071	11.857	8					
WAF Control	0.6000	1.0000	0.8910	0.6847	1.1071	19.366	4	*			0.6000	1.0000
3860	0.4000	0.6667	0.6706	0.2255	0.8861	46.456	4	1.441	2.180	0.3334	0.4500	0.7500
8560	0.5000	0.8333	0.7854	0.6847	0.8861	14.802	4	0.691	2.180	0.3334	0.4500	0.7500
15830	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	4				0.0000	0.0000
29770	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	4				0.0000	0.0000
68390	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	4				0.0000	0.0000

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal	distribution (o > 0.05)			0.909212		0.859		-0.97373	1.125224
Bartlett's Test indicates equal variant	ces (p = 0.28))			2.518146		9.21034			
The control means are not significan	tly different (p	= 0.24)			1.260902		2.228139			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	8560	15830	11640.65		0.324825	0.537057	0.048608	0.046781	0.392639	2, 9
Treatments vs WAF Control										

				Log-l	.ogit Interpolation	on (200 Resamples)	
Point	gm/L	SD	95% CI	L(Exp)	Skew		
IC05*	4.388444	2798.854	0	12928.47	2.0197		
IC10*	27.21423	3271.518	0	13008.23	1.3764		
IC15*	144.3927	3767.918	0	13041.84	0.7201	1.0	*
IC20*	745.2861	4038.67	0	12835.18	0.2071	0.9	
IC25	8560	3983.675	0	9023.806	-0.2610	•	
IC40	8781.697	2442.853	0	9221.466	-2.2951	0.8	
IC50	8946.181	1148.001	8126.509	9372.164	-5.9722	0.7 -	

			Marine C	opepod D	evelopme	nt Test-% N	ormal		
Start Date:	22/09/2015 14:00	Test ID:	PR1244/02			Sample ID:		Borossa Fie	eld Condensate
End Date:	27/09/2015 14:00	Lab ID:	7323			Sample Type	e:	WAF-Wate	r Accommodated Fraction
Sample Date:		Protocol:				Test Species	S:	PC-Parvoc	alanus crassirostris
Comments:									
			_	Au	xiliary Dat	a Summary			
Conc-gm/L	Parameter		Mean	Min	Max	SD	CV%	Ν	
FSW Contro	I % normal		70.00	60.00	80.00	10.69	4.67	8	
WAF Contro	I		60.00	40.00	80.00	16.33	6.74	4	
3860)		40.00	0.00	60.00	28.28	13.30	4	
8560)		50.00	40.00	60.00	11.55	6.80	4	
15830)		0.00	0.00	0.00	0.00		4	
29770)		0.00	0.00	0.00	0.00		4	
68390)		0.00	0.00	0.00	0.00		4	
FSW Contro	I pH		8.20	8.20	8.20	0.00	0.00	1	
WAF Contro	I		8.20	8.20	8.20	0.00	0.00	1	
3860)		8.10	8.10	8.10	0.00	0.00	1	
8560)		8.10	8.10	8.10	0.00	0.00	1	
15830)		8.00	8.00	8.00	0.00	0.00	1	
29770)		7.80	7.80	7.80	0.00	0.00	1	
68390)		7.30	7.30	7.30	0.00	0.00	1	
FSW Contro	I DO %		99.80	99.80	99.80	0.00	0.00	1	
WAF Contro	I		92.80	92.80	92.80	0.00	0.00	1	
3860)		96.30	96.30	96.30	0.00	0.00	1	
8560)		95.70	95.70	95.70	0.00	0.00	1	
15830)		96.70	96.70	96.70	0.00	0.00	1	
29770)		95.60	95.60	95.60	0.00	0.00	1	
68390)		85.10	85.10	85.10	0.00	0.00	1	
FSW Contro	I Salinity ppt		34.90	34.90	34.90	0.00	0.00	1	
WAF Contro	I		35.10	35.10	35.10	0.00	0.00	1	
3860)		35.10	35.10	35.10	0.00	0.00	1	
8560)		35.10	35.10	35.10	0.00	0.00	1	
15830)		35.20	35.20	35.20	0.00	0.00	1	
29770)		35.30	35.30	35.30	0.00	0.00	1	
68390)		35.30	35.30	35.30	0.00	0.00	1	

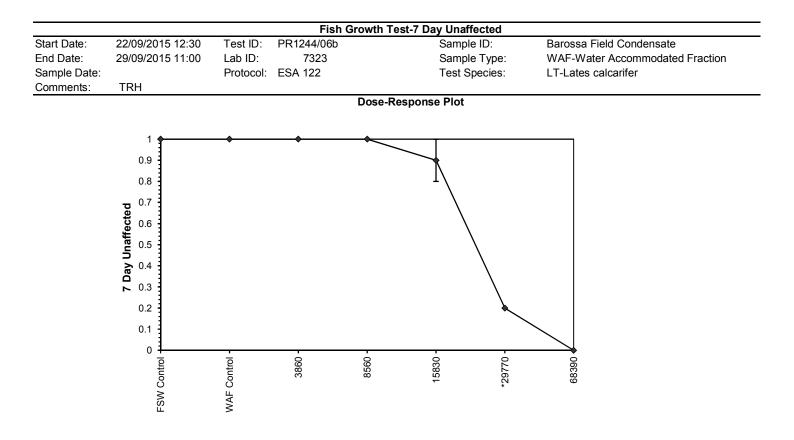

Appendix R: Statistical Analyses of the Fish Imbalance and Growth Test

				Fish (rowth Test-7 Day Unaffected	
Start Date:	22/09/2015	12:30	Test ID:	PR1244/06	Sample ID:	Barossa Field Condensate
End Date:	29/09/2015	11:00	Lab ID:	7323	Sample Type:	WAF-Water Accommodated Fraction
Sample Date:			Protocol:	ESA 122	Test Species:	LT-Lates calcarifer
Comments:	Loading Ra	ite				
Conc-gm/L	1	2	3	4		
FSW Control	1.0000	1.0000	1.0000	1.0000		
WAF Control	1.0000	1.0000	1.0000	1.0000		
4.8	1.0000	1.0000	1.0000	1.0000		
9.7	1.0000	1.0000	1.0000	1.0000		
19.3	0.8000	0.8000	1.0000	1.0000		
38.6	0.2000	0.2000	0.2000	0.2000		
77.2	0.0000	0.0000	0.0000	0.0000		

			Т	ransform:	Arcsin Sq	uare Root		Rank	1-Tailed	Number	Total
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Resp	Number
FSW Control	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4				
WAF Control	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	*		0	20
4.8	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	18.00	10.00	0	20
9.7	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	18.00	10.00	0	20
19.3	0.9000	0.9000	1.2262	1.1071	1.3453	11.212	4	14.00	10.00	2	20
*38.6	0.2000	0.2000	0.4636	0.4636	0.4636	0.000	4	10.00	10.00	16	20
77.2	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	4			20	20

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non-no	ormal distributi	on (p <= 0	0.05)		0.63123	0.905	5.4E-15	2.980392
Equality of variance cannot be confi	rmed							
The control means are not significar	ntly different (p	= 1.00)			0	2.446912		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	19.3	38.6	27.29432					
Treatments vs WAF Control								

					Maximum Lik	celihoo	od-Probit					
Parameter	Value	SE	95% Fiduc	ial Limits	Co	ntrol	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	7.178029	1.531775	4.175749	10.18031		0	0.036857	7.814728	1	1.466663	0.139314	3
Intercept	-5.52775	2.261845	-9.96097	-1.09453								
TSCR							^{1.0} T			· · · ·		
Point	Probits	gm/L	95% Fiduc	ial Limits			0.9			(/		
EC01	2.674	13.88578	7.816206	17.95356			0.9			/		
EC05	3.355	17.27874	11.23676	21.21538			0.8 -		•	/		
EC10	3.718	19.41445	13.58027	23.28484			0.7			/		
EC15	3.964	21.00263	15.38899	24.86277			-		I/			
EC20	4.158	22.35701	16.95756	26.25341			0 .6		11			
EC25	4.326	23.58834	18.39006	27.56814			esuouse 0.5 - 0.4 -					
EC40	4.747	27.00029	22.27634	31.5769			ds .					
EC50	5.000	29.28622	24.7131	34.66116			8 0.4					
EC60	5.253	31.76568	27.14661	38.42481			0.3 -					
EC75	5.674	36.36044	31.12336	46.50115			• • •					
EC80	5.842	38.36303	32.69047	50.41624			0.2		/ 			
EC85	6.036	40.83692	34.52706	55.54199			0.1 -		/ 🖌			
EC90	6.282	44.17752	36.87479	62.9259			0.0		<u> // </u>			
EC95	6.645	49.63802	40.48028	76.03354			0.0 +		10	100	1000	
EC99	7.326	61.76696	47.84469	109.285			•		Dose g			

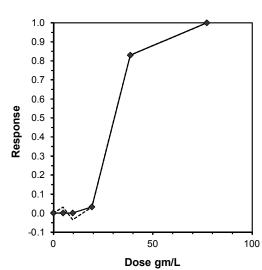

			Fisł	n Growth 1	Fest-7 Da	y Unaffected	ł		
Start Date:	22/09/2015 12:30	Test ID:	PR1244/06			Sample ID:		Barossa F	ield Condensate
End Date:	29/09/2015 11:00	Lab ID:	7323			Sample Typ	e:	WAF-Wat	er Accommodated Fractior
Sample Date:		Protocol:	ESA 122			Test Species	s:	LT-Lates	calcarifer
Comments:	Loading Rate								
					xiliary Da	ita Summary			
Conc-gm/L	Parameter		Mean	Min	Мах	SD	CV%	N	
FSW Contro			100.00	100.00	100.00	0.00	0.00		
WAF Contro			100.00	100.00	100.00	0.00	0.00		
4.8			100.00	100.00	100.00	0.00	0.00		
9.7			100.00	100.00	100.00	0.00	0.00		
19.3			90.00	80.00	100.00	11.55	3.78	4	
38.6			20.00	20.00	20.00	0.00	0.00	4	
77.2			0.00	0.00	0.00	0.00		4	_
FSW Contro			8.33	7.12	10.12	1.31	13.72		
WAF Contro			7.98	7.16	9.02	0.79	11.13	4	
4.8	1		7.74	7.34	8.30	0.43	8.50	4	
9.7	,		8.26	7.94	8.58	0.30	6.63	4	
19.3	1		7.74	6.22	9.04	1.16	13.93	4	
38.6	i		1.36	1.20	1.60	0.17	30.57	4	
77.2			0.00	0.00	0.00	0.00		4	
FSW Contro	рН		8.20	8.20	8.20	0.00	0.00	1	-
WAF Contro			8.20	8.20	8.20	0.00	0.00	1	
4.8	1		8.10	8.10	8.10	0.00	0.00	1	
9.7	,		8.10	8.10	8.10	0.00	0.00	1	
19.3	1		8.00	8.00	8.00	0.00	0.00	1	
38.6	;		7.80	7.80	7.80	0.00	0.00	1	
77.2	2		7.30	7.30	7.30	0.00	0.00	1	
FSW Contro	Salinity		34.90	34.90	34.90	0.00	0.00	1	-
WAF Contro	-		35.10	35.10	35.10	0.00	0.00	1	
4.8	1		35.10	35.10	35.10	0.00	0.00	1	
9.7			35.10	35.10	35.10	0.00	0.00	1	
19.3	1		35.20	35.20	35.20	0.00	0.00	1	
38.6	i		35.30	35.30	35.30	0.00	0.00	1	
77.2			35.30	35.30	35.30	0.00	0.00	1	
FSW Contro			99.80	99.80	99.80	0.00	0.00	1	-
WAF Contro			92.80	92.80	92.80	0.00	0.00	1	
4.8	1		96.30	96.30	96.30	0.00	0.00	1	
9.7			95.70	95.70	95.70	0.00	0.00		
19.3			96.70	96.70	96.70	0.00	0.00	1	
38.6			95.60	95.60	95.60	0.00	0.00		
77.2			85.10	85.10	85.10	0.00	0.00		

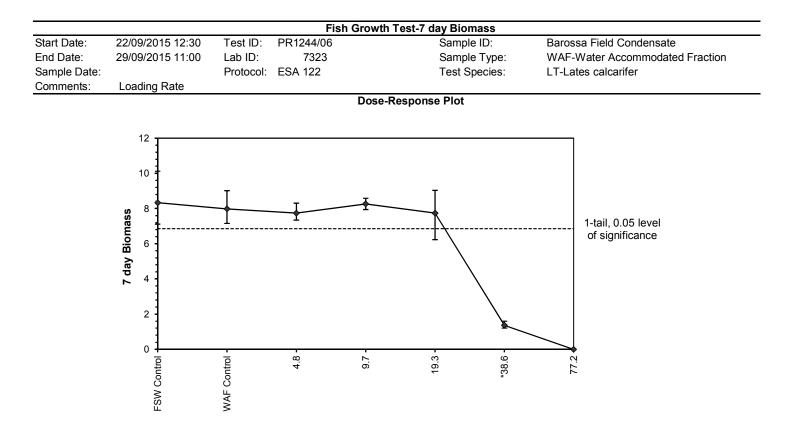
				Fish Gro	owth Test-7 Day Unaffected	
Start Date:	22/09/2015	12:30	Test ID:	PR1244/06b	Sample ID:	Barossa Field Condensate
End Date:	29/09/2015	11:00	Lab ID:	7323	Sample Type:	WAF-Water Accommodated Fraction
Sample Date:			Protocol:	ESA 122	Test Species:	LT-Lates calcarifer
Comments:	TRH					
Conc-ug/L	1	2	3	4		
FSW Control	1.0000	1.0000	1.0000	1.0000		
WAF Control	1.0000	1.0000	1.0000	1.0000		
3860	1.0000	1.0000	1.0000	1.0000		
8560	1.0000	1.0000	1.0000	1.0000		
15830	0.8000	0.8000	1.0000	1.0000		
29770	0.2000	0.2000	0.2000	0.2000		
68390	0.0000	0.0000	0.0000	0.0000		

			Т	ransform:	Arcsin Sq	uare Root		Rank	1-Tailed	Number	Total
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Resp	Number
FSW Control	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4				
WAF Control	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	*		0	20
3860	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	18.00	10.00	0	20
8560	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	18.00	10.00	0	20
15830	0.9000	0.9000	1.2262	1.1071	1.3453	11.212	4	14.00	10.00	2	20
*29770	0.2000	0.2000	0.4636	0.4636	0.4636	0.000	4	10.00	10.00	16	20
68390	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	4			20	20

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non-n	ormal distribut	ion (p <= 0	0.05)		0.63123	0.905	5.4E-15	2.980392
Equality of variance cannot be conf	irmed							
The control means are not significa	ntly different (p	o = 1.00)			0	2.446912		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	15830	29770	21708.5					
Treatments vs WAF Control								

					Maximum Like	lihoo	od-Probit					
Parameter	Value	SE	95% Fiduc	ial Limits	Cont	trol	Chi-Sq	Critical	P-value	Mu	Sigma	Iter
Slope	7.794081	1.747035	4.369893	11.21827	0		0.010855	7.814728	1	4.365154	0.128302	3
Intercept	-29.0224	7.620937	-43.9594	-14.0853								
TSCR							^{1.0} T				^	
Point	Probits	ug/L	95% Fiduc	ial Limits			0.9					
EC01	2.674	11659.45	6649.302	14800.89			-				1/ 1	
EC05	3.355	14259.87	9408.471	17228.43			0.8				† /	
EC10	3.718	15875.53	11275.41	18756.63			0.7 -					
EC15	3.964	17067.8	12704.42	19919.32			a 0.6					
EC20	4.158	18078.91	13934.91	20944.57			ŝĘ .				11	
EC25	4.326	18993.97	15050.69	21916.11			ō 0.5					
EC40	4.747	21510.44	18029.4	24903.08			So 0.4					
EC50	5.000	23182.19	19851.65	27226.81			0.3					
EC60	5.253	24983.86	21633.54	30076.32			-					
EC75	5.674	28293.92	24480.92	36177.54			0.2 -					
EC80	5.842	29726	25588.28	39117.39			0.1					
EC85	6.036	31487.01	26878.99	42948.14			0.0					
EC90	6.282	33851.71	28519.97	48434.02			0.0 +		100	1000	1	
EC95	6.645	37687.14	31023.54	58093.9						1000		
EC99	7.326	46092.54	36082.36	82267.42					Dose u	//		

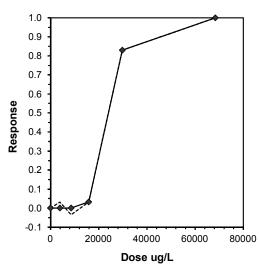

			Fish	Growth	Fest-7 Da	y Unaffected	ł		
Start Date:	22/09/2015 12:30	Test ID:	PR1244/06b			Sample ID:		Barossa F	eld Condensate
End Date:	29/09/2015 11:00	Lab ID:	7323			Sample Type	e:	WAF-Wate	er Accommodated Fraction
Sample Date:		Protocol:	ESA 122			Test Species	S:	LT-Lates c	alcarifer
Comments:	TRH								
					xiliary Da	ta Summary			
Conc-ug/L	Parameter		Mean	Min	Max	SD	CV%	Ν	
FSW Control			100.00	100.00	100.00	0.00	0.00	4	
WAF Control			100.00	100.00	100.00	0.00	0.00		
3860			100.00	100.00	100.00	0.00	0.00	4	
8560			100.00	100.00	100.00	0.00	0.00	4	
15830			90.00	80.00	100.00	11.55	3.78	4	
29770			20.00	20.00	20.00	0.00	0.00	4	
68390			0.00	0.00	0.00	0.00		4	
FSW Control	Biomass		8.33	7.12	10.12		13.72	4	
WAF Control	l		7.98	7.16	9.02	0.79	11.13	4	
3860			7.74	7.34	8.30	0.43	8.50	4	
8560	1		8.26	7.94	8.58	0.30	6.63	4	
15830	1		7.74	6.22	9.04	1.16	13.93	4	
29770	1		1.36	1.20	1.60	0.17	30.57	4	
68390	1		0.00	0.00	0.00	0.00		4	
FSW Contro	l pH		8.20	8.20	8.20	0.00	0.00	1	
WAF Control			8.20	8.20	8.20	0.00	0.00	1	
3860)		8.10	8.10	8.10	0.00	0.00	1	
8560)		8.10	8.10	8.10	0.00	0.00	1	
15830	1		8.00	8.00	8.00	0.00	0.00	1	
29770	1		7.80	7.80	7.80	0.00	0.00	1	
68390	1		7.30	7.30	7.30	0.00	0.00	1	
FSW Contro	l Salinity		34.90	34.90	34.90	0.00	0.00	1	
WAF Control			35.10	35.10	35.10	0.00	0.00	1	
3860)		35.10	35.10	35.10	0.00	0.00	1	
8560)		35.10	35.10	35.10	0.00	0.00	1	
15830)		35.20	35.20	35.20	0.00	0.00	1	
29770)		35.30	35.30	35.30	0.00	0.00	1	
68390)		35.30	35.30	35.30	0.00	0.00	1	
FSW Control			99.80	99.80	99.80	0.00	0.00	1	
WAF Control	l		92.80	92.80	92.80	0.00	0.00	1	
3860)		96.30	96.30	96.30	0.00	0.00	1	
8560)		95.70	95.70	95.70	0.00	0.00	1	
15830)		96.70	96.70	96.70	0.00	0.00	1	
29770			95.60	95.60	95.60	0.00	0.00	1	
68390			85.10	85.10	85.10	0.00	0.00		

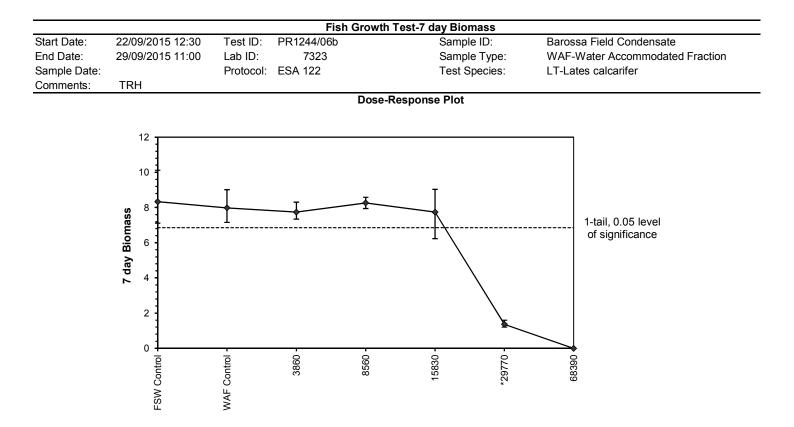

				Fisl	n Growth Test-7 day Biomass
Start Date:	22/09/2015	12:30	Test ID:	PR1244/06	Sample ID: Barossa Field Condensate
End Date:	29/09/2015	11:00	Lab ID:	7323	Sample Type: WAF-Water Accommodated Fraction
Sample Date:			Protocol:	ESA 122	Test Species: LT-Lates calcarifer
Comments:	Loading Ra	ate			
Conc-gm/L	1	2	3	4	
FSW Control	8.4200	10.1200	7.1200	7.6600	
WAF Control	8.0800	9.0200	7.1600	7.6600	
4.8	7.3400	8.3000	7.8400	7.4600	
9.7	7.9400	8.4400	8.5800	8.0800	
19.3	7.7200	6.2200	7.9600	9.0400	
38.6	1.2800	1.2000	1.6000	1.3600	
77.2	0.0000	0.0000	0.0000	0.0000	

			Transform: Untransformed					1-Tailed		Isotonic		
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Mean	N-Mean
FSW Control	8.3300	1.0439	8.3300	7.1200	10.1200	15.691	4					
WAF Control	7.9800	1.0000	7.9800	7.1600	9.0200	9.884	4	*			7.9917	1.0000
4.8	7.7350	0.9693	7.7350	7.3400	8.3000	5.595	4	0.513	2.360	1.1266	7.9917	1.0000
9.7	8.2600	1.0351	8.2600	7.9400	8.5800	3.629	4	-0.587	2.360	1.1266	7.9917	1.0000
19.3	7.7350	0.9693	7.7350	6.2200	9.0400	15.020	4	0.513	2.360	1.1266	7.7350	0.9679
*38.6	1.3600	0.1704	1.3600	1.2000	1.6000	12.707	4	13.868	2.360	1.1266	1.3600	0.1702
77.2	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	4				0.0000	0.0000

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norma	l distribution (o > 0.05)			0.940823		0.905		-0.16077	2.019523
Bartlett's Test indicates equal varian			10.16842		13.2767					
The control means are not significan	tly different (p	= 0.66)			0.458533		2.446912			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	19.3	38.6	27.29432		1.126604	0.141178	34.69307	0.455773	8.9E-10	4, 15
Treatments vs WAF Control										

				Line	ear Interpolation	(200 Resamples)	
Point	gm/L	SD	95% CL	(Exp)	Skew		
IC05	19.733	5.770	0.000	20.929	-1.2041		
IC10	20.942	2.422	8.439	22.092	-2.6612		
IC15	22.152	1.438	15.155	23.255	-2.0412	1.0	
IC20	23.362	1.168	17.945	24.430	-1.4775	0.9	
IC25	24.572	1.055	19.614	25.602	-1.2318		
IC40	28.201	0.804	24.611	29.105	-1.1814	0.8	[]
IC50	30.620	0.643	27.794	31.439	-1.0997	0.7 -	
						0.6	
						- 6	

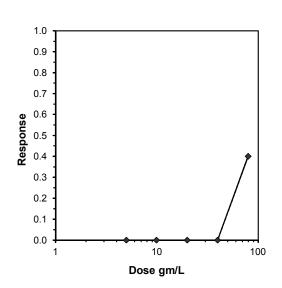

			Fis	sh Growth	Test-7 da	ay Biomass			
Start Date:	22/09/2015 12:30	Test ID:	PR1244/06			Sample ID:		Barossa F	ield Condensate
End Date:	29/09/2015 11:00	Lab ID:	7323			Sample Typ		WAF-Wat	er Accommodated Fractior
Sample Date:		Protocol:	ESA 122			Test Specie	s:	LT-Lates of	calcarifer
Comments:	Loading Rate								
						ta Summary			-
Conc-gm/L	Parameter		Mean	Min	Max	SD	CV%	N	
FSW Control			100.00	100.00	100.00	0.00	0.00		
WAF Control			100.00	100.00	100.00	0.00	0.00		
4.8			100.00	100.00	100.00	0.00	0.00		
9.7			100.00	100.00	100.00	0.00	0.00		
19.3			90.00	80.00	100.00	11.55	3.78		
38.6			20.00	20.00	20.00	0.00	0.00		
77.2			0.00	0.00	0.00	0.00		4	_
FSW Control			8.33	7.12	10.12	1.31	13.72		
WAF Control			7.98	7.16	9.02	0.79	11.13		
4.8			7.74	7.34	8.30	0.43	8.50		
9.7			8.26	7.94	8.58	0.30	6.63	4	
19.3			7.74	6.22	9.04	1.16	13.93		
38.6	i		1.36	1.20	1.60	0.17	30.57	4	
77.2			0.00	0.00	0.00	0.00		4	_
FSW Control			8.20	8.20	8.20	0.00	0.00	1	-
WAF Control			8.20	8.20	8.20	0.00	0.00	1	
4.8	1		8.10	8.10	8.10	0.00	0.00	1	
9.7	,		8.10	8.10	8.10	0.00	0.00	1	
19.3	1		8.00	8.00	8.00	0.00	0.00	1	
38.6	;		7.80	7.80	7.80	0.00	0.00	1	
77.2			7.30	7.30	7.30	0.00	0.00	1	
FSW Control			34.90	34.90	34.90	0.00	0.00	1	-
WAF Control			35.10	35.10	35.10	0.00	0.00	1	
4.8	1		35.10	35.10	35.10	0.00	0.00	1	
9.7	,		35.10	35.10	35.10	0.00	0.00	1	
19.3	1		35.20	35.20	35.20	0.00	0.00	1	
38.6	;		35.30	35.30	35.30	0.00	0.00	1	
77.2			35.30	35.30	35.30	0.00	0.00	1	
FSW Control	% DO		99.80	99.80	99.80	0.00	0.00	1	-
WAF Control	l		92.80	92.80	92.80	0.00	0.00	1	
4.8	1		96.30	96.30	96.30	0.00	0.00	1	
9.7	,		95.70	95.70	95.70	0.00	0.00	1	
19.3			96.70	96.70	96.70	0.00	0.00		
38.6			95.60	95.60	95.60	0.00	0.00		
77.2			85.10	85.10	85.10	0.00	0.00		

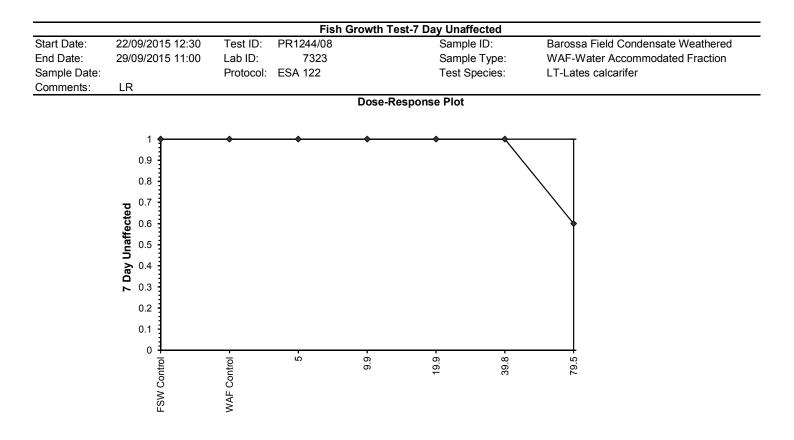

				Fish Grow	th Test-7 day Biomass	
Start Date:	22/09/2015	12:30	Test ID:	PR1244/06b	Sample ID:	Barossa Field Condensate
End Date:	29/09/2015	11:00	Lab ID:	7323	Sample Type:	WAF-Water Accommodated Fraction
Sample Date:			Protocol:	ESA 122	Test Species:	LT-Lates calcarifer
Comments:	TRH					
Conc-ug/L	1	2	3	4		
FSW Control	8.4200	10.1200	7.1200	7.6600		
WAF Control	8.0800	9.0200	7.1600	7.6600		
3860	7.3400	8.3000	7.8400	7.4600		
8560	7.9400	8.4400	8.5800	8.0800		
15830	7.7200	6.2200	7.9600	9.0400		
29770	1.2800	1.2000	1.6000	1.3600		
68390	0.0000	0.0000	0.0000	0.0000		

			Transform: Untransformed							Isotonic		
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Mean	N-Mean
FSW Control	8.3300	1.0439	8.3300	7.1200	10.1200	15.691	4					
WAF Control	7.9800	1.0000	7.9800	7.1600	9.0200	9.884	4	*			7.9917	1.0000
3860	7.7350	0.9693	7.7350	7.3400	8.3000	5.595	4	0.513	2.360	1.1266	7.9917	1.0000
8560	8.2600	1.0351	8.2600	7.9400	8.5800	3.629	4	-0.587	2.360	1.1266	7.9917	1.0000
15830	7.7350	0.9693	7.7350	6.2200	9.0400	15.020	4	0.513	2.360	1.1266	7.7350	0.9679
*29770	1.3600	0.1704	1.3600	1.2000	1.6000	12.707	4	13.868	2.360	1.1266	1.3600	0.1702
68390	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	4				0.0000	0.0000

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norma	l distribution (o > 0.05)			0.940823		0.905		-0.16077	2.019523
Bartlett's Test indicates equal varian			10.16842		13.2767					
The control means are not significan	tly different (p	= 0.66)			0.458533		2.446912			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	15830	29770	21708.5		1.126604	0.141178	34.69307	0.455773	8.9E-10	4, 15
Treatments vs WAF Control										

	Linear Interpolation (200 Resamples)										
Point	ug/L	SD	95% CL	_(Exp)	Skew						
IC05	16142.51	4671.806	0	17012.18	-1.2421						
IC10	17016.27	1954.101	7373.185	17857.61	-2.6555						
IC15	17890.02	1097.801	11899.05	18703.04	-2.2030	1.0 T					
IC20	18763.78	880.4609	14909.07	19548.47	-1.5117	0.9					
IC25	19637.53	784.3117	16057.69	20393.89	-1.1569	•					
IC40	22258.8	599.5128	19503.55	22930.18	-1.1881	0.8	/				
IC50	24006.31	479.4807	21800.79	24621.04	-1.2016	0.7	/				
						0.6					
						a -	1				

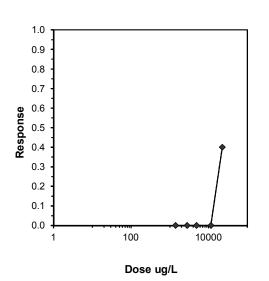

			Fis	h Growth	Test-7 da	ay Biomass			
Start Date:	22/09/2015 12:30	Test ID:	PR1244/06b			Sample ID:		Barossa F	ield Condensate
End Date:	29/09/2015 11:00	Lab ID:	7323			Sample Type	e:	WAF-Wate	er Accommodated Fraction
Sample Date:		Protocol:	ESA 122			Test Species	s:	LT-Lates of	alcarifer
Comments:	TRH								
					xiliary Da	ta Summary			
Conc-ug/L	Parameter		Mean	Min	Max	SD	CV%	Ν	
FSW Contro			100.00	100.00	100.00	0.00	0.00		
WAF Contro			100.00	100.00	100.00	0.00	0.00		
3860)		100.00	100.00	100.00	0.00	0.00	4	
8560)		100.00	100.00	100.00	0.00	0.00	4	
15830			90.00	80.00	100.00	11.55	3.78	4	
29770)		20.00	20.00	20.00	0.00	0.00	4	
68390)		0.00	0.00	0.00	0.00		4	
FSW Contro	I Biomass		8.33	7.12	10.12	1.31	13.72	4	
WAF Contro	I		7.98	7.16	9.02	0.79	11.13	4	
3860)		7.74	7.34	8.30	0.43	8.50	4	
8560)		8.26	7.94	8.58	0.30	6.63	4	
15830)		7.74	6.22	9.04	1.16	13.93	4	
29770)		1.36	1.20	1.60	0.17	30.57	4	
68390)		0.00	0.00	0.00	0.00		4	
FSW Contro	I pH		8.20	8.20	8.20	0.00	0.00	1	•
WAF Contro	1		8.20	8.20	8.20	0.00	0.00	1	
3860)		8.10	8.10	8.10	0.00	0.00	1	
8560)		8.10	8.10	8.10	0.00	0.00	1	
15830)		8.00	8.00	8.00	0.00	0.00	1	
29770)		7.80	7.80	7.80	0.00	0.00	1	
68390			7.30	7.30	7.30	0.00	0.00	1	
FSW Contro			34.90	34.90	34.90	0.00	0.00		•
WAF Contro			35.10	35.10	35.10	0.00	0.00		
3860			35.10	35.10	35.10	0.00	0.00		
8560			35.10	35.10	35.10	0.00	0.00		
15830			35.20	35.20	35.20	0.00	0.00		
29770			35.30	35.30	35.30	0.00	0.00		
68390			35.30	35.30	35.30	0.00	0.00		
FSW Contro			99.80	99.80	99.80	0.00	0.00		
WAF Contro			92.80	92.80	92.80	0.00	0.00	-	
3860			96.30	96.30	96.30	0.00	0.00		
8560			95.70	95.70	95.70	0.00	0.00		
15830			96.70 96.70	96.70	96.70	0.00	0.00		
29770			95.60	95.60	90.70 95.60	0.00	0.00		
68390			95.00 85.10	95.00 85.10	95.00 85.10	0.00	0.00		
00390)		00.10	05.10	00.10	0.00	0.00	I	

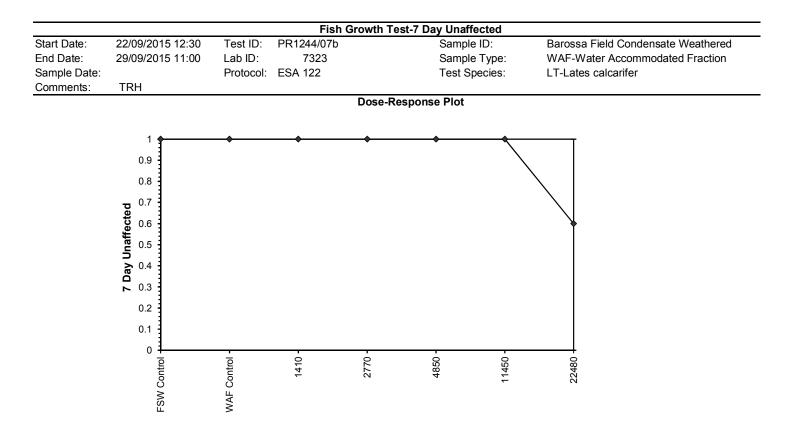

				Fish	Growth Test-7 Day Unaffected	
Start Date:	22/09/2015	12:30	Test ID:	PR1244/08	Sample ID:	Barossa Field Condensate Weathered
End Date:	29/09/2015	11:00	Lab ID:	7323	Sample Type:	WAF-Water Accommodated Fraction
Sample Date:			Protocol:	ESA 122	Test Species:	LT-Lates calcarifer
Comments:	LR					
Conc-gm/L	1	2	3	4		
FSW Control	1.0000	1.0000	1.0000	1.0000		
WAF Control	1.0000	1.0000	1.0000	1.0000		
5	1.0000	1.0000	1.0000	1.0000		
9.9	1.0000	1.0000	1.0000	1.0000		
19.9	1.0000	1.0000	1.0000	1.0000		
39.8	1.0000	1.0000	1.0000	1.0000		
79.5	1.0000	1.0000	0.4000	0.0000		

			Т	ransform:	Arcsin Sq	uare Root		Rank	1-Tailed	lsote	onic
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Mean	N-Mean
FSW Control	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4				
WAF Control	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	*		1.0000	1.0000
5	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	18.00	10.00	1.0000	1.0000
9.9	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	18.00	10.00	1.0000	1.0000
19.9	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	18.00	10.00	1.0000	1.0000
39.8	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	18.00	10.00	1.0000	1.0000
79.5	0.6000	0.6000	0.9002	0.2255	1.3453	60.771	4	14.00	10.00	0.6000	0.6000

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non-n	ormal distribut	ion (p <= 0.	05)		0.557919	0.916	-0.86578	7.231261
Equality of variance cannot be confi	rmed							
The control means are not significant	ntly different (p	o = 1.00)			0	2.446912		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	79.5	>79.5						
Treatments vs WAF Control								
		Log-	Logit Inter	polation	(200 Resamples)			

				Logic into p	0.000
Point	gm/L	SD	95% CL(Exp)	Skew	
IC05	65.174				
IC10	69.103				
IC15	71.651				
IC20	73.631				
IC25	75.307				
IC40	>79.5				
IC50	>79.5				

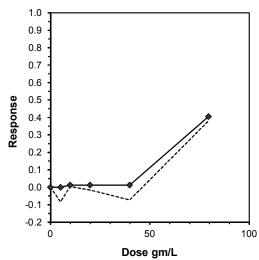

Start Date: 22/09/2015 12:30 29/09/2015 11:00 Lab ID: Test ID: PR1244/08 7323 Sample Type: Barossa Field Condensate Weath Sample Date: Conc-gm/L Parameter Protocol: ESA 122 Test Species: LT-Lates calcanfer Conc-gm/L Parameter Mean Min Max SD CV% N FSW Control % Un-affected 100.00 100.00 0.00 0.00 4 WAF Control % Un-affected 100.00 100.00 0.00 0.00 4 9.9 100.00 100.00 100.00 0.00 0.00 4 79.5 60.00 0.00 0.00 0.00 4 FSW Control Biomass 8.33 7.12 10.12 1.31 13.72 4 FSW Control Biomass 8.33 7.16 9.02 0.79 11.13 4 FSW Control Biomass 8.33 7.16 9.34 0.95 4 9.9 7.95 7.96 9.46				Fish	Growth T	Fest-7 Da	y Unaffected	d		
Sample Date: Protocol: ESA 122 Test Species: LT-Lates calcarifer Cornmit: L R Variable Species: LT-Lates calcarifer Conc.gm/L Parameter Mean Min Max SD CV% N FSW Control % Un-affected 100.00 100.00 0.00 0.00 4 WAF Control 100.00 100.00 100.00 0.00 0.00 4 9.9 100.00 100.00 100.00 0.00 4 4 9.9 100.00 100.00 100.00 0.00 4 4 9.9 100.00 100.00 100.00 0.00 4 4 79.5 60.00 0.00 48.99 11.67 4 FSW Control Biomass 8.33 7.12 10.12 131 13.72 4 WAF Control Biomass 8.33 7.95 7.18 9.44 0.95 12.29 4 19.9 8.20 8.20 <th>Start Date:</th> <th>22/09/2015 12:30</th> <th>Test ID:</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Barossa F</th> <th>ield Condensate Weathered</th>	Start Date:	22/09/2015 12:30	Test ID:						Barossa F	ield Condensate Weathered
Comments: LR Conc-gm/L Parameter Mean Min Max SD CV% N FSW Control % Un-affected 100.00 100.00 100.00 0.00 4 9.9 100.00 100.00 100.00 0.00 0.00 4 9.9 100.00 100.00 100.00 0.00 4 39.8 100.00 100.00 0.00 0.00 4 79.5 60.00 0.00 100.00 100.00 4 99 7.98 7.16 9.02 0.79 11.13 4 5 8655 7.82 9.24 0.60 8.93 4 9.9 7.95 7.18 9.34 0.95 12.29 4 19.9 8.11 7.64 8.32 0.32 6.97 4 9.9 7.98 7.18 9.44 0.90 11.13 4 9.9 8.20 8.20 8.20 0.	End Date:	29/09/2015 11:00	Lab ID:	7323			Sample Typ	e:	WAF-Wat	er Accommodated Fraction
Auxiliary Data Summary Conc-gm/L Parameter Men Min Max SD CV% N FSW Control % Un-affected 100.00 100.00 100.00 0.00 4 5 100.00 100.00 100.00 0.00 0.00 4 9.9 100.00 100.00 100.00 0.00 0.00 4 39.8 100.00 100.00 100.00 0.00 0.00 4 FSW Control Biomass 8.33 7.12 10.12 1.31 13.72 4 YP3.5 60.00 0.00 100.00 48.99 11.67 4 FSW Control 8 7.98 7.18 9.24 0.60 8.93 4 9.9 7.95 7.18 9.34 0.95 12.29 4 19.9 8.11 7.64 8.32 0.32 6.97 4 39.8 8.20 8.20 8.20 0.00 0.00	Sample Date:		Protocol:	ESA 122			Test Specie	s:	LT-Lates of	calcarifer
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Comments:	LR								
FSW Control % Un-affected 100.00 100.00 100.00 0.00 4 WAF Control 5 100.00 100.00 0.00 0.00 4 9.9 100.00 100.00 100.00 0.00 0.00 4 19.9 100.00 100.00 100.00 0.00 0.00 4 39.8 100.00 100.00 100.00 0.00 0.00 4 79.5 60.00 0.00 100.00 48.99 11.87 4 FSW Control 10.9 7.16 9.02 0.79 11.13 4 5 8.65 7.82 9.24 0.60 8.83 4 9.9 7.95 7.18 9.34 0.95 12.29 4 19.9 8.11 7.64 8.32 0.32 6.97 4 9.9 8.20 8.20 8.20 0.00 0.00 1 9.9 8.20 8.20 8.20 0.00						-				-
WAF Control 100.00 100.00 100.00 0.00 0.00 4 5 100.00 100.00 100.00 0.00 0.00 4 9.9 100.00 100.00 100.00 0.00 0.00 4 39.8 100.00 100.00 100.00 0.00 0.00 4 79.5 60.00 0.00 100.00 48.99 11.67 4 FSW Control Biomass 8.33 7.12 10.12 1.31 13.72 4 WAF Control Biomass 8.33 7.12 10.12 1.31 13.72 4 WAF Control Biomass 8.33 7.12 10.12 1.31 13.72 4 9.9 7.95 7.86 7.76 9.02 0.79 11.13 4 19.9 8.11 7.64 8.32 0.66 9.50 4 9.9 8.20 8.20 8.20 0.00 0.00 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
5 100.00 100.00 100.00 0.00 0.00 4 9.9 100.00 100.00 100.00 0.00 0.00 4 19.9 100.00 100.00 100.00 0.00 0.00 4 39.8 100.00 100.00 100.00 0.00 4 79.5 60.00 0.00 101.00 48.99 11.67 4 FSW Control Biomass 8.33 7.12 10.12 1.31 13.72 4 WAF Control 7.98 7.16 9.02 0.79 11.13 4 9.9 7.95 7.18 9.34 0.95 12.29 4 19.9 8.11 7.74 9.34 0.95 12.29 4 79.5 4.95 0.00 8.58 3.78 39.25 4 FSW Control pH 8.20 8.20 8.20 0.00 1 9.9 8.20 8.20 8.20 0.00 1 1 9.9 8.20 8.20 8.20 0.00										
9.9 100.00 100.00 100.00 0.00 4 19.9 100.00 100.00 100.00 0.00 4 39.8 100.00 100.00 100.00 0.00 4 79.5 60.00 0.00 100.00 48.99 11.87 4 FSW Control Biomass 8.33 7.12 10.12 1.31 13.72 4 WAF Control Biomass 8.33 7.12 10.12 1.31 13.72 4 WAF Control R.99 7.95 7.18 9.24 0.60 8.93 4 9.9 7.95 7.18 9.34 0.95 12.29 4 19.9 8.11 7.64 8.32 0.32 6.97 4 39.8 8.57 7.90 9.46 0.66 9.50 4 79.5 4.95 0.00 8.20 8.00 0.00 1 9.9 8.20 8.20 8.20 0.00 0.00 1 9.9 8.20 8.20 8.20 0.00										
19.9 100.00 100.00 100.00 0.00 4 39.8 100.00 100.00 100.00 0.00 0.00 4 79.5 60.00 0.00 10.12 1.31 13.72 4 FSW Control Biomass 8.33 7.12 10.12 1.31 13.72 4 WAF Control 7.98 7.16 9.02 0.79 11.13 4 9.9 7.95 7.88 7.82 9.24 0.60 8.93 4 9.9 8.11 7.64 8.32 0.32 6.97 4 3.9.8 8.57 7.90 9.46 0.66 9.50 4 79.5 4.95 0.00 8.20 8.00 0.00 1 FSW Control pH 8.20 8.20 8.20 0.00 0.00 1 9.9 8.20 8.20 8.20 0.00 0.00 1 9.9 8.20 8.20 8.20 0.00 0.00 1 9.9 8.20 8.20 8.20 <td></td>										
39.8 100.00 100.00 100.00 0.00 44.99 79.5 60.00 0.00 100.00 48.99 11.67 4 FSW Control Biomass 8.33 7.12 10.12 1.31 13.72 4 WAF Control 7.98 7.66 9.02 0.79 11.13 4 5 8.65 7.82 9.24 0.60 8.93 4 9.9 7.95 7.18 9.34 0.95 12.29 4 19.9 8.11 7.64 8.32 0.32 6.97 4 39.8 8.57 7.99 9.46 0.66 9.50 4 79.5 4.95 0.00 8.58 3.78 39.25 4 FSW Control PH 8.20 8.20 8.20 0.00 0.00 1 WAF Control PH 8.20 8.20 8.20 0.00 0.00 1 19.9 8.20 8.20 8.20 8.20 0.00 0.00 1 79.5 8.20										
79.5 60.00 0.00 100.00 48.99 11.67 4 FSW Control Biomass 8.33 7.12 10.12 1.31 13.72 4 WAF Control 7.98 7.16 9.02 0.79 11.13 4 9.9 7.95 7.18 9.24 0.60 8.93 4 9.9 7.95 7.18 9.34 0.95 12.29 4 19.9 8.11 7.64 8.32 0.32 6.97 4 39.8 8.57 7.90 9.46 0.66 9.50 4 FSW Control pH 8.20 8.20 8.20 0.00 0.00 1 WAF Control pH 8.20 8.20 8.20 0.00 0.00 1 9.9 8.20 8.20 8.20 8.20 0.00 0.00 1 9.9 8.20 8.20 8.20 8.20 0.00 0.00 1 9.9 8.20 8.20 8.20 0.00 0.00 1 79.5								0.00		
FSW Control Biomass 8.33 7.12 10.12 1.31 13.72 4 WAF Control 7.98 7.16 9.02 0.79 11.13 4 9.9 7.95 7.18 9.34 0.95 12.29 4 19.9 8.11 7.64 8.32 0.32 6.97 4 38.8 8.57 7.90 9.46 0.66 9.50 4 FSW Control pH 8.20 8.20 8.20 0.00 1 WAF Control pH 8.20 8.20 8.20 0.00 0.00 1 WAF Control 8.20 8.20 8.20 0.00 0.00 1 9.9 8.20 8.20 8.20 0.00 0.00 1 19.9 8.20 8.20 8.20 0.00 0.00 1 79.5 8.20 8.20 8.20 0.00 0.00 1 9.9 35.10 35.10 35.10<				100.00		100.00		0.00	4	
WAF Control 7.98 7.16 9.02 0.79 11.13 4 5 8.65 7.82 9.24 0.60 8.93 4 9.9 7.95 7.18 9.34 0.95 12.29 4 19.9 8.11 7.64 8.32 0.32 6.97 4 39.8 8.57 7.90 9.46 0.66 9.50 4 79.5 4.95 0.00 8.58 3.78 39.25 4 FSW Control pH 8.20 8.20 8.20 0.00 1 WAF Control 8.20 8.20 8.20 0.00 1 1 9.9 8.20 8.20 8.20 0.00 0.00 1 9.9 8.20 8.20 8.20 0.00 0.00 1 19.9 8.20 8.20 8.20 0.00 0.00 1 9.9 35.10 35.10 0.00 0.00 1 9.9 35.20 35.20 35.20 0.00 0.00 1						100.00		-		_
5 8.65 7.82 9.24 0.60 8.93 4 9.9 7.95 7.18 9.34 0.95 12.29 4 19.9 8.11 7.64 8.32 0.32 6.97 4 39.8 8.57 7.90 9.46 0.66 9.50 4 79.5 4.95 0.00 8.58 3.78 39.25 4 FSW Control pH 8.20 8.20 8.20 0.00 0.00 1 9.9 8.20 8.20 8.20 0.00 0.00 1 9.9 8.20 8.20 8.20 0.00 0.00 1 9.9 8.20 8.20 8.20 0.00 0.00 1 9.9 8.20 8.20 8.20 0.00 0.00 1 9.9 8.20 8.20 8.20 0.00 0.00 1 9.9 35.20 35.40 35.40 0.00 0.00 1 9.9 35.20 35.20 35.20 0.00 0.00 1										
9.9 7.95 7.18 9.34 0.95 12.29 4 19.9 8.11 7.64 8.32 0.32 6.97 4 39.8 8.57 7.90 9.46 0.66 9.50 4 79.5 4.95 0.00 8.58 3.78 39.25 4 FSW Control PH 8.20 8.20 8.20 0.00 0.00 1 WAF Control 8.20 8.20 8.20 0.00 0.00 1 9.9 8.20 8.20 8.20 0.00 0.00 1 9.9 8.20 8.20 8.20 0.00 0.00 1 9.9 8.20 8.20 8.20 0.00 0.00 1 19.9 8.20 8.20 8.20 0.00 0.00 1 79.5 8.20 8.20 8.20 0.00 0.00 1 9.9 35.20 35.20 35.20 0.00 0.00 1 19.9 35.20 35.20 35.20 0.00 0.00 <td>WAF Contro</td> <td>I</td> <td></td> <td></td> <td></td> <td>9.02</td> <td></td> <td>11.13</td> <td>4</td> <td></td>	WAF Contro	I				9.02		11.13	4	
19.9 8.11 7.64 8.32 0.32 6.97 4 39.8 8.57 7.90 9.46 0.66 9.50 4 79.5 4.95 0.00 8.58 3.78 39.25 4 FSW Control pH 8.20 8.20 8.20 0.00 0.00 1 WAF Control 8.10 8.10 8.10 0.00 0.00 1 9.9 8.20 8.20 8.20 0.00 0.00 1 9.9 8.20 8.20 8.20 0.00 0.00 1 19.9 8.20 8.20 8.20 0.00 0.00 1 39.8 8.20 8.20 8.20 0.00 0.00 1 79.5 82.0 35.40 35.40 0.00 0.00 1 WAF Control Salinity 34.90 34.90 0.00 0.00 1 9.9 35.20 35.20 35.20 0.00 0.00 1 9.9 35.20 35.20 35.20 0.00					7.82	9.24		8.93	4	
39.8 8.57 7.90 9.46 0.66 9.50 4 79.5 4.95 0.00 8.58 3.78 39.25 4 FSW Control pH 8.20 8.20 8.20 0.00 0.00 1 WAF Control 8.20 8.20 8.20 0.00 0.00 1 5 8.10 8.10 8.10 0.00 0.00 1 9.9 8.20 8.20 8.20 0.00 0.00 1 9.9 8.20 8.20 8.20 0.00 0.00 1 39.8 8.20 8.20 8.20 0.00 0.00 1 79.5 8.20 8.20 8.20 0.00 0.00 1 79.5 8.20 8.20 8.20 0.00 0.00 1 WAF Control Salinity 34.90 34.90 34.90 0.00 0.00 1 9.9 35.20 35.20 35.20 0.00 0.00 1 9.9 35.20 35.20 35.20 <	9.9)			7.18	9.34	0.95	12.29	4	
79.54.950.008.583.7839.254FSW ControlpH8.208.208.200.000.001WAF Control8.208.208.200.000.00158.108.108.100.000.0019.98.208.208.200.000.00119.98.208.208.200.000.00139.88.208.208.200.000.00139.88.208.208.200.000.00179.58.208.208.200.000.001FSW ControlSalinity34.9034.9034.900.000.0019.935.1035.1035.100.000.0019.935.2035.2035.200.000.00139.835.2035.2035.200.000.00139.835.2035.2035.200.000.00179.535.2035.2035.200.000.00179.535.2035.2035.200.000.00179.535.2035.2035.200.000.00179.535.2035.2035.200.000.00179.535.2035.2035.200.000.00179.535.2035.2035.200.000.001FSW Control </td <td>19.9</td> <td>)</td> <td></td> <td>8.11</td> <td>7.64</td> <td>8.32</td> <td>0.32</td> <td>6.97</td> <td>4</td> <td></td>	19.9)		8.11	7.64	8.32	0.32	6.97	4	
FSW Control pH 8.20 8.20 8.20 8.20 0.00 0.00 1 WAF Control 8.20 8.20 8.20 0.00 0.00 1 5 8.10 8.10 8.10 0.00 0.00 1 9.9 8.20 8.20 8.20 0.00 0.00 1 19.9 8.20 8.20 8.20 0.00 0.00 1 39.8 8.20 8.20 8.20 0.00 0.00 1 79.5 8.20 8.20 8.20 0.00 0.00 1 WAF Control Salinity 34.90 34.90 34.90 0.00 0.00 1 9.9 35.10 35.40 35.40 0.00 0.00 1 19.9 35.20 35.20 35.20 0.00 0.00 1 39.8 35.20 35.20 35.20 0.00 0.00 1 79.5 35.20 35.20	39.8	3		8.57	7.90	9.46	0.66	9.50	4	
WAF Control 8.20 8.20 8.20 8.20 0.00 0.00 1 5 8.10 8.10 8.10 8.10 0.00 0.00 1 9.9 8.20 8.20 8.20 0.00 0.00 1 19.9 8.20 8.20 8.20 0.00 0.00 1 39.8 8.20 8.20 8.20 0.00 0.00 1 79.5 8.20 8.20 8.20 0.00 0.00 1 FSW Control Salinity 34.90 34.90 34.90 0.00 0.00 1 WAF Control Salinity 35.10 35.10 35.10 0.00 0.00 1 9.9 52.0 35.20 35.20 35.20 0.00 0.00 1 19.9 35.20 35.20 35.20 0.00 0.00 1 39.8 35.20 35.20 35.20 0.00 0.00 1 39.8 35.20 35.20 35.20 0.00 0.00 1 F	79.5	5		4.95	0.00	8.58	3.78	39.25	4	
5 8.10 8.10 8.10 0.00 0.00 1 9.9 8.20 8.20 8.20 0.00 0.00 1 19.9 8.20 8.20 8.20 0.00 0.00 1 39.8 8.20 8.20 8.20 0.00 0.00 1 79.5 8.20 8.20 8.20 0.00 0.00 1 FSW Control Salinity 34.90 34.90 34.90 0.00 0.00 1 WAF Control Salinity 35.10 35.10 35.10 0.00 0.00 1 9.9 35.20 35.20 35.20 0.00 0.00 1 19.9 35.20 35.20 35.20 0.00 0.00 1 39.8 35.20 35.20 35.20 0.00 0.00 1 19.9 35.20 35.20 35.20 0.00 0.00 1 79.5 35.20 35.20 0.00 0.00 1 FSW Control % DO 99.80 99.80 <	FSW Contro	I pH		8.20	8.20	8.20	0.00	0.00	1	-
9.98.208.208.208.200.000.00119.98.208.208.208.200.000.00139.88.208.208.208.200.000.00179.58.208.208.200.000.001FSW ControlSalinity34.9034.9034.900.000.001WAF Control35.1035.1035.100.000.001535.4035.4035.400.000.0019.935.2035.2035.200.000.00119.935.2035.2035.200.000.00179.535.2035.2035.200.000.001FSW Control% DO99.8099.8099.800.000.00179.535.2035.2035.200.000.00179.596.4096.4096.4090.000.0019.996.9096.9096.900.000.0019.996.9096.9096.900.000.0019.996.6096.6096.600.000.001	WAF Contro	I		8.20	8.20	8.20	0.00	0.00	1	
19.98.208.208.208.200.000.00139.88.208.208.200.000.00179.58.208.208.200.000.001FSW ControlSalinity34.9034.9034.900.000.001WAF Control35.1035.1035.100.000.0019.935.2035.2035.200.000.00119.935.2035.2035.200.000.00139.835.2035.2035.200.000.00179.535.2035.2035.200.000.001FSW Control% DO99.8099.8099.8090.000.001FSW Control% DO99.8099.8099.800.000.00199.999.8099.8099.8090.000.00199.999.8099.8099.800.000.00199.999.8099.8099.8090.000.00199.999.8099.8099.8090.000.00199.999.8099.8099.8090.000.00199.999.8099.8099.8090.000.00199.996.9096.9096.900.000.00199.996.9096.9096.900.000.00199.996.6096.6096.60 <td>5</td> <td>5</td> <td></td> <td>8.10</td> <td>8.10</td> <td>8.10</td> <td>0.00</td> <td>0.00</td> <td>1</td> <td></td>	5	5		8.10	8.10	8.10	0.00	0.00	1	
39.8 8.20 8.20 8.20 0.00 0.00 1 79.5 8.20 8.20 8.20 0.00 0.00 1 FSW Control Salinity 34.90 34.90 34.90 0.00 0.00 1 WAF Control Salinity 35.10 35.10 35.10 0.00 0.00 1 9.9 35.20 35.20 35.20 0.00 0.00 1 19.9 35.20 35.20 35.20 0.00 0.00 1 39.8 35.20 35.20 35.20 0.00 0.00 1 79.5 35.20 35.20 35.20 0.00 0.00 1 79.5 35.20 35.20 35.20 0.00 0.00 1 79.5 35.20 35.20 35.20 0.00 0.00 1 FSW Control % DO 99.80 99.80 99.80 0.00 0.00 1 WAF Control % DO 92.80 92.80 92.80 0.00 0.00 1 <t< td=""><td>9.9</td><td>)</td><td></td><td>8.20</td><td>8.20</td><td>8.20</td><td>0.00</td><td>0.00</td><td>1</td><td></td></t<>	9.9)		8.20	8.20	8.20	0.00	0.00	1	
79.58.208.208.200.000.001FSW ControlSalinity34.9034.9034.900.000.001WAF Control35.1035.1035.100.000.001535.4035.4035.400.000.0019.935.2035.2035.200.000.00119.935.2035.2035.200.000.00139.835.2035.2035.200.000.00179.535.2035.2035.200.000.001FSW Control% DO99.8099.8099.800.000.001FSW Control% DO99.8099.8092.800.000.00199.999.8099.8099.800.000.00191.996.4096.4096.4096.400.000.00191.996.6096.6096.600.000.001	19.9	9		8.20	8.20	8.20	0.00	0.00	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39.8	3		8.20	8.20	8.20	0.00	0.00	1	
WAF Control 35.10 35.10 35.10 0.00 0.00 1 5 35.40 35.40 35.40 35.40 0.00 0.00 1 9.9 35.20 35.20 35.20 0.00 0.00 1 19.9 35.20 35.20 35.20 0.00 0.00 1 39.8 35.20 35.20 35.20 0.00 0.00 1 79.5 35.20 35.20 35.20 0.00 0.00 1 FSW Control % DO 99.80 99.80 99.80 0.00 0.00 1 WAF Control % DO 99.80 99.80 92.80 0.00 0.00 1 WAF Control 90.80 99.80 99.80 0.00 0.00 1 WAF Control % DO 99.80 99.80 92.80 0.00 0.00 1 5 96.40 96.40 96.40 96.40 0.00 0.00 1 9.9 96.90 96.60 96.60 0.00 0.00 1 <td>79.5</td> <td>5</td> <td></td> <td>8.20</td> <td>8.20</td> <td>8.20</td> <td>0.00</td> <td>0.00</td> <td>1</td> <td></td>	79.5	5		8.20	8.20	8.20	0.00	0.00	1	
5 35.40 35.40 35.40 0.00 0.00 1 9.9 35.20 35.20 35.20 0.00 0.00 1 19.9 35.20 35.20 35.20 0.00 0.00 1 39.8 35.20 35.20 35.20 0.00 0.00 1 79.5 35.20 35.20 35.20 0.00 0.00 1 FSW Control % DO 99.80 99.80 99.80 0.00 0.00 1 WAF Control % DO 99.80 92.80 92.80 0.00 0.00 1 9.9 96.40 96.40 96.40 0.00 0.00 1 9.9 96.90 96.90 96.90 0.00 1 1 9.9 96.60 96.60 96.60 0.00 0.00 1	FSW Contro	I Salinity		34.90	34.90	34.90	0.00	0.00	1	-
9.9 35.20 35.20 35.20 0.00 0.00 1 19.9 35.20 35.20 35.20 0.00 0.00 1 39.8 35.20 35.20 35.20 0.00 0.00 1 79.5 35.20 35.20 35.20 0.00 0.00 1 FSW Control % DO 99.80 99.80 99.80 0.00 0.00 1 WAF Control % DO 99.80 92.80 92.80 0.00 0.00 1 5 96.40 96.40 96.40 0.00 0.00 1 9.9 96.90 96.90 96.90 0.00 0.00 1 9.9 96.60 96.60 96.60 0.00 0.00 1	WAF Contro	1		35.10	35.10	35.10	0.00	0.00	1	
9.9 35.20 35.20 35.20 0.00 0.00 1 19.9 35.20 35.20 35.20 0.00 0.00 1 39.8 35.20 35.20 35.20 0.00 0.00 1 79.5 35.20 35.20 35.20 0.00 0.00 1 FSW Control % DO 99.80 99.80 99.80 0.00 0.00 1 WAF Control % DO 99.80 92.80 92.80 0.00 0.00 1 5 96.40 96.40 96.40 0.00 0.00 1 9.9 96.90 96.90 96.90 0.00 0.00 1 9.9 96.60 96.60 96.60 0.00 0.00 1	5	5		35.40	35.40	35.40	0.00	0.00	1	
19.9 35.20 35.20 35.20 0.00 0.00 1 39.8 35.20 35.20 35.20 0.00 0.00 1 79.5 35.20 35.20 35.20 0.00 0.00 1 FSW Control % DO 99.80 99.80 99.80 0.00 0.00 1 WAF Control % DO 92.80 92.80 92.80 0.00 0.00 1 5 96.40 96.40 96.40 0.00 0.00 1 9.9 96.60 96.60 96.60 0.00 0.00 1 19.9 96.60 96.60 96.60 0.00 0.00 1								0.00	1	
39.8 35.20 35.20 35.20 0.00 0.00 1 79.5 35.20 35.20 35.20 0.00 0.00 1 FSW Control % DO 99.80 99.80 99.80 0.00 0.00 1 WAF Control 92.80 92.80 92.80 0.00 0.00 1 5 96.40 96.40 96.40 0.00 0.00 1 9.9 96.90 96.60 96.60 0.00 0.00 1 19.9 96.60 96.60 96.60 0.00 0.00 1										
79.5 35.20 35.20 35.20 0.00 0.00 1 FSW Control % DO 99.80 99.80 99.80 0.00 0.00 1 WAF Control 92.80 92.80 92.80 0.00 0.00 1 5 96.40 96.40 96.40 0.00 0.00 1 9.9 96.60 96.60 96.60 0.00 0.00 1				35.20				0.00	1	
FSW Control % DO 99.80 99.80 99.80 0.00 0.00 1 WAF Control 92.80 92.80 92.80 0.00 0.00 1 5 96.40 96.40 96.40 0.00 0.00 1 9.9 96.90 96.90 96.90 0.00 1 19.9 96.60 96.60 96.60 0.00 0.00 1										
WAF Control92.8092.8092.800.000.001596.4096.4096.400.000.0019.996.9096.9096.900.000.00119.996.6096.6096.600.000.001										-
596.4096.4096.400.000.0019.996.9096.9096.900.000.00119.996.6096.6096.600.000.001									-	
9.996.9096.9096.900.00119.996.6096.6096.600.001										
19.9 96.60 96.60 96.60 0.00 1										
	39.8			96.70	96.70	96.70		0.00		
79.5 94.70 94.70 94.70 0.00 0.00 1										

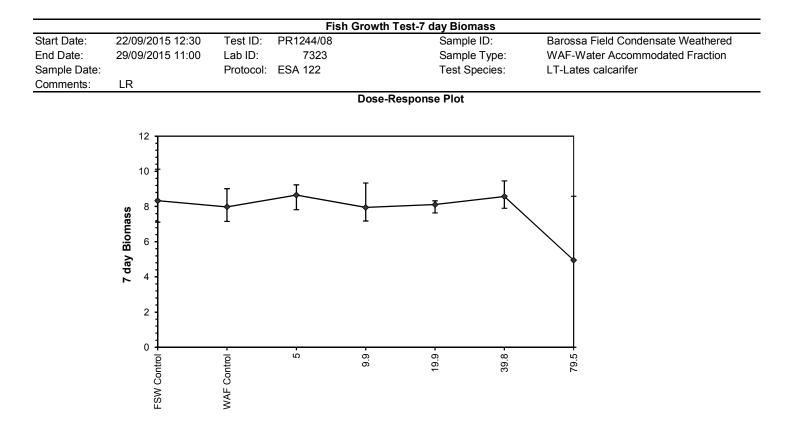

				Fish Gro	owth Test-7 Day Unaffected	
Start Date:	22/09/2015	12:30	Test ID:	PR1244/07b	Sample ID:	Barossa Field Condensate Weathered
End Date:	29/09/2015 11:00		Lab ID:	7323	Sample Type:	WAF-Water Accommodated Fraction
Sample Date:			Protocol:	ESA 122	Test Species:	LT-Lates calcarifer
Comments:	TRH					
Conc-ug/L	1	2	3	4		
FSW Control	1.0000	1.0000	1.0000	1.0000		
WAF Control	1.0000	1.0000	1.0000	1.0000		
1410	1.0000	1.0000	1.0000	1.0000		
2770	1.0000	1.0000	1.0000	1.0000		
4850	1.0000	1.0000	1.0000	1.0000		
11450	1.0000	1.0000	1.0000	1.0000		
22480	1.0000	1.0000	0.4000	0.0000		

			Т	ransform:	Arcsin Sq	uare Root		Rank 1-Tailed		lsote	onic
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Mean	N-Mean
FSW Control	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4				
WAF Control	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	*		1.0000	1.0000
1410	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	18.00	10.00	1.0000	1.0000
2770	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	18.00	10.00	1.0000	1.0000
4850	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	18.00	10.00	1.0000	1.0000
11450	1.0000	1.0000	1.3453	1.3453	1.3453	0.000	4	18.00	10.00	1.0000	1.0000
22480	0.6000	0.6000	0.9002	0.2255	1.3453	60.771	4	14.00	10.00	0.6000	0.6000

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non-n	ormal distribut	tion (p <= 0.0	05)		0.557919	0.916	-0.86578	7.231261
Equality of variance cannot be confi	rmed							
The control means are not significant	ntly different (o = 1.00)			0	2.446912		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	22480	>22480						
Treatments vs WAF Control								
		Log-	Logit Inter	polation	(200 Resamples)			

			· J		
Point	ug/L	SD	95% CL(Exp)	Skew	
IC05	18505.88				
IC10	19596.3				
IC15	20303.38				
IC20	20852.52				
IC25	21317.26				
IC40	>22480				
IC50	>22480				

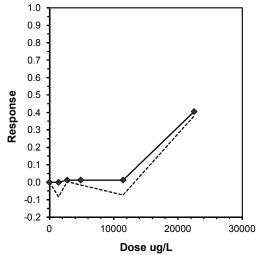

			Fish	Growth 1	est-7 Da	y Unaffected	t		
Start Date:	22/09/2015 12:30	Test ID:	PR1244/07b			Sample ID:		Barossa F	ield Condensate Weathered
End Date:	29/09/2015 11:00	Lab ID:	7323			Sample Type	e:	WAF-Wate	er Accommodated Fraction
Sample Date:		Protocol:	ESA 122			Test Species	s:	LT-Lates of	alcarifer
Comments:	TRH								
					xiliary Da	ta Summary			
Conc-ug/L	Parameter		Mean	Min	Max	SD	CV%	Ν	
FSW Control			100.00	100.00	100.00	0.00	0.00		
WAF Control			100.00	100.00	100.00	0.00	0.00		
1410			100.00	100.00	100.00	0.00	0.00	4	
2770			100.00	100.00	100.00	0.00	0.00	4	
4850			100.00	100.00	100.00	0.00	0.00	4	
11450)		100.00	100.00	100.00	0.00	0.00	4	
22480			60.00	0.00	100.00	48.99	11.67	4	
FSW Control	Biomass		8.33	7.12	10.12	1.31	13.72	4	
WAF Control			7.98	7.16	9.02	0.79	11.13	4	
1410	1		8.65	7.82	9.24	0.60	8.93	4	
2770	1		7.95	7.18	9.34	0.95	12.29	4	
4850	1		8.11	7.64	8.32	0.32	6.97	4	
11450	1		8.57	7.90	9.46	0.66	9.50	4	
22480			4.95	0.00	8.58	3.78	39.25	4	
FSW Control	рН		8.20	8.20	8.20	0.00	0.00	1	
WAF Control			8.20	8.20	8.20	0.00	0.00	1	
1410)		8.10	8.10	8.10	0.00	0.00	1	
2770)		8.10	8.10	8.10	0.00	0.00	1	
4850)		8.00	8.00	8.00	0.00	0.00	1	
11450	1		7.80	7.80	7.80	0.00	0.00	1	
22480	1		7.30	7.30	7.30	0.00	0.00	1	
FSW Control	Salinity		34.90	34.90	34.90	0.00	0.00	1	
WAF Control			35.10	35.10	35.10	0.00	0.00	1	
1410)		35.10	35.10	35.10	0.00	0.00	1	
2770)		35.10	35.10	35.10	0.00	0.00	1	
4850)		35.20	35.20	35.20	0.00	0.00	1	
11450)		35.30	35.30	35.30	0.00	0.00	1	
22480			35.30	35.30	35.30	0.00	0.00	1	
FSW Control			99.80	99.80	99.80	0.00	0.00	1	•
WAF Control			92.80	92.80	92.80	0.00	0.00	1	
1410)		96.30	96.30	96.30	0.00	0.00	1	
2770)		95.70	95.70	95.70	0.00	0.00	1	
4850			96.70	96.70	96.70	0.00	0.00	1	
11450			95.60	95.60	95.60	0.00	0.00		
22480			85.10	85.10	85.10	0.00	0.00		

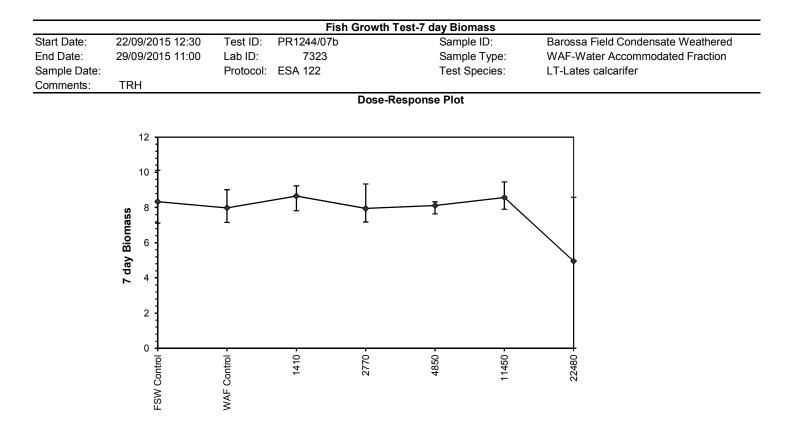

				Fisl	Growth Test-7 day Biomass
Start Date:	22/09/2015	12:30	Test ID:	PR1244/08	Sample ID: Barossa Field Condensate Weathered
End Date:	29/09/2015	11:00	Lab ID:	7323	Sample Type: WAF-Water Accommodated Fraction
Sample Date:			Protocol:	ESA 122	Test Species: LT-Lates calcarifer
Comments:	LR				
Conc-gm/L	1	2	3	4	
FSW Control	8.4200	10.1200	7.1200	7.6600	
WAF Control	8.0800	9.0200	7.1600	7.6600	
5	8.8000	9.2400	7.8200	8.7400	
9.9	9.3400	7.7200	7.5600	7.1800	
19.9	8.1800	8.3200	8.3000	7.6400	
39.8	8.3000	7.9000	9.4600	8.6200	
79.5	7.0600	8.5800	4.1600	0.0000	

				Transform: Untransformed					1-Tailed	lsote	onic
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Mean	N-Mean
FSW Control	8.3300	1.0439	8.3300	7.1200	10.1200	15.691	4				
WAF Control	7.9800	1.0000	7.9800	7.1600	9.0200	9.884	4	*		8.3150	1.0000
5	8.6500	1.0840	8.6500	7.8200	9.2400	6.896	4	22.00	10.00	8.3150	1.0000
9.9	7.9500	0.9962	7.9500	7.1800	9.3400	11.999	4	18.00	10.00	8.2100	0.9874
19.9	8.1100	1.0163	8.1100	7.6400	8.3200	3.938	4	20.00	10.00	8.2100	0.9874
39.8	8.5700	1.0739	8.5700	7.9000	9.4600	7.730	4	22.00	10.00	8.2100	0.9874
79.5	4.9500	0.6203	4.9500	0.0000	8.5800	76.266	4	13.00	10.00	4.9500	0.5953

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non-n	ormal distribut	ion (p <= 0.	.05)		0.824168	0.916	-0.91513	6.12451
Bartlett's Test indicates unequal var	iances (p = 5.8	36E-04)			21.74163	15.08627		
The control means are not significa	ntly different (p	= 0.66)			0.458533	2.446912		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU				
Steel's Many-One Rank Test	79.5	>79.5						
Treatments vs WAF Control								

			Li	near Interpolatio	on (200 Resamples)	
Point	gm/L	SD	95% CL(Exp)	Skew		
IC05	43.584					
IC10	48.647					
IC15	53.710				1.0 T	
IC20	58.773				0.9	
IC25	63.836				0.8	
IC40	79.025				-	
IC50	>79.5				0.7	
					0.6	
					1	


				sh Growth		y Biomass			
Start Date:	22/09/2015 12:30	Test ID:	PR1244/08			Sample ID:			ield Condensate Weathered
End Date:	29/09/2015 11:00	Lab ID:	7323			Sample Typ		WAF-Wate	er Accommodated Fraction
Sample Date:		Protocol:	ESA 122			Test Specie	s:	LT-Lates c	alcarifer
Comments:	LR								
					-	a Summary			
Conc-gm/L	Parameter		Mean	Min	Max	SD	CV%	N	
FSW Contro			100.00	100.00	100.00	0.00	0.00		
WAF Contro			100.00	100.00	100.00	0.00	0.00		
5			100.00	100.00	100.00	0.00	0.00		
9.9			100.00	100.00	100.00	0.00	0.00		
19.9			100.00	100.00	100.00	0.00	0.00		
39.8			100.00	100.00	100.00	0.00	0.00		
79.5			60.00	0.00	100.00	48.99	11.67	4	
FSW Contro			8.33	7.12	10.12	1.31	13.72		
WAF Contro			7.98	7.16	9.02	0.79	11.13		
5			8.65	7.82	9.24	0.60	8.93		
9.9			7.95	7.18	9.34	0.95	12.29	4	
19.9)		8.11	7.64	8.32	0.32	6.97	4	
39.8	3		8.57	7.90	9.46	0.66	9.50	4	
79.5			4.95	0.00	8.58	3.78	39.25	4	
FSW Contro	IрН		8.20	8.20	8.20	0.00	0.00	1	-
WAF Contro	l		8.20	8.20	8.20	0.00	0.00	1	
5	5		8.10	8.10	8.10	0.00	0.00	1	
9.9)		8.20	8.20	8.20	0.00	0.00	1	
19.9)		8.20	8.20	8.20	0.00	0.00	1	
39.8	}		8.20	8.20	8.20	0.00	0.00	1	
79.5	5		8.20	8.20	8.20	0.00	0.00	1	
FSW Contro	I Salinity		34.90	34.90	34.90	0.00	0.00	1	
WAF Contro			35.10	35.10	35.10	0.00	0.00	1	
5	5		35.40	35.40	35.40	0.00	0.00	1	
9.9			35.20	35.20	35.20	0.00	0.00	1	
19.9)		35.20	35.20	35.20	0.00	0.00	1	
39.8			35.20	35.20	35.20	0.00	0.00	1	
79.5			35.20	35.20	35.20	0.00	0.00	1	
FSW Contro			99.80	99.80	99.80	0.00	0.00	1	•
WAF Contro			92.80	92.80	92.80	0.00	0.00		
5			96.40	96.40	96.40	0.00	0.00	1	
9.9			96.90	96.90	96.90	0.00	0.00		
19.9			96.60	96.60	96.60	0.00	0.00		
39.8			96.70	96.70	96.70	0.00	0.00		
79.5			94.70	94.70	94.70	0.00	0.00	1	

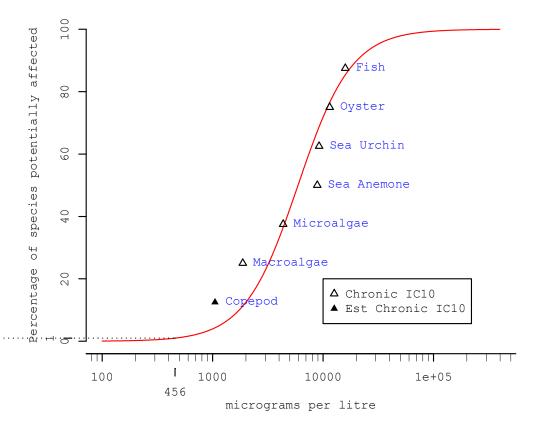

				Fish Gr	owth Test-7 day Biomass	
Start Date:	22/09/2015	12:30	Test ID:	PR1244/07b	Sample ID:	Barossa Field Condensate Weathered
End Date:	29/09/2015	11:00	Lab ID:	7323	Sample Type:	WAF-Water Accommodated Fraction
Sample Date:			Protocol:	ESA 122	Test Species:	LT-Lates calcarifer
Comments:	TRH					
Conc-ug/L	1	2	3	4		
FSW Control	8.4200	10.1200	7.1200	7.6600		
WAF Control	8.0800	9.0200	7.1600	7.6600		
1410	8.8000	9.2400	7.8200	8.7400		
2770	9.3400	7.7200	7.5600	7.1800		
4850	8.1800	8.3200	8.3000	7.6400		
11450	8.3000	7.9000	9.4600	8.6200		
22480	7.0600	8.5800	4.1600	0.0000		

				Transfor	m: Untrans	formed		Rank	1-Tailed	lsot	onic
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Mean	N-Mean
FSW Control	8.3300	1.0439	8.3300	7.1200	10.1200	15.691	4				
WAF Control	7.9800	1.0000	7.9800	7.1600	9.0200	9.884	4	*		8.3150	1.0000
1410	8.6500	1.0840	8.6500	7.8200	9.2400	6.896	4	22.00	10.00	8.3150	1.0000
2770	7.9500	0.9962	7.9500	7.1800	9.3400	11.999	4	18.00	10.00	8.2100	0.9874
4850	8.1100	1.0163	8.1100	7.6400	8.3200	3.938	4	20.00	10.00	8.2100	0.9874
11450	8.5700	1.0739	8.5700	7.9000	9.4600	7.730	4	22.00	10.00	8.2100	0.9874
22480	4.9500	0.6203	4.9500	0.0000	8.5800	76.266	4	13.00	10.00	4.9500	0.5953

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non-n	ormal distribut	ion (p <= 0.	05)		0.824168	0.916	-0.91513	6.12451
Bartlett's Test indicates unequal var	iances (p = 5.	86E-04)			21.74163	15.08627		
The control means are not significa	ntly different (p	o = 0.66)			0.458533	2.446912		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	22480	>22480						
Treatments vs WAF Control								

			Li	near Interpolation	(200 Resamples)	
Point	ug/L	SD	95% CL(Exp)	Skew		
IC05	12501.4					
IC10	13908.07					
IC15	15314.73				1.0	
IC20	16721.39				0.9	
IC25	18128.06				0.8	
IC40	22348.05				-	
IC50	>22480				0.7	
					0.6 -	

				<u>h Growth</u>	Test-7 da	y Biomass			
Start Date:	22/09/2015 12:30	Test ID:	PR1244/07b			Sample ID:		Barossa F	ield Condensate Weathered
End Date:	29/09/2015 11:00	Lab ID:	7323			Sample Typ		WAF-Wate	er Accommodated Fraction
Sample Date:		Protocol:	ESA 122			Test Specie	s:	LT-Lates of	alcarifer
Comments:	TRH								
						ta Summary			
Conc-ug/L	Parameter		Mean	Min	Max	SD	CV%	N	
FSW Contro			100.00	100.00	100.00	0.00	0.00		
WAF Contro			100.00	100.00	100.00	0.00	0.00		
1410			100.00	100.00	100.00	0.00	0.00		
2770			100.00	100.00	100.00	0.00	0.00		
4850			100.00	100.00	100.00	0.00	0.00		
11450			100.00	100.00	100.00	0.00	0.00		
22480			60.00	0.00	100.00	48.99	11.67		
FSW Contro			8.33	7.12	10.12	1.31	13.72		
WAF Contro	l		7.98	7.16	9.02	0.79	11.13	4	
1410)		8.65	7.82	9.24	0.60	8.93	4	
2770)		7.95	7.18	9.34	0.95	12.29	4	
4850)		8.11	7.64	8.32	0.32	6.97	4	
11450)		8.57	7.90	9.46	0.66	9.50	4	
22480)		4.95	0.00	8.58	3.78	39.25	4	
FSW Contro	l pH		8.20	8.20	8.20	0.00	0.00	1	
WAF Contro	l		8.20	8.20	8.20	0.00	0.00	1	
1410)		8.10	8.10	8.10	0.00	0.00	1	
2770)		8.10	8.10	8.10	0.00	0.00	1	
4850)		8.00	8.00	8.00	0.00	0.00	1	
11450)		7.80	7.80	7.80	0.00	0.00	1	
22480)		7.30	7.30	7.30	0.00	0.00	1	
FSW Contro			34.90	34.90	34.90	0.00	0.00	1	•
WAF Contro			35.10	35.10	35.10	0.00	0.00		
1410			35.10	35.10	35.10	0.00	0.00	1	
2770			35.10	35.10	35.10	0.00	0.00		
4850			35.20	35.20	35.20	0.00	0.00		
11450			35.30	35.30	35.30	0.00	0.00		
22480			35.30	35.30	35.30	0.00	0.00		
FSW Contro			99.80	99.80	99.80	0.00	0.00		
WAF Contro			92.80	92.80	92.80	0.00	0.00	-	
1410			96.30	96.30	96.30	0.00	0.00		
2770			95.70	95.70	95.70	0.00	0.00		
4850			96.70	96.70	96.70	0.00	0.00		
11450			95.60	95.60	95.60	0.00	0.00		
22480			85.10	95.00 85.10	85.10	0.00	0.00		



Appendix C. Burrlioz Output Report

Burrlioz 2.0 report

Toxicant: Barossa-3 condensate Input file: C:\Users\cxxwilson\Documents\Celeste Desktop\Conoco Phillips\Barossa\Ecotox\7 specified Time read: Thu Dec 10 10:10:24 2015 Units: micrograms per litre Model: log logistic Protection level information Protect. level Guideline Value lower 95% CI upper 95% CI 99% 456 121 4285 95% 1146 367 5928 90% 1739 605 6680 80% 2735 1051 7859

notes: 6 chronic IC10 values and 1 estimated chronic value

Data:

			Species		Туре			Test	
Ec lar	klor is t stre	nia tube ea e	Galbana radiata erculata echinata	Ma Se	croalgae croalgae a Urchin Oyster		Chronic Chronic Chronic Chronic	IC10 IC10 IC10	
			irostris		Copepod	st	Chronic		
			lchella		Anemone		Chronic		
La	tes	cal	lcarifer		Fish		Chronic	IC10	