

Autoridad Nacional del Agua "ANA"

PUNTO DE CONTROL: MEDICIÓN DE PRESIÓN SONORA

Nombre de la Empresa:		Autoridad Nacional del Agua				
Nombre Unidad Operativa:		EIA Represa Angostura				
Nombre del Punto:		Zona de explotación de materiales de agregados (Canteras) Punto A				
Descripción del Punto:		RU-03				
<u>UBICACION</u>	Distrito:	Caylloma				
	Provincia:	Caylloma				

COORDENADAS U.T.M.

Departamento:

Norte: 8 318 827

Arequipa

Este: 217 744

Zona: 19 (17, 18 ó 19)

Hecho por: J.PAZ Fecha: 10-11/12/2009

Autoridad Nacional del Agua "ANA"

PUNTO DE CONTROL: MEDICIÓN DE PRESIÓN SONORA

Nombre de la Empres	sa:	Autoridad Nacional del Agua				
Nombre Unidad Oper	rativa:	EIA Represa Angostura				
Nombre del Punto:		Zona de explotación de materiales de agregados (Canteras) Punto B				
Descripción del Punto:		RU-04				
<u>UBICACION</u>	Distrito:	Caylloma				
	Provincia:	Caylloma				
	Departamento:	Arequipa				

COORDENADAS U.T.M.

Norte: 8 319 549

Este: 217 744

Zona: 19 (17, 18 ó 19)

Hecho por: J.PAZ Fecha: 11-12/12/2009)
---------------------------------------	---

Autoridad Nacional del Agua "ANA"

PUNTO DE CONTROL: MEDICIÓN DE PRESIÓN SONORA

Nombre de la Empresa:	Autoridad Nacional del Agua

Nombre Unidad Operativa: EIA Represa Angostura

Nombre del Punto: Área de depósito de materiales excedentes

Descripción del Punto:

UBICACION Distrito: Caylloma

Provincia: Caylloma

Departamento: Arequipa

COORDENADAS U.T.M.

Norte: 8 320 301

Este: 217 805

Zona: 19 (17, 18 ó 19)

Hecho por: J.PAZ Fecha: 12-13/12/2009

Autoridad Nacional del Agua "ANA"

PUNTO DE CONTROL: MEDICIÓN DE PRESIÓN SONORA

Nombre de la Empresa:	Autoridad Nacional del Agua

Nombre Unidad Operativa: EIA Represa Angostura

Nombre del Punto: Área frente a la construcción del Túnel de derivación

Angostura-Colca

Descripción del Punto: RU-06

UBICACION Distrito: Caylloma

Provincia: Caylloma

Departamento: Arequipa

COORDENADAS U.T.M.

Norte: 8 318 767

Este: 223 308

Zona: 19 (17, 18 ó 19)

Hecho por:	J.PAZ	Fecha:	13-14/12/2009

Autoridad Nacional del Agua "ANA"

PUNTO DE CONTROL: MEDICIÓN DE PRESIÓN SONORA

Nombre de la Empresa:	Autoridad Nacional del Agua
Nombre Unidad Operativa:	EIA Represa Angostura

Nombre del Punto: Aguas abajo en la zona de Cusco

Descripción del Punto:

UBICACION Distrito: Suykutambo

Provincia: Espinar

Departamento: Cusco

COORDENADAS U.T.M.

Norte: 8318143

Este: 223386

Zona: 19 (17, 18 ó 19)

Hecho por: J.PAZ Fecha: 14-15/12/2009

4.2.2 Calidad de Agua

A. Antecedentes

Para la elaboración del presente Informe Calidad de Agua, se ha revisado la Actualización del Estudio de Impacto Ambiental de la Represa Angostura y la Gestión Ambiental, elaborado por ECSA, donde se clasifica el uso de agua, como uso exclusivo para regadío, haciendo una caracterización tanto física como química de las aguas superficiales de acuerdo con la Ley General de Aguas clase III (D.L. Nº 17752).

Para la Actualización del Estudio de Impacto Ambiental, ECSA contrató los servicios de la Universidad Nacional de San Agustín, en Marzo del 2005, para efectuar el Muestreo de la calidad del agua de los ríos principales que se encuentran dentro del área de influencia directa del proyecto. A continuación se presenta la ubicación de los puntos de monitoreo:

Cuadro Nº 4.2.2-1

Puntos de Muestreo de calidad de Agua de EIA de Actualización (ECSA)

Estación de	Descripción	Coordenadas UTM			
Monitoreo	2000.	Norte	Este		
Punto 1	Aguas arriba de la Presa Angostura, sobre el Río Apurímac	8 320 842	216 602		
Punto 2	Aguas arriba de la Presa Angostura, sobre el Río Hornillos	8 319 880	217 053		
Punto 3	Aguas abajo de la Presa Angostura sobre el Río Apurímac	8 321 817	217 140		
Punto 4	Río Andamayo, altura del cruce con el túnel de derivación Angostura - Colca	8 318 647	223 729		
Punto 5	Río Chalhuanca, a la altura de la salida del túnel de Derivación Angostura – Colca	8 319 201	232 578		

Ver plano CSL-096200-AM-02-(1/2).

B. Objetivo

El Estudio de Calidad de Agua para el presente Proyecto, tiene como objetivo conocer las condiciones actuales, tanto físicas como químicas, de los cursos de agua del área de influencia, teniendo en cuenta lo establecido en el D.S. Nº 002-2008-MINAM Estándares de Calidad Ambiental para Agua.

C. Desarrollo

Alcance

El estudio específico de calidad de agua, incluye el trabajo de campo, análisis de laboratorio e interpretación de resultados, de las estaciones de monitoreo indicadas en el presente programa.

Criterios de Ubicación de las Estaciones

Para la ubicación de las Estaciones de Monitoreo, se tomaron en cuenta los siguientes criterios:

Accesibilidad, representatividad de los cuerpos de agua superficiales, dentro del área de influencia del proyecto, ubicación de los cuerpos de agua, referente a los componentes de la Represa de Angostura, distancia relativa a núcleos poblacionales, usos y costumbres en el área de influencia del proyecto.

Metodología

• Establecimiento de Puntos de Muestreo:

Se evaluó la calidad del agua en 11 estaciones de monitoreo. La ubicación de tales estaciones se presenta en el Cuadro 4.2.2-2 y en el Plano CSL-096200-AM-02-(2/2).

Cuadro N° 4.2.2-2
Estaciones de Monitoreo de Calidad de Agua Superficial – Diciembre 2009

	Lotationide de monitoride de Canada de 1			
Estación de	Descripción	adas UTM	Altitud	
Monitoreo		Norte	Este	
CA - 01*	Aguas arriba de la Presa Angostura, sobre el Río Apurímac	8 320 842	216 602	4200
CA - 02*	Aguas abajo de la Presa Angostura sobre el Río Apurímac	8 321 817	217 140	4150
CA – 03*	Aguas arriba de la Presa Angostura, sobre el Río Hornillos	8 319 880	217 053	4150
CA-04	Aguas arriba, antes del ingreso a la Bocatoma del Proyecto Cañón Apurimac	8 347 651	222 943	3982
CA-05	Sobre el Río Apurímac, antes de la confluencia con el Río Salado	8 371 346	235 349	3880
CA-06	Aguas abajo de la Confluencia del Río Apurímac y el Río Salado	8 373 778	236 281	3850
CA-07	Sobre el Río Salado, antes de la confluencia con el Río Apurímac	8 371 383	237 239	3850
CA-08	Aguas arriba del Río Salado	8 365 736	244 258	3900
CA – 09*	Río Chalhuanca, a la altura de la salida del túnel de Derivación Angostura – Colca	8 319 201	232 578	4300
CA-10	Aguas Arriba del Río Colca, antes del cruce con el Río Chalhuanca	8 311 544	238 573	4000
CA-11	Sobre el Río Colca, aguas abajo de la confluencia con el Río Chalhuanca	8 307 090	235 302	3950

^(*) Estación establecida en el EIA anterior

• Parámetros Evaluados

Los parámetros evaluados son los indicados en el Cuadro 4.2.2-3 contemplados en el Decreto Supremo Nº 002-2008-MINAM, Estándares de Calidad de Agua Categoría 3.

Cuadro Nº 4.2.2-3
Parámetros evaluados en cada Estación

Parámetros/ECA III		Estaciones									
r arametros/Loa iii	CA-01	CA-02	CA-03	CA-04	CA-05	CA-06	CA-07	CA-08	CA-09	CA-10	CA-11
Conductividad	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
pН	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
т∘	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Nitratos	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Nitritos	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Turbidez	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Fosfatos	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Metales por ICP	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Aceites y Grasas		Х							Х		
Coliformes Termotolerantes					Х		Х	Х			
Coliformes Fecales					Х		Х	Х			
Oxígeno Disuelto	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
DBO ₅	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
DQO	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Sólidos Suspendidos Totales	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Sólidos Disueltos Totales	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Fuente: CESEL S.A.

Actividades de Muestreo

Las actividades de muestreo realizadas son descritas a continuación.

✓ Actividades Preliminares

Las actividades preliminares consistieron en la preparación de los equipos y materiales de muestreo, así como la elaboración de planos. Asimismo, como parte de las actividades preliminares, se realizó la movilización de personal a la zona de trabajo. , las muestras fueron tomadas en época de lluvia, en el mes de Diciembre del 2009.

✓ Toma de Muestras

Previo a la toma de muestras de agua, se procedió a realizar la medición de los parámetros IN SITU: Temperatura, pH y conductividad.

Una vez obtenidas las muestras, éstas fueron preservadas de acuerdo al tipo de parámetro a evaluar y se procedió a etiquetar y codificar los envases, indicándose:

- Código y descripción del punto de muestreo,
- Parámetro a evaluar,

- > Tipo de preservante,
- Fecha y,
- > Responsable del muestreo.

Posteriormente, los envases con las muestras fueron enviados al Laboratorio analítico de Inspectorate, en conservadores herméticos (coolers) conforme a las especificaciones de laboratorio, para su análisis respectivo.

En el anexo 4.2.2-a, se presentan las fichas SIA y en el anexo 4.2.2-b los análisis de laboratorio

C4. Resultados e Interpretación de la Calidad del Agua

Los resultados de los parámetros evaluados IN SITU, en el trabajo de campo realizado con motivo de la elaboración del presente Estudio de Impacto Ambiental se presentan a continuación:

Cuadro Nº 4.2.2-4
Estaciones de Muestreo de Calidad de Agua Superficial – Diciembre 2009

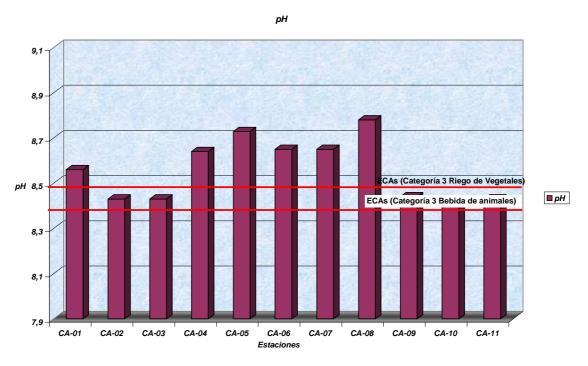
Estación de Muestreo	Descripción	рН	Temperatura (°C)	Conductividad eléctrica (µS/cm)
CA-01	Aguas arriba de la Presa Angostura, sobre el Río Apurímac	8,56	14,9	240
CA-02	Aguas abajo de la presa Angostura, sobre el río Apurímac	8,43	14,8	245
CA-03	Aguas arriba de la Presa Angostura, sobre el río Hornillos	8,43	14,8	235
CA-04	Aguas arriba, antes del ingreso a la Bocatoma del Proyecto Cañón Apurimac	8,65	14,78	225
CA-05	Aguas arriba del río Apurímac, antes de la confluencia con el río Salado	8,728	15,26	2,58
CA-06	Aguas abajo de la confluencia del río Apurímac y el río salado	8,65	15,2	247
CA-07	Sobre el río Salado, antes de la confluencia con el Río Apurímac	8,65	15,2	3999
CA-08	Aguas arriba del río Salado	8,78	15,3	3999
CA-09	Río Chalhuanca, a la altura de la salida del túnel de derivación Angostura - Colca	8,44	15,1	243
CA-10	Aguas arriba del río Colca, antes del cruce con el río Chalhuanca	8,41	15,5	230
CA-11	Aguas abajo de la confluencia del río Apurímac y el río Salado	8,43	15,4	234
ECAs (Categ	oría 3_Riego de Vegetales)	6,5 - 8,5	-	<2 000
ECAs (Categ	oría 3_Bebida de animales)	6,5 - 8,4	-	<=5 000

Fuente: CESEL S.A.

Interpretación de Resultados

Se indica que para la interpretación de los resultados del análisis de calidad del agua superficial, han sido comparados con los valores establecidos en los Estándares de Calidad de Agua para la Categoría 3, establecidos en el Decreto Supremo N°002-2008-MINAM.

Para la interpretación de los resultados, se ha separado los cuerpos de agua por ríos.

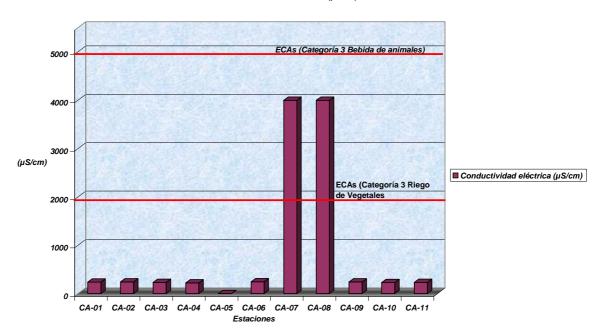

En general, la calidad de agua evaluada en las diez (11) estaciones reporta valores dentro de los valores estándares de calidad, establecidos en la normativa ambiental vigente, a excepción de los parámetros indicados a continuación:

Referente a los parámetros fisicoquímicos (in situ)

pH:

El pH en las estaciones es ligeramente básico, variando en un rango de 8,41 y 8,72, superando los Estándares Nacionales de Calidad Ambiental-categoría 3 (riego de vegetales y bebida de animales).

Gráfico Nº 4.2.2-1 Valores de pH en las Estaciones Evaluadas


Fuente: CESEL S.A. - Trabajo de campo

Conductividad eléctrica:

La conductividad eléctrica en las estaciones CA-07 y CA-08, es de 3999 μ S/cm correspondientes al río Salado superado lo establecido en los Estándares Nacionales de Calidad Ambiental-Categoría 3, riego de vegetales, sin embargo, está dentro de los límite establecidos para la bebida de animales que tiene como valor <= 5000 μ S/cm, se infiere a la cantidad de sales disueltas en el agua.

Gráfico Nº 4.2.2-2
Valores de Conductividad Eléctrica

Conductividad eléctrica (µS/cm)

Fuente: CESEL S.A. - Trabajo de campo

Cuadro № 4.2.2-5

Puntos de Muestreo - Río Apurímac - Estaciones CA-01, CA-02, CA-05, CA-06

(Diciembre 2009)

				s (ŝ	s) 3					
	Unid				Estaci	ón de Monitore	o 	ı	oría (oría (
Parámetro		LD	CA-01	CA-02	CA-04	CA-05	CA-06	ECAs - Categoría 3 (Riego de Vegetales)	ECAs - Categoría 3 (Bebida de animales)	
Parámetros Fis	icoquímico	s								
OD	(mg/l)	0,1	7,3	7,5	8,6	5,7	5,8	>=4	>5	
STS	(mg/l)	5	7,3	<5,0	19,8	6,1	6,8	-	-	
STD	(mg/l)	10	180,8	130	98,6	127,2	99,2			
Ca	(mg/l)	0,0303	28,0096	11,8241	10,3474	12,6555	13,9972	200	-	
DBO ₅	(mg/l)	2	<2,0	2,1	2,4	2,1	<2,0	15	<=15	
DQO	(mg/l)	2	11,1	14,2	9,9	8,7	8,1	40	40	
PO ₄ ³⁻	(mg/l)	0,008	0,18	0,659	0,071	0,167	0,736	1	-	
NO ₃ ⁻ N	(mg/l)	0,06	<0,06	<0,06	0,17	<0,06	<0,06	10	50	
NO ₂ -N	(mg/l)	0,006	0,019	0,027	0,304	0,009	0,007	0,06	1	
Na	(mg/l)	0,01	22,3696	21,6035	8,2282	14,3822	15,1378	200	-	
Parámetros Ino	rgánicos (N	letales Totales)								
Al	(mg/l)	0,0019	0,1682	0,1168	0,48	0,121	0,13	5	5	
As	(mg/l)	0,0004	0,0166	0,004	0,0064	0,0166	0,0134	0,05	0,1	
Ва	(mg/l)	0,0004	0,0458	0,0643	0,0236	0,0137	0,0147	0,7	-	
В	(mg/l)	0,0012	0,5751	0,4213	0,1541	0,336	0,3239	0,5-6	5	
Ве	(mg/l)	0,0006	<0,0006	<0,0006	<0,0006	<0,0006	<0,0006	-	0,1	
Bi	(mg/l)	0,0003	<0,0003	<0,0003	0,0119	<0,0003	<0,0003	-	-	
Cd	(mg/l)	0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	0,005	0,01	
Се	(mg/l)	0,0003	0,0004	<0,0003	0,0017	<0,0003	0,0003	-	-	
Со	(mg/l)	0,0002	0,0003	0,0002	0,0004	<0,0002	0,0002	0,05	1	
Cu	(mg/l)	0,0001	0,0025	0,0019	0,058	0,001	0,0025	0,2	0,5	
Cr	(mg/l)	0,0005	0,0023	0,0024	0,0011	<0,0005	0,0024	-	-	
Fe	(mg/l)	0,0031	0,3266	0,2372	0,3159	0,0259	0,177	1	1	
К	(mg/l)	0,0237	3,0257	3,2985	2,1061	2,8942	3,1195	-	-	
Li	(mg/l)	0,0012	0,0807	0,0258	0,0171	0,0342	0,0331	2,5	2,5	
Mg	(mg/l)	0,0356	3,7256	2,8097	2,0545	2,6769	2,7248	150	150	
Mn	(mg/l)	0,0003	0,1397	0,0188	0,0821	0,0369	0,041	0,2	0,2	
Hg	(mg/l)	0,0001	0,0004	0,0005	<0,0001	<0,0001	0,0004	0,001	0,001	
Ni	(mg/l)	0,0004	0,0014	0,0009	0,0012	0,0007	0,0008	0,2	0,2	

				Estaci	ón de Monitore	0		ría 3 ales)	ría 3 iales)
Parámetro	Unid	d LD	CA-01	CA-02	CA-04	CA-05	CA-06	ECAs - Categoría 3 (Riego de Vegetales)	ECAs - Categoría 3 (Bebida de animales)
Ag	(mg/l)	0,0002	<0,0002	<0,0002	0,0074	<0,0002	<0,0002	0,05	0,05
Pb	(mg/l)	0,0002	0,0034	0,0041	0,0058	<0,0002	0,0027	0,05	0,05
Se	(mg/l)	0,0002	<0,0002	0,0021	<0,0002	<0,0002	<0,0002	0,05	0,05
Zn	(mg/l)	0,0002	0,0299	0,0124	0,0236	0,0078	0,0136	2	24
Мо	(mg/l)	0,0002	0,0005	0,0007	0,001	<0,0002	<0,0002	-	-
Р	(mg/l)	0,0033	0,0575	0,0461	0,0388	0,0131	0,0465	-	-
Sb	(mg/l)	0,0002	<0,0002	<0,0002	0,0108	<0,0002	<0,0002	-	-
Sn	(mg/l)	0,0004	0,0018	0,0006	0,0007	<0,0004	<0,0004	-	-
Sr	(mg/l)	0,002	0,2374	0,1262	0,0834	0,1198	0,1499	-	-
Ti	(mg/l)	0,0004	0,0068	0,0052	0,009	0,0035	0,005	-	-
TI	(mg/l)	0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	-	-
V	(mg/l)	0,0003	0,0005	0,0012	<0,0003	0,0022	0,0003	-	-
Th	(mg/l)	0,001	<0,0010	<0,0010	0,0023	<0,0010	<0,0010	-	-
U	(mg/l)	0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	-	-
Si(tot)	(mg/l)	0,1	8,2617	12,4514	10,8013	9,3903	8,9821	-	-
N (tot)	(mg/l)	0,1	0,66	0,71	1,22	0,46	0,5	-	-

					Categoría iego de etales)	As - Categoría i (Bebida de animales)			
Parámetro Unid.	LD	CA-01	CA-02	CA-04	CA-05	CA-06	ECAs - Categor 3 (Riego de Vegetales)	ECAs - C 3 (Bebi anima	
Parámetros Orgánicos									
Aceites y grasas	(mg/l)	0,2					<0,20	1	1
Parámetros Bi	ológicos								
Coliformes Fecales (CF)	(NMP / 100 ml)	1,8				11	-	1000 ⁽¹⁾ /2000 ⁽²	1000
Coliformes Totales (CT)	(NMP / 100 ml)	1,8				21	-	5000 ⁽¹⁾ / 5000 ⁽²	5000

⁽¹⁾ Vegetales de tallo bajo

⁽²⁾ Vegetales de tallo alto

Cuadro Nº 4.2.2-6
Puntos de Muestreo - Río Hornillos Estación CA-03 (Diciembre 2009)

			Estación de muestreo		
Parámetro	Unid	LD	CA-03	ECAs - Categoría 3 (Riego de Vegetales)	ECAs - Categoría 3 (Bebida de animales)
Parámetros Fisi	coquímicos	5			
OD	(mg/l)	0,1	17,7	>=4	>5
STS	(mg/l)	5	11,9	-	-
STD	(mg/l)	10	172,4		
Ca	(mg/l)	0,0303	26,0629	200	-
DBO ₅	(mg/l)	2	<2,0	15	<=15
DQO	(mg/l)	2	9,6	40	40
PO ₄ ³⁻	(mg/l)	0,008	0,098	1	-
NO ₃ -N	(mg/l)	0,06	<0,06	10	50
NO ₂ -N	(mg/l)	0,006	0,034	0,06	1
Na	(mg/l)	0,01	21,8038	200	-
Turbidez	NTU	0.1	3.2	-	-
Parámetros Inor	gánicos (M	letales Totales)			
Al	(mg/l)	0,0019	0,1596	5	5
As	(mg/l)	0,0004	0,0149	0,05	0,1
Ва	(mg/l)	0,0004	0,0514	0,7	-
В	(mg/l)	0,0012	0,5704	0,5-6	5
Ве	(mg/l)	0,0006	<0,0006	-	0,1
Bi	(mg/l)	0,0003	<0,0003	-	-
Cd	(mg/l)	0,0002	<0,0002	0,005	0,01
Се	(mg/l)	0,0003	0,0005	-	-
Со	(mg/l)	0,0002	0,0003	0,05	1
Cu	(mg/l)	0,0001	0,0021	0,2	0,5
Cr	(mg/l)	0,0005	0,0023	-	-
Fe	(mg/l)	0,0031	0,2881	1	1
К	(mg/l)	0,0237	2,9469	-	-
Li	(mg/l)	0,0012	0,082	2,5	2,5
Mg	(mg/l)	0,0356	3,5872	150	150
Mn	(mg/l)	0,0003	0,1677	0,2	0,2
Hg	(mg/l)	0,0001	0,001	0,001	0,001

			Estación de muestreo	oría 3 tales)	oría 3 nales)
Parámetro	Unid	LD	CA-03	ECAs - Categoría 3 (Riego de Vegetales)	ECAs - Categoría 3 (Bebida de animales)
Ni	(mg/l)	0,0004	0,0012	0,2	0,2
Ag	(mg/l)	0,0002	<0,0002	0,05	0,05
Pb	(mg/l)	0,0002	0,0069	0,05	0,05
Se	(mg/l)	0,0002	0,0011	0,05	0,05
Zn	(mg/l)	0,0002	0,0436	2	24
Мо	(mg/l)	0,0002	0,0003	-	-
Р	(mg/l)	0,0033	0,0508	-	-
Sb	(mg/l)	0,0002	<0,0002	-	-
Sn	(mg/l)	0,0004	<0,0004	-	-
Sr	(mg/l)	0,002	0,2133	-	-
Ti	(mg/l)	0,0004	0,0061	-	-
TI	(mg/l)	0,0003	<0,0003	-	-
V	(mg/l)	0,0003	0,0008	-	-
Th	(mg/l)	0,001	<0,0010	-	-
U	(mg/l)	0,0003	<0,0003	-	-
Si	(mg/l)	0,1	8,1617	-	-
N	(mg/l)	0,1	0,67	-	-

Parámetro	Unid.	LD	Estación de Muestreo	rtegorí a 3 Riego de de	egorr 13 bida bida de				
	0		CA-03	Cate a (Rio d Vego	Catt a (Be c c				
Parámetros Orgánicos									
Aceites y grasas	(mg/l)	0,2	<0,20	1	1				

⁽¹⁾ Vegetales de tallo bajo

⁽²⁾ Vegetales de tallo alto

Cuadro Nº 4.2.2-7
Puntos de Muestreo - Río Salado Estación CA-07, CA-08 (Diciembre 2009)

			Estaciones	de Muestreo	goría de s)	goría de s)
Parámetro	Unid	LD	CA-07	CA-08	ECAs - Categoría 3 (Riego de Vegetales)	ECAs - Categoría 3 (Bebida de animales)
Parámetros Fisi	coquímicos	S				
OD	(mg/l)	0,1	14	8	>=4	>5
STS	(mg/l)	5	8,1	<5,0	-	-
STD	(mg/l)	10	604,6	642,2		
Ca	(mg/l)	0,0303	57,2359	59,3153	200	-
DBO ₅	(mg/l)	2	<2,0	<2,0	15	<=15
DQO	(mg/l)	2	11,2	7,7	40	40
PO ₄ ³⁻	(mg/l)	0,008	0,161	0,305	1	-
NO ₃ ⁻ N	(mg/l)	0,06	<0,06	<0,06	10	50
NO ₂ -N	(mg/l)	0,006	0,008	0,015	0,06	1
Na	(mg/l)	0,01	153,2204	158,2612	200	-
Turbidez	NTU	0.1	3.3	2.0	-	-
Parámetros Inor	gánicos (M	letales Totales)				
Al	(mg/l)	0,0019	0,0638	0,0613	5	5
As	(mg/l)	0,0004	0,0233	0,0119	0,05	0,1
Ва	(mg/l)	0,0004	0,0782	0,0558	0,7	-
В	(mg/l)	0,0012	0,226	0,2203	0,5-6	5
Be	(mg/l)	0,0006	<0,0006	<0,0006	-	0,1
Bi	(mg/l)	0,0003	<0,0003	<0,0003	-	-
Cd	(mg/l)	0,0002	<0,0002	<0,0002	0,005	0,01
Ce	(mg/l)	0,0003	<0,0003	<0,0003	-	-
Со	(mg/l)	0,0002	0,0003	0,0003	0,05	1
Cu	(mg/l)	0,0001	0,0028	0,0022	0,2	0,5
Cr	(mg/l)	0,0005	0,0029	0,0006	-	-
Fe	(mg/l)	0,0031	0,2168	0,0197	1	1
K	(mg/l)	0,0237	5,5218	4,7772	-	-
Li	(mg/l)	0,0012	0,099	0,0999	2,5	2,5
Mg	(mg/l)	0,0356	9,0894	8,7721	150	150
Mn	(mg/l)	0,0003	0,0491	0,0439	0,2	0,2
Hg	(mg/l)	0,0001	0,0004	<0,0001	0,001	0,001
Ni	(mg/l)	0,0004	0,0023	0,0021	0,2	0,2

			Estaciones	de Muestreo	goría de s)	goría de s)
Parámetro	Unid	LD	CA-07	CA-08	ECAs - Categoría 3 (Riego de Vegetales)	ECAs - Categoría 3 (Bebida de animales)
Ag	(mg/l)	0,0002	<0,0002	<0,0002	0,05	0,05
Pb	(mg/l)	0,0002	0,0008	<0,0002	0,05	0,05
Se	(mg/l)	0,0002	0,0005	0,0008	0,05	0,05
Zn	(mg/l)	0,0002	0,0115	0,0036	2	24
Мо	(mg/l)	0,0002	0,0049	0,0041	-	-
Р	(mg/l)	0,0033	0,0749	0,0033	-	-
Sb	(mg/l)	0,0002	<0,0002	<0,0002	-	-
Sn	(mg/l)	0,0004	<0,0004	<0,0004	-	-
Sr	(mg/l)	0,002	0,8805	0,851	-	-
Ti	(mg/l)	0,0004	0,0036	0,0038	-	-
TI	(mg/l)	0,0003	<0,0003	<0,0003	-	-
V	(mg/l)	0,0003	0,0014	0,0021	-	-
Th	(mg/l)	0,001	<0,0010	<0,0010	-	-
U	(mg/l)	0,0003	<0,0003	<0,0003	-	-
Si	(mg/l)	0,1	5,607	6,6525	-	-
N	(mg/l)	0,1	0,63	0,29	-	-

			Estación d	e Muestreo	joría le i)	ategoría ida de ales)		
Parámetro	Unid.	LD	CA-07	CA-08	ECAs - Categor 3 (Riego de Vegetales)	ECAs - Categ 3 (Bebida d animales)		
Parámetros Orgánicos								
Aceites y grasas	(mg/l)	0,2	-	-	1	1		
Parámetros Biol	ógicos							
Coliformes	(NMP /	4.0			1000(1)	1000		
Fecales (CF)	100 ml)	1,8	22	110	/2000 ⁽²	1000		
Coliformes	(NMP /	1,8			5000 ⁽¹⁾ /	5000		
Totales (CT)	100 ml)	1,0	490	170	5000 ⁽²	3000		

⁽¹⁾ Vegetales de tallo bajo

⁽²⁾ Vegetales de tallo alto

Cuadro Nº 4.2.2-8
Puntos de Muestreo - Río Colca Estación CA-10 y CA-11 (Diciembre 2009)

		eo - Mio colo		e Muestreo		
Parámetro	Unid	LD	CA-10	CA-11	ECAs - Categoría 3 (Riego de Vegetales)	ECAs - Categoría 3 (Bebida de animales)
Parámetros Fisi	coquímicos	5				
OD	(mg/l)	0,1	7,4	6,4	>=4	>5
STS	(mg/l)	5	14	7,2	-	-
STD	(mg/l)	10	153,2	155,6		
Са	(mg/l)	0,0303	15,4578	14,4488	200	-
DBO ₅	(mg/l)	2	<2,0	<2,0	15	<=15
DQO	(mg/l)	2	24,4	14,9	40	40
PO ₄ ³⁻	(mg/l)	0,008	0,139	0,113	1	-
NO ₃ ⁻ N	(mg/l)	0,06	<0,06	<0,06	10	50
NO ₂ -N	(mg/l)	0,006	0,009	0,006	0,06	1
Na	(mg/l)	0,01	31,1014	31,12	200	-
Turbidez	NTU	0.1	7.1	5.1	-	
Parámetros Inor	gánicos (M	etales Totales)				
Al	(mg/l)	0,0019	0,3515	0,341	5	5
As	(mg/l)	0,0004	0,0276	0,0309	0,05	0,1
Ва	(mg/l)	0,0004	0,022	0,0201	0,7	-
В	(mg/l)	0,0012	0,3521	0,3834	0,5-6	5
Ве	(mg/l)	0,0006	<0,0006	<0,0006	-	0,1
Bi	(mg/l)	0,0003	<0,0003	<0,0003	-	-
Cd	(mg/l)	0,0002	<0,0002	<0,0002	0,005	0,01
Се	(mg/l)	0,0003	0,0012	<0,0003	-	-
Со	(mg/l)	0,0002	0,0003	0,0002	0,05	1
Cu	(mg/l)	0,0001	0,0029	0,0018	0,2	0,5
Cr	(mg/l)	0,0005	0,0037	<0,0005	-	-
Fe	(mg/l)	0,0031	0,3675	0,1666	1	1
К	(mg/l)	0,0237	2,9556	2,8821	-	-
Li	(mg/l)	0,0012	0,0465	0,0495	2,5	2,5
Mg	(mg/l)	0,0356	4,0413	3,9879	150	150
Mn	(mg/l)	0,0003	0,0741	0,0472	0,2	0,2
Hg	(mg/l)	0,0001	0,0004	<0,0001	0,001	0,001
Ni	(mg/l)	0,0004	0,0016	0,0014	0,2	0,2
Ag	(mg/l)	0,0002	<0,0002	<0,0002	0,05	0,05
Pb	(mg/l)	0,0002	0,0075	<0,0002	0,05	0,05
Se	(mg/l)	0,0002	<0,0002	<0,0002	0,05	0,05
Zn	(mg/l)	0,0002	0,0112	0,013	2	24
Мо	(mg/l)	0,0002	0,0008	0,0008	-	-

Parámetro			Estación d	e Muestreo	goría 3 getales)	oría 3 e
	Unid	LD	CA-10	CA-11	ECAs - Categoría 3 (Riego de Vegetales	ECAs - Categoría (Bebida de animales)
Р	(mg/l)	0,0033	0,0683	0,0455	-	-
Sb	(mg/l)	0,0002	<0,0002	<0,0002	-	-
Sn	(mg/l)	0,0004	<0,0004	<0,0004	-	-
Sr	(mg/l)	0,002	0,2828	0,2487	-	-
Ti	(mg/l)	0,0004	0,012	0,0105	-	-
TI	(mg/l)	0,0003	<0,0003	<0,0003	-	-
V	(mg/l)	0,0003	0,0008	0,0021	-	-
Th	(mg/l)	0,001	<0,0010	<0,0010	-	-
U	(mg/l)	0,0003	<0,0003	<0,0003	-	-
Si	(mg/l)	0,1	7,4156	8,3574	-	-
N	(mg/l)	0,1	0,42	0,42	-	-

Cuadro Nº 4.2.2-9
Puntos de Muestreo - Río Chalhuanca CA-09 (Diciembre 2009)

			Estación de Muestreo	ía 3 de es)	- ía 3 ı de es)
Parámetro	Unid	LD	CA-09	ECAs - Categoría 3 (Riego de Vegetales)	ECAs - Categoría 3 (Bebida de animales)
Parámetros Fis	icoquímicos	5			
OD	(mg/l)	0,1	8,6	>=4	>5
STS	(mg/l)	5	6,4	-	-
STD	(mg/l)	10	157,6		
Ca	(mg/l)	0,0303	15,0104	200	-
DBO ₅	(mg/l)	2	<2,0	15	<=15
DQO	(mg/l)	2	7,7	40	40
PO ₄ ³⁻	(mg/l)	0,008	0,128	1	-
NO ₃ ⁻ N	(mg/l)	0,06	<0,06	10	50
NO ₂ -N	(mg/l)	0,006	0,014	0,06	1
Na	(mg/l)	0,01	31,0702	200	-
Turbidez	NTU	0.1	8.4	-	-
Parámetros Ino	rgánicos (M	letales Totales)			
Al	(mg/l)	0,0019	0,2465	5	5
As	(mg/l)	0,0004	0,0261	0,05	0,1
Ва	(mg/l)	0,0004	0,0429	0,7	-
В	(mg/l)	0,0012	0,3592	0,5-6	5
Ве	(mg/l)	0,0006	<0,0006	-	0,1
Bi	(mg/l)	0,0003	<0,0003	-	-
Cd	(mg/l)	0,0002	<0,0002	0,005	0,01

			Estación de Muestreo	ría 3 de les)	ría 3 a de es)
Parámetro	Unid	LD	CA-09	ECAs - Categoría 3 (Riego de Vegetales)	ECAs - Categoría 3 (Bebida de animales)
Се	(mg/l)	0,0003	0,0007	-	-
Со	(mg/l)	0,0002	0,0002	0,05	1
Cu	(mg/l)	0,0001	0,0027	0,2	0,5
Cr	(mg/l)	0,0005	0,0032	-	-
Fe	(mg/l)	0,0031	0,2731	1	1
K	(mg/l)	0,0237	2,7993	-	-
Li	(mg/l)	0,0012	0,0474	2,5	2,5
Mg	(mg/l)	0,0356	3,9852	150	150
Mn	(mg/l)	0,0003	0,052	0,2	0,2
Hg	(mg/l)	0,0001	0,0002	0,001	0,001
Ni	(mg/l)	0,0004	0,0013	0,2	0,2
Ag	(mg/l)	0,0002	<0,0002	0,05	0,05
Pb	(mg/l)	0,0002	0,0051	0,05	0,05
Se	(mg/l)	0,0002	0,0008	0,05	0,05
Zn	(mg/l)	0,0002	0,0131	2	24
Мо	(mg/l)	0,0002	0,0016	-	-
Р	(mg/l)	0,0033	0,05133	-	-
Sb	(mg/l)	0,0002	<0,0002	-	-
Sn	(mg/l)	0,0004	<0,0004	-	-
Sr	(mg/l)	0,002	0,2756	-	-
Ti	(mg/l)	0,0004	0,0082	-	-
TI	(mg/l)	0,0003	<0,0003	-	-
V	(mg/l)	0,0003	<0,0003	-	-
Th	(mg/l)	0,001	<0,0010	-	-
U	(mg/l)	0,0003	<0,0003	-	-
Si	(mg/l)	0,1	7,3973	-	-
N	(mg/l)	0,1	0,29	-	-

Dovémetre	l luid	LD	Estación de Muestreo	ategoría go de ales)	ategoría ida de ales)				
Parámetro	Unid.	LD	CA-09	ECAs - Cate 3 (Riego Vegetale	ECAs - C 3 (Beb) anim				
Parámetros Orgánicos									
Aceites y grasas	(mg/l)	0,2	<0,20	1	1				

⁽¹⁾ Vegetales de tallo bajo

⁽²⁾ Vegetales de tallo alto

Conclusiones:

Finalmente los valores reportados en la mayoría de las estaciones, se encuentran dentro de los límites establecidos por los Estándares de Calidad Ambiental, para categoría 3, Riego de Vegetales y Bebida de animales a excepción de algunos parámetros tales como la conductividad eléctrica y el contenido de NO₂.

La conductividad es una expresión numérica de la capacidad de una solución para transportar una corriente eléctrica. Ésta capacidad depende de la presencia de iones y de su concentración total, de su movilidad, valencia y concentraciones relativas así como de la temperatura de medición. Cuanto mayor sea la concentración de iones mayor será la conductividad.

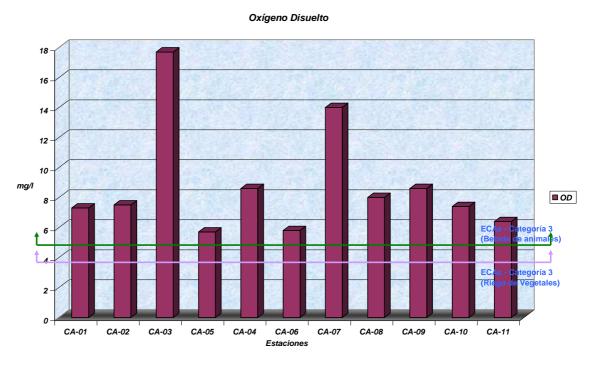
Los puntos de muestreo CA - 07, (sobre el río Salado, antes de la confluencia con el Río Apurímac) y CA – 08, (aguas arriba del río Salado), la conductividad eléctrica presenta valores de 3999 us/cm, debido a la abundancia de iones disueltos, debido a esto, la conductividad eléctrica se encuentra ligeramente sobre el límite establecido por el valor ECA Categoría 3 para riego de vegetales, que tiene un valor de <2 000 us/cm; sin embargo, el valor reportado, se encuentran dentro del límite establecido para la Categoría 3 para bebida de animales, que tiene un valor límite de <=5 000 us/cm. Tomando en cuenta este aspecto y de ser necesario, la utilización de esta agua, para posibles proyectos, éste, tendría que ser analizado, para que de acuerdo a los resultados, plantear medidas de control adecuadas. Por otro lado, es importante recalcar, que éstas aguas no intervienen directamente en el proyecto motivo del estudio.

Para explicar los contenidos apreciables de nitrógeno, reportados en algunas de las estaciones de muestreo, podemos indicar que este se debería principalmente a dos fuentes de ingreso: naturales y antrópicas. En las naturales, tenemos la fijación biológica por microorganismos diazótrofos (con capacidad de fijar nitrógeno atmosférico) que incluyen a las bacterias (aeróbicas y anaeróbicas), los actinomicetos y las cianobacterias, las cuales existirían debido a la presencia de bofedales y la identificación de especies de azolla que fijan nitrógenos a través de cianobacterias (*Anabaena sp*). Ver plano de bofedales CSL-092600-AM-19.

En cuanto a las antrópicas, se infiere que ello tendría origen en el probable uso de fertilizantes con úrea a los pastos cultivados en Pampa Pusa Pusa, Pampa Calera y en cultivos agrícolas, en las terrazas del río Apurímac. La úrea en presencia de la enzima ureasa forma amoniaco y por las condiciones del medio, es oxidado a nitrato, siendo este fácilmente lavado del perfil del suelo, las cuales van a parar en la fuente hídrica más cercana. Por otro parte favorecen este mecanismo las condiciones climatológicas, tales como la lluvia. Referente a los valores reportados de nitrógeno en las estaciones de Chalhuanca y Colca, sería producto de la fertilización de Pastos cultivados.

Otra fuente natural serían el estiércol de los animales de la zona (vacuno, ovino, llama, etc.); sin embargo, estimamos que su aporte sería mínimo.

ANÁLISIS DE LOS PRINCIPALES PARÁMETROS DE CALIDAD DE AGUA


El Oxígeno Disuelto (OD)

Es la cantidad de oxígeno que está disuelta en el agua y que es esencial para los riachuelos y lagos saludables. El nivel de oxígeno disuelto puede ser un indicador de cuán contaminada está el agua y cuán bien puede dar soporte esta agua a la vida vegetal y animal. Generalmente, un nivel más alto de oxígeno disuelto indica agua de mejor calidad. Si los niveles de oxígeno disuelto son demasiado bajos, algunos peces y otros organismos no pueden sobrevivir.

Gran parte del oxígeno disuelto en el agua proviene del oxígeno en el aire que se ha disuelto en el agua. Parte del oxígeno disuelto en el agua, es el resultado de la fotosíntesis de las plantas acuáticas.

En el gráfico podemos Nº 4.2.2-3 observar que los niveles de Oxígeno disuelto se encuentran sobre los Estándares de Calidad Ambiental- categoría 3, bebida de animales y riego de vegetales, indicando buena aireación del agua.

Gráfico Nº 4.2.2-3 Valores de Oxígeno Disuelto

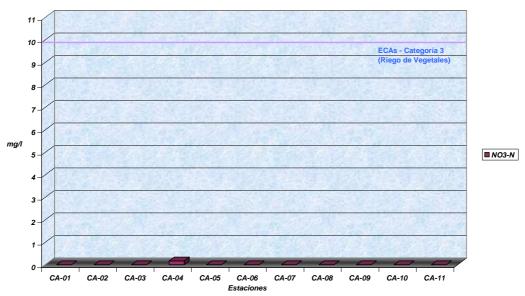
Fuente: CESEL S.A. – Trabajo de campo

DBO₅

La Demanda Bioquímica de Oxígeno, expresa la cantidad de oxígeno necesaria para la destrucción o degradación de la materia orgánica en un volumen de agua dado, por la acción de los microorganismos que se desarrollan en este medio. Convencionalmente se mide a 20º de temperatura y durante cinco días, el gráfico muestra los valores reportados se encuentran muy por debajo del límite establecido por el ECA- categoría 3, bebida de animales y riego de vegetales.

Gráfico Nº 4.2.2-4. Valores de DBO5

Fuente: CESEL S.A. – Trabajo de campo

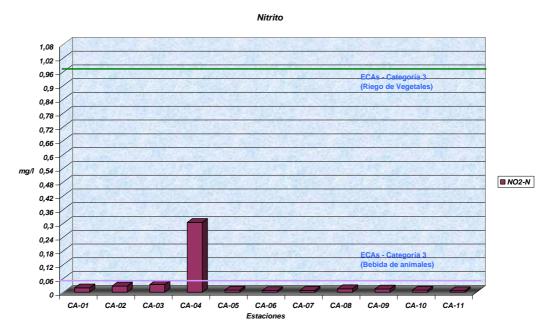

Nitratos

En las aguas completamente puras, subterráneas, de red o de manantial, generalmente no se encuentran más que trazas.

El nitrato es el producto final de la oxidación de materia orgánica nitrogenada y por consiguiente un tenor alto de los mismos indica que el agua ha tenido contacto con materia orgánica.

En el gráfico 4.2.2-5, podemos observar que los valores reportados, se encuentran debajo de los ECA-s, categoría 3, riego de vegetales y bebida de animales, que tiene como valor 10 mg/l y 50 mg/l, respectivamente.

Gráfico Nº 4.2.2-5. Valores de Nitratos



Fuente: CESEL S.A. - Trabajo de campo

Nitritos

Los niveles naturales de nitratos en aguas superficiales y subterráneas son generalmente de unos pocos miligramos por litro. La Estación CA-04, reporta un valor de 0,304 mg/l, superando el ECA, categoría 3, Riego de Vegetales que tiene como valor 0,06 mg/l, sin embargo, se encuentra debajo del establecido para Bebida de animales con valor de 1 mg/l.

Gráfico Nº 4.2.2-6 Valores de Nitritos

Fuente: CESEL S.A. - Trabajo de campo

LABORATORIO DE ENSAYO ACREDITADO POR EL SERVICIO NACIONAL DE ACREDITACION

Inspectorate Services Perú S.A.C.

Av. Elmer Faucett Nº 444

Callao - Perú

Central: (511) 613-8080 Fax : (511) 628-9016 www.inspectorate.com

Nº 130925

INFORME DE ENSAYO CON VALOR OFICIAL No. 1211280L/09-MA

Original 2 de 2

Pág. 01/3

Cliente

CESEL S.A.

Dirección

Av. José Gálvez Barrenechea No. 634

San Isidro

Producto

Agua

Cantidad de muestra

41

Presentación

Frascos de plásticos y vidrio proporcionados por Inspectorate Services Perú

S.A.C.

Instrucciones de Ensayo Procedencia de la muestra Enviadas por el cliente Muestras enviadas por el cliente indicando fecha de muestreo:

2009-12-12

O/S 1471-09-LAMA

Referencia del Cliente

Coylloma-Espinar-Arequipa EIA-Represa Angostura

Fecha Ingreso de Muestra(s) Fecha de Inicio de Análisis Fecha de Término de Análisis Solicitud de Análisis

2009-12-15 2009-12-16 2009-12-26 19369/09

Código de Laboratorio	Descripción de Muestra Declarado por el Cliente			Nitrógeno Nitrato mg/L N-NO ₃	Nitrito mg/L NO ₂	
19369-106347	CA-01	2,5	0,180	<0,06	0,019	
19369-106348	CA-02	4,6	0,659	<0,06	0,027	
19369-106349	CA-03	3,2	0,098	0,06	0,034	
19369-106350	rate lisp CA-05 inspectors	3,0	0,167	<0,06	0,009	
19369-106351	CA-06	1e 1e 3,0 orașe în	0,736	<0,06	0,007	
19369-106352	CA-07	79 In 3,3 orașe în	0,161	<0,06	0,008	
19369-106353	CA-08	2,0	0,305	<0,06	0,015	
19369-106354	CA-09	8,4	0,128	<0,06	0,014	
19369-106355	CA-10	7,1	0,139	<0,06	0,009	
19369-106356	CA-11	5,1	0,113	<0,06	0,006	
Límite	e de Cuantificación	0,1	0,008	0,06	0,006	

Código de Laboratorio			Sólidos Totales suspendidos mg/L	Sólidos Totales Disueltos mg/L
19369-106347	CA-01	11,1	7,3	180,8
19369-106348	CA-02	14,2	<5,0	130,0
19369-106349	CA-03	9,6	11,9	172,4
19369-106350	CA-05	8,7	mate inspect 6,1 = inspectorate	127,2
19369-106351	CA-06	ate Inspect 8,1 to Inspect	rate inspectorate	99,22 1131
19369-106352	CA-07	ate hispec 11,2 e inspecti	rate Inspect 8,1 e Inspectorate	604,6
19369-106353	CA-08	7,7	<5,0	642,2
19369-106354	CA-09	7,7	6,4	157,6
19369-106355	CA-10	24,4	14,0	153,2
19369-106356	CA-11	14,9	7,2	155,6
Límite	de Cuantificación	2,0	5.0	10,0

Código de Laboratorio	Descripción de Muestra Declarado por el Cliente	Li(tot) mg/L	B(tot) mg/L	Be(tot) mg/L	Al(tot) mg/L	P(tot) mg/L	Ti(tot) mg/L	V(tot) mg/L	Cr(tot) mg/L
19369-106347	CA-01	0,0807	0,5751	<0,0006	0,1682	0,0575	0,0068	0,0005	0,0023
19369-106348	CA-02	0,0258	0,4213	<0,0006	0,1168	0,0461	0,0052	0,0012	0,0024
19369-106349	CA-03	0,0820	0,5704	<0,0006	0,1596	0,0508	0,0061	0,0008	0,0023
19369-106350	CA-05	0,0342	0,3360	<0,0006	0,1210	0,0131	0,0035	0,0022	<0,0005
19369-106351	CA-06	0,0331	0,3239	<0,0006	0,1300	0,0465	0,0050	0,0003	0,0024
19369-106352	CA-07	0,0990	0,2260	<0,0006	0,0638	0,0749	0,0036	0,0014	0,0029
19369-106353	CA-08	0,0999	0,2203	<0,0006	0,0613	<0,0033	0,0038	0,0021	0,0006
19369-106354	CA-09	0,0474	0,3592	<0,0006	0,2465	0,0513	0,0082	<0,0003	0,0032
19369-106355	CA-10	0,0465	0,3521	<0,0006	0,3515	0,0683	0,0120	0,0008	0,0037
19369-106356	CA-11	0,0495	0,3834	<0,0006	0,3410	0,0455	0,0105	0,0021	<0,0005
Límite	de Cuantificación	0,0012	0,0012	0,0006	0,0019	0,0033	0,0004	0,0003	0,0005

Este informe no podrá ser reproducido parcialmente sin autorización de Inspectorate Services Perú S.A.C.

Los resultados presentados corresponden sólo a la muestra indicada
<"valor" significa no cuantificable debajo del límite de cuantificación indicado
A excepción de los productos perecibles los tiempos de custodia dependerán del laboratorio que realice el análisis. Este tiempo variará desde 7 días hasta 3 meses como máximo.

LABORATORIO DE ENSAYO ACREDITADO POR EL SERVICIO NACIONAL DE ACREDITACION

Inspectorate Services Perú S.A.C.

Av. Elmer Faucett Nº 444

Callao - Perú

Central: (511) 613-8080 : (511) 628-9016 www.inspectorate.com

130976 ORME DE ENSAYO CON VALOR OFICIAL No. 1211280L/09-MA

			Origina	al 2 de 2						Pág. 02
Código de Laboratorio	Descripción de Muestra Declarado por el Cliente	Mn(tot) mg/L	Co(to	,	,		n(tot) ng/L	As(tot) mg/L	Se(tot) mg/L	Sr(tot) mg/L
19369-106347	CA-01	0,1397	0,000	3 0,00	14 0,0	025 0,	0299	0,0166	<0,0002	0,2374
19369-106348	CA-02	0,0188	0,000	2 0,000	0,0	019 0,	0124	0,0040	0,0021	0,1262
19369-106349	CA-03	0,1677	0,000	3 0,00	12 0,0	021 0,	0436	0,0149	0,0011	0,2133
19369-106350	CA-05	0,0369	<0,000	0,000	0,0	010 0,	0078	0,0166	<0,0002	0,1198
19369-106351	CA-06	0,0410	0,000	2 0,000	0,0	025 0,0	0136	0,0134	<0,0002	0,1499
19369-106352	CA-07	0,0491	0,000	3 0,002	23 0,0	028 0,	0115	0,0233	0,0005	0,8805
19369-106353	CA-08	0,0439	0,000	3 0,002	21 0,0	022 0,	0036	0,0119	0,0008	0,8510
19369-106354	CA-09	0,0520	0,000				0131	0,0261	0,0008	0,2756
19369-106355	CA-10	0,0741	0,000				0112	0.0276	<0.0002	0,2828
19369-106356	CA-11	0,0472	0,000		COLUMN TO SERVICE	The second second	0130	0.0309	<0.0002	0.2487
	de Cuantificación	0,0003	0,000				0002	0,0004	0,0002	0,0020
Código de Laboratorio	Descripción de Muestra Declarado por el Cliente	Mo(tot) mg/L	Ag(tot) mg/L	Cd(tot) mg/L	Sn(tot) mg/L	Sb(tot) mg/L	Ba(tot) mg/L	Ce(tot) mg/L	Hg(tot) mg/L	TI(tot) mg/L
19369-106347	CA-01	0,0005	<0,0002	<0.0002	0,0018	<0,0002	0.0458	0,0004	0.0004	<0.000
19369-106348	CA-02	0.0007	<0.0002		0.0006	<0.0002	0.0643	<0.0003	0.0005	<0,000
19369-106349	CA-03	0,0003	<0,0002		< 0.0004		0,0514		0.0010	<0,000
19369-106350	CA-05	<0,0002			<0,0004		0,0137			<0,000
19369-106351	CA-06	<0,0002			<0.0004		0.0147	neate incr	0.0004	<0,000
19369-106352	CA-07	0.0049	<0,0002		<0.0004		0.0782	APARA A		<0,000
19369-106353	CA-08	0,0041	<0,0002		<0,0004		0,0558			<0,000
19369-106354	CA-09	0.0016	<0,0002	<0,0002	<0,0004	<0,0002	0,0429	0,0007	0,0002	<0,000
19369-106355	orate ins CA-10 le Inspi	0,0008	<0,0002		<0.0004		0.0220	-	0.0004	<0,000
19369-106356	CA-11	0.0008	<0,0002		<0,0004		0,0201			<0,000
	de Cuantificación	0,0002	0,0002	0,0002	0,0004	0,0002	0,0004		0,0001	0,0003
Código de Laboratorio	Descripción de Muestra Declarado por el Cliente	Pb(tot) mg/L	Bi(tot) mg/L	Th(tot) / mg/L	U(tot) mg/L	Na(tot) mg/L	Mg(tot) mg/L	K(tot) mg/L	Ca(tot) mg/L	Fe(tot mg/L
19369-106347	CA-01	0,0034	<0,0003	<0,0010	<0,0003	22,3696	3,7256	3,0257	28,0096	0,3266
19369-106348	CA-02	0.0041	<0,0003	<0,0010	<0,0003	21,6035	2,8097	3,2985	11,8241	0,2372
19369-106349	CA-03	0,0069	<0,0003	<0.0010	<0.0003	21,8038	3,5872	2,9469	26,0629	0,288
19369-106350	CA-05	<0,0002	<0,0003	<0,0010	<0,0003	14,3822	2,6769	2,8942	12,6555	0,0259
19369-106351	CA-06	0,0027	<0,0003	<0,0010	<0,0003	15,1378	2,7248	3,1195	13,9972	0,1770
19369-106352	CA-07	0.0008	<0.0003	<0.0010	<0,0003	153,2204	9,0894	5,5218	57,2359	0,2168
19369-106353	CA-08	<0,0002	<0,0003	<0,0010	<0,0003	158,2612	8,7721	4.7772	59,3153	0,0197
19369-106354	CA-09	0,0051	<0.0003	<0.0010	<0,0003	31,0702	3,9852	2,7993	15,0104	0,273
19369-106355	CA-10	0,0075	<0,0003	<0.0010	<0.0003	31,1014	4,0413	2,9556	15,4578	0,3675
19369-106356	CA-11	<0.0002	<0,0003	<0,0010	<0,0003	31,1200	3,9879	2,8821	14,4488	0,1666
	le Cuantificación	0.0002	0.0003	0.0010	3,000	-1,1200	3,00,0	0,0237	11,1100	0,003

Sólidos Totales Suspendidos Nitrógeno Nitrato

Nitrógeno Amoniacal Fosfato

Nitrito

Mercurio

Turbidez

Nitrógeno Amoniacal Sólidos Totales Disueltos

APHA AWWA WEF 21th Edition, 2005. Pag 2-58 a 2-59. 2540-D Solids; Total Suspended Solids Dried at 103-105°C. EPA 352,1 Nitrate, Colorimteric, Brucine; "Methods for Chemical Analysis of Water and Waste; Document 20460; EPA 621-C-99-004, June 1999"

APHA AWWA WEF. 21th Edition, 2005. Pag 4-114. 4500NH3-F: Nitrogen (Ammonia) Phenate Method. EPA 365.3 :Phosphorus, All Forms, Colorimetric, Ascorbic Acid, Two Reagent; "Methods for Chemical Analysis of Water and Waste; Document 20460; EPA 621-C-99-004, June 1999"

EPA 180.1 :Turbidity, Nephelometric; "Methods for Chemical Analysis of Water and Waste; Document 20460; EPA 621-C-99-004, June 1999" APHA AWWA WEF. 21th Edition, 2005. Pag 4-114. 4500NH3-F: Nitrogen (Ammonia) Phenate Method. EPA 160,1 Residue, Filterable, Gravimetric, Dried at 180°C; "Methods for Chemical Analysis of Water and Waste;

Document 20460; EPA 621-C-99-004, June 1999"

Demanda Quimica de Oxigeno EPA 410.2 Chemical Oxygen Demand, Titrimetric, Low-Level. "Methods for Chemical Analysis of Water and Waste; Document 20460; EPA 621-C-99-004, June 1999"

EPA 354,1 Nitrite, Spectrophotometric; "Methods for Chemical Analysis of Water and Waste; Document 20460; EPA 621-C-99-004, June 1999"

EPA 1664 N-Hexane Extractable Material(HEM; Oil and Grease) and Silica Gel Treated by N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry; Methods for Chemical Analysis of Water and Aceites y Grasas Waste; Document 20460; EPA 621-C-99-004, June 1999"

PPA 245.1 Determination of Mercury in Water by Cold Vapor Atomic Absorption Spectrometry Revision 3.0; Sample Preparation Procedure for Spectrochemical Determination of Total Recoverable Elements; Document 20460; EPA 621-

C-99 004, June 1999. EPA 200.8 Determination of Trace Elements in Waters and Wastes By Inductively Coupled Plasma - Mass Metales por ICP Spectrometry; Revision 5.4, (1994)

Este informe no podrá ser reproducido parcialmente sin autorización de Inspectorate Services Perú S.A.C.

Los resultados presentados corresponden sólo a la muestra indicada <"valor" significa no cuantificable debajo del límite de cuantificación indicado

A excepción de los productos perecibles los tiempos de custodia dependerán del laboratorio que realice el análisis.

Este tiempo variará desde 7 días hasta 3 meses como máximo.

LABORATORIO DE ENSAYO ACREDITADO POR EL SERVICIO NACIONAL DE ACREDITACION

Inspectorate Services Perú S.A.C.

Av. Elmer Faucett N° 444

Callao - Perú

Central: (511) 613-8080 Fax: (511) 628-9016 www.inspectorate.com Registro N° LE-031

Nº 130927

INFORME DE ENSAYO CON VALOR OFICIAL No. 1211280L/09-MA Original 2 de 2

Pág. 03/3

Las muestras ingresaron al Laboratorio en cooler, sin refrigerantes y sin preservar.

Los valores de metales corresponden al análisis de metales totales. El informe de Control de Calidad les será proporcionado a su solicitud.

Nota: Para una adecuada comparación e interpretación de los resultados analíticos se requiere que las muestras sean transportadas con preservantes y/o refrigerantes y el tiempo entre la recolección y el ensayo no exceda las 24 horas, excepto para el caso de coliformes en aguas potables que puede ser hasta un máximo de 39 horas

Callao, 28 de Diciembre del 2009

Inspectorate Services Petú S.A.R.

ING. LUCTO CAPCHAC.

JEFE DE LABORATORIO

MEDIO AMBIEDTE

Inspectorate Services Perú S.A.C.

Av. Elmer Faucett Nº 444

Callao - Perú

Central: (511) 613-8080 : (511) 628-9016 www.inspectorate.com

Nº 116886

INFORME DE ENSAYO No. 1211281L/09-MA

Original 2 de 2 CESEL S.A.

Pág. 01/1

Cliente

Dirección

Av. José Gálvez Barrenechea No. 634 San Isidro

Producto

Agua

Cantidad de muestra

Presentación

Frascos de plásticos y vidrio proporcionados por Inspectorate Services Perú S.A.C.

Instrucciones de Ensayo

Enviadas por el cliente

Procedencia de la muestra

Muestras enviadas por el cliente indicando fecha de muestreo:

2009-12-12

Referencia del Cliente

O/S 1471-09-LAMA Coylloma-Espinar-Arequipa EIA-Represa Angostura

Fecha Ingreso de Muestra(s) Fecha de Inicio de Análisis Fecha de Término de Análisis Solicitud de Análisis

2009-12-15 2009-12-16 2009-12-26 19369/09

Código de Laboratorio	Descripción de Muestra Declarado por el Cliente	Nitrógeno-Total (mg/L)	Aceites y Grasas mg/L	Si(tot) mg/L
19369-106347	CA-01	0,66	inspectorate inspectorate	8,2617
19369-106348	CA-02	0,71	Inspectorate inspectorate	12,4514
19369-106349	CA-03	0,67	inspectorate inspectorate	8,1617
19369-106350	CA-05	0,46	Inspectorate Inspectorate	9,3903
19369-106351	CA-06	0,50	Inchestorate Inspectorate	8,9821
19369-106352	CA-07	0,63	inspectorate inspectorate	5,6070
19369-106353	CA-08	0,29	inspectorate inspectorate	6,6525
19369-106354	CA-09	0,29	<0,20	7,3973
19369-106355	CA-10	0,42	inspectorate inspectorate	7,4156
19369-106356	CA-11	0,42	inspectorate Inspectorate	8,3574
Límite	de Cuantificación	0,10	0,20	0,1000

Métodos:

Aceites y Grasas

D 7066-04 Standard Test Method for dimet/trimer of chlorotrifluoroethylene (S-316) Recoverable Oil and Grease and Nonpolar Material by Infrered Determination; ASTM 2004.

Nitrogeno Total

EPA 351.3 Nitrogen, Kjeldahl, Total (Colorimetric; Titrimetric; Potentiometric); "Methods for Chemical Analysis of Water and Waste; Document 20460; EPA 621-C-99-004, June 1999"

inspectorate

Metales por ICP EPA 200.8 Determination of trace elements in waters and wastes by inductively coupled plasma mass spectrometry. Revisión 5.4, 1994.

Las muestras ingresaron al Laboratorio en cooler, sin refrigerantes y sin preservar.

Los valores de metales corresponden al análisis de metales totales.

Nota: Para una adecuada comparación e interpretación de los resultados analíticos se requiere que las muestras sean transportadas con preservantes y/o refrigerantes y el tiempo entre la recolección y el ensayo no exceda las 24 horas, excepto para el caso de coliformes en aguas potables que puede ser hasta un máximo de 30 horas.

Callao, 28 de Diciembre del 2009

Este informe no podrá ser reproducido parcialmente sin autorización de Inspectorate Services Perú S.A.C. Los resultados presentados corresponden sólo a la muestra indicada <"valor" significa no cuantificable debajo del límite de cuantificación indicado

A excepción de los productos perecibles los tiempos de custodia dependerán del laboratorio que realice el análisis. Este tiempo variará desde 7 días hasta 3 meses como máximo.

LABORATORIO DE ENSAYO ACREDITADO POR EL SERVICIO NACIONAL DE ACREDITACION

Inspectorate Services Perú S.A.C.

Av. Elmer Faucett Nº 444

Callao - Perú

Central: (511) 613-8080 : (511) 628-9016 www.inspectorate.com

130784 INFORME DE ENSAYO CON VALOR OFICIAL No. 1211279L/09-MA-MB

Original 1 de 2

Pág. 01/1

Cliente

CESEL S.A.

Dirección

Av. José Gálvez Barrenechea No. 634

San Isidro Agua

Producto Cantidad de muestra

Presentación

Frascos de plásticos y vidrio proporcionados por Inspectorate Services Perú

S.A.C.

Instrucciones de Ensayo

Enviadas por el cliente

Procedencia de la muestra

Muestras enviadas por el cliente indicando fecha de muestreo:

2009-12-12 Hora: No indica O/S 1471-09-LAMA EIA - Angostura Arequipa

Referencia del Cliente

Agua de Río 2009-12-12

Fecha Ingreso de Muestra(s) Fecha de Inicio de Análisis

2009-12-12; Hora: 17:40 (Microbiológico)

Fecha de Término de Análisis Solicitud de Análisis

2009-12-23

19368/09

Código de	Descripción de Muestra	DBO ₅	Oxigeno Disuelto
Laboratorio	Declarado por el Cliente	mg/L	mg/L
19368-106343	CA-05	2,1	5,7
19368-106344	CA-06	<2,0	ate Inspectorate ins 5,8 torate inspectora
19368-106345	CA-07 Dependence	ectorate (1<2,0 torate (napecto)	rate Inspectorate in 14,0 orate Inspectora
19368-106346	CA-08	ectorate in <2,0 orate inspector	rate Inspectorate ins 8,0 torate inspectora
Límite	e de Cuantificación	eclorete ins 2,0 torate inspector	ale Inspectorate ins 0,1 orate inspectora

Código de	Descripción de Muestra	Coliformes Totales	Coliformes Fecales		
Laboratorio	Declarado por el Cliente	NMP/100ml	NMP/100ml		
19368-106343	CA-05	speciorale in 21 corate inspectoral	e inspectorate inspec		
19368-106345	CA-07	49 x 10	e Inspectorate Insr22 orate Inspec		
19368-106346	CA-08	spectorate 17 x 10 rate inspectoral	e Inspectorate in11 x 10 rate inspec		
Límite	de Cuantificación	speciorate in 1,8 torate hispectoral	e Inspectorale Ins.1,8 orate Justice		

Métodos:

D.B.O

Oxígeno Disuelto

Coliformes Fecales

EPA 360.2 Oxygen, Dissolved, Modified Winkler Full Bottle Technique; "Methods for Chemical Analysis of Water and Waste;

Document 20460; EPA 621-C-99-004, June 1999"
EPA 405.1 Biochemical Oxygen Demand, 5 Days, 20oC; "Methods for Chemical Analysis of Water and Waste; Document

Coliformes Totales

20460; EPA 621-C-99-004, June 1999"

APHA AWWA WEF. 21st Edition. 2005. Pag. 9-49 – 9-50. Part 9221 B. Standard Total Coliform Fermentation Technique.

APHA AWWA WEF. 21st Edition. 2005. Pag. 9-50 – 9-57. Part 9221 E. Fecal Coliform Procedure. 1Fecal Coliform Test (EC Medium).

Las muestras ingresaron al Laboratorio en cooler, con refrigerantes y sin preservar.

El informe de Control de Calidad les será proporcionado a su solicitud.

Nota: Para una adecuada comparación e interpretación de los resultados analíticos se requiere que las muestras sean transportadas con preservantes y/o refrigerantes y el tiempo entre la recolección y el ensayo no exceda las 24 horas, excepto para el caso de coliformes en aguas potables que puede ser hasta un máximo de 30 horas. Callao 26 de Diciembre del 2009

Inspectorate Ser

ING. LUCIO CAPCHAC.
JEFE DE LABORATORIO
MEDIO AMBIENTE

Inspectorate Solvices Pení S.A.C.

DLG. ALSCIA ARCE
C.B.P. 5252

JEFE DE LABORATORIO MICROBIOLOGIA

Este informe no podrá ser reproducido parcialmente sin autorización de Inspectorate Services Perú S.A.C. Los resultados presentados corresponden sólo a la muestra indicada <"valor" significa no cuantificable debajo del límite de cuantificación indicado A excepción de los productos perecibles los tiempos de custodia dependerán del laboratorio que realice el análisis. Este tiempo variará desde 7 días hasta 3 meses como máximo.

Inspectorate Services Perú S.A.C.

Av. Elmer Faucett Nº 444

Callao - Perú

Central: (511) 613-8080 : (511) 628-9016 www.inspectorate.com

Nº 117081

INFORME DE ENSAYO No. 1211536L/09-MA

Original 1 de 2

Cliente

: CESEL S.A.

Pág. 01/1

Dirección

: Av. José Gálvez Barrenechea No. 634 San Isidro

Producto

Agua

Cantidad de muestra

01

Presentación

Frasco de vidrio proporcionados por Inspectorate Services

Perú S.A.C.

Instrucciones de Ensayo

: Enviadas por el cliente

Procedencia de la muestra

: Muestra enviada por el cliente indicando fecha de muestreo:

2009-12-12

O/S 1471-09-LAMA

Referencia del Cliente

Coylloma-Espinar-Arequipa EIA-Represa Angostura

Fecha Ingreso de Muestra(s) Fecha de Inicio de Análisis

2009-12-15 2009-12-16

Fecha de Término de Análisis 2009-12-26 Solicitud de Análisis 19369/09

Código de Laboratorio	Descripción de Muestra Declarado por el Cliente	Aceites y Grasas mg/L
19369-106349	CA-03	<0,20
Límite	de Cuantificación	0,20

Métodos:

Aceites y Grasas

D 7066-04 Standard Test Method for dimet/trimer of chlorotrifluoroethylene (S-316) Recoverable Oil and Grease and Nonpolar Material by Infrered Determination; ASTM 2004.

Las muestras ingresaron al Laboratorio en cooler, sin refrigerantes y sin preservar.

Los valores de metales corresponden al análisis de metales totales.

Nota: Para una adecuada comparación e interpretación de los resultados analíticos se requiere que las muestras sean transportadas con preservantes y/o refrigerantes y el tiempo entre la recolección y el ensayo no exceda las 24 horas, excepto para el caso de coliformes en aguas potables que puede ser hasta un máximo de 30 horas.

Callao, 07 de Enero del 2010

VERONIKAAMADOR OLORTEGUI LABORATORIO MEDIO AMBIENTE FIRMA AUTORIZADA

LABORATORIO DE ENSAYO ACREDITADO POR EL SERVICIO NACIONAL DE ACREDITACION

Inspectorate Services Perú S.A.C.

Av. Elmer Faucett Nº 444

Callao - Perú

Central: (511) 613-8080 : (511) 628-9016 Fax www.inspectorate.com

131238 INFORME DE ENSAYO CON VALOR OFICIAL No. 1211592L/09-MA

Pág. 01/1

Cliente

Dirección

CESEL S.A.

Av. José Gálvez Barrenechea No. 634

San Isidro Aqua

Producto Cantidad de muestra

12

Frascos de plásticos y vidrio proporcionados por el cliente Presentación Instrucciones de Ensayo

Enviadas por el cliente Procedencia de la muestra

Muestras enviadas por el cliente indicando fecha de muestreo:

2009-12-10 Hora: 17:00

O/S 1537-09-LAMA

Referencia del Cliente

Fecha Ingreso de Muestra(s) Fecha de Inicio de Análisis Fecha de Término de Análisis Solicitud de Análisis

Arequipa Agua Superficial 2009-12-28 2009-12-28 2010-01-06

Código de Laboratorio	Descripción de Muestra Declarado por el Cliente	DBO ₅ mg/L	Oxigeno Disuelto mg/L
19564-107745	CA-01	<2,0	7,3
19564-107746	CA-02	2,1	7,5
19564-107747	CA-03	<2,0	17,7
19564-107748	CA-09	<2,0	8,6
19564-107749	CA-10	<2,0	rate inspectorat
19564-107750	ectorate in CA-11 rate inspectora	<2,0 10 1150 1150 1150 1150 1150 1150 1150	prate Inspectora 6,4 repectorat
Límite o	le Cuantificación	2,0	rate Inspectorat 0,1 ispectorat

19564/09

Métodos:

D.B.O

EPA 405.1 Biochemical Oxygen Demand, 5 Days, 20oC; "Methods for Chemical Analysis of Water and Waste; Document 20460; EPA 621-C-99-004, June 1999"

EPA 360.2:Oxygen, Dissolved, Modified Winkler Full Bottle tecnique; "Methods for Chemical Analysis of Water and Waste; Document 20460; EPA 621-C-99-004, June 1999". Oxígeno Disuelto

Las muestras ingresaron al Laboratorio en cooler, sin refrigerantes y sin preservar.
El informe de Control de Calidad les será proporcionado a su solicitud.
Nota: Para una adecuada comparación e interpretación de los resultados analíticos se requiere que las muestras sean transportadas con preservantes y/o refrigerantes y el tiempo entre la recolección y el ensayo no exceda las 24 horas, excepto para el caso de coliformes en aguas potables que puede ser hasta un máximo de 30 horas.

Callao, 06 de Enero del 2010

Inspectorate Services Perú S.A.C.

VERONIKA AMADOR OLORTEGUI LABORATORIO MEDIO AMBIENTE FIRMAAUTORIZADA

Este informe no podrá ser reproducido parcialmente sin autorización de Inspectorate Services Perú S.A.C. Los resultados presentados corresponden sólo a la muestra indicada <"valor" significa no cuantificable debajo del límite de cuantificación indicado A excepción de los productos perecibles los tiempos de custodia dependerán del laboratorio que realice el análisis. Este tiempo variará desde 7 días hasta 3 meses como máximo.

Inspectorate Services Perú S.A.C.

Av. Elmer Faucett Nº 444

Callao - Perú

Central: (511) 613-8080 : (511) 628-9016 www.inspectorate.com

No 119372

AMPLIACION DEL INFORME DE ENSAYO No. 10344L/10-MA

Original 1 de 2

Pág. 01/1

Cliente

: CESEL S.A.

Dirección

: Av. José Gálvez Barrenechea No. 634

San Isidro

Producto

: Agua : 01

Cantidad de muestra Presentación

: Frascos de plásticos y vidrio proporcionados por

Inspectorate Services Perú S.A.C.

Instrucciones de Ensayo

: Enviadas por el cliente

Procedencia de la muestra

: Muestras enviadas por el cliente indicando fecha de

muestreo: 2010-01-25 Hora: No indica

O/S 76-10-LAMA

Referencia del Cliente

: Río Apurímac - Espinar - Cuzco : 2010-01-26

Fecha Ingreso de Muestra(s) Fecha de Inicio de Análisis

: 2010-01-26; 2010-02-12

Fecha de Término de Análisis

: 2010-02-06, 2010-02-17

Solicitud de Análisis

: 19832/10

Código de Laboratorio	Descripción de Muestra Declarado por el Cliente	Si(tot) mg/L	Nitrógeno-Total mg/L
19832-109244	CA-04	10,8013	1,22
Límite	de Cuantificación	0,1000	0,10

Método:

Metales por ICP

EPA 200.8 Determination of trace elements in waters and wastes by inductively coupled plasma mass spectrometry. Revisión 5.4, 1994.
EPA 351.3 Nitrogen, Kjeldahl, Total (Colorimetric; Titrimetric; Potentiometric); "Methods for Chemical Analysis of

Nitrogeno Total

Inspectorate

Water and Waste; Document 20460; EPA 621-C-99-004, June 1999"

Las muestras ingresaron al Laboratorio en cooler, sin refrigerantes y sin preservar.

Los valores de metales corresponden al análisis de metales totales.

Nota: Para una adecuada comparación e interpretación de los resultados analíticos se requiere que las muestras cumplan con los requerimientos de muestreo, manipulación y almacenamiento establecidos en las normas analíticas.

Callao, 06 de Febrero del 2010 Callao, 17 de Febrero del 2010

ING. LUCTO CAPCHA IEFE DE LABORATO MEDIO AMBIENT

TÉRMINOS Y CONDICIONES GENERALES

- A menos que esté específicamente acordado por escrito, Inspectorate Services Perú SAC. de ahora en adelante, llamado "LA COMPAÑÍA", realiza servicios de acuerdo con estos "Términos y Condiciones Generales" y consecuentemente, todas las ofertas o cotizaciones de servicios, estarán sujetas a estas Condiciones Generales, así como también todos los contratos, acuerdos y arreglos. Estas Condiciones Generales están reguladas por el artículo 1764º y siguiente, del Código Civil de la República Peruana
- LA COMPANÍA es una empresa dedicada a prestar servicios de inspección y análisis tales como:
- 2.1 Servicios básicos cómo los descritos en la condición número 6.
- 2.2 Prestación servicios especiales, aceptados por LA COMPAÑÍA según lo indicado en la condición úmero 7.
- 2.3 Expide reporte y/o certificados según lo indicado
- a explue reporte y/o certificados según lo indicado en la condición número 8.

 LA COMPAÑÍA actúa para la persona o instituciones de quienes las instrucciones para ejecutar el servicio han sido recibidas (de ahora
- en adelante llamado EL CONTRATANTE). Ningún individuo o institución tiene derecho a dar instrucciones, particularmente con respecto al alcance de un servicio dado o al envío de reportes o certificados, a menos que sea autorizado por EL CONTRATANTE y aceptado por LA COMPANÍA. Sin embargo, LA COMPAÑÍA será considerada como autorizada irrevocablemente enviar a su discreción, los reportes o certificados a terceras personas, si se encuentra siguiendo instrucciones de EL CONTRATANTE.
- 4. LA COMPAÑÍA suministrará sus servicios de acuerdo con:
- 4.1 Instrucciones especificas del contratante y
- confirmadas por LA COMPAÑÍA.

 4.2 Los términos del formato estándar de orden de servicios de LA COMPAÑÍA.
- 4.3 Las prácticas comunes de comercio, uso y
- manejo. 4.4 Los métodos que LA COMPAÑÍA pueda considerar apropiados en los campos técnicos, operacionales y/o financieros.
- 5.1 Todas las preguntas y órdenes por parte de CONTRATANTE de servicios deben estar acompañadas de suficiente información, especificaciones e instrucciones que le permitan a LA COMPAÑÍA evaluar y/o realizar los servicios requeridos.
- 5.2 Documentos que reflejen contratos entre EL CONTRATANTE y terceras personas, o documentos de terceras personas, tales como copias de contratos de venta, notas de crédito, conscimientos de embarque, etc., son considerados (si son recibidos por LA COMPAÑÍA) solamente como informativos, sin extender o restringir los compromisos aceptados por LA
- Los servicios estándares de LA COMPAÑÍA pueden incluir todos o algunos de los mencionados a continuación: . Inspección cualitativa o cuantitativa.
- 6.2.Inspección de bienes, plantas, equipos, empaquetado, tanques, contenedores y medios de transporte. 6.3.Inspección de carga y descarga.
- 6.4. Muestreo.
- 6.5. Análisis en el laboratorio u otro tipo de prueba. 6.6. Estudios y auditorias
- 7. Servicios especiales cuando los mismos exceder el campo de servicios estándares referidos en la condición número 6, serán realizados por LA COMPANÍA, mediante acuerdos particulares. Los siguientes servicios especiales son ilustrativos
- y no excluyentes: 7.1. Garantías cualitativas o cuantitativas 7.2. Calibración de tanques, calibración métrica o mediciones
- 7.3. Provisión de técnicos o algún otro personal.
 7.4. Inspecciones pre-embarque bajo regulaciones gubernamentales de importaciones o aduanas.
- 7.5. Supervisión de proyectos industriales completos, incluyendo ingeniería y reportes de progreso.
 7.6. Servicios de Consultoría.
- 8.1 Sujeto a las instrucciones de EL CONTRATANTE aceptadas por LA COMPAÑÍA, ésta última emitirá reportes y certificados del servicio realizado los cuales incluirán opiniones emitidas en el marco de las limitaciones de las Instrucciones recibidas LA COMPANÍA, no está en obligación de referirse o reportar acerca de cualquier hecho o circunstancia fuera de estas instrucciones
- específicas recibidas.

 8.2. Los reportes o certificados emitidos a partir de pruebas o análisis realizados a "muestras articulares", contienen las opiniones específicas de LA COMPAÑÍA de dichas muestras, y no expresan una opinión con respecto al total (lote) del material de donde éstas fueron obtenidas. Si se requiere una opinión acerca del material completo, se deberá coordinar en forma anticipada con LA COMPAÑÍA, la inspección y toma de muestras del total del material.
- Obligaciones de EL CONTRATANTE:
 1. Asegurarse que las instrucciones dadas a LA COMPAÑÍA contengan la suficiente información y sean suministradas oportunamente, para disponer que los servicios requeridos sean realizados efectivamente.

- 9.2. Procurará todo el acceso necesario a los representantes de LA COMPANÍA, para así permitir asegurar que todos los servicios sean realizados en forma efectiva.
- Suministrar, si es necesario, equipos especiales o personal para la realización de los servicios
- requeridos. Se asegurará que sean tomadas todas las medidas necesarias para la seguridad de las condiciones de trabajo e instalaciones, durante el desarrollo
- de trabajo e instalaciones, durante el desarrollo de los servicios y no se limitará solamente a atender las sugerencias de LA COMPAÑIA en este respecto, sean o no solicitadas.

 Tomar todas las acciones necesarias para eliminar o resolver obstrucciones o interrupciones en la realización de los servicios ontratados
- Informar con anticipación a LA COMPANÍA acerca de riesgos o peligros conocidos, actuales o potenciales, relacionados con alguna instrucción e muestreo o análisis, Incluyendo por ejemplo, la presencia de riesgo por radiación, elementos tóxicos, nocivos o explosivos; venenos o contaminación ambiental. 9.7 Ejercer todos sus derechos y liberarse de todas sus
- obligaciones con respecto a algún contrato en particular, independientemente de sí se han emitido reportes o no: debido al incumplimiento de LA COMPAÑÍA, en alguna de sus obligaciones
- Puede permitir a la COMPAÑÍA delegar discreción la realización del trabajo para el cual fue contratada, en forma completa o parcial, a quier agente o subcontratista.
- Todos los técnicos y otro personal proporcionados por la Compañía en el ejercicio de cualquiera de los servicios siempre y en todo momento serán los empleados, agentes o subcontratistas (Como puede ser el caso) de la Compañía como tal, todas esas personas serán responsables y sujeto a las instrucciones de la Compañía en todo momento. Salvo acuerdo en
- Compañía en todo momento. Salvo acuerdo en contrario de la Compañía, estas personas no estarán obligados a seguir todas las instrucciones del CONTRATANTE.
 Si los requerimientos de EL CONTRATANTE exigen el análisis de muestras por parte de EL CONTRATANTE o por un tercer laboratorio, LA COMPAÑÍA emitirá los resultados pero sin responsabilidad por la exactitud de los mismos. Del mismo modo, cuando LA COMPAÑÍA solo actué como testigo en la realización del análisis por EL CONTRATANTE o por un tercer por EL CONTRATANTE o por un tercer laboratorio, LA COMPAÑÍA dará confirmación de que la muestra correcta fue analizada, pero no tendrá ninguna responsabilidad sobre la exactitud de los resultados.
- 13 Debido a la posibilidad de estratificación de Debido a la posibilidad de estratificación de algunas cargas y/o las limitaciones impuestas a nosotros por cerradas o restringidas sistemas de toma de muestras, la Compañía no puede granntizar que estas muestras son representativas de la carga a bordo o los resultados de las pruebas obtenidos e informó sobre nuestros certificados de calidad son representativas de dicha carga.
- 14.1 LA COMPAÑÍA tomará el debido cuidado y LA COMPANIA tomará el debido cuidado y buena práctica en la realización de sus servicios y aceptará responsabilidad sólo cuando tales cuidados y prácticas no hayan sido ejecutados y se pruebe algún, tipo de negligencia por parte de LA COMPAÑIA.
- 14.2 La responsabilidad de LA COMPAÑÍA respecto a La responsabilidad de LA COMPANIA respecto a quejas por pérdidas, daños o gastos de cualquier naturaleza, ocurridas en cualquier momento, debido a cualquier infracción al contrato o alguna falla en el cuidado y buena práctica por parte de LA COMPANÍA, no deberá en ninguna circunstancia exceder 10(diez) veces la tarifa o cantidad pagable con respecto al servicio especifico requerido, el cual a su vez está bajo un contrato en particular con LA COMPANÍA, que da lugar a las reclamaciones en cuestión. Sin embargo, LA COMPAÑÍA no tendrá responsabilidad con respecto a cualquier reclamo por pérdida indirecta o consecuente, incluyendo pérdidas de ganancias y/o negocios incluyendo pérdidas de ganancias y/o negocios futuros y/o producción y/o cancelación de contratos en los cuales participa EL CONTRATANTE. En el caso que la tarifa o cantidad a pagar por servicio, se refiera a un grupo de servicios y el reclamo se sucede con respecto a uno de dichos servicios la tarifa deberá ser indicada, para el propósito de este numeral, mediante referencia al tiempo total involucrado en el desarrollo de cada servicio.

 3 El límite de responsabilidad de LA COMPAÑÍA bajo los términos de la condición número 14.2, puede ser aumentado por solicitud recibida con
- puede ser aumentado por solicitud recibida con anterioridad a la ejecución de un servicio o como acuerdo por el pago de una tarifa más alta, equivalente a una fracción adecuada del incremento de la compensación. 14.4 Todas las garantías, condiciones y otros términos
- i fodas las garandas, condiciones y otros etrimitos implícitos por la ley o de derecho común son, en la máxima medida permitida por la ley, excluidas de las presentes Condiciones Generales. Nada de lo dispuesto en estas Condiciones Generales, limite o excluya la responsabilidad de
- la Empresa:
- la Empresa:

 14.5.1en caso de muerte o lesiones personales
 resultantes de negligencia, o

 14.5.2 de cualquier daño o responsabilidad incurrida
 por el principal como resultado de fraude o
 tergiversación fraudulenta por la Compañía, o
- 14.5.3 de cualquier responsabilidad que no puede ser restringida o excluida por la ley.

- 14.5.4 Esta condición 14 establece la totalidad de la responsabilidad financiera de la Compañía (incluyendo cualquier responsabilidad por los actos u omisiones de sus empleados, agentes y actos u omisiones de sus empieados, agentes y sub-contratistas) a la principal con respecto a cualquier incumplimiento de estas Condiciones Generales, cualquier uso que se haga por el director de los servicios y toda representación, declaración o acto delictivo u omisión (incluyendo negligencia) que surjan en relación con estas Condiciones Generales.
- 15. EL CONTRATANTE podrá garantizar que protegerá o indemnizará a LA COMPAÑA y sus representantes, empleados, agentes o sub contratistas, frente a todos los reclamos hechos por terceros, respecto a pérdidas, costos por daños dé cualquier naturaleza debido a reclamos o cualquier otra circunstancia relacionada con el desarrollo, intensión de desarrollar o no desarrollo, de cualquier servicio, que exceda lo estipulado, según la condición número 14.
- Cada empleada, agente o subcontratista de LA COMPAÑÍA, podrá tener el beneficio de las limitaciones de compensación o indemnización contenidos en estas Condiciones Generales y en consecuencia en las que a state limitaciones. consecuencia en los que a tales limitaciones cualquier contrato asumido por LA COMPANÍA es asumido no solo en su propio beneficio, sino también como agente y garante de las personas aquí mencionadas.
- de las personas aqui mencionadas. En el evento que surja cualquier problema o costo imprevisto durante la ejecución de algún servicio contratado, LA COMPAÑÍA, podrá ser autorizada para realizar cobros adicionales para cubrir los costos para cubrir tiempo de trabajo adicional y gastos en los que necesariamente se incurre para cumplir con el Servicio
- 18.1 EL CONTRATANTE pagará puntualmente en 18.1 EL CONTRATANTE pagará puntualmente en un plazo no mayor de 30 (treinta) días después de la fecha de emisión de la factura o dentro de cualquier otro plazo que halla sido acordado por escrito con LA COMPANÍA, todos los respectivos cargos hechos por LA COMPANÍA. El no cumplimiento del plazo acarreará el pago de intereses a razón de 15% anual a partir de la fecha de emisión de la factura hasta la fecha de pago mas los gastos e impuestos producto de la demanda demanda.
- 18.2Todos los precios y las tasas debidas en virtud de las presentes Condiciones Generales, a menos que la compañía confirma por escrito, ser
- que la compañía confirma por escrito, ser exclusiva de ningún valor añadido o impuesto sobre las ventas que se cobrará en adición a la tasa vigente que corresponda.

 18.3EL CONTRATANTE no está autorizado para retener o diferir el pago de cualquier suma que se le adeude a LA COMPAÑÍA, aduciendo alguna disputa o reclamos que pueda alegar en contra de LA COMPAÑÍA.
- 18.4En el caso de cualquier suspensión de compromisos de pago con acreedores, quiebra, liquidez, embargo o cesación de actividades por parte de EL CONTRATANTE, LA COMPANÍA podrá ser autorizada automáticamente para suspender
- ser autorizada automáticamente para suspender el desarrollo de sus servicios y sin responsabilidad alguna.

 19 En el caso que LA COMPAÑÍA sea prevenida, por alguna causa fuera de su control de efectuar o completar algún servicio acordado, EL CONTRATANTE pagará a LA COMPAÑÍA:

 19.1Costos realizados o aún por hacer con el objeto de poder detener los trabajos.

 19.2 Una porción de la tarifa acordada equivalente a la proporción del servicio efectivamente

- 19.2 Una porción de la tarifa acordada equivalente a la proporción del servicio efectivamente realizado, quedando LA COMPAÑÍA dispensada de toda responsabilidad en absoluto, por la parcial o total no ejecución del servicio.
 20 LA COMPAÑÍA podrá ser dispensada de toda responsabilidad con EL CONTRATANTE, por reclamos de pérdidas o costos por daños dentro de los seis meses subsiguientes a la ejecución por parte de LA COMPAÑÍA de los servicios quedan lugar al reclamo. a menos que se entable una lugar al reclamo, a menos que se entable una demanda o en caso se alegue la no ejecución de algún servicio, si no es durante los seis meses subsiguientes a fecha en que el servicio debió haber sido ejecutado.
- Sin periuicio de cualesquiera otros derechos o recursos que puede tener, la Compañía puede terminar cualquier o todos los contratos para la prestación de servicios de conformidad con estas Condiciones Generales, sin que la principal responsabilidad de dar aviso de inmediato a la
- principal si:
 Principal comete un incumplimiento sustancial de cualquiera de los términos de estas Condiciones Generales y (si esa violación es remediable) no remedia dicho incumplimiento dentro de los 30 días de la principal que se notificará por escrito de la violación, o
- nouncara por escrito de la violación, o 21.2se hace un pedido o se aprueba una resolución para la liquidación de la principal, o de circunstancias que autoricen un tribunal de jurisdicción competente para hacer una disolución de la principal
- 21.3 se hace una orden, o los documentos que se presentan en un tribunal de jurisdicción competente, para el nombramiento de un administrador para administrar los negocios, las empresas y la propiedad de la principal, o administrador para administrar los negocios, las empresas y la propiedad de la principal, o 21.4se nombra un receptor de cualquiera de los
- principales activos o empresa, o circunstancias que autoricen un tribunal de jurisdicción competente o un acreedor de

- nombrar a un síndico o administrador de la
- principal, o 🔹 21.5 principal hace cualquier acuerdo o convenio con sus acreedores, o hace una solicitud a un tribuna de jurisdicción competente para la protección de sus acreedores en forma alguna, o 21.6 Principal cesa, o amenaza con cesar, al comercio,
- 21.7 de la principal toma o sufre cualquier otra similar o análogo de acción en cualquier jurisdicción, en consecuencia, de la deuda. 22. En caso de cese de cualquier o todos los contratos
- para la prestación de servicios por cualquie
- El Director de pagar inmediatamente a la Compañía todos los pendientes de la empresa las facturas impagadas e intereses y, en el caso de los servicios prestados, pero para los que no se ha presentado la factura, la empresa podrá presentar una factura, en la que se pagarán inmediatamente después de la recepción,
- 22.2 los derechos adquiridos de las partes en cuanto a la rescisión no se verá afectada
- 23 LA COMPAÑÍA no es un asegurador ni un garante y está liberada de responsabilidad con respecto a esas atribuciones. EL CONTRATANTE que requiera garantías contra pérdidas o daños,
- deberá obtener el seguro apropiado. Ninguna alteración, enmienda o renuncia a cualquiera de estas Condiciones Generales, tendrá algún efecto a menos que sean hechas por escrito y firmadas por un representante autorizado de LA COMPANÍA.
- 25.1 Si cualquiera de las disposiciones (o parte de una disposición) de las presentes Condiciones Generales se encuentra por cualquier tribunal u órgano administrativo de la jurisdicción competente para ser inválida, ilegal o inaplicable, las demás disposiciones seguirán en
- inaplicable, las demás disposiciones seguirán en vigor

 25.2 Si cualquier inválida, inaplicable o ilegal disposición sería válida y ejecutable o jurídica, si alguna parte de ella se han suprimido, esta disposición se aplicará a cualquier modificación es necesaria para que sea válida y exigible y legal.

 26. Cada una de las partes reconoce y acepta que, en la celebración de cualquier contrato de prestación de servicios de conformidad con estas Condiciones Generales no cuenta con ninguna empresa, promesa, garantía, declaración, representación, garantía o entendimiento (ya sea por escrito o no) de cualquier persona (ya sea parte en estas condiciones o no) relacionados con el objeto de estas Condiciones Generales, con excepción de lo expresamente establecido con excepción de lo expresamente establecido en el o mencionadas en las presentes Condiciones Generales. 27. Todos los contratos para la prestación de servicios
- entró en conformidad con las presentes Condiciones Generales se realizan para el beneficio de la Sociedad y la única y principal (en su caso) de sus sucesores y cesionarios autorizados y que no están destinados a beneficiar, o ser exigible por cualquier otra
- persona. Avisos dados bajo las presentes Condiciones Avisos dados bajo las presentes Condiciones Generales se realizarán por escrito, enviado a la atención de la persona, y que dicha dirección o número de fax de la parte podrá notificar a la otra parte de vez en cuando y se entregarán personalmente, o enviarse por correo enviado por pre-pago, de primera clase de correo correo certificado. Un aviso se considerará que se han recibido, en caso de entrega personal, en el comento de la entrega, en el caso de renando. momento de la entrega, en el caso de pre- pago o post de primera clase correo certificado, 48 horas a partir de la fecha de envío y, si se considera la recepción en virtud de la presente Condición 28 se no en el horario comercial (es decir, 9.00 a 5.30 pm de lunes a viernes en un día que es un día hábil), a las 9.00 horas en el primer día hábil tras la entrega. Para probar el servicio, es suficiente para demostrar que la notificación fue debidamente y se publicará.
- 29.1 Cualquier controversia o demanda que suria de o en conexión con estas Condiciones Generales o de sus materias, se regirán e interpretarán de conformidad con las leyes del Estado Peruano. 29.2 Las partes irrevocablemente de acuerdo en que
- los tribunales del Estado Peruano no tendrá competencia exclusiva para resolver cualquier controversia o reclamación que surja de o en conexión con estas Condiciones Generales o de

								Código del
								Proyecto: 096200 Revisión: A
	CESEL INFORME TÉCNICO						Revision. A	
					INFO CSL-0	Páginas:		
IN	GENIE	KO5						Especialidad:
								Asuntos
								Ambientales
Proye defini		dio de Im	npacto Ar	mbiental d	de la Re	presa Ango	stura y G	Sestión Ambiental a nivel
Т	ítulo: ESTU	DIO DE S	UELOS					
С	ONTROL DE	E REVISIO	NES					
Rev.	Fecha	Elaborado	1	Revisado		Verificado		Descripción del Cambio
Nev.	i ecna	Iniciales	Firma	Iniciales	Firma	Iniciales	Firma	
A		W.V.B		A.G.F				

4.2.3 Suelos

A. Fisiografía

a. Generalidades

El estudio fisiográfico tiene como propósito reconocer y delimitar las diversas formas de la tierra, en correlación con las asociaciones florísticas, clima, grado de disectación, relieve topográfico, condiciones de drenaje y características litológicas.

Fisiográficamente, el área de estudio presenta rasgos morfológicos que son el resultado de una larga evolución, originada por factores tectónicos y erosionales que han modelado el paisaje hasta su estado actual. Se han identificado tres Paisajes: Planicie, Colina y Montaña.

El método utilizado en la determinación de las diferentes formas de la tierra, es el análisis fisiográfico; que se fundamenta en la separación y delimitación de unidades naturales, basado en rasgos del paisaje identificable en las imágenes de satélites. Asimismo, las unidades fisiográficas delimitadas, han sido correlacionadas con las unidades ecológicas y litológicas, e información temática existente.

b. Unidades Fisiográficas

Las formas de la tierra identificadas son el resultado de la interacción de efectos climáticos, litológicos, procesos erosivos y deposicionales así como fenómenos de origen tectónico. Destacan tres grandes paisajes que responden a cuatro grandes acontecimientos geológicos pasados, la montaña de naturaleza litológica volcánica, intrusiva y sedimentaria, colina, la planicie aluvial y la planicie fluvio-glacial. Las unidades fisiográficas identificadas se muestran en el plano CLS-96200-1-AM-08 y en el cuadro Nº 4.2.3-1.

1. Gran Paisaje Planicies.

Formada directamente por la acción erosional y deposicional del agua de los ríos, quebradas y otros cursos, los que han originado la deposición de sedimentos de diversa granulometría, en las depresiones e interfluvios del paisaje montañoso. Esta unidad fisiográfica se encuentra conformada por los paisajes de: planicie aluvial y planicie fluvio-glacial. Son formas de tierra de construcción geológica reciente (cuaternario), caracterizados por tener una topografía plana a ligeramente inclinada. (Ver cuadro 4.2.3-1).

Paisaje Planicie Aluvial

Son geoformas planas constituidas por un conjunto de depósitos aluviales de variada granulometría y litología, con ligera influencia de procesos denudacionales.

Son formas de tierra, planas, con un microrrelieve ligeramente ondulado con pendientes dominantes entre 0-8 %, con diferentes grados de entalle que van desde plana a moderadamente inclinada. Sobresale el subpaisaje de terraza media.

Subpaisaje terraza no inundable

Son terrazas subrecientes de edad pleistocénica, que se hallan en alturas a las que no llegan las corrientes actuales, por encima de los 2 metros como mínimo. Estas terrazas no se inundan y se hallan conformada por acumulaciones coluvio-aluviales antiguas, que han quedado en posiciones topográficas superiores, se observan en los márgenes del río Apurímac, Huallumayo, Oquero, Hornillos, Cayo Mani, Chalhuanca y Colca. En detalle, la topografía de estas terrazas tiene ondulaciones y disecciones que afectan la superficie, dándole una pendiente aproximada de 2 a 4% como rango dominante. Dentro de este subpaisaje se tienen dos elementos de paisaje que están en función a su pendiente, son plana a ligeramente inclinado (0-4%) y moderadamente a fuertemente inclinada (4-15%).

Foto N°4.2.3-1: Paisaje planicie aluvial.

Paisaje Glacial.

Formada directamente por la acción erosiva y deposicional de los glaciares, quienes han modelado al material original hasta llegar a su actual configuración. Se caracteriza por una topografía plana a ondulada, cuya

diferenciación tanto de origen como de forma, está dada por el relieve. Presentan forma de "U" en la sección transversal, con paredes relativamente rectas. Es común encontrar lagunas en las cabeceras de estos valles. Por la inclinación del terreno presentan pendientes ligeramente inclinadas (2–4%). En algunos casos están cubiertos por bofedales y se encuentran sobre los 4 000 msnm, en las nacientes de las cuencas o en la cabecera de los valles. En el área de estudio, se observan en las cabeceras de cuenca del rió Apurímac y del rió Hornillos. Dentro de esta unidad se tiene al siguiente subpaisaje:

Subpaisaje Planicie Fluvio-Glacial (Pfg)

Son áreas planas a ligeramente depresionadas, donde se concentran las aguas de escorrentía superficial y de surgencia de los manantiales, estos se han originado por la deposición de sedimentos glaciales, arrastrados por las aguas de escorrentía. Son sectores hidromórficos que presentan una vegetación propia de los medio hidrófilos y que varían de acuerdo a su posición altitudinal. Estos sirven de reserva de pastos en la época de estiaje a los animales de la zona.

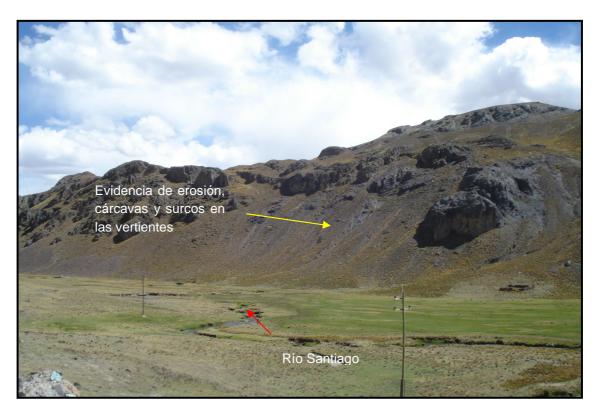


Foto N° 4.2.3-2: Paisaje planicie fluvio- Glacial, en el rió Santiago – Caylloma, Arequipa.

Subpaisaje Valle Glacial (Vfg)

Los valles glaciares se caracterizan por presentar un perfil transversal en "U" o artesa, considerado este en geomorfología como el rasgo principal que permite diferenciar estas geoformas, por los que se desliza o deslizó una

lengua de hielo. Otras características de los valles glaciares son las huellas de abrasión y sobreexcavación, provocada por la fricción del hielo y el arrastre de material, existencia de canales de aludes, fondos planos con alternancia de umbrales y cubetas, vertientes muy verticales labradas, que dan lugar a una ruptura de pendiente en hombrera. Los antiguos glaciares dieron origen a la formación de depósitos de materiales que previamente habían sido erosionados por los hielos. Dichos materiales, son muy heterogéneos y forman a menudo diversos tipos de morrenas. Estos valles se observan en las nacientes del rió Santiago, quebrada Azul Mayo, Chonta, Ajajato y Chulluniayo, en Caylloma y en el río Lloqueta, quebrada Chaupihuichay, río Ancollaga en el distrito de Lari-Arequipa.

Foto N°4.2.3-3: Subpaisaje valle glacial, en la qu ebrada Chulluniayo – Caylloma, Arequipa.

Planicie de tobas areniscosas

Planicie conformada por sedimentos lacustricos que están constituidos por tobas areniscosas y conglomerados lenticulares fluviales. Generalmente, las tobas son de color gris blanquecino y se han depositado en capas delgadas; encontrándose cubriendo a los conglomerados de la formación Casa Blanca. La edad geológica asignada a esta formación, es el Pleistoceno-Cuaternario, estos corresponden a la formación Yauri. Los subpaisajes están en función a la variación de la pendiente.

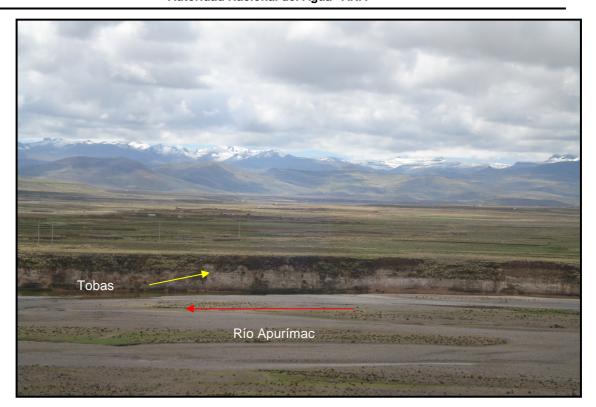


Foto N°4.2.3-4: Paisaje planicie de tobas arenisco sas – distrito de Coporaque, Cusco.

2. Gran Paisaje Montañoso

El Gran Paisaje Montañoso, se ha formado debido la acción combinada de movimientos orogénicos y epirogénicos de levantamiento y a la acción modeladora de la erosión pluvial, los que, poco a poco, fueron formando importante estratos potentes de material lítico. Por los procesos de diagénesis se consolidaron y posteriormente por la acción del levantamiento de la cordillera de los andes, se origino este Gran Paisaje, caracterizado por presentar actualmente superficies con ondulaciones pronunciadas que confieren un aspecto corrugado de intensidad variable. Esta unidad fisiográfica se caracteriza por presentar diversas formas topográficas con relieves empinados a extremadamente empinados y laderas que sobrepasan el 50% de pendiente, igualmente con presencia de pequeñas áreas planas de origen aluvial en los valles estrechos de las quebradas. Está constituido en su mayor parte, por materiales litológicos de naturaleza variada, de origen sedimentario y materiales intrusivos originados por la profunda incisión de los cursos de agua ocurrida como consecuencia del levantamiento pliopleistocénico de la región andina, el cual ha disectado el relieve de esta región.

Paisaje montaña de rocas volcánicas (Andesitas y Dacitas)

Son geoformas, donde las montañas se hallan constituidas principalmente por rocas Andesitas y Dacitas, en algunas zonas, presencia de tobas volcánicas, donde el procesos de meteorización de la corteza terrestre, que aunado a la acción de los levantamiento tectónicos y posterior modelado, especialmente hídrico, han causando diferentes grados de erosión y aspecto

superficial. Dentro este paisaje tenemos las formaciones geológicas de Seneca, Grupo Barroso, formación Orcopampa y formación Ichocollo. Este paisaje se observa en casi toda el área de estudio, y se han diferenciado los siguientes subpaisajes:

Subpaisaje cimas (símbolo Mvc)

Se hallan constituidas en su mayor parte por afloramientos líticos, suelos delgados asociados con estos afloramientos, gradientes escarpadas, cobertura vegetal escasa o sin vegetación, donde predominan el césped de puna; se hallan sometidos a procesos de meteorización físico-químicos (crioclastismo temporal) y bioquímicos (hidrólisis, hidratación), los cuales se hallan estimulados por la alta humedad atmosférica que impacta.

Subpaisaje Quebrada (símbolo Mvq)

Se encuentran constituidos por las zonas de entalle, originado por el flujo temporal o permanente de los cursos de agua que se generan durante la época lluviosa. En algunos casos pueden formar pequeñas terrazas aluviales ó comúnmente denominados fondos de valle.

Subpaisaje Vertiente Erosional (símbolo Mv)

Esta unidad presenta una gradiente empinada a extremadamente empinada, con suelos superficiales y moderadamente profundos (Entisols y áreas misceláneas) originados de los depósitos coluviales, que descienden de las cimas, cobertura vegetal regular, representada por césped y pajonal de puna; presentan procesos morfodinámicos originados por la erosión hídrica (proceso de remoción de masa). Dentro de este subpaisaje se tienen tres elementos de paisaje que están en función a su pendiente, que van desde fuertemente inclinada a extremadamente empinada.

Paisaje Montaña de rocas Sedimentaria (Calizas margosas, Areniscas y Lutitas)

Son geoformas, constituidas por rocas sedimentarias clásticas y no clásticas, principalmente por calizas, areniscas y lutitas. Este paisaje se presenta en la carta geológica dentro del Grupo Yura formación Puentes (Jms-pu). Dentro de este paisaje se tienen tres subpaisajes que son cimas, quebradas y vertiente erosional la cual está en función a su pendiente, que van de moderadamente inclinada a muy empinada.

• Paisaje Montaña de rocas Intrusivas (Granodioritas)

Son geoformas, constituidas por rocas intrusivas principalmente por granodioritas. Dentro de esta unidad, se ha delimitado el subpaisaje de cimas, que se halla constituido en su mayor parte, por afloramientos líticos, suelos delgados asociados con estos afloramientos, gradientes escarpadas, cobertura vegetal rala, donde predomina una vegetación escasa, matorral y

césped de puna. El Subpaisaje Quebradas, se encuentra constituido por la zona de entalle, originado por el flujo temporal o permanente de los cursos de agua que se generan durante la época lluviosa. En algunos casos pueden formar pequeñas terrazas aluviales. El Subpaisaje Vertiente Erosional; que está en función a su pendiente que van desde fuertemente inclinada a extremadamente empinada.

Montaña Glacial.

Constituido por materiales rocosos o afloramientos líticos cubierto en su mayor proporción por nieve. Esta fisonomía se presenta en zonas de acumulación y descarga bien diferenciados que, en general, coinciden con la cabecera de una cuenca.

3. Gran paisaje Colinoso

Son formas de relieve medianamente accidentado, con alturas menores a los 300 m entre las cimas y el nivel de base referencial. Las pendientes medias generalmente están entre 25 y 50% y la longitud de las laderas pueden pasar varios centenares de metros. En el área de estudio, las zonas de colinas se presentan en toda el área de influencia indirecta del proyecto. En esta zona, las colinas están formadas en mayor proporción, por rocas volcánicos (andesitas y dacitas), rocas sedimentarias (calizas margosas, lutitas y areniscas cuarzosas) y rocas intrusivas (granodiorita).

Aparentemente, debido a las características litológicas de la zona; estos afloramientos líticos habrían propiciado la formación de superficies disectadas, que luego al ser afectadas por la geodinámica externa (humedad, radiación solar, erosión) han formado zonas colinosas moderadamente onduladas, de topografía bastante regular.

Para efectos más didácticos se subdividió esta unidad fisiográfica a nivel de paisaje de acuerdo a la litología predominante que presentaron.

Colinas Volcánicas (andesitas y dacitas).

Este subpaisaje se halla definido por rocas volcánicas con litología predominante de andesitas y dacitas. Estas presentan elevaciones que van de 70 m hasta unos 300 m, con pendientes mayoritariamente pronunciadas. La erosión es moderada debido al efecto climático, principalmente por escurrimiento superficial durante precipitaciones espontáneas. Dentro de este paisaje se tienen tres subpaisajes, que son: terrazas líticas formadas por la erosión, quebradas y vertiente erosional la cual esta en función a su pendiente que van de moderadamente inclinada a extremadamente empinada.

• Colinas de tobas Cristolovitricas

Este subpaisaje se halla definido por rocas ígneas volcánicas con litología predominante de tobas Cristolovitricas que corresponden a la formación Garza. Estas presentan elevaciones que van de 70 m hasta unos 300 m, con pendientes mayoritariamente pronunciadas. La erosión es moderada debido al efecto climático, principalmente por escurrimiento superficial durante precipitaciones espontáneas. Dentro de este paisaje se tienen tres subpaisajes que son: terrazas líticas; referidas a plataformas causadas por la erosión, cañones; que es un accidente geográfico provocado por ríos (río Apurímac y Huayllumayo) que a través de un proceso de epigénesis excava en terrenos volcánicos, haciendo una profunda hendidura de paredes casi verticales, estos se observan en casi todo la formación Garza y formación Seneca. Vertiente erosional la cual está en función a su pendiente que van de moderadamente inclinada a muy empinada.

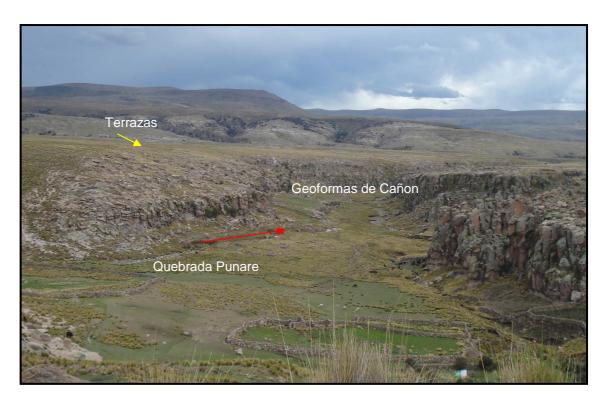


Foto N°4.2.3-5: Colinas de tobas Cristolovitricas, distrito de Coporaque - Cusco.

• Colinas Sedimentarias (calizas margosas y lutitas)

Este subpaisaje se halla definido por rocas sedimentarias de tipo clásticas con litología predominante de calizas, areniscas y lutitas. Las que presentan elevaciones que van de 70 m hasta unos 300 m, con pendientes mayoritariamente pronunciadas. La erosión es moderada debido al efecto climático, principalmente por escurrimiento superficial durante precipitaciones espontáneas. Dentro de este paisaje se tiene el subpaisaje vertiente erosional

la cual esta en función a su pendiente que van de moderadamente inclinada a empinada.

• Colinas Intrusivas (granodiorita de textura porfirítica)

Este subpaisaje se halla definido por rocas intrusivas con predominancia de granodiorita. Dentro de este paisaje se tienen subpaisaje de vertiente erosional, la cual esta en función a su pendiente muy empinada (50 - 75 %)

Cuadro Nº 4.3.2-1: Unidades Fisiográficas Identificadas.

Unidades Fisiográficas							
Gran Paisaje	Paisaje	Subpaisaje	Elementos del Paisaje	Símbolo			
	Planicie Aluvial	Terraza no	Plano a ligeramente inclinada (0-4%)	PalA			
	Fiarlicle Aluvial	inundables	Fuertemente inclinada (8-15 %)	PalB			
Planicie		Planicie Fluvio -	Plano a ligeramente inclinada (0-4%)	PBo/A			
	Glacial	Glacial	Fuertemente inclinada (8-15 %)	PBo/B			
		Valle Glacial		Vfg			
	Planicie de tobas areniscosas	Planicie de Tobas	Plano a ligeramente inclinada (0-4%)	PtaA			
(Formación Yauri)		Flatficie de Tobas	Fuertemente inclinada (8-5 %)	PtaB			
		Cima		Mvc			
		Quebradas		Mvq			
	Montaña Volcánica (Andesitas y		Fuertemente inclinada (8-15 %)	MvoB			
		Vertiente erosional	Moderadamente empinada (15-25 %)	MvoC			
	Tobas)	vertiente erosionai	Empinado (25-50%)	MvoD			
			Muy Empinado (50-70%)	MvoE			
Montaña			Extremadamente Empinada (> 75)	MvoF			
Wortana		Cimas		Msec			
		Quebradas		Mseq			
	Montaña sedimentaria		Fuertemente inclinada (8-15%)	MseB			
	(Calizas margas,	Vertiente Erosional	Moderadamente empinada (15-25 %)	MseC			
	Lutitas y	vertiente Erosional	Empinada (25-50%)	MseD			
	Arenisca)		Muy Empinada (25-50%)	MseE			
			Extremadamente Empinada (> 75)	MveF			

Unidades Fisiográficas							
Gran Paisaje	Paisaje	Subpaisaje	Elementos del Paisaje	Símbolo			
	Montaña		Moderadamente empinada (15-25 %)	MinC			
	Intrusiva	Vertiente Erosional	Empinada (25-50%)	MinD			
	(granodiorita)		Extremadamente Empinada (> 75)	MinF			
	Montaña Glacial			Mgl			
		Quebrada		Cvoq			
		Terrazas		Cvot			
	Colina	Vertiente Erosional	Fuertemente inclinada (8-15 %)	CvoB			
	Volcánica (Andesitas y		Moderadamente empinado (15-25 %)	CvoC			
	Dacitas)		Empinado (25-50%)	CvoD			
			Muy Empinada (25-50%)	CvoE			
			Extremadamente Empinada (> 75)	CvoF			
		Terrazas		Ctct			
Colina		Cañón		Ctcca			
Comia	Colina volcánica de		Fuertemente inclinadA (8-15 %)	CtcB			
	Tobas Cristolovitricas	Vertiente Erosional	Moderadamente empinada (15-25 %)	CtcC			
			Extremadamente Empinada (> 75%)	CtcF			
	Colina sedimentaria		Fuertemente inclinado (8 –15 %)	CseB			
	(Calizas Margas y		Moderadamente empinada (15-25 %)	CseC			
	lutitas)	Vertiente Erosional	Empinada (25-50%)	CseD			
	Colina intrusivas (Granodiorita)	Vertiente Erosional	Muy Empinada (25-50%)	CinE			

Fuente: CESEL S.A. 2010.

B. Clasificación y Caracterización de Suelos

a. Generalidades

La caracterización del recurso suelo del ámbito del proyecto de la Represa Angostura, se ha realizado mediante la investigación de áreas de muestreo que permiten obtener una información sistematizada sobre la realidad edáfica de dicho proyecto. De esta manera, se ha obtenido información, tanto de aspectos físicos como químicos, correspondientes a las áreas de influencia directa del Proyecto, lo que permitirá evaluar y cuantificar los probables impactos atribuibles o derivados de las actividades del mismo.

Los criterios y técnicas metodológicas empleadas se han ceñido a las normas y lineamientos generales que establece el manual del Soil Survey (Revisión 1993) y las Keys Soil Taxonomy (Décima Edición, 2006), del Departamento de Agricultura de los Estados Unidos de Norteamérica y de acuerdo al Reglamento para la Ejecución de Levantamiento de Suelos del Perú, Decreto Supremo N° 033-85 AG. Para la interpretación práctica del potencial de tierras se ha utilizado el Reglamento de Clasificación de Tierras del Perú (D.S. N° 0017-2009-AG).

Se han identificado ocho unidades de suelos que han sido agrupadas taxonómicamente y descritas en Sub-Grupos (Soil Taxonomy-USDA), las que por razones prácticas y de fácil identificación se les ha asignado un nombre local. Estas unidades de suelos, definidos en la categoría de Subgrupo, son delimitadas en el mapa de suelos mediante las unidades cartográficas, Consociación y Asociación de Subgrupos. Para cada Asociación se indica la proporción (%) en que interviene cada unidad de suelo.

Esta parte científica constituye el material de información básico para realizar interpretaciones de orden técnico o práctico, siendo una de ellas, la clasificación de tierras según su Capacidad de Uso Mayor. Para una mejor delimitación de las unidades cartográficas ha sido necesario emplear fases de pendiente.

Objetivos

Identificar, caracterizar, clasificar y determinar la distribución geográfica espacial de cada uno de los suelos representativos dentro del área de estudio del proyecto EIA de la Represa Angostura.

b. Metodología

Las actividades para la ejecución del estudio se efectuaron en cuatro etapas básicas: la primera estuvo destinada a la preparación del mapa base y recopilación de información asociada a los estudios de suelos e información climática del área de influencia; la segunda etapa comprendió el mapeo de suelos en el campo; en la tercera etapa se realizó los análisis de las muestras de suelos en laboratorio, y la cuarta etapa, comprendió la preparación de los mapas definitivos de suelos y de

Capacidad de Uso Mayor de las Tierras, sus tablas, gráficos y la memoria explicativa correspondiente.

1. Materiales

En la realización del estudio, se utilizó los siguientes materiales temáticos y cartográficos:

Material Temático

- INGEMMET, (1996); Boletín y Carta Geológica Nacional, a escala 1:100 000, correspondiente a las cartas o Cuadrángulos Geológicos 30t, 31t;
- INRENA 2000; Mapa Ecológico del departamento de Cusco y Arequipa de la base de datos del INRENA, a escala 1:600 000, con memoria explicativa, del año 2000.
- INRENA 2000; Clasificación de Tierras del Perú del departamento de Cusco y Arequipa de la base de datos del INRENA, memoria y mapa a escala 1:600 000, del año 2000.
- U.S.D.A. 1993; Soil Survey Manual.
- Schoenerberger, P.J., D.A. Wysocji an E.C. Benham. 1998. Field Book for Describing and Sampling Soils. National Soil Survey Center. United States Department of Agriculture. Lincoln, Nebraska.
- Zinck, J.A. 1988. Physiography and Soils, ITC Lectur Note SOL4.1.
 International Institute for Geoinformation and Eath Observacion (ITC), Ensche (NL). 156 pp.
- U.S.D.A. 2004; Soil Survey Laboratory Methods Manual.
- U.S.D.A. 2006; Soil Taxonomy.
- U.S.D.A. 1998; Geomorphic Description System.

Material cartográfico

Mapas topográficos o cartas nacionales levantados por el Instituto Geográfico Nacional (IGN), a escala 1:100 000 del año 1985 y actualizados recientemente. Las hojas utilizadas corresponden a 30t y 31t.

Material de campo

- Tarjetas de descripción de perfiles de suelos.
- Bolsas de plástico.
- Cinta métrica.
- Picota de geólogo.
- Tabla de colores de suelos (Munsell soil color charts).
- Instrumento portátil de sistema de posicionamiento global (GPS).
- Lampa, pico.

Imágenes Landsat del 2009 y 2005

Para el estudio se adquirieron imágenes de satélite Landsat recientes (2009 y 2005) con las cuales, además, se trabajó el mejoramiento geométrico y la

elaboración del mosaico. Las imágenes Landsat TM contienen cada una 7 bandas dentro del espectro electromagnético; tres a la porción del visible (1, 2, 3), tres a la del infrarrojo cercano (4, 5, 7) y uno a la del infrarrojo lejano o termal (6) las que se dividen en dos (6L y 6H) y tiene una resolución espacial de 120 metros para el sensor TM.

Cuadro N° 4.2.3-2
Combinación de bandas para el tipo de estudio

Combinación	Tipo de estudio
357	Erosión de suelos
354	Erosión de suelos
157	Clasificación de coberturas vegetales
742	Clasificación de coberturas vegetales
247	Clasificación de coberturas vegetales
145	Clasificación de coberturas vegetales
752	Geología
753	Geología

Fuente: Área de Ingeniería Cartográfica, Geodesia y Fotometría de la Universidad de Valladolid-España.

2. Método

Caracterización y Clasificación Natural de los Suelos

Para la elaboración del mapa de suelos, se recurrió al mapa geológico elaborado por el Instituto Geológico Minero y Metalúrgico (INGEMMET). La información ecológica o zonas de vida obtenida a partir de la información de la base de datos de recursos naturales del departamento de Cusco y Arequipa del INRENA, permitió la elaboración del mapa fisiográfico o de formas de tierra, mediante la interpretación analógica de la imagen de satélite a escala 1:50 000. En la imagen satelital se separan las Unidades contrastando los distintos elementos de la imagen como la textura, tonalidad, posición y otros aspectos que permitan diferenciar las geoformas.

Esta interpretación tuvo como base de información el mapa de curvas de nivel elaborado a escala 1:50 000. Cada unidad contó con la información de inclinación de la pendiente, litología superficial, características climáticas y formas del relieve sistematizado en Gran Paisaje, Paisaje y Subpaisaje. Este, constituye el mapa base para el estudio de suelos y la clasificación de tierras.

Para la ubicación de los puntos de muestreo se realizó de acuerdo a la fisiográfico, zonas de vida, geología y formaciones vegetales identificados en el campo. El muestreo fue intensivo en áreas representativas previamente seleccionadas (cuadro Nº 4.3.2-3). En el resto del área, el muestreo de suelos fue menos intensivo y permitió reforzar la información de las áreas de muestreo que permita la extrapolación a unidades no muestreadas.

Para el muestreo en campo se excavó calicatas de 1 m de ancho por 1,50 m de largo y 1,20 m o más de profundidad, según las condiciones del terreno. Con ello, se determinó el perfil modal de los suelos, cobertura vegetal, uso de la tierra y otras determinadas en campo, para cada zona homogénea representativa. La fase de campo incluyó el chequeo de los límites tentativos de las unidades de suelos determinadas previamente en gabinete en base a las características fisiográficas. Las principales características descritas sobre los suelos fueron las morfológicas, físicas, químicas y biológicas del suelo su potencial de restauración, su erodabilidad y su capacidad de uso.

La descripción general del perfil se realiza mediante la descripción de cada horizonte, se anotó el símbolo del horizonte, espesor del horizonte (en centímetros), color, manchas de color, textura, estructura, consistencia, contenido de fragmentos de rocas y minerales, capas endurecidas, contenido de carbonatos, sales solubles, restos de la actividad humana, rasgos de origen biológico, contenido de raíces, naturaleza del límite con el horizonte subyacente y el pH, los que han sido incluidos en la descripción temática del suelo registrada en tarjetas de descripción de perfiles.(Ver Anexo 4.2.3.b. Tabla de Características Edafológicas)

En el área de Estudio se han evaluado 31 puntos (sitios de muestreo) mediante la apertura de calicatas, obteniéndose 77 muestras de suelos con fines de caracterización.

Las muestras de suelos han sido analizadas en el Laboratorio de Suelos y Plantas de la Universidad Nacional Agraria La Molina, para determinar sus propiedades físicos-químicos significativas para rehabilitación y revegetación, tales como: pH, acidez total, materia orgánica, salinidad, sodio, porcentaje de saturación, textura (% de arena, limo y arcilla), nutrientes (potasio, fósforo, calcio sodio, magnesio). Esta información será utilizada para evaluar la sensibilidad orientada a alteraciones (físicas y químicas) y como base para el desarrollo de planes detallados de rehabilitación y revegetación. (Ver anexo de resultados: 4.2.3.c)

El cuadro Nº 4.3.2-3, se observa la relación de puntos de muestreo en el área de estudio. La distribución en el área de estudio se muestra en el plano CLS-96200-1-AM-11.

Cuadro Nº 4.2.3-3
Calicatas Para Caracterización de Suelos

Punto de	Coordenadas (PSAD – 56)				
muestreo	Х	Y			
M - 01	217 464	8 318 886			
M - 02	219 190	8 317 982			
M - 03	219 157	8 315 547			
M - 04	217 853	8 314 815			

Punto de	Coordenadas (PSAD – 56)				
muestreo	Х	Υ			
M - 05	214 724	8 315 971			
M - 06	214 619	8 320 884			
M - 07	210 734	8 325 809			
M - 08	223 747	8 318 226			
M - 09	226 261	8 318 766			
M - 10	232 130	8 319 238			
M - 11	193 905	8 316 335			
M - 12	191 046	8 316 054			
M - 13	196 742	8 312 335			
M - 14	201 839	8 303 609			
M - 15	204 827	8 294 558			
M - 16	226 391	8 350 701			
M - 17	227 091	8 351 992			
M - 18	234 057	8 371 182			
M - 19	234 543	8 370 332			
M - 20	230 203	8 361 835			
M - 21	234 995	8 358 954			
M - 22	228 308	8 347 573			
M - 23	228 305	8 346 615			
M - 24	228 968	8 344 270			
M - 25	235 249	8 342 846			
M - 26	234 333	8 343 684			
M - 27	235 311	8 344 334			
M - 28	229 954	8 332 707			
M - 29	229 454	8 311 698			
M - 30	237 626	8 303 071			
M - 31	237 059	8 285 096			

Fuente: CESEL S.A. 2010.

3. Análisis de las Muestras de Suelo en el laboratorio

Para los análisis de laboratorio, se han seguido los protocolos establecidos en los laboratorios a nivel nacional, los cuales son aplicados en el Laboratorio de

Análisis de Suelos de la Facultad de Agronomía de la Universidad Nacional Agraria La Molina, tal como se muestra en el cuadro siguiente.

Cuadro Nº 4.2.3-4
Características y Métodos para el Análisis de Suelos

Características	Métodos
Análisis Textural	Método del Hidrómetro de Bouyoucos
Conductividad Eléctrica	Lectura del extracto de saturación en conductímentro
рН	Método del Potenciómetro, relación suelo-agua 1:1
Calcáreo Total	Método gaso-volumétrico o del Calcímetro
Materia Orgánica	Método de Walkley y Black, oxidación del carbono
Fósforo Disponible	Método de Olsen, Extractor NaHCO ₃ 0.5M, pH 8.5; para suelos alcalinos. Método de Bray para suelos ácidos.
Potasio Disponible	Método de Peech, extractor Acetato de Sodio, pH 4.8
Capacidad de Intercambio Catiónico (CIC)	Método del Acetato de Amonio 1N, pH 7.0
Cationes Cambiables	Determinaciones en el Extracto de Amonio: Ca++: Método del E.D.T.A Mg++:Método del Amarillo de Tiazol K+: Fotómetro de Llama Na+: Fotómetro de Llama Al+++ + H+: Método de Yuan (KCI, N)

Fuente: Universidad Nacional Agraria la Molina

c. Resultados del Estudio de Suelos

1. Suelos según su Origen

Teniendo en cuenta los diversos tipos de materiales parentales y posiciones fisiográficas de los suelos de la zona estudiada, se ha identificado un esquema general del patrón distributivo de los mismos según su origen.

Suelos Coluviales

Estos suelos se han originado de los materiales que han sido transportados por la fuerza de la gravedad desde las cimas hacia las vertientes y pie de monte del paisaje montañoso. Los suelos son de regular a moderadamente profundos, predominantemente gravosos y presentan un desarrollo pedogenético moderado. Dentro de estos se tiene a la unidad edáfica Achuyo, Quilcahuayco,

Chilamayo, Tulpa, Acharrape, Humaccala, Anchaca, Achaccollo, Curane, Yauri, Suyto, Cullpa, Palliapata, Altaruma y Tisco.

Suelos Derivados de Materiales Fluvio-Glaciares

Generalmente son orgánicos, cubiertos por bofedales, moderadamente profundos a muy profundos y están limitados por la presencia de un nivel freático superficial; son de drenaje imperfecto a pobre, con reacción ligera a extremadamente ácida y baja fertilidad natural. Este grupo de suelos se distribuye en forma localizada en la parte alta dentro de la zona de páramo y tundra. Las zonas cóncavas presentan el espejo de agua superficial en la época de lluvias, de enero a abril y permiten la permanencia del ecosistema "bofedal". Dentro de estos se tiene a las unidades edáficas, Llacmapampa y Ccallcca.

Suelos Aluviales

Estos se ubican en las planicies aluviales y se hallan formando geoformas típicas de llanuras de terrazas aluviales y conos aluvio-locales. Terrazas aluviales; estos suelos se hallan distribuidos en la llanura aluvial generada por los ríos. Por lo general, son suelos profundos, su gradiente es plana a ligeramente inclinada, son suelos muy jóvenes, con débil desarrollo pedogénetico; el perfil tipo del suelo es Ap-C-C2-C3. Dentro de estos se tiene a la unidad edáfica Anamarca, Pusa, Angostura, Palcapampa, Fluvial I, Fluvial II, Tarucuyo, Huayllupata.

Suelos Derivados de Materiales Residuales

Suelos que se han originado *in-situ*, desarrollados localmente por meteorización a partir de rocas de naturaleza litológica intrusivo (granodiorita), se encuentran distribuidos en algunas partes de la zona de estudio, ocupando posiciones fisiográficas con amplio rango de pendientes.

Generalmente, son suelos sin desarrollo genético, textura media a moderadamente gruesa, reacción ácida a fuertemente alcalina, con presencia de materiales gruesos de variadas formas y tamaños dentro del perfil, en cantidades variables. Dentro de esto, se tiene a la unidad edáfica Pucara, Tocraya, Huaruna, Antuyo,

2. Regímenes de Temperatura y Humedad de los Suelos

El régimen de temperatura del suelo se mide a 50 cm de profundidad, asumiéndose que es igual a la temperatura del aire más 1° C (Departamento de Agricultura de los Estados Unidos, 1993). En la zona evaluada se determino un régimen de temperatura: en las zonas altas (mayor de 4000 metros de altitud), el Cryico, en el cual la temperatura media anual de los suelos es menor de 6 $^{\circ}$ C.

El régimen de humedad de los suelos se mide en una zona conocida como sección de control, la cual depende de la clase textural. Para los suelos arcillosos esta sección se ubica entre los 10 y 30 cm de profundidad; en los suelos francos,

entre los 20 y 60 cm; y en los arenosos, entre los 30 y 90 cm de profundidad. En las laderas y en la mayor parte del área montañosa, el régimen de humedad es el ústico, encontrándose la sección de control seca en algunas partes o en toda por 90 o más días acumulativos en años normales; sin embargo, está húmeda en alguna parte bien por más de 180 días acumulativos por año o por más de 90 días consecutivos. Por otra parte, en superficies planas de orígenes fluvio-glacial el régimen de humedad es ácuico, el cual es reductor y con el suelo prácticamente libre de oxígeno disuelto, porque está saturado con agua gran parte de año, únicamente en los meses de menor precipitación presentan condiciones de oxidación.

Cuadro Nº 4.2.3-5
Clasificación Natural de los Suelos

Soil Taxonomy (2006)				Nombre común
Orden	Suborden	Gran Grupo	Subgrupo	de suelos
	Fluvents	Cryofluvents	Typic Cryofluvents	Anamarca (Ana) Angostura (Ang) Fluvial I (Flu) Fluvial II (Flv) Huayllupata (Huay)
Entisols	tisols		Aquic Cryofluvents	Palcapampa (Pal)
Littisois	Entisols		Typic Cryorthents	Tulpa (Tu) Suyto (Su) Tisco (Ti)
Orthents Cryorthents		Cryotthents	Lithic Cryorthents	Chilamayo (Chi) Achaccollo (Acha) Altaruma (Al)
Inceptisols	ceptisols Cryepts Haplocryepts		Fluventic Haplocryepts	Tarucuyo (Tar)
			Ustic Haplocryepts	Antuyo (ant)
	Aquolls	Cryaquolls	Typic Cryaquolls	Pusa (Pu)
Mollisols	Mollisols Cryolls Haplocryolls		Ustic Haplocryolls	Achuyo (Achu) Curane (Cu) Yauri (Ya) Antacollo (Anta)
			Cumulic Haplocryolls	Ichocollo (Icho) Ccallcca (Cca)
Histosols	Fibrist	Cryofibrist	Hydric Cryofibrist	Llacmapampa (Lla)
Andisols	Cryands	Haplocryands	Lithic Haplocryands	Quilcahuayco (Qui) Huaruna (Hua) Acharrape (Ach) Anchaca (An) Cullpa (Cull) Palliapata (Pall)

	Soil Taxonomy (2006)			
Orden	Suborden	Gran Grupo	Subgrupo	de suelos
				Pucara (Puc)
			Typic Haplocryands	Tocraya (To)
				Humaccala (Hum)

Fuente: CESEL S.A. 2010.

Cuadro Nº 4.2.3-6 Superficies de las Unidades Edáficas

		Superficie			Superficie	
CONSOCIACION	Símbolo	На	%	Símbolo	Ha	%
				Acha/B	372,51	0,14
Ashasalla	A ob o	2.076.0	4.05	Acha/C	1135,7	0,41
Achaccollo	Acha	2 876,0	1,05	Acha/D	336,24	0,12
				Acha/E	1 031,55	0,38
				Ach/B	5 577,6	2,03
Acharrana	Λob	0 440 70	2.07	Ach/C	876,56	0,32
Acharrape	Ach	8 418,72	3,07	Ach/D	960,25	0,35
				Ach/E	1 004,31	0,37
				Achu/B	3 188,3	1,16
Achuyo	Achu	9 459,37	3,45	Achu/C	4 963,28	1,81
				Achu/D	1307,79	0,48
Altaruma	Al	125,68	0,05	Al/F	125,68	0,05
Anamarca	Ana		1,40	Ana/A	2 446,84	0,89
		3 834,11		Ana/B	935,75	0,34
				Ana/C	451,52	0,16
	An	6 431,46	2,34	An/A	3 289,56	1,20
Anchaca				An/B	898,76	0,33
				An/C	2 243,14	0,82
Angestura	۸۳۵	13 159,61	4,79	Ang/A	7 967,83	2,90
Angostura	Ang			Ang/B	5 191,78	1,89
Antacollo	Anta	5 470,85	1,99	Anta/C	4 542,81	1,65
Antacollo	Ania	5 470,65	1,99	Anta/D	928,04	0,34
Antinio	Ant	2 284,29	0,83	Ant/C	1 574,12	0,57
Antuyo	Ant	2 204,29	0,03	Ant/D	710,17	0,26
				Cca/A	226,58	0,08
Ccallcca	Cca	1 309,7	0,48	Cca/B	218,41	0,08
				Cca/C	864,71	0,31
Chilomovo	Chi	1 000 25	0.60	Chi/D	1 138,73	0,41
Chilamayo	Cili	1 900,35	0,69	Chi/C	761,62	0,28
Cullpa	Cull	7 452 06	2 71	Cull/C	2 290,05	0,83
Culipa	Cuii	7 453,06	2,71	Cull/D	5 163,01	1,88
Curane	Cu	1 389,82	0,51	Cu/C	1 327,81	0,48

		Superficie			Superficie	
CONSOCIACION	Símbolo	На	%	Símbolo	На	%
				Cu/D	62,01	0,02
Elmial I	FI.	4 500 00	0.50	Flu/A	1 558,65	0,57
Fluvial I	Flu	1 590,69	0,58	Flu/B	32,04	0,01
Fluvial II	Flv	1 124,72	0,41	Flv/A	1 124,72	0,41
Huaruna	Hua	6 363,71	2,32	Hua/A	6 363,71	2,32
Huayllupata	Huay	2 666,44	0,97	Huay/B	2 666,44	0,97
				Icho/A	237,95	0,09
Ichocollo	Icho	706,16	0,26	Icho/B	68,62	0,02
				Icho/C	399,59	0,15
				Pal/A	256,62	0,09
Palcapampa	Pal	1 191,59	0,43	Pal/B	438,26	0,16
				Pal/C	496,71	0,18
				Pall/A	12,8	0,00
Palliapata	Pall	711,04	0,26	Pall/B	274,41	0,10
				Pall/C	423,83	0,15
				Puc/B	19 523,38	7,11
6		00 405 44	10,36	Puc/C	4 712,35	1,72
Pucara	Puc	28 435,14		Puc/D	3 586,31	1,31
				Puc/E	613,1	0,22
Duran	D.	5 005 50	0.05	Pu/A	2 459,68	0,90
Pusa	Pu	5 635,58	2,05	Pu/B	3 175,9	1,16
				Qui/B	456,78	0,17
Outlantourus		2 312,89	0,84	Qui/C	1 089,39	0,40
Quilcahuayco	Qui			Qui/D	138,5	0,05
				Qui/E	628,22	0,23
				Su/A	1 100,25	0,40
Suyto	Su	1 339,37	0,49	Su/B	185,74	0,07
				Su/C	53,38	0,02
T	Т	4 004 5	0.00	Tar/A	1 814,86	0,66
Tarucuyo	Tar	1 894,5	0,69	Tar/B	79,64	0,03
Tions	т:	2 404 20	0.07	Ti/C	1 816,68	0,66
Tisco	Ti	2 401,29	0,87	Ti/D	584,61	0,21
Toorovo	т.	1.024.04	0.20	To/B	203,3	0,07
Tocraya	То	1 034,94	0,38	To/C	831,64	0,30
Tulpa	Tu	690,53	0,25	Tu/B	690,53	0,25
Yauri	Ya	9 282,66	3,38	Ya/A	9 282,66	3,38
Llaamanamaa	l la	220.42	0.40	Lla/A	89,96	0,03
Llacmapampa	Lla	329,42	0,12	Lla/B	239,46	0,09
Misceláneo erosión	ME	10 513,7	3,83	ME	10 513,7	3,83
Misceláneo lítico	ML	54 214,31	19,75	ML	54 214,31	19,75

		Superficie			Superfi	cie
CONSOCIACION	Símbolo	На	%	Símbolo	На	%
ASOCIACIONES						
	Achu -	0.040.70		Achu - Qui/B	1 226,05	0,45
Achuyo - Quilcahuayco	Qui	2 646,72	0,96	Achu - Qui/C	1 420,67	0,52
Achuyo - Tocraya	Achu - To	1 543,91	0,56	Achu - To/C	1 543,91	0,56
Chilamayo - Misceláneo lítico	Chi - ML	673,05	0,25	Chi - ML/C	673,05	0,25
Cullpa - Misceláneo lítico	Cull - ML	7 472,71	2,72	Cull - ML/D	7 472,71	2,72
Humaccala - Misceláneo lítico	Hum - ML	1 722,38	0,63	Hum - ML/B	1 722,38	0,63
Misceláneo erosion - Achuyo	ME - Achu	146,5	0,05	ME - Achu/C	146,5	0,05
Misceláneo lítico -	MI Ash	1 504 12	0.50	ML - Ach/B	48,35	0,02
Acharrape	ML - Ach	1 594,12	0,58	ML - Ach/C	1 545,77	0,56
Misceláneo lítico - Achullo	ML - Achu	243,25	0,09	ML - Achu/C	243,25	0,09
Misceláneo lítico -	NAL A.	4 000 40	0.00	ML - An/B	1 155,35	0,42
Anchaca	ML - An	1 889,43	0,69	ML - An/D	734,08	0,27
Misceláneo lítico - Huaruna				ML - Hua/A	871,86	0,32
	ML - Hua	7 051,76	2,57	ML - Hua/B	301,84	0,11
				ML - Hua/C	5 878,06	2,14
Misceláneo lítico -	MI D-II	4.4.000.05	E 45	ML - Pall/A	4 570,84	1,66
Palliapata	ML - Pall	14 960,35	5,45	ML - Pall/B	10 389,51	3,78
Misceláneo lítico -	ML - Qui	2 200 40	1 17	ML - Qui/C	983,78	0,36
Quilcahuayco	IVIL - QUI	3 209,48	1,17	ML - Qui/D	2225,7	0,81
Misceláneo lítico - Tulpa	ML - Tu	1 028,8	0,37	ML - Tu/C	1 028,8	0,37
Misceláneo Minero	MM	32,45	0,01	MM	32,45	0,01
Misceláneo Nival	MN	8 680,62	3,16	MN	8 680,62	3,16
				Puc - ML/B	760,85	0,28
Pucara - Misceláneo	Puc - ML	6 028,52	0.00	Puc - ML/C	4 430,66	1,61
lítico	Puc - IVIL	0 020,32	2,20	Puc - ML/D	304,77	0,11
				Puc - ML/E	532,24	0,19
Quilcahuayco - Achuyo	Qui -	3 023,94	1,10	Qui - Achu/C	1 250,31	0,46
Quilcanuayco - Achuyo	Achu	3 023,94	1,10	Qui - Achu/D	1 773,63	0,65
Quilcahuayco -	Qui - ML	3 815,73	1,39	Qui - ML/C	888,58	0,32
Misceláneo lítico	Qui - IVIL	3 6 13,73	1,39	Qui - ML/D	2 927,15	1,07
				Ti - ML/C	292,01	0,11
Tisco - Misceláneo lítico	Ti - ML	9 254,14	2 27	Ti - ML/D	6 076,55	2,21
risco - iviisceiarieo illico	II - IVIL	J 204,14	3,37	Ti - ML/E	2 368,29	0,86
				Ti - ML/F	517,29	0,19
OTROS						
Centros poblados		521,72	0,19	Cenpo	521,72	0,19
Isla		86,28	0,03	Isla	86,28	0,03

"Estudio de Impacto Ambiental de la Represa de Angostura y Gestión Ambiental a Nivel Definitivo" Autoridad Nacional del Agua "ANA"

		Superficie			Superficie	
CONSOCIACION	Símbolo	На	%	Símbolo	На	%
Laguna		886,23	0,32	Laguna	886,23	0,32
Río		1343,08	0,49	Río	1 343,08	0,49
Playa		122,82	0,04	Playa	122,82	0,04
Total		274529,73	100,0		274 529,73	100,0

Fuente: CESEL S.A. 2010.

Cuadro Nº 4.2.3-7
Características Físico-Químicas de los Suelos

Nombre del suelo	Textura	Calcáreo	Pedregosidad superficial	Materia Orgánica	рН	Nitrógeno	Fósforo	Potasio	CIC	Nivel de Fertilidad
Anamarca	Franco arenoso	Nulo	Moderadamente pedregoso	Medio	Fuertemente ácida (pH 5,40)	Medio	Bajo	Bajo	Alto	Bajo
Achuyo	Franco arenoso	Nulo	Pedregoso	Alto	Muy fuertemente ácida (pH 4,82)	Medio	Bajo	Medio	Alto	Medio
Quilcahuayco	Franco arenoso	Nulo	Muy pedregoso	Medio	Muy fuertemente ácida (pH 4,89)	Bajo	Bajo	Medio	Bajo	Bajo
Pusa	Franco arenoso	Nulo	Libre	Alto	Moderadamente ácida (pH 6,06)	Bajo	Medio	Alto	Alto	Medio
Pucara	Franco arenoso	Nulo	Pedregoso	Alto	Fuertemente ácida (pH 5,18)	Medio	Bajo	Alto	Alto	Medio
Angostura	Franco arenoso	Nulo	Moderadamente pedregoso	Medio	Moderadamente ácida (pH 6,09)	Bajo	Alto	Alto	Bajo	Medio
Chilamayo	Franco arenoso	Nulo	Muy pedregoso	Alto	Muy fuertemente ácida (pH 4,95)	Medio	Bajo	Alto	Alto	Medio
Palcapampa	Orgánico	Nulo	Libre	Alto	Moderadamente ácida (pH 6,08)	Medio	Alto	Alto	Alto	Alto
Tocraya	Franco	Nulo	Libre	Medio	Muy fuertemente ácida (pH 4,97)	Bajo	Medio	Alto	Alto	Medio
Huaruna	Franco arenoso	Nulo	Muy pedregoso	Medio	Muy fuertemente ácida (pH 4,85)	Bajo	Bajo	Bajo	Bajo	Bajo
Llacmapampa	Orgánico	Nulo	Libre	Alto	Ligeramente ácida (pH 6,34)	Bajo	Medio	Alto	Alto	Medio
Tulpa	Franco limoso	Nulo	Pedregoso	Alto	Muy fuertemente ácida (pH 4,58)	Medio	Bajo	Alto	Alto	Medio
Acharrape	Franco	Nulo	Pedregoso	Medio	Fuertemente	Bajo	Bajo	Bajo	Bajo	Bajo

"Estudio de Impacto Ambiental de la Represa de Angostura y Gestión Ambiental a Nivel Definitivo" Autoridad Nacional del Agua "ANA"

Nombre del suelo	Textura	Calcáreo	Pedregosidad superficial	Materia Orgánica	рН	Nitrógeno	Fósforo	Potasio	CIC	Nivel de Fertilidad
	arenoso				ácida (pH 5,48)					
Humaccala	Orgánico	Nulo	Pedregoso	Alto	Muy fuertemente ácida (pH 4,93)	Medio	Bajo	Alto	Alto	Medio
Anchaca	Franco arenoso	Nulo	Muy pedregoso	Alto	Muy fuertemente ácida (pH 5,09)	Medio	Alto	Alto	Alto	Alto
Fluvial I	Franco arenoso	Nulo	Pedregoso	Medio	Moderadamente ácida (pH 5,61)	Bajo	Bajo	Alto	Medio	Bajo
Tarucuyo	Franco arenoso	Nulo	Ligeramente pedregoso	Alto	Muy fuertemente ácida (pH 4,54)	Medio	Alto	Alto	Alto	Alto
Achaccollo	Franco arenoso	Nulo	Pedregoso	Alto	Extremadamente ácida (pH 4,27)	Medio	Medio	Alto	Alto	Medio
Curane	Franco arenoso	Nulo	Ligeramente pedregoso	Medio	Muy fuertemente ácida (pH 5,56)	Bajo	Bajo	Bajo	Alto	Bajo
Yauri	Franco arenoso	Nulo	Libre	Bajo	Moderadamente ácida (pH 5,92)	Bajo	Bajo	Alto	Bajo	Bajo
Huayllupata	Arenoso	Nulo	Ligeramente pedregoso	Bajo	Fuertemente ácida (pH 5,44)	Bajo	Alto	Alto	Bajo	Medio
Suyto	Franco	Nulo	Ligeramente pedregoso	Alto	Muy fuertemente ácida (pH 4,89)	Medio	Alto	Alto	Alto	Alto
Antuyo	Franco arenoso	Nulo	Ligeramente pedregoso	Medio	Muy fuertemente ácida (pH 5,04)	Bajo	Medio	Alto	Alto	Medio
Cullpa	Franco arenoso	Nulo	Muy pedregoso	Alto	Fuertemente Ácida (pH 5,50)	Medio	Bajo	Alto	Alto	Medio
Antacollo	Franco limoso	Nulo	Muy pedregoso	Alto	Fuertemente ácida (pH 5,18)	Medio	Bajo	Alto	Alto	Medio
Palliapata	Franco arenoso	Nulo	Muy pedregoso	Medio	Muy fuertemente ácida (pH 5,01)	Medio	Medio	alto	Alto	Medio

"Estudio de Impacto Ambiental de la Represa de Angostura y Gestión Ambiental a Nivel Definitivo" Autoridad Nacional del Agua "ANA"

Nombre del suelo	Textura	Calcáreo	Pedregosidad superficial	Materia Orgánica	рН	Nitrógeno	Fósforo	Potasio	CIC	Nivel de Fertilidad
	Franco	Nulo	Libre	Alto	Fuertemente	Medio	Bajo	Medio	Alto	Bajo
Ichocollo	limoso	INGIO	LIDIE		ácida (pH 5,32)	IVICUIO	Dajo	IVIGUIO	Aito	Бајо
	Franco	Nulo	Libre	Alto	Fuertemente	Alto	Alto	Alto	Alto	Alto
Ccallca	arenoso	Nuio	Libre		ácida (pH 5,12)	Ailu	Aito	۸۱۱۵	Ailu	Allo
	Arena franca	Nulo	Muy pedregoso	Medio	Muy fuertemente	Bajo	Bajo	Bajo	Bajo	Bajo
Altaruma	Alena nanca	INGIO	Widy pediegoso		ácida (pH 5,05)	Dajo	Dajo	Dajo	Dajo	Бајо
	Franco	Nulo	Pedregoso	Medio	Fuertemente	Bajo	Medio	Alto	Alto	Medio
Tisco	arenoso	INUIO	Fedregoso		ácida (pH 5,28)	Dajo	Medio	Alto	Allo	Medio
	Franco	Nulo	Pedregoso	Medio	Moderadamente	Bajo	Alto	Alto	Medio	Medio
Fluvial II	arenoso	INUIU	r euregoso		ácida (pH 5,79)	Dajo	Ailu	AILU	IVICUIO	ivieulo

Fuente: CESEL S.A. 2010.

3. Subgrupos Clasificados en el Área de Estudio.

> Subgrupo Typic Cryofluvents.

Dentro de este subgrupo se tiene los suelos Anamarca, Angostura, Fluvial I, Fluvial II y Huayllupata que a continuación se describen:

Consociación Anamarca (Símbolo Ana)

Se distribuye dentro de la zona de vida de páramo muy húmedo y tundra pluvial. Son suelos que se han originado a partir de materiales transportados (aluvial), que se distribuyen dentro de una fisiografía de Planicie aluvial.

Sus características edáficas están expresadas en un perfil A-C-2C con epipedón ócrico de color pardo con textura franco arenoso y estructura granular, con alto contenido de gravas y guijarros redondeados a 60 cm de profundidad, estas cubiertos por una vegetación donde predomina el césped de puna seguido por los pajonales, las cuales se encuentran muy degradados por un excesivo pastoreo. Sus características químicas están dadas por una reacción fuertemente ácida en superficie (pH 5,40), con contenidos medio de materia orgánica (3,48%); bajo en fósforo disponible (3,40 ppm) y con contenido medio de potasio disponible (123,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea baja. De acuerdo al Soil Taxonomy este suelo se puede clasificar como Typic Cryofluventes. Las características ecogeográficas, morfológicas y físico—químicas de este suelo, se muestran en la Ficha de Evaluación de Campo N°001, ver anexo de suelos 4.2.3.a.

Consociación Angostura (Símbolo Ang)

Se distribuye dentro de la zona de vida de páramo muy húmedo y tundra pluvial. Son suelos que se han originado a partir de materiales transportados (aluvial) y que se distribuyen dentro de una fisiografía de Planicie aluvial.

Sus características edáficas están expresadas en un perfil A-C con epipedón ócrico de color pardo con textura franco arenoso y estructura granular, con alto contenido de gravas y guijarros redondeados en todo el perfil. Sus características químicas están dadas por una reacción moderadamente ácida en superficie (pH 6,09), contenido medio de materia orgánica (2,30%); alto en fósforo disponible (28,30 ppm) y alto en potasio disponible (382,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea media. De acuerdo al Soil Taxonomy este suelo se puede clasificar como Typic Cryofluventes. Las características ecogeográficas, morfológicas y físicoquímicas de este suelo, se muestran en la Ficha de Evaluación de Campo N° 006, ver anexo de suelos 4.2.3.a.

Consociación Fluvial I (Flu) y Fluvial II (Flv)

Sus características edáficas están expresadas en un perfil A-C con epipedón ócrico de color pardo oscuro, con textura arenosa y estructura fino granular, con presencia de gravas y guijarros redondeados a partir de los 15 cm de profundidad en el perfil y pedregoso en superficie. Se distribuyen en la márgenes del río Apurímac y en el río Colca. Sus características químicas están dadas por una reacción moderadamente ácida en superficie (pH 5,61) contenido medio de materia orgánica (3,70 %); bajo en fósforo disponible (3,80 ppm) y con contenido alto de potasio disponible (314,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea media. De acuerdo al Soil Taxonomy este suelo se puede clasificar como Typic Cryofluventes. Las características ecogeográficas, morfológicas y físico—químicas de este suelo, se muestran en la Ficha de Evaluación de Campo N°0015, ver anexo de suelos 4.2.3.a.

Consociación Huayllupata (Símbolo Huay)

Sus características edáficas están expresadas en un perfil A-C con epipedón ócrico de color pardo, con textura arenosa y estructura granular, presentan gravas redondeadas en todo el perfil ocupan un 35% de los horizontes. Sus características químicas están dadas por una reacción fuertemente ácida en superficie (pH 5,44) bajos de materia orgánica (1,59 %); alto en fósforo disponible (16,10 ppm) y con contenido alto de potasio disponible (231,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea media. De acuerdo al Soil Taxonomy este suelo se puede clasificar como Typic Cryofluventes. Las características ecogeográficas, morfológicas y físicoquímicas de este suelo, se muestran en la Ficha de Evaluación de Campo N° 0021, ver anexo de suelos 4.2.3.a.

Subgrupo Aquic Cryofluvents

Dentro de este subgrupo se encuentra la unidad edáfica Palcapampa y se describe a continuación:

Consociación Palcapampa (Símbolo Pal)

Se distribuye dentro de la zona de vida de páramo muy húmedo y tundra, húmedo. Son suelos que se han formado a partir de materiales vegetales (raíces, hojas), acumulados debido a la ligera mineralización que ocurre como consecuencia de las bajas temperaturas y por el ambiente saturado de agua en que se encuentran.

Sus características edáficas están expresadas en un perfil O-C-2C con epipedón ócrico de color pardo muy oscuro, orgánico y estructura granular, libre de gravas y guijarros hasta los 45 cm de profundidad, a partir de ahí se perciben gravas producto del arrastre fluvial. Sus características químicas están dadas por una reacción moderadamente ácida en superficie (pH 6,08), alto contenido de materia orgánica (33,1 %); alto en fósforo disponible (44,20 ppm) y con contenido alto de potasio disponible (773,00 ppm), las cuales determinan que la

fertilidad natural de la capa arable sea alta; pero esta fertilidad en realidad es baja debido a condiciones oxidoreductivas del medio que no realiza una descomposición optima de la materia orgánica. De acuerdo al Soil Taxonomy este suelo se puede clasificar como Aquic Cryofluventes. Las características ecogeográficas, morfológicas y físico—químicas de este suelo, se muestran en la Ficha de evaluación de campo N°008, ver anexo de s uelos 4.2.3.a.

Subgrupo Typic Cryorthents

Dentro de este subgrupo se tiene los suelos Tulpa, Suyto y Tisco que a continuación se describe sus características principales:

Consociación Tulpa (Símbolo Tu)

Sus características edáficas están expresadas en un perfil A-C con epipedón ócrico de color pardo con textura franco limoso y estructura granular, muy gravosos y guijarroso en todo el perfil, con vegetación muy escasa, estos suelos se encuentra muy erosionados y la vegetación predominante son "tolares" (*Parastrephia lepidophylla Parastrephia guadrangularis, Baccharis incarum y Diplostephium tacurense*). Sus características químicas están dadas por una reacción muy fuertemente ácida en superficie (pH 4,58) altos en materia orgánica (8,50 %); bajo en fósforo disponible (4,80 ppm) y con contenido medio de potasio disponible (181,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea media. De acuerdo al Soil Taxonomy este suelo se puede clasificar como Typic Cryorthents. Las características ecogeográficas, morfológicas y físico—químicas de este suelo, se muestran en la Ficha de Evaluación de Campo N°0012, ver anexo de suelos 4.2.3.a.

Consociación Suyto (Símbolo Su)

Sus características edáficas están expresadas en un perfil A-AC-C con epipedón ócrico de color pardo franco y estructura granular, presenta fragmentos del tamaño de gravas y guijarros redondeados a 90 cm de profundidad, presenta buena retención de humedad y buena aireación. Sus características químicas están dadas por una reacción muy fuertemente ácida en superficie (pH 4,89) bajos de materia orgánica (4,96 %); alto en fósforo disponible (16,60 ppm) y con contenido alto de potasio disponible (503,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea alta. De acuerdo al Soil Taxonomy este suelo se puede clasificar como Typic Cryorthents. Las características ecogeográficas, morfológicas y físico—químicas de este suelo, se muestran en la Ficha de Evaluación de Campo N°022, ver anexo de s uelos 4.2.3.a.

Consociación Tisco (Símbolo Ti)

Sus características edáficas están expresadas en un perfil A-AC-Cr con epipedón ócrico de color pardo franco arenoso y estructura granular, presenta un topsoil delgado (15 cm), con presencia de gravas, guijarros y piedras el perfil y moderadamente pedregoso en superficie, estos están cubiertos por una vegetación de tipo pajonal y césped de puna, con presencia de pequeños

afloramientos líticos no cartografiables. Sus características químicas están dadas por una reacción fuertemente ácida en superficie (pH 5,28), contenido medio en materia orgánica (2,70 %); medios en fósforo disponible (11,70 ppm) y altos en potasio disponible (371,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea media. De acuerdo al Soil Taxonomy este suelo se puede clasificar como Typic Cryorthents. Las características ecogeográficas, morfológicas y físico—químicas de este suelo, se muestran en la Ficha de Evaluación de Campo N°030, ver anexo de suelos 4.2.3.a.

> Subgrupo Lithic Cryorthents

Dentro de este subgrupo se tiene los suelos Chilamayo, Achaccollo, Altaruma que a continuación se describe sus características principales:

Consociación Chilamayo (Símbolo Chi)

Se distribuye dentro de la zona de vida de páramo muy húmedo y tundra muy húmeda. Son suelos que se han originado a partir de materiales transportados que se distribuyen dentro de una fisiografía de vertiente erosional, son suelos con una erosión moderada afectada por la quema indiscriminada de pastos.

Sus características edáficas están expresadas en un perfil A-AC-C con epipedón ócrico de color pardo con textura franco arenoso y estructura granular, son moderadamente gravoso en el perfil y muy pedregoso en superficie. Sus características químicas están dadas por una reacción muy fuertemente ácida en superficie (pH 4,95), altos en materia orgánica (6,40%); bajo en fósforo disponible (6,50 ppm) y con contenido alto de potasio disponible (239,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea baja. De acuerdo al Soil Taxonomy este suelo se puede clasificar como Lithic Cryorthents. Las características ecogeográficas, morfológicas y físico—químicas de este suelo, se muestran en la Ficha de Evaluación de Campo N° 007, ver anexo de suelos 4.2.3.a.

Consociación Achoccollo (Símbolo Acha)

Sus características edáficas están expresadas en un perfil A-C-R con epipedón ócrico de color pardo pálido, con textura franco arenoso y estructura granular, con presencia de gravas y guijarros angulosos en el perfil y presenta contacto lítico a 50 cm, pedregoso en superficie. Sus características químicas están dadas por una reacción extremadamente ácida en superficie (pH 4,27) altos en materia orgánica (4,00 %); medios en fósforo disponible (9,10 ppm) y con contenido alto de potasio disponible (238,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea media. De acuerdo al Soil Taxonomy este suelo se puede clasificar como Lithic Cryorthents. Las características ecogeográficas, morfológicas y físico—químicas de este suelo, se muestran en la Ficha de evaluación de campo N°0018, ver anexo de suelos 4.2.3.a.

Consociación Altaruma (Símbolo AI)

Sus características edáficas están expresadas en un perfil A-C1-Cr2 con epipedón ócrico de color pardo, de textura arena franca y estructura granular fino y débil, presenta un topsoil muy delgado menor de 10 cm, es muy guijarroso en todo el perfil y presencia de piedras a partir de un metro de profundidad, su principal limitación es la pendiente que es extremadamente empinada (>75%). Sus características químicas están dadas por una reacción muy fuertemente ácida en superficie (pH 5,05), bajos de materia orgánica (2,50 %); bajo en fósforo disponible (4,80 ppm) y con contenido bajo de potasio disponible (98,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea baja. De acuerdo al Soil Taxonomy este suelo se puede clasificar como Lithic Cryorthents. Las características ecogeográficas, morfológicas y físico—químicas de este suelo, se muestran en la Ficha de Evaluación de Campo N° 029, ver anexo de suelos 4.2.3.a.

Subgrupo Fluventic Haplocryepts

Dentro de este subgrupo se tiene al suelo Tarucuyo que a continuación se describe sus características principales:

Consociación Tarucuyo (Símbolo Tar)

Sus características edáficas están expresadas en un perfil A-AC-C con epipedón ócrico de color pardo pálido, con textura franco arenoso y estructura granular, con presencia de gravas y guijarros redondeados a partir de los 20 cm de profundidad en el perfil y ligeramente pedregoso en superficie. Estos suelos son compactos y se distribuyen en la margen izquierda del río Apurímac desde Tarucuyo hasta la confluencia con el río Huayllumayo, en estas áreas se siembran pastos y cultivos. Sus características químicas están dadas por una reacción muy fuertemente ácida en superficie (pH 4,54) altos en materia orgánica (4,17 %); altos en fósforo disponible (15,20 ppm) y con contenido alto en potasio disponible (231,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea baja. De acuerdo al Soil Taxonomy este suelo se clasificar como Fluventic Haplocryepts. Las características ecogeográficas, morfológicas y físico-químicas de este suelo, se muestran en la Ficha de Evaluación de Campo N°0017, ver anexo de suelos 4.2.3.a.

Subgrupo Ustic Haplocryepts

Consociación Antuyo (Símbolo Ant)

Sus características edáficas están expresadas en un perfil A-B-C con epipedón ócrico de color pardo rojizo oscuro franco arenoso y estructura granular, no presenta fragmentos groseros en el perfil, ligeramente pedregoso en superficie. Sus características químicas están dadas por una reacción muy fuertemente ácida en superficie (pH 5,04), contenido medios de materia orgánica (2,99 %); medios en fósforo disponible (8,10 ppm) y con contenido medio de potasio

disponible (186,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea media. De acuerdo al Soil Taxonomy este suelo se puede clasificar como Ustic Haplocryepts. Las características ecogeográficas, morfológicas y físico-químicas de este suelo, se muestran en la Ficha de Evaluación de Campo N°023, ver anexo de suelos 4.2.3.a.

> Subgrupo Typic Cryaquolls

Consociación Pusa (Símbolo Pu)

Se distribuye dentro de la zona de vida de páramo muy húmedo y tundra muy húmeda. Son suelos que se han formado a partir de materiales vegetales (raíces, hojas), acumulados debido a la ligera mineralización que ocurre como consecuencia de las bajas temperaturas y por el ambiente saturado de agua en que se encuentran.

Sus características edáficas están expresadas en un perfil O-C-2C, con epipedón móllico de color pardo muy oscuro con textura franco arenoso y estructura granular, son suelos que presenta un drenaje pobre a muy pobre con una napa freática a 60 cm de profundidad. Sus características químicas están dadas por una reacción moderadamente ácida en superficie (pH 6,06), altos en materia orgánica (6,70 %); medios en fósforo disponible (7,30 ppm) y con contenido alto de potasio disponible (301,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea media. De acuerdo al Soil Taxonomy, este suelo se puede clasificar como Ustic Haplocryepts. Las características ecogeográficas, morfológicas y físico—químicas de este suelo, se muestran en la Ficha de Evaluación de Campo N°004, ver anexo de s uelos 4.2.3.a.

Subgrupo Ustic Haplocryolls

Consociación Curane (Símbolo Cu)

Sus características edáficas están expresadas en un perfil A-C-C2 con epipedón móllico de color gris muy oscuro, con textura franco arenosa y estructura granular, con presencia de gravas y guijarros angulosos en el perfil, ligeramente pedregoso en superficie. Son suelos profundos que se encuentran en laderas con depresiones naturales donde la humedad es alta y la vegetación presenta una buena cobertura. Sus características químicas están dadas por una reacción muy fuertemente ácida en superficie (pH 5,56) bajos de materia orgánica (2,30 %); bajo en fósforo disponible (4,80 ppm) y con contenido bajo de potasio disponible (138,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea baja. De acuerdo al Soil Taxonomy este suelo se puede clasificar como Ustic Haplocryolls. Las características ecogeográficas, morfológicas y físico—químicas de este suelo, se muestran en la Ficha de Evaluación de Campo N°0019, ver anexo de suelos 4.2.3.a.

Consociación Yauri (Símbolo Ya)

Sus características edáficas están expresadas en un perfil A-AC-C con epipedón móllico de color pardo, con textura franco arenosa y estructura granular, presentan tobas areniscosa a 50 cm de profundidad, estos suelos tienen potencial para cultivos, por que presentan pendientes planas a ligeramente inclinadas. Sus características químicas están dadas por una reacción moderadamente ácida en superficie (pH 5,66), bajos de materia orgánica (1,90 %); bajo en fósforo disponible (3,80 ppm) y con contenido medio en potasio disponible (388,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea baja. De acuerdo al Soil Taxonomy este suelo se puede clasificar como Ustic Haplocryolls. Las características ecogeográficas, morfológicas y físico—químicas de este suelo, se muestran en la Ficha de Evaluación de Campo N°0020, ver anexo de suelos 4.2.3.a.

Consociación Antacollo (Símbolo Ant)

Sus características edáficas están expresadas en un perfil A-AC-C con epipedón móllico de color pardo muy oscuro franco limoso y estructura granular, presenta contacto paralítico a 90 cm de profundidad y muy pedregoso en superficie presentan vegetación del tipo pajonal de puna. Sus características químicas están dadas por una reacción fuertemente ácida en superficie (pH 5,18) altos en materia orgánica (7,50 %); bajo en fósforo disponible (4,00 ppm) y con contenido alto de potasio disponible (273,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea media. De acuerdo al Soil Taxonomy este suelo se puede clasificar como Ustic Haplocryolls. Las características ecogeográficas, morfológicas y físico—químicas de este suelo, se muestran en la Ficha de Evaluación de Campo N°025, ver anexo de suelos 4.2.3.a.

Consociación Achuyo (Símbolo Achu)

Se distribuye dentro de la zona de vida de páramo muy húmedo y tundra pluvial. Son suelos que se han originado a partir de materiales transportados (coluvial), que se distribuyen dentro de una fisiografía de vertiente erosional de montaña volcánica.

Sus características edáficas están expresadas en un perfil A-AC-C con epipedón móllico de color pardo gris muy oscuro con textura franco arenoso y estructura granular, con presencia de gravas en todo el perfil, con topsoil muy delgado, están cubiertas por una vegetación de pajonal de puna. Sus características químicas están dadas por una reacción muy fuertemente ácida en superficie (pH 4,82), altos en materia orgánica (5,80 %); bajo en fósforo disponible (3,40 ppm) y con contenido medio de potasio disponible (171,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea media. De acuerdo al Soil Taxonomy este suelo se puede clasificar como Ustic Haplocryolls. Las características ecogeográficas, morfológicas y físico—químicas de este suelo, se muestran en la Ficha de Evaluación de Campo N° 002, ver anexo de suelos 4.2.3.a.

> Subgrupo Cumulic Haplocryolls

Consociación Ichocollo (Símbolo Icho)

Sus características edáficas están expresadas en un perfil A-AC-C con epipedón móllico de color pardo muy oscuro franco limoso y estructura granular, suelos profundos, estos tienden acumular agua y casi siempre se mantienen húmedos durante el año y constituyen una reserva de pastos para la época de estiaje para los animales domésticos y silvestres. Sus características químicas están dadas por una reacción fuertemente ácida en superficie (pH 5,32) altos en materia orgánica (4,74 %); bajo en fósforo disponible (6,60 ppm) y con contenido medio de potasio disponible (149,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea baja. De acuerdo al Soil Taxonomy, este suelo se puede clasificar como Cumulic Haplocryolls. Las características ecogeográficas, morfológicas y físico—químicas de este suelo, se muestran en la Ficha de Evaluación de Campo N°027, ver anexo de suelos 4.2.3.a.

Consociación Ccallcca (Símbolo Cca)

Sus características edáficas están expresadas en un perfil A-AC-C con epipedón móllico de color pardo muy oscuro franco arenoso y estructura granular, presenta una capa de topsoil de 30 cm de espesor; estos suelos siempre se mantienen húmedos durante el año, porque acumulan agua en la capa orgánica y constituyen una reserva de pastos para la época de estiaje para los animales domésticos y silvestres. Sus características químicas están dadas por una reacción fuertemente ácida en superficie (pH 5,12) altos en materia orgánica (4,48 %); alto en fósforo disponible (14,20 ppm) y con contenido alto de potasio disponible (446,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea alta. De acuerdo al Soil Taxonomy, este suelo se puede clasificar como Cumulic Haplocryolls. Las características ecogeográficas, morfológicas y físico—químicas de este suelo, se muestran en la Ficha de evaluación de campo N°028, ver anexo de suelos 4.2.3.a.

Subgrupo Hydric Cryofibrist

Consociación Llacmapampa (Símbolo Lla)

Se distribuye dentro de la zona de vida de páramo muy húmedo y tundra pluvial. Son suelos que se han formado a partir de materiales vegetales (raíces, hojas), acumulados debido a la ligera mineralización que ocurre como consecuencia de las bajas temperaturas y por el ambiente saturado de agua en que se encuentran.

Sus características edáficas están expresadas en un perfil Oe-Oi con epipedón hístico de color pardo muy oscuro, orgánico en todo el perfil. Sus características químicas están dadas por una reacción ligeramente ácida en superficie (pH 6,34) altos en materia orgánica (8,10 %); medio en fósforo disponible (9,20 ppm) y con contenido medio de potasio disponible (156,00 ppm), las cuales

determinan que la fertilidad natural de la capa arable sea baja. De acuerdo al Soil Taxonomy este suelo se puede clasificar como Hydric Cryofibrist. Las características ecogeográficas, morfológicas y físico-químicas de este suelo, se muestran en la Ficha de Evaluación de Campo N° 011, ver anexo de suelos 4.2.3.a.

> Subgrupo Lithic Haplocryands

Consociación Quilcahuayco (Símbolo Qui)

Se distribuye dentro de la zona de vida de páramo muy húmedo y tundra pluvial. Son suelos que se han originado a partir de materiales transportados (coluvial), que se distribuyen dentro de una fisiografía de vertiente erosional de Montaña volcánica.

Sus características edáficas están expresadas en un perfil A-C-R con epipedón ócrico de color pardo amarillento con textura franco arenoso y estructura granular, con presencia de gravas en todo el perfil y contacto lítico a 50 cm de profundidad, el cual varía hasta 20 cm, son considerados como suelos superficiales. Sus características químicas están dadas por una reacción muy fuertemente ácida en superficie (pH 4,89), medios en materia orgánica (3,47 %); bajo en fósforo disponible (3,80 ppm) y con contenido medio de potasio disponible (149,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea baja. De acuerdo al Soil Taxonomy, este suelo se puede clasificar como Lithic Haplocryands. Las características ecogeográficas, morfológicas y físico—químicas de este suelo, se muestran en la Ficha de Evaluación de Campo N°003, ver anexo de suelos 4.2.3.a.

Consociación Huaruna (Símbolo Hua)

Sus características edáficas están expresadas en un perfil A-R con epipedón ócrico de color pardo amarillento con textura franco arenoso y estructura granular, presenta contacto lítico a menos 15 cm de profundidad muy pedregoso en superficie, con vegetación escasa. Sus características químicas están dadas por una reacción muy fuertemente ácida en superficie (pH 4,85), medios en materia orgánica (2,90 %); bajo en fósforo disponible (6,20 ppm) y con contenido medio de potasio disponible (124,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea baja. De acuerdo al Soil Taxonomy, este suelo se puede clasificar como Lithic Haplocryands. Las características ecogeográficas, morfológicas y físico—químicas de este suelo, se muestran en la Ficha de Evaluación de Campo N°006, ver anexo de s uelos 4.2.3.a.

Consociación Acharrape (Símbolo Ach)

Sus características edáficas están expresadas en un perfil A-C con epipedón ócrico de color pardo con textura franco arenoso y estructura granular, muy guijarroso y piedras en el perfil y extremadamente pedregoso en superficie, con vegetación muy escasa, estos suelos se encuentra muy erosionados donde la vegetación predominante son "tolares" (*Parastrephia lepidophylla Parastrephia*

guadrangularis, Baccharis incarum)). Sus características químicas están dadas por una reacción fuertemente ácida en superficie (pH 5,48), medios en materia orgánica (3,96 %); bajo en fósforo disponible (7,0 ppm) y con contenido bajo de potasio disponible (101,0 ppm), las cuales determinan que la fertilidad natural de la capa arable sea baja. De acuerdo al Soil Taxonomy este suelo se puede clasificar como Lithic Haplocryands. Las características ecogeográficas, morfológicas y físico—químicas de este suelo, se muestran en la Ficha de Evaluación de Campo N°006, ver anexo de suelos 4.2.3.a.

Consociación Anchaca (Símbolo An)

Sus características edáficas están expresadas en un perfil A-AC-C con epipedón ócrico de color pardo muy oscuro delgado, con textura franco arenoso y estructura granular, con presencia de gravas y guijarros a partir de los 35 cm de profundidad en el perfil y muy pedregoso en superficie, estos suelos se encuentra muy erosionados donde la vegetación es césped de puna (*Aciachne, Azorella, Liabum, Nototriche, Opuntia, Perezia Pycnophyllum y Werneria*.). Estos suelos se distribuyen por la parte alta de la cuenca del Apurímac. Sus características químicas están dadas por una reacción muy fuertemente ácida en superficie (pH 5,09), altos en materia orgánica (8,05 %); altos en fósforo disponible (35,30 ppm) y con contenido medio de potasio disponible (163,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea baja. De acuerdo al Soil Taxonomy, este suelo se puede clasificar como Lithic Haplocryands. Las características ecogeográficas, morfológicas y físicoquímicas de este suelo, se muestran en la Ficha de Evaluación de Campo N° 0015, ver anexo de suelos 4.2.3.a.

Consociación Cullpa (Símbolo Cull)

Sus características edáficas están expresadas en un perfil A-AC-C con epipedón ócrico de color pardo franco arenoso y estructura granular, presenta contacto lítico a menos de 30 cm de profundidad presentan vegetación del tipo pajonal y pedregoso en superficie. Sus características químicas están dadas por una reacción fuertemente ácida en superficie (pH 5,50), altos en materia orgánica (4,70 %); bajo en fósforo disponible (5,40 ppm) y con contenido alto de potasio disponible (216,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea medio. De acuerdo al Soil Taxonomy, este suelo se puede clasificar como Lithic Haplocryands. Las características ecogeográficas, morfológicas y físico—químicas de este suelo, se muestran en la Ficha de Evaluación de Campo N°024, ver anexo de suelos 4.2.3.a.

Consociación Palliapata (Símbolo Pall)

Sus características edáficas están expresadas en un perfil A-R con epipedón ócrico de color pardo franco arenoso y estructura granular, presenta contacto lítico a 18 cm de profundidad y extremadamente pedregoso en superficie, presentan vegetación del tipo pajonal de puna. Sus características químicas están dadas por una reacción muy fuertemente ácida en superficie (pH 5,01), medios en materia orgánica (3,20 %); medios en fósforo disponible (8,30 ppm) y

con contenido alto de potasio disponible (211,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea medio. De acuerdo al Soil Taxonomy este suelo se puede clasificar como Lithic Haplocryands. Las características ecogeográficas, morfológicas y físico—químicas de este suelo, se muestran en la Ficha de Evaluación de Campo N° 026, ver anexo de suelos 4.2.3.a.

Subgrupo Typic Haplocryands

Consociación Pucara (Símbolo Puc)

Se distribuye dentro de la zona de vida de páramo muy húmedo y tundra pluvial. Son suelos que se han originado a partir de materiales *in-situ* (residual), que se distribuyen dentro de una fisiografía de Colina volcánica.

Sus características edáficas están expresadas en un perfil A-AC-C con epipedón ócrico de color pardo con textura franco arenoso y estructura granular, con presencia de gravas en todo el perfil y contacto paralítico a 80 cm de profundidad, muy pedregoso en superficie; las especies vegetales que predomina son "tolares" (*Parastrephia lepidophylla Parastrephia guadrangularis, y Baccharis incarum*). Sus características químicas están dadas por una reacción fuertemente ácida en superficie (pH 5,18), altos en materia orgánica (4,20 %); bajo en fósforo disponible (5,50 ppm) y con contenido alto de potasio disponible (277,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea media. De acuerdo al Soil Taxonomy, este suelo se puede clasificar como Typic Haplocryands. Las características ecogeográficas, morfológicas y físico—químicas de este suelo, se muestran en la Ficha de Evaluación de Campo N°005, ver anexo de suelos 4.2.3.a.

Consociación Tocraya (Símbolo Puc)

Se distribuye dentro de la zona de vida de páramo muy húmedo. Son suelos que se han originado a partir de materiales *in-situ* (residual), que se distribuyen dentro de una fisiografía de colina volcánica.

Sus características edáficas están expresadas en un perfil A-AB-B-C con epipedón ócrico de color pardo con textura franco y estructura granular y endopepedon cámbico con estructura en bloques, especies vegetal que predomina son pajonales y césped de puna. Sus características químicas están dadas por una reacción muy fuertemente ácida en superficie (pH 4,97), medios en materia orgánica (3,08 %); bajo en fósforo disponible (12,10 ppm) y con contenido alto de potasio disponible (274,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea medio. De acuerdo al Soil Taxonomy, este suelo se puede clasificar como Typic Haplocryands. Las características ecogeográficas, morfológicas y físico—químicas de este suelo, se muestran en la Ficha de Evaluación de Campo N°009, ver anexo de s uelos 4.2.3.a.

Consociación Humaccala (Símbolo Hum)

Sus características edáficas están expresadas en un perfil A-C-C2 con epipedón ócrico de color pardo muy oscuro muy delgado, orgánico, de estructura granular, con presencia de gravas y guijarros en el perfil y pedregoso en superficie, estos suelos se encuentra muy erosionados; la vegetación es de césped de puna (*Aciachne, Azorella, Liabum, Nototriche, Opuntia, Perezia Pycnophyllum* y *Werneria*.). Sus características químicas están dadas por una reacción muy fuertemente ácida en superficie (pH 4,93) altos en materia orgánica (15,80 %); bajo en fósforo disponible (4,70 ppm) y con contenido alto de potasio disponible (522,00 ppm), las cuales determinan que la fertilidad natural de la capa arable sea medio. De acuerdo al Soil Taxonomy, este suelo se puede clasificar como Typic Haplocryands. Las características ecogeográficas, morfológicas y físicoquímicas de este suelo, se muestran en la Ficha de Evaluación de Campo N° 014, ver anexo de suelos 4.2.3.a.

• Áreas misceláneas.

Misceláneo Lítico. (Símbolo ML)

Constituido por materiales rocosos o afloramientos líticos, áreas con abundante pedregosidad superficial y por suelos esqueléticos muy superficiales, que no tienen ninguna aptitud de uso para fines agrícolas, pecuarios o forestales sino están relegadas para otros usos, como áreas de recreación, protección de hábitat de fauna silvestre, que constituyen las tierras de protección (X).

Misceláneo Nival (Símbolo MN)

Constituido por materiales rocosos o afloramientos líticos cubiertos en su mayor proporción por nieve. En esta unidad están incluidos los nevados. Son áreas con abundante pedregosidad superficial, que no tienen ninguna aptitud de uso para fines agrarios, pecuarios o forestales sino que tienen otros usos, como por ejemplo para recreación, por lo que entre otros constituye las tierras de protección (X).

Misceláneo Minero (Símbolo MM)

Unidad que ha sido cartografiado a la unidad minera Bateas que incluyen su campamento y las unidades de operaciones que realizan. Estas constituyen tierras de protección (X).

Misceláneo erosional (Símbolo ME)

Unidad que ha sido cartografiado a suelos muy erosionados y que no cuentan con vegetación alguna o vegetación muy escasa.

Asociaciones de suelos

Asociación Achuyo-Quilcahuayco (Símbolo ACU-Qui)

Conformada por la unidad edáfica Achuyo y Quilcahuayco, en una proporción de 60 y 40%, respectivamente. Las características edáficas de ambos han sido descritas anteriormente.

Asociación Achuyo-Tocraya (Símbolo ACU-To)

Conformada por la unidad edáfica Achuyo y Tocraya, en una proporción de 60 y 40%, respectivamente. Las características edáficas de ambos han sido descritas anteriormente.

Asociación Chilamayo-Misceláneo lítico (Símbolo Chi-ML)

Conformada por la unidad edáfica Chilamayo y Misceláneo lítico, en una proporción de 80 y 20%, respectivamente. Las características edáficas de ambos han sido descritas anteriormente.

Asociación Cullpa-Misceláneo lítico (Símbolo Chi-ML)

Conformada por la unidad edáfica Cullpa y Misceláneo lítico, en una proporción de 80 y 20% respectivamente. Las características edáficas de ambos han sido descritas anteriormente.

Asociación Humaccala-Misceláneo lítico (Símbolo Chi-ML)

Conformada por la unidad edáfica Humaccala y Misceláneo lítico, en una proporción de 80 y 20% respectivamente. Las características edáficas de ambos han sido descritas anteriormente.

Asociación Misceláneo erosión-Acharrape (Símbolo ME-Ach)

Conformada por las unidades Misceláneo erosión y Acharrape, en una proporción de 80 y 20%, respectivamente. Las características edáficas de ambos han sido descritas anteriormente.

Asociación Misceláneo lítico-Achuyo (Símbolo ML-Achu)

Conformada por las unidades Misceláneo lítico y Achuyo, en una proporción de 80 y 20% respectivamente. Las características edáficas de ambos han sido descritas anteriormente.

Asociación Misceláneo lítico-Anchaca (Símbolo ML-An)

Conformada por las unidades Misceláneo lítico y Anchaca, en una proporción de 80 y 20%, respectivamente. Las características edáficas de ambos han sido descritas anteriormente.

Asociación Misceláneo lítico-Huaruna (Símbolo ML-Hua)

Conformada por las unidades Misceláneo lítico y Huaruna, en una proporción de 80 y 20%, respectivamente. Las características edáficas de ambos han sido descritas anteriormente.

Asociación Misceláneo lítico-Palliapata (Símbolo ML-Pall)

Conformada por las unidades Misceláneo lítico y Palliapata, en una proporción de 80 y 20%, respectivamente. Las características edáficas de ambos han sido descritas anteriormente

Asociación Misceláneo lítico-Quilcahuayco (Símbolo ML-Qui)

Conformada por las unidades Misceláneo lítico y Quilcahuayco, en una proporción de 80 y 20%, respectivamente. Las características edáficas de ambos han sido descritas anteriormente.

Asociación Misceláneo lítico-Tulpa (Símbolo ML-Tu)

Conformada por las unidades Misceláneo lítico y Tulpa, en una proporción de 80 y 20%, respectivamente. Las características edáficas de ambos han sido descritas anteriormente

Asociación Pucara-Misceláneo lítico (Símbolo Puc-ML)

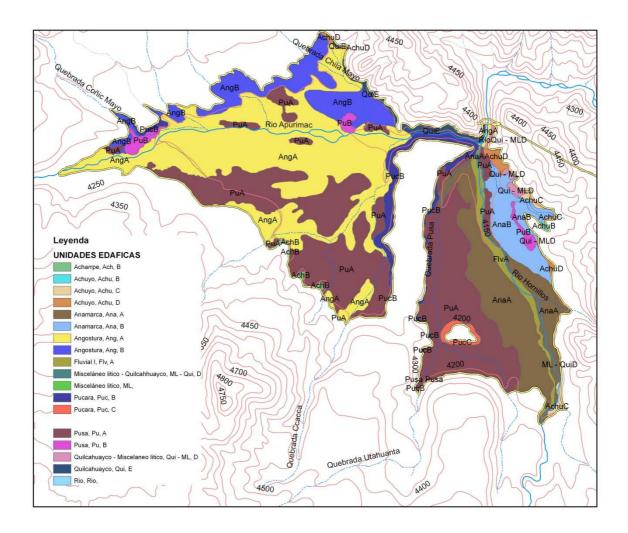
Conformada por las unidades Pucara y Misceláneo lítico, en una proporción de 70 y 30%, respectivamente. Las características edáficas de ambos han sido descritas anteriormente

Asociación Quilcahuayco-Achuyo (Símbolo Puc-ML)

Conformada por las unidades Quilcahuayco y Achuyo, en una proporción de 60 y 40%, respectivamente. Las características edáficas de ambos han sido descritas anteriormente

Asociación Quilcahuayco-Misceláneo Lítico (Símbolo Qui-ML)

Conformada por las unidades Quilcahuayco y Misceláneo lítico, en una proporción de 70 y 30%, respectivamente. Las características edáficas de ambos han sido descritas anteriormente


Asociación Tisco – Misceláneo Lítico (Símbolo Ti – ML)

Conformada por las unidades Tisco y Misceláneo lítico, en una proporción de 70 y 30% respectivamente. Las características edáficas de ambos han sido descritas anteriormente

4. Unidades Edáficas que Serán Inundadas por la Construcción de la Represa Angostura

Como producto de la construcción de la Represa Angostura, los suelos que serán inundados son Acharrape, Achuyo, Anamarca, Angostura, Fluvial I Pucara, Pusa, Quilcahuayco y misceláneo lítico; de las cuales, los que ocupan mayores extensiones son suelos Angostura con 38,29% (1 659,3 Ha), Pusa con 34,28% (1485,36), Anamarca con 17,60%(762 ha) y Pucara con 4,29% (185,73), los demás suelos ocupan extensiones menores al 1% del área total. En la siguiente figura se observa la distribución de las mismas.

Figura N° 4.2.3-1 Unidades edáficas que serán inundadas por la construcción de la Represa Angostura.

C. Capacidad de Uso Mayor de la Tierras

a. Generalidades

La Capacidad de Uso Mayor de las Tierras; puede definirse como la aptitud natural del suelo para la producción de cultivos, en forma constante bajo tratamientos continuos y usos específicos.

El Sistema de Clasificación de Tierras según su Capacidad de Uso Mayor que establece dicho reglamento es un ordenamiento sistémico, práctico o interpretativo, de gran base ecológica, que agrupa a los diferentes suelos, con el fin de mostrar sus usos, problemas o limitaciones, necesidades y prácticas de manejo adecuadas. Esta clasificación proporciona un sistema comprensible, claro, de gran valor y utilidad en los planes de desarrollo agrícola y de acuerdo a las normas de conservación de los suelos. Para la interpretación práctica del potencial de tierras se ha utilizado el Reglamento de Clasificación de Tierras del Perú (D.S. Nº 0017-2009-AG).

En los siguientes cuadros Nº 4.2.3-8 y 4.2.3-9 se muestran la superficie de las Tierras según su Capacidad de Uso mayor. Ver plano CSL-096200-1-AM- 05.

Cuadro № 4.2.3-8 Superficie de las Tierras según su Capacidad de Uso Mayor

Cruno	Superficie		Clase	Super	ficie	Subclas	Supe	erficie	
Grupo	На	%	Clase	На	%	е	На	%	
	6019,93	2,19	A2	5877,89	2,14	A2sc	5877,89	2,14	
A	0019,93	2,19	А3	142,05	0,05	A3sc	142,05	0,05	
			P2			P2se	156,79	0,06	
	101731,39 37,06			P2	41832,32	15,24	P2sc	22706,29	8,27
								P2sec	18969,23
Р		101731 30 37 0	37.06				P3s	4361,96	1,59
'		07,00					P3se	8029,77	2,92
					P3	59899,07	21,82	P3sc	32140,83
								P3sw	6030,16
						P3swc	9336,35	3,40	
Х	166778,41	60,75	Х	166778,41	60,75	Xse	154244,15	56,18	
^	100770,41	00,73	^	100770,41	00,73	Xse (g)	8680,62	3,16	

Grupo	Sı	uperficie	Clase	Super	ficie	Subclas	Supe	erficie
Grupo	На	%	Clase	На	%	е	На	%
						Xsw	854,33	0,31
						X*	2999,32	1,09
TOTAL	274529,73	100,00		274529,73	100,00		274529,73	100,00

Fuente: CESEL S.A. 2010.

Cuadro Nº 4.2.3-9
Superficie de Unidades Cartografiadas Según su Capacidad de Uso Mayor

Unidades de Capacidad de Uso Mayor	Símbolo	Proporci	Superficie	
Omuaues de Capacidad de USO Mayor	Simbolo	ón	ha	%
Unidades no				
Tierras aptas para Cultivos en Limpio de				
Calidad Agrológica Media, con Limitación por	A2sc	100	5877,89	2,14
suelo y clima.				
Tierras aptas para Cultivos en Limpio de				
Calidad Agrológica Baja, con Limitación por	A3sc	100	142,05	0,05
suelo y clima.				
Tierras apta para Pastos de Calidad				
Agrológica Media, con Limitación por suelo y	P2se	100	156,79	0,06
riesgo de erosión.				
Tierras apta para Pastos de Calidad				
Agrológica Media, con Limitación por suelo y	P2sc	100	22706,29	8,27
clima.				
Tierras apta para Pastos de Calidad				
Agrológica Media, con Limitación por suelo,	P2sec	100	18212,74	6,63
riesgo de erosión y clima.				
Tierras apta para Pastos de Calidad	P3s	100	4361,96	1,59
Agrológica Baja, con Limitación por suelo	1 03	100	4301,30	1,00
Tierras apta para Pastos de Calidad				
Agrológica Baja, con Limitación por suelo y	P3se	100	6282,74	2,29
riesgo de erosión.				
Tierras apta para Pastos de Calidad				
Agrológica Baja, con Limitación por suelo y	P3sc	100	28263,83	10,30
clima.				
Tierras apta para Pastos de Calidad				
Agrológica Baja, con Limitación por suelo y	P3sw	100	6030,16	2,20
drenaje.				
Tierras apta para Pastos de Calidad				
Agrológica Baja, con Limitación por suelo,	P3swc	100	9336,35	3,40
drenaje y clima.				
Tierras de protección; limitación por suelo y	Xse	100		
topográfico	7.00	100	148543,37	54,11

Unidades de Capacidad de Uso Mayor	Símbolo	Proporci	Superficie	
omados de sapasidad de ses mayer	Giiiiboio	ón	ha	%
Tierras de protección; limitación por suelo y topográfico (Gelidos)	Xse (g)	100	8680,62	3,16
Tierras de protección; limitación por suelo y drenaje	Xsw	100	854,33	0,31
Centro poblados, lagunas ríos .	X*	100	2999,32	1,09
Unidad	les asociadas			
Tierras para pastos de calidad agrológica media – Protección	P2sec - Xse	70 – 30	1080,70	0,39
Tierras para pastos de calidad agrológica Baja – Protección	P3sc - Xse	60 – 40	6076,55	2,21
Tierras para pastos de calidad agrológica Baja – Protección	P3se - Xse	60 – 40	2483,23	0,90
Protección – Tierras para pastos	Xse - P3se	80 – 20	1285,47	0,47
Protección – Tierras para pastos	Xse - P3sc	80 – 20	1155,35	0,42
Total			274529,73	100,0

Fuente: CESEL S.A. 2010.

b. Descripción de las Subclases de Uso Mayor Clasificadas

1. Unidades de Capacidad de Uso Mayor Identificadas

Subclase A2sc

Comprende las tierras aptas para cultivos en limpio de calidad agrológica media, cuyas moderadas limitaciones están referidas a los factores edáficos y climáticos. Se incluye en esta subclase a la unidad edáfica Yauri, Huayllupato, dentro de la zona de vida de bosque húmedo montano subtropical.

El uso adecuado de estas tierras requieren de prácticas ligeras a moderadas medidas de manejo y conservación de suelos, así como el mejoramiento de la fertilidad natural de las tierras para elevar su capacidad productiva; así como también, para superar los posibles déficit de agua en aquellos años de escasa precipitación. Este tipo de práctica se realiza solo en época de lluvias y los cultivos siempre dependen de la humedad del suelo. Se pueden dar problemas si no se tiene cuidado con los cronogramas de siembra. Si se retrasa la instalación de cultivos, estos pueden tener problemas para madurar, por presencia de heladas o ausencia de lluvias. En esta zona el régimen de humedad es moderado pero presenta una elevada insolación lo que eleva la demanda de agua de los cultivos. Este factor limita el desarrollo de la agricultura durante todo el año.

Es importante recomendar la incorporación de materia orgánica en sus diversas formas como abono verde, guano de corral o residuos de cosecha, para mejorar las condiciones físico-mecánicas y químicas de los suelos. Además, se recomienda considerar el uso de otras prácticas culturales y/o otras alternativas

de uso de otras especies de cultivos anuales que se consideren mas adecuadas o aparentes para la zona, de acuerdo al conocimiento y experiencia del productor o del extensionista agrario de la zona.

En aquellas zonas con riesgo de presencia de heladas se debe procurar la siembra de cultivos tolerantes o resistentes a heladas, como es el caso de algunas especies nativas andinas (tuberosas y granos) y/o exóticas adaptadas como la cebada; así como la quema de rastrojos o residuos de cosecha, en la primeras horas de la mañana, tratando de producir la mayor humareda posible, procurando que el humo tienda a cubrir todo el campo de cultivo, con el fin de evitar el calentamiento rápido y cambio brusco de temperatura ambiental fría con la salida del sol, y permitir un calentamiento gradual del ambiente de los cultivos, que permita evitar o paliar los efectos de las heladas.

Dada las condiciones ecológicas de la zona se recomienda la siembra de los siguientes cultivos: papa, kiwicha, cañihua, avena, y otras que constituyen una alternativa como cultivos no tradicionales para la exportación y otras especies adaptadas a las condiciones de la zona, de acuerdo al conocimiento y experiencia de los agricultores o del extensionista de la agencia agraria de la zona.

Subclase A3sc

Comprende a las tierras aptas para cultivos en limpio de calidad agrológica baja, cuyas fuertes limitaciones están referidas al factor edáfico y climático. Se incluye en esta subclase a la unidad edáfica Tarucuyo.

Las limitaciones de uso más importantes que caracteriza las tierras de esta subclase, que limitan su productividad, son los factores; *Edáfico*, debido a la fertilidad natural media a baja; presencia de gravas y guijarros dentro del perfil. *Climático*, por el riesgo de heladas.

Se recomienda considerar el uso de las prácticas culturales de la subclase A2sc con mayor intensidad y/o otras alternativas de uso de otras especies de cultivos anuales que se consideren más adecuados o aparentes para la zona, de acuerdo al conocimiento y experiencia del productor o del extensionista agrario de la zona.

Dada las condiciones ecológicas de la zona se recomienda la siembra de los siguientes cultivos: papa, kiwicha, cañihua, avena, y otras que constituyen una alternativa como cultivos no tradicionales para la exportación y otras especies adaptadas a las condiciones de la zona, de acuerdo al conocimiento y experiencia de los agricultores o del extensionista de la agencia agraria de la zona

Subclase P2se

Comprende tierras para pastizales de calidad agrológica media, cuyas moderadas limitaciones están referidas, principalmente a los factores edáfico y topográfico, principalmente. Se incluye en esta subclase a la unidad edáfica Curane.

Dentro de las limitaciones de uso más importantes de estas tierras, destaca el factor *Edáfico*, principalmente por presentar bajo contenido de fósforo presencia de gravas y guijarros dentro del perfil. *Topográficos*, por los riesgos moderados a la erosión hídrica de los suelos localizados en las laderas con pendientes moderadamente empinadas.

La utilización de estas tierras para mantener y aprovechar de una ganadería económicamente rentable, requiere de un manejo racional de pasturas. El manejo deberá basarse en la conservación y la propagación de especies forrajeras nativas o exóticas de buen rendimiento, incrementando su capacidad productiva mediante la aplicación de prácticas culturales y en las zonas más abrigadas, para la instalación de estas especies.

Debido a que el suelo, al estar sometido a un pisoteo constante del ganado, llega a compactarse, dificultando la infiltración del agua de lluvia y penetración de las raíces, sobre todo en suelos de textura fina; por lo cual, con la finalidad de evitar esta situación no deseada del suelo, se recomienda realizar las siguientes practicas de manejo:

- Evitar el sobre-pastoreo, estableciendo potreros cercados para una determinada carga animal, con una rotación adecuada. Con esta practica se puede incrementar y recuperar la producción forrajera, y por consiguiente, la soportabilidad de las pasturas, evitando su degradación.
- Control de la carga animal, mediante la dotación adecuada de las cabezas de ganado por potrero u control del tiempo de pastoreo.
- Evitar el pastoreo, durante o inmediatamente después de las lluvias, sobre todo en aquellos terrenos pesados o arcillosos.

Para superar la posible falta de agua para el ganado en algunas épocas del año, sobretodo, en años de escasa precipitación, se recomienda la construcción de abrevaderos adecuadamente distribuidos y protegidos.

Adicionalmente, se recomienda, evitar las practicas tradicionales de quema, que si bien favorece un rebrote vigoroso de pasturas de raíces permanentes, sin embargo, elimina aquellas de mejor calidad palatable que se reproducen por semilla, dejando desprotegido al suelo, que facilita la rápida perdida de los nutrientes contenidos en las cenizas ya sea por lixiviación o incremento de la erosión laminar hídrica.

Se recomienda realizar una colección, selección y producción de especies nativas de pastos de alta calidad nutritiva y palatabilidad. De acuerdo a las especies de pastos conocidos de la zona, se recomienda considerar los siguientes pastos: Festuca, Bromus, Poa, Muhlembergia, Trifolium, Vicia, Calamgrostis, entre otras; así como, la propagación de especies de pastos nativos mejorados o exóticos de alta calidad nutritiva.

• Subclase P2sec

Comprende tierras de calidad agrológica media, cuyas moderadas limitaciones esta referidas principalmente a factores edáfico, topográfico y de clima, por la condiciones de ecológicas de la zona. Se incluye en esta subclase a la unidad edáfica Anamarca, Achuyo, Quilcahuayco y Tocraya.

Las limitaciones de uso más importantes de estas tierras, están relacionadas básicamente con el *factor edáfico*, especialmente por una reacción muy fuertemente ácida, presencia de gravas y guijarros dentro del perfil. *Topográfico*, por los riesgos moderados a la erosión hídrica de los suelos localizados en pendientes fuertemente inclinadas. *Climático*, por la incidencia de bajas temperaturas, que resulta una limitación para pastos introducidos y ganados no adaptados, y la falta de agua en épocas de estiaje en años de escasa precipitación.

Dada la similitud de las condiciones climáticas de estas tierras, similar al ámbito de distribución de la subclase P2se, se recomienda considerar las especificaciones y especies recomendadas para dicha subclase; así como promover la introducción de pastos exóticos adaptados sea leguminosa y/o gramíneas de alto valor nutritivo, pero teniendo cuidado en mantener las especies nativas; así como otras especies adaptadas que se consideren de mejor efecto para la zona.

Subclase P2sc

Comprende tierras de calidad agrológica media, cuyas moderadas limitaciones estánf referidas principalmente a factores edáfico y de clima, por la condiciones de ecológicas de la zona. Se incluye en esta subclase a la unidad edáfica, Anamarca, Angostura, Humaccalla, Yauri, Huayllupata, Suyto, Antuyo, Ccallcca y Tisco.

Las limitaciones de uso más importantes de estas tierras, están relacionadas básicamente con el *factor edáfico*, especialmente por una reacción muy fuertemente ácida, presencia de gravas y guijarros dentro del perfil. *Factor Climático*, por la incidencia de bajas temperaturas, que resulta una limitación paras pastos introducidos y ganados no adaptados, y la falta de agua en épocas de estiaje en años de escasa precipitación.

Dada la similitud de las condiciones climáticas de estas tierras, similar al ámbito de distribución de la subclase P2se, se recomienda considerar las especificaciones y especies recomendadas para dicha subclase; así como promover la introducción de pastos exóticos adaptados sea leguminosa y/o gramíneas de alto valor nutritivo, pero teniendo cuidado en mantener las especies nativas; así como otras especies adaptadas que se consideren de mejor efecto para la zona.

Subclase P3s

Comprende tierras aptas para la producción de pastos, de calidad agrológica baja, cuyas fuertes limitaciones están referidas principalmente al factor edáfico; para la utilización de estas tierras se requiere la aplicación de prácticas intensivas de manejo y conservación de suelos. Se incluye en esta subclase a la unidad edáfica Pucara, Anchaca, Fluvial I, Fluvial II, Tarucuyo y Achocollo.

La utilización de estas tierras está limitada básicamente al factor edáfico, por la baja fertilidad natural de los suelos, principalmente por presentar un bajo contenido de fósforo disponible; presencia de gravas y guijarros dentro y sobre el perfil del suelo, en proporciones variables.

Para mantener o mejorar la capacidad productivas o de soporte de estas tierras, se recomienda seguir todas las practicas culturales y sugerencias hechas para las subclase P2se, según sea el caso, pero aplicándolas con mayor cuidado e intensidad, por la mas baja calidad de estas tierras, adicionando además de otras practicas culturales que se consideren de mejor efecto para la zona de acuerdo a la experiencia y conocimientos de los productores o del especialista pecuario de la agencia agraria de la zona.

Así mismo, la utilización de estas tierras debe estar orientada al pastoreo extensivo, pero en forma controlada, bajo prácticas intensivas de manejo y conservación del suelo, con el fin de prevenir los efectos erosivo, debido a las condiciones climáticas de la zona.

Dada la similitud de las condiciones climáticas de estas tierras, similar al ámbito de distribución de la subclase P2sec, se recomienda considerar las especificaciones y especies recomendadas para dicha subclase; así como promover la introducción de pastos exóticos adaptados sea leguminosa y/o gramíneas de alto valor nutritivo, pero teniendo cuidado en mantener las especies nativas; así como otras especies adaptadas que se consideren de mejor efecto para la zona.

Subclase P3sc

Comprende tierras de calidad agrológica Baja, cuyas moderadas limitaciones estan referidas principalmente a factores edáfico y clima, por la condiciones ecológicas (páramo muy húmedo y tundra pluvial) de la zona. Se incluye en esta subclase a la unidad edáfica Anamarca, Achuyo, Quilcahuayco, Pucara, Angostura, Anchaca y Ccallcca.

Las limitaciones de uso más importantes de estas tierras, están relacionadas básicamente con el **factor edáfico**, especialmente por una reacción extremadamente ácida, presentar una alta saturación de aluminio cambiable y presencia de gravas y guijarros dentro del perfil. **Climático**, por la incidencia de bajas temperaturas, que resulta una limitación paras pastos introducidos y ganados no adaptados, y la falta de agua en épocas de estiaje en años de escasa precipitación.

La utilización de estas tierras para el mantenimiento y explotación de una ganadería económicamente rentable requiere de un manejo racional de las pasturas. Por las condiciones climáticas de la zona, esta debe ser hecha sobre la base de la elección de especies o variedades de pastos nativos o exóticos adaptados y otras especies de pastos naturales de buena palatabilidad y calidad nutritiva.

Dada la similitud de las condiciones climáticas de estas tierras, similar al ámbito de distribución de la subclase P2se, se recomienda considerar las especificaciones y especies recomendadas para dicha subclase; así como promover la introducción de pastos exóticos adaptados, sea leguminosa y/o gramíneas de alto valor nutritivo, pero teniendo cuidado en mantener las especies nativas; así como otras especies adaptadas que se consideren de mejor efecto para la zona.

Subclase P3se

Comprende tierras aptas para la producción de pastos, de calidad agrológica baja, cuyas fuertes limitaciones están referidas principalmente, a los factores topográficos y edáficos; por lo que su utilización en forma económica y continuada, requiere de la aplicación de prácticas intensivas de manejo y conservación de suelos. Se incluye en esta subclase a la unidad edáfica Achuyo, Chilamayo, Achaccollo, Curane, Suyto, Antuyo, Cullpa y Tisco.

La utilización de estas tierras está limitada básicamente por el factor **edáfico**, por la baja a media fertilidad natural de los suelos, principalmente por presentar un bajo contenido de fósforo disponible; presencia de gravas y guijarros dentro y sobre el perfil del suelo, en proporciones variables. **Topográficos**, por los riesgos moderados a la erosión hídrica de los suelos localizados en las laderas con pendientes empinadas.

La conducción de Pastos en estas tierras requiere de practicas y técnicas más intensivas de manejo y conservación de suelo, para mantener o mejorar la capacidad productivas o de soporte de estas tierras y poder lograr su adecuada utilización; lo que implica la aplicación de todas las medidas y lineamientos de manejo y conservación de suelos, practicas o técnicas culturales y comentarios sugeridos y recomendados para la subclase anterior, pero aplicados con mayor intensidad y cuidado; adecuándolas a las condiciones con mayor pendiente, según sea el caso y adicionando además, de otras técnicas o practicas culturales, que se consideren de mejor efecto para la zona.

De acuerdo a las condiciones climáticas de la zona se sugiere principalmente el fomento de una ganadería en base a ganado vacuno Brown Swiss y ovinos; u otro tipo de ganado, de acuerdo a las sugerencias del especialista ganadero de la zona.

Dada las condiciones climáticas húmedas de la zona se recomienda realizar una adecuada colección de semillas y especies de pastos nativos y ver la posibilidad de introducir pastos mejorados especialmente leguminosos.

Subclase P3sw y P3swc

Comprende tierras de calidad agrológica baja, cuyas fuertes limitaciones están referidas principalmente a factores edáficos, de drenaje y climáticos. Se incluye en esta subclase a la unidad edáfica Pusa, Palcapampa, Llacmapampa y Ichocollo.

Dentro de las limitaciones de uso más importantes de estas tierras, destaca el factor edáfico por presentar una alta fertilidad natural aparente, ocasionada por un proceso lento de descomposición de la materia orgánica debido a las bajas temperaturas. También presentan limitaciones por drenaje natural pobre a muy pobre que presentan en la época de lluvias. No obstante se constituyen en la despensa permanente de pastos para el ganado ovino, auquénido y camélido de la zona. El manejo de estas tierras está orientado a la utilización de los pastos naturales resistentes al mal drenaje, se debe realizar un manejo racional del pastoreo mediante una adecuada carga animal y rotación del ganado, entre otras medidas.

Fomentar la colección, selección y producción de especies nativas de pastos de alta calidad nutritiva y palatabilidad, para su propagación posterior; así como, la propagación de especies de pastos nativos mejorados o exóticos de alta calidad nutritiva, adaptados a las condiciones de la zona.

Es recomendable mantener las especies nativas previamente seleccionadas asociadas con pastos exóticos mejorados adaptados a las condiciones de fertilidad natural del suelo, especialmente, corregir la deficiencia de fósforo. Estas tierras son conocidas como suelos mal drenados, está constituida por comunidades de herbáceos que se distribuyen a nivel del piso, de manera compacta y en constante crecimiento, la especie que tipifica esta unidad es la Distichia muscoides y como especies subordinadas se encuentran las siguientes: Lucilia tunariensis, Alchemilla pinnata, Azorella diapensoides, Poa annua, Poa aequgluma, Calamagrostis jamesoni, Calamagrostis sp. o Plantago sp, Scirpus rigidus, Werneria, Carex, Elodea, etc.

Unidad Xse

Se encuentra conformada por aquellos suelos mayormente de topografía fuertemente inclinadas a muy empinadas o escarpadas, que comprende suelos esqueléticos, suelos muy superficiales, áreas con severos problemas de erosión hídrica como cárcavas, surcos. "bad lands"; suelos con abundante gravosidad, pedregosidad, rocosidad y/o la presencia de un contacto lítico dentro y/o sobre el perfil, que limitan la profundidad efectiva y el volumen útil del suelo, principalmente.

Las limitaciones de mayor importancia están referidas a la topografía, y con una profundidad efectiva muy superficial y efímera. Esta incide directamente en pérdida de su capa superficial, por efecto de la gravedad y la escorrentía superficial, favorecida por la falta de una adecuada cobertura vegetal. La baja fertilidad natural constituye otra limitación importante debido a las deficiencias

nutricionales, especialmente nitrógeno y fósforo; así como la presencia de fragmentos gruesos en algunos sectores, tanto dentro como sobre el perfil, o la presencia de un contacto lítico que reduce o limita el volumen útil del suelo.

Para poder utilizar en forma racional estas tierras y evitar su deterioro se recomienda evitar la excesiva carga animal, el sobre pastoreo, evitar las prácticas tradicionales de quema, que si bien favorece un rebrote vigoroso de las pasturas de raíces permanentes, sin embargo elimina aquellas de mejor calidad palatable, facilitando a su vez la rápida perdida de nutrientes contenidos en las cenizas ya sea por lixiviación o lavaje; este efecto aumenta conforme se incrementa la pendiente del terreno. Asimismo, en aquellas áreas de difícil propagación de pastos mejorados, se recomienda mantener, conservar y propagar las pasturas nativas de mejor calidad palatable.

Dada las características de estas tierras se recomienda mantener y/o mejorar el pasto natural, mediante la colección y selección de aquellas pasturas de mejor calidad palatable, tales como las siguientes especies: Festuca dolicophilla, Poa aequigluma. Calamagrostis ovata, Calamagrostis heterophilla, Alchemilla pinnata, Mulembergia ligularis, Eragrostis sp, Poa gymnantha, Nassella publiflor, Piptochaetum panicoides. etc.

Unidades X*

Esta conformada por aquellas tierras de protección conformadas por: Lagunas y centros poblados (Caylloma, Sibayo, Tisco, Pusa Pusa, Machopuente, etc).

Unidad Xsw

Esta conformada por aquellas tierras, que presentan un nivel freático muy superficial (condiciones anaeróbicas). Estas tierras son conocidas como bofedales y está constituida por comunidades de herbáceos que se distribuyen a nivel del piso, de manera compacta y en constante crecimiento, la especie que tipifica esta unidad es la *Distichia muscoides* y como especies subordinadas se encuentran las siguientes: *Lucilia tunariensis*, *Alchemilla pinnata*, *Azorella diapensoides*, *Poa annua*, *Poa aequgluma*, *Calamagrostis jamesoni*, *Calamagrostis sp. o Plantago sp*, *Scirpus rigidus*, *Werneria*, *Carex*, *Elodea*, etc. Dentro de esta unidad se tiene a los suelos Palcapampa y Ichocollo.

El manejo de bofedales produce un incremento de 20% en la composición florística de especies forrajeras palatables y de 6 % en el rendimiento de la biomasa total. Los bofedales deben ser manejados como sitios de alimentación especial, porque son la única fuente para los animales de la zona en la estación seca. Las cargas animales deben ser cuidadosamente controladas y los bofedales deben ser usados para suplementar las deficiencias de los animales que se encuentran en producción. Las hembras lactantes y las de reemplazo deben pastorear continuamente en estos sitios

En algunos casos, los bofedales presentan demasiada humedad, por lo cual, se debe tratar de construir drenes para favorecer el crecimiento de las plantas y

aprovechar el agua para regar áreas adyacentes y sembrar tréboles (para mejorar la nutrición de las alpacas y ovinos)

2. Unidades de Capacidad de Uso Mayor en forma Asociadas.

Unidad P2sec-Xse

Conformada principalmente por tierras con aptitud para: a) Pastos (P) y b) Protección (X), de calidad agrológica media, con limitaciones por riesgo de erosión, edáfico y climático. Presentándose en una proporción de 70-30%, respectivamente.

Esta unidad ha sido cartografiada dentro de la zona de vida de páramo muy húmedo y tundra muy húmeda, las cuales se desarrollan sobre materiales coluviales, distribuidos en una fisiografía de vertiente de colina.

Las unidades de Capacidad de Uso Mayor P2sec y Xse; ya fueron descritos anteriormente.

Unidad P3sc-Xse

Conformada principalmente por tierras con aptitud para: a) Pastos (P) y b) Protección (X), de calidad agrológica media, con limitaciones por riesgo de erosión y climático. Presentándose en una proporción de 60-40%, respectivamente.

Esta unidad ha sido cartografiada dentro de la zona de vida de páramo muy húmedo y tundra muy húmeda, las cuales se desarrollan sobre materiales coluviales, distribuidos en una fisiografía de vertiente montañosa.

Las unidades de Capacidad de Uso Mayor P3sc y Xse; ya fueron descritos anteriormente.

Unidad P3se-Xse

Conformada principalmente por tierras con aptitud para: a) Pastos (P) y b) Protección (X), de calidad agrológica media, con limitaciones por riesgo de erosión y climático. Presentándose en una proporción de 60-40%, respectivamente.

Esta unidad ha sido cartografiadas dentro de la zona de vida de páramo muy húmedo y tundra muy húmeda, las cuales se desarrollan sobre materiales coluviales, distribuidos en una fisiografía de vertiente montañosa.

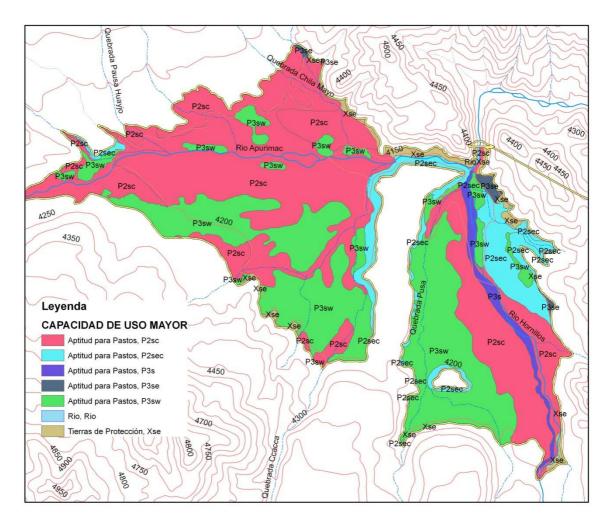
Las unidades de Capacidad de Uso Mayor P3se y Xse; ya fueron descritos anteriormente.

Unidad Xse - P3se

Conformada principalmente por tierras con aptitud para: a) Protección (X) y b) Pastos (P), de calidad agrológica baja, con limitaciones por suelo y riesgo de erosión. Presentándose en una proporción de 80-20%, respectivamente.

Esta unidad ha sido cartografiada dentro de la zona de vida de bosque húmedo Montano Subtropical (Bh-MS), las cuales se desarrollan sobre materiales coluviales, distribuidos en una fisiografía de vertiente montañosa. Las unidades de Capacidad de Uso Mayor P3se y Xse; ya fueron descritos anteriormente.

Unidad Xse - P3sc


Conformada principalmente por tierras con aptitud para: a) Protección (X) y b) Pastos (P), de calidad agrológica baja, con limitaciones por suelo y clima. Presentándose en una proporción de 80-20%, respectivamente.

Esta unidad ha sido cartografiada dentro de la zona de vida de páramo muy húmedo, las cuales se desarrollan sobre materiales coluviales, distribuidos en una fisiografía de vertiente montañosa. Las unidades de Capacidad de Uso Mayor P3sc y Xse, ya fueron descritos anteriormente.

3. Subgrupos de Uso Mayor que Serán Inundadas por la construcción de la Represa Angostura

Como producto de la construcción de la Represa Angostura, los subgrupos de uso mayor que quedaran inundados, son las tierras aptas para pastos de calidad agrológica media con limitación por suelo, pendiente y clima (P2sec, P2se), tierras de pastos de calidad agrológica baja (P3s y P3sw) y tierras de protección (Xse), de los mencionados los que representan mayores extensiones son P2sc con 51,28% (2 222 ha), P3sw con 34,28% (1 485,36 ha) y P2sec con 9,25% (400,7 ha), los demás representan menos del 2% del área total. En la siguiente figura se muestra la distribución de las mismas.

Figura N° 4.2.3-2 Subclases de Uso Mayor que Serán Inundadas por la construcción de la Represa Angostura.

D. Uso Actual de la Tierra

a. Generalidades

La evaluación de uso del territorio en el área de estudio, comprende la diferenciación de las diversas formas de utilización de la tierra. La clasificación y caracterización de la cobertura vegetal se ha basado en una combinación de conceptos fisonómicos, florísticos y de condición de humedad del terreno. La cobertura vegetal cumple un rol muy importante en la regulación del régimen hídrico y en la protección de los suelos, a la vez que constituye importante fuente de materia prima para los múltiples usos de la población rural.

En el ámbito del área estudiada, se han identificado las siguientes unidades de uso de la tierra: centro poblados, lagunas, vegetación cultivada, terrenos pantanosos, y terrenos con pastos naturales, de las cuales, destacan por su mayor extensión e importancia, las praderas altoandinas. Las áreas que se ubica por encima de los 3

800 msnm, la vegetación natural primaria está conformada por praderas conformadas por pastos naturales de los géneros Stipa, Calamagrostis, Festuca y Poa.

El pastoreo constituye el principal aprovechamiento (uso) de los recursos naturales seguidos de la actividad agrícola en baja escala. En general, las tierras son sometidas a diferentes presiones de uso que ocasionan su degradación constante. Estas tierras tienen capacidad para la producción de pastos que en algunas áreas sobrepasan la soportabilidad de los pastos, originando la degradación de la cobertura vegetal.

b. Metodología

1. Materiales

En la realización del estudio, se utilizaron los siguientes materiales temáticos y cartográficos:

- Mapa Ecológico del departamento de Cusco y Arequipa de la base de datos del ex-INRENA, a escala 1:600 000, con memoria explicativa, del año 2000.
- Cobertura y Uso de la Tierra de los Cusco y Arequipa, de la base de datos del ex-INRENA memoria y mapa a escala 1:600 000
- Clasificación de Tierras del Perú del departamento de Cusco y Arequipa de la base de datos del ex-INRENA, memoria y mapa a escala 1:600 000.
- Memoria Explicativa del Mapa Forestal del Perú.
- Ecología basada en zonas de vida del Instituto Interamericano de Ciencias Agrícolas.

2. Métodos

La información del uso actual de las tierras, se recopiló mediante el estudio de imágenes de satélite, complementado con visitas de campo. Los usos de la tierra se delinearon de acuerdo al sistema de nueve categorías de la Unión Geográfica Internacional. Se adoptó este sistema debido a su carácter internacional, a que los resultados de los estudios que emplean este sistema son compatibles con otros importantes proyectos sobre el uso de la tierra, ya terminados o en ejecución, y a que sus categorías básicas pueden ampliarse, en tal forma, que describan completamente como la variedad de usos encontrada en la zona.

De acuerdo a la cobertura del área de estudio, las categorías se dividieron en subcategorías para permitir la inclusión de todos los componentes principales y las funciones inherentes a los usos concretos que se encuentran en el campo. La vegetación natural se separó en clases, debido a que, a la par de este estudio, se desarrolló uno más específico que lo haría en mayor detalle.

Luego de analizar la información recopilada y del conocimiento obtenido a través del recorrido de campo, se elaboró una leyenda preliminar de los posibles usos de la tierra del área de estudio, para que sirviera de base al mapeo cartográfico del uso actual. Esta leyenda se hizo de manera que fuera flexible y modificable a medida que avanzaba el trabajo del levantamiento, a fin de ajustarla y obtener en esa forma, una leyenda clara y definitiva de toda el área de estudio.

Las nueve grandes categorías de la UGI, van en orden descendente, de acuerdo con la intensidad de uso de la tierra y son las siguientes:

Cuadro Nº 4.2.3-10
Grandes Grupos de Uso Actual de la Tierra

N°	Nueve Grandes Categorías de la UGI	Descripción de las Categorías
1	Centros poblados	Terrenos Urbanos y/o Instalaciones Gubernamentales y Privadas.
2	Horticultura	No se ha identificado. Esta incluido en terrenos con vegetación cultivada.
3	Árboles y otros cultivos permanentes	No se ha identificado. Esta incluido en terrenos con vegetación cultivada.
4	Tierras de cultivos	Terrenos con Vegetación Cultivada.
5	Pastos mejorados permanentes	Terrenos con pastos introducios
6	Praderas no mejoradas	Terrenos con Praderas Naturales.
7	Tierras boscosas	No se ha identificado Terrenos con Bosques. Bosques húmedos y matorrales.
8	Pantanos y ciénagas	Terrenos mal drenados.
9	Tierras improductivas	Terrenos Sin Uso y/o Improductivos.

Fuente: Unión Geográfica Internacional.

c. Clasificación de Uso Actual de la Tierra

1. Descripción de las Unidades de Uso Actual de la Tierra

De las nueve categorías de la citada clasificación, la primera comprende las áreas dedicadas a centros poblados e instalaciones gubernamentales y/o privadas. Las tres siguientes se refieren a los terrenos dedicados a cultivos de hortalizas, cultivos perennes y cultivos extensivos. La quinta y sexta categoría comprenden terrenos ocupados con praderas mejoradas y praderas naturales, respectivamente. Las tres últimas categorías, se refieren a las áreas con bosque, áreas hidromórficas y áreas sin uso y/o improductivas en el momento del mapeo, incluyendo las tierras en barbecho y/o en descanso temporal.

En el área estudiada se ha identificado la primera categoría referida a los centros poblados y lagunas, la cuarta categoría se describen como terrenos cultivados y la sexta categoría correspondiente a praderas naturales, octava categoría dedicada

a terrenos mal drenados y novena categoría que se refiere a áreas sin uso y/o improductivas.

En el área de estudio las categorías identificadas de acuerdo a la clasificación de la UGI, se muestran en el cuadro Nº 4.2.3-11. Ver plano CSL-096200-1-AM-6.

Cuadro Nº 4.2.3-11
Categorías de Uso Actual de la Tierra

Unidades	Símbolo	На	%
Terrenos Urbanos y/o Instalaciones Gubernamentales y Privadas			
Centro poblado (Caylloma, Yauri, Tisco etc,)	СР	521,72	0,19
Actividades Mineras	AM	32,45	0,01
Tierras con Vegetación Cultivada			
Cultivos agrícolas	Ca	381,69	0,14
Cultivos agrícolas – Pastos naturales	Ca-Pn	6 556,43	2,39
Tierra con Praderas Naturales			
Pastos introducidos	Pi	6 286,70	2,29
Pajonal	Pj	3562,64	1,30
Herbazal de tundra	Ht	2 243,38	0,82
Césped de puna – pajonal	Cp-Pj	68 657,18	25,01
Césped de puna – Afloramiento rocoso	Cp-Ar	125,68	0,05
Césped de puna – Vegetación escasa	Cp-Ve	4 334,41	1,58
Herbazal de tundra – Pajonal de puna	Ht-Pj	3 491,10	1,27
Herbazal de tundra – Afloramiento rocoso	Ht-Ar	2 875,11	1,05
Pajonal de puna - Arbustos	Pj-Mt	30 904,44	11,26
Pajonal de puna – Afloramiento rocoso	Pj-Ar	42 515,99	15,49
Pajonal de puna – Sin vegetación	Pj-Sv	20 738,46	7,55
Tierras de Pantanos y Ciénagas			
Terrenos con vegetación hidromórfica	Vh	2 204,49	0,80
Vegetación hidromórfica – Pajonal de puna	Vh - Pj	1 749,33	0,64

Unidades	Símbolo	На	%
Terrenos Sin Uso y/o Improductivos			
Vegetación escasa	Ve	54 757,68	19,95
Sin Vegetación	SV	20 152,43	7,34
Playa	Ру	122,82	0,04
Isla	Is	86,24	0,03
Ríos	Ri	1 343,08	0,49
Lagunas	Lg	886,24	0,32
Total	•	274 529,73	100

Fuente: CESEL S.A. 2010.

Terrenos Urbanos y/o Instalaciones Gubernamentales y Privadas

Corresponde a las áreas ocupadas por el hombre como es el caso de los centros poblados de Caylloma, Espinar, Pusa Pusa, Tisco, Sibayo, etc. Así como la unidad minera Bateas.

• Terrenos con Vegetación Cultivada.

Los terrenos con vegetación cultivada resultan comparativamente escasos con respecto a la amplitud del área. Básicamente se hallan muy cerca de los principales poblados, vías de acceso y ríos. Los cultivos existentes se pueden agrupar en dos categorías: áreas con cultivos y una asociación de áreas de cultivo con pastos naturales, esto debido a que no se han podido separar cartográficamente en el plano por la magnitud de la escala.

Cultivos Agrícola (Ca)

Dentro de esta unidad se realizan siembras de cultivos de papa, quinua, quiwicha, cañihua y cebada entre las principales. Esta práctica de agricultura es la que genera ingresos a corto tiempo para poder solventar sus necesidades básicas (alimentación, salud, etc). Para la practica de esta actividad los pobladores hacen uso de tierras ubicadas en terrazas aluviales, en vertientes de colina, estas últimas, son las que ocasionan un mayor impacto al medio, las que serán fácilmente erosionadas por acción de las lluvias. En el área de estudio se observan mayores extensiones en los distritos de Espinar y Coporaque.

Cultivos agrícolas-Pastos naturales (Ca-Pn)

Unidad cartográfica delimitada en áreas donde no ha sido posible separar ambas coberturas encontrándoseles asociadas en un 60% para la comunidad vegetal áreas de cultivo y 30% para la unidad de vegetación de pastos

naturales, esta unidad esta conformada por especies como Festuca dolichophylla, Festuca orthophylla, Stipa ichu, Stipa obtusa, Calamagrostis vicunarum, Calamagrostis heterophylla y Calamagrostis sp. En menor proporción también existe inclusiones de matas arbustivas como la "thola" Parastrephia lepidophylla Parastrephia guadrangularis y Baccharis incarum hacia los niveles altitudinales superiores Diplostephyum sp., Margyricarpus sp., Tetraglochin strictum y Azorella sp.

Terrenos con Praderas Naturales.

La vegetación de páramo, comprende áreas con vegetación que crece en suelos superficiales a profundos, de textura media a moderadamente fina y con drenaje bueno a algo excesivo (predominancia de la escorrentía superficial) o en suelos de drenaje imperfecto a pobre, que se presentan en las zonas de vida páramo muy húmedo y tundra muy húmedo. Está conformada por pasturas naturales donde el factor climático, por la incidencia de climas fríos a semi-frígidos, constituye una limitación importante, sobre todo para aquellas pasturas mejoradas y ganado no adaptados a las condiciones ecológicas de páramo.

La influencia de la pendiente de las laderas y la altitud sobre el nivel del mar, así como el clima frígido, condicionan la cobertura en la medida que disminuye el grado de desarrollo de los suelos. La composición de la roca madre determina variaciones en la cobertura vegetal total más que en la composición y estructura general de la vegetación.

En general, el recurso pasto natural está tipificado por asociaciones o formaciones vegetales individualizadas por su importancia o asociadas. Estos pastos naturales o cultivados constituyen la base alimenticia del ganado ovino, vacuno para la producción de carne, así como equino para carga y trabajo, y otras especies silvestres de la zona.

En las pasturas naturales es recomendable evitar el sobre-pastoreo mediante un manejo racional de las pasturas, estableciendo potreros cercados para una determinada carga animal, con una rotación adecuada. Se recomienda el sistema de rotación radial, que consiste en efectuar rotaciones con cuatro o cinco potreros, de los cuales por lo menos tres o cuatro son pastoreados, mientras que uno descansa por lo menos durante cuatro meses cada año y en diferentes estaciones. De esta manera, después de cuatro o cinco años se consigue una rotación completa. Con esta práctica se podrá incrementar la producción forrajera y por consiguiente la soportabilidad de las pasturas; evitando su degradación y facilitando su recuperación

Pastos introducidos (Pi)

Comprende áreas con vegetación que crece en suelos moderadamente profundos, de textura media a moderadamente gruesa y con drenaje bueno a algo excesivo (que se presentan en la zonas de vida de bosque muy húmedo y páramo muy húmedo). Está conformada por pasturas introducidas de porte

bajo, donde el factor climático ha favorecido su adaptación y reproducción. Dentro de las especies introducidas se tiene el *Lolium multiflorum, Lolium perenne, Trifolium pratense, Trifolium repens, medigao sativa, Dactylis sp y Avena sativa.* Las mayores extensiones se observan en los distritos de Espinar y Coporaque, estos pastos para su desarrollo necesitan ser irrigados, para lo cual, hacen uso de canales de regadío existentes en el área de estudio.

Pajonal de Puna (Pj)

La comunidad pajonal; se caracteriza por un tapiz denso de baja calidad, pastos de palatabilidad baja a moderada, la cual recibe diferentes nombres locales. Los géneros importantes son Festuca, Calamagrostis y Stipa y las especies más comunes son Festuca dolichophylla, Festuca ortophylla, Festuca Scirpifolia, Stipa ichu, Stipa plumosa, Calamagrostis intermedia, C. antoniana y C. rigida. Actualmente, esta formación vegetal es usada para pastoreo de ovinos, camélidos y en menor proporción de vacunos, en pastoreos generalmente continuos y muchas veces, simultáneamente de mas de una especie, como ovino-vacuno o alpaca, esta modalidad de pastoreo hace que la especie pase de regular a pobre, debido al continuo corte a que es sometido.

Herbazal de Tundra (Ht)

Esta comunidad vegetal se presenta por encima de los 4500 msnm. Se caracteriza por ser baja, donde las plantas muchas veces, adquieren el porte almohadillado o en cojín, ocupando áreas más o menos horizontales y con drenaje moderado. La zona se encuentra cubierta por *Azorella sp.* "yareta" áreas extensas. También encontramos hierbas arrosetadas como *Alchemilla pinnata*. Su uso es para pastoreo de vicuñas y camélidos.

Césped de puna-Pajonal de Puna (Cp-Pj)

Unidad cartográfica delimitada en áreas donde no ha sido posible separar ambas coberturas, encontrándoseles asociadas en un 70% para la comunidad vegetal pajonal de puna y 30% para la unidad césped de puna. Esta comunidad vegetal se presenta por encima de los 3 800 msnm. Se caracteriza por ser de porte baja, donde las plantas muchas, veces, adquieren el porte almohadillado o en cojín, ocupando áreas más o menos horizontales y con drenaje moderado.

Se presentan como especies dominantes Stipas y Calamagrostis, y pocas zonas con parches de *Festuca sp.*, también encontramos hierbas arrosetadas como *Alchemilla pinnata Aciachne, Azorella, Liabum, Nototriche, Opuntia, Perezia, Pycnophyllum* y *Werneria* y menos representativas *Parastrephia lepidophylla Parastrephia guadrangularis, Baccharis incarum* y *Diplostephium tacurense*. Actualmente, esta formación vegetal es usada para pastoreo de ovinos, alpacas y en menor proporción vacunos. El pastoreo, generalmente, es continuo y muchas veces simultáneamente en más de una especie, como

ovino-vacuno o alpaca, sin ningún criterio técnico, es común quemar el pajonal, con la finalidad de aprovechar los rebrotes tiernos para el ganado; así mismo, las matas gruesas y altas de los pajonales son utilizadas para el techado de casas y chozas.

Césped de Puna-Afloramiento rocoso (Cp-Ar)

Unidad cartográfica delimitada en áreas donde no ha sido posible separar ambas coberturas encontrándoseles asociadas en un 70% para la unidad césped de puna y 30% para la unidad afloramiento rocoso. La comunidad vegetal ha sido descrita anteriormente y la unidad sin Vegetación se describe en la sección correspondiente a Terrenos Sin Uso y/o improductivos.

Césped de Puna - Vegetación Escasa (Cp - Sv)

Unidad cartográfica delimitada en áreas donde no ha sido posible separar ambas coberturas, encontrándoseles asociadas en un 60% para la unidad Césped de Puna y 40% para la unidad Vegetación Escasa. La comunidad vegetal césped alterna con áreas denudadas rocosas donde no existe vegetación o esta es muy escasa. La comunidad vegetal ha sido descrita anteriormente y la unidad Sin Vegetación se describe en la sección correspondiente a Terrenos sin Uso y/o improductivos.

Herbazal de Tundra-Pajonal de Puna (Ht-Pj)

Unidad cartográfica delimitada en áreas donde no ha sido posible separar ambas coberturas, encontrándoseles asociadas en un 60% para la unidad Herbazal de Tundra y 40% para la unidad Pajonal de Puna. La comunidad vegetal herbazal de tundra y pajonal de puna ha sido descrita anteriormente. Estas áreas se encuentran por encima de los 4400 msnm. y son pastoreadas por ovinos, camélidos y vicuñas silvestres.

Herbazal de tundra-Afloramiento rocoso (Ht-Ar)

Unidad cartográfica delimitada en áreas donde no ha sido posible separar ambas unidades encontrándose asociadas en un 60% para la unidad herbazal de tundra y 40% para la unidad afloramiento rocoso. La comunidad vegetal herbazal de tundra a sido descrita anteriormente. Estas unidades se presentan en pendientes muy pronunciadas y se encuentran por encima de los 4500 msnm.

Pajonal de puna-Arbustos (Pj-Mt)

Unidad cartográfica delimitada en áreas donde no ha sido posible separar ambas unidades, encontrándose asociadas en un 60% para la unidad Pajonal de Puna y 40% para la unidad Arbustos, son arbustos de baja palatabilidad de 60 a 70 cm de altura, la especie predominante es la *Parastrephia lepidophylla Parastrephia guadrangularis y Baccharis incarum*. Por debajo de ellas y de importancia secundaria hay un tapiz compuesto por especies tales como *Baccharis sp., Pycnophyllum sp. y Margaricarpus sp*.

Pajonal de puna-Afloramiento rocoso (Pj-Ar)

Unidad cartográfica delimitada en áreas donde no ha sido posible separa ambas unidades encontrándose asociadas en un 60% para la unidad pajonal de puna y 40% para los afloramientos rocosos.

Pajonal de puna-Sin vegetación (Pj-Sv)

Unidad cartográfica delimitada en áreas donde no ha sido posible separar ambas unidades encontrándose asociadas en un 60% para la unidad Pajonal de Puna y 40% para unidad Sin Vegetación, estas son áreas que no presentan cobertura vegetal por encontrarse muy erosionados.

Tierras de pantanos y ciénagas.

Vegetación Hidromórfica (Vh)

Esta unidad está representada por praderas nativas conformadas por especies vegetales propias de ambientes húmedos, de carácter permanente o temporal, que se desarrolla donde hay humedad permanente, generalmente en áreas de relieve suave y en zonas de superficie en forma cóncava o en hoyada localizadas, tanto en páramo muy húmed,o como en tundra pluvial.

Esta vegetación constituye fuente de forraje durante períodos de sequía, generalmente se extiende desde una altitud aproximada de 4 000 msnm, hasta cerca de los 4 900 msnm de altitud; en área depresionadas circundantes a las lagunas, riachuelos y filtraciones de los glaciares y/o puquiales, dominando en su estructura especies de porte almohadillado. Las especies vegetales más abundantes en este tipo de formación: Luzula sp. Distichia muscoides, Carex spp, Scirpus sp, Werneria nubigena. Actualmente, esta formación vegetal es usada para pastoreo de ovinos.

Vegetación Hidromorfica-Pajonal de puna (Vh-Pj)

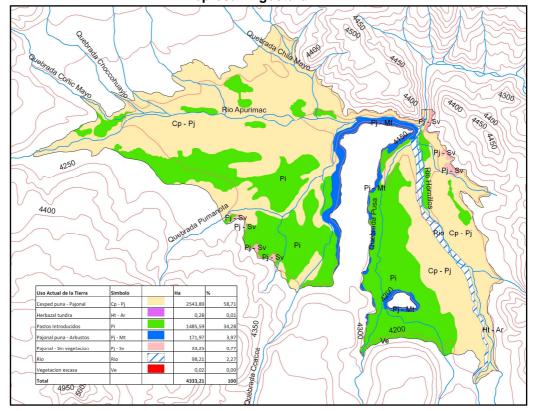
Unidad cartográfica delimitada en áreas donde no ha sido posible separar ambas coberturas encontrándoseles asociadas en un 60% para la unidad Vegetación Hidromórfica y 40% para la unidad Pajonal de puna. La comunidad vegetación hidromórfica y pajonal de puna a sido descrita anteriormente. Estas áreas se encuentran por encima de los 4000 msnm y son pastoreadas por ovinos, camélidos y vacunos.

• Terrenos Sin Uso y/o Improductivos

Vegetación escasa (Ve)

Se consideran áreas con vegetación muy rala, de herbazal de tundra, estos hábitats mantienen comunidades de flora y fauna en pequeña escala. Durante el trabajo de campo se observó que la aparición de especies características

de las asociaciones adyacentes. Estas áreas se localizan en las zonas con afloramientos líticos y suelos muy superficiales con pendientes extremadamente empinadas. En algunas áreas se observa formaciones vegetales de baja cobertura.


Sin vegetación (Sv)

Aplicada a las franjas desprovistas de vegetación conspicua. se consideran como áreas desprovistas de vegetación, estas áreas se localizan en las zonas con afloramientos líticos y suelos muy superficiales y suelos muy erosionados.

2. Unidades de uso Actual de la Tierra que serán inundadas

Como producto de la construcción de la Represa Angostura, las unidades de uso actual de tierra que serán inundados son las asociaciones de Césped de Puna y Pajonal (Cp-Pj), Pajonal de Puna y Sin Vegetación (Pj-Sv), Pajonal de Puna y Arbustos (Pj-Mt) y Pastos Introducidos (Pi) entre los principales, de estos, los que representan mayores extensiones son Cp-Pj con 58,71% (2 543,8 ha), Pi con 34,28% (1 485,5 ha) y Pj-Mt con 3,97% (171,97 ha). En la siguiente figura se muestra la distribución de las mismas.

Figura N° 4.2.3-3
Unidades de Uso actual de la Tierra que Serán Inundadas por la construcción de la Represa Angostura.

E. Conflicto de Uso de la Tierra

a. Generalidades

El conflicto de uso es el resultado de comparar el Uso Actual de la Tierra con el Uso Mayor de la Tierra. Esta labor se realizó, superponiendo el mapa de Capacidad de Uso mayor de la Tierra sobre el mapa de Uso Actual del Suelo y permitió identificar la necesidad de ejecutar cambios en el uso de las tierras en intensidad, tipo y extensión. Los conflictos se clasificaron como inadecuado y muy inadecuado, cuando el uso actual es mayor que el uso potencial que pueda soportar el suelo con un deterioro mínimo; adecuado, cuando el uso potencial corresponde al actual; y subutilizado, cuando el uso actual es menor que el potencial.

El objetivo principal de este tema es analizar las relaciones mutuas entre la Capacidad de Uso Mayor de las Tierras y el Uso Actual de las mismas.

b. Materiales y Métodos

Para evaluar los conflictos de uso de la tierra, se hizo un análisis comparativo del Potencial de Uso (Capacidad de Uso Mayor de la Tierra) con el Uso Actual de la Tierra, para lo cual se realizó una clasificación cruzada de los dos mapas correspondientes, determinando todas las combinaciones existentes de las unidades de capacidad con las unidades de uso. Las unidades generadas fueron reclasificadas, definiéndolas como subutilizadas cuando su uso actual pudiera ser cambiado a un rubro o actividad que requiera una utilización más intensa de los factores de producción, y por tanto, generen un mayor retorno productivo, en correspondencia con la capacidad de uso de la tierra y para el nivel de manejo mejorado.

Calificación de conflictos:

Las categorías de conflictos son:

- USO ADECUADO (A)
- USO INADECUADO (I)
- USO MUY INADECUADO (MI)
- USO SUBUTILIZADO (SU)

Conflictos de uso de la tierra se encuentran representados en el plano CLS-96200-1-AM-16. Para definir calificaciones de conflictos, se partió de las unidades de cobertura vegetal, con la premisa técnica que para la protección del suelo y otros recursos renovables es aconsejable mantener con vegetación apropiada las áreas con virtuales problemas erosivos, las clases y los usos predominantes definidos en el capitulo de Capacidad de Uso Mayor y Uso Actual de la Tierra, además de las categorías y jerarquías propuestas para definir el uso potencial del suelo de acuerdo a la aptitud de uso de los suelos del área de influencia del proyecto. Del cruce del mapa del Uso Actual de la Tierra con el mapa de Capacidad de Uso Mayor de la Tierra, se generan una serie de conflictos.

En este sentido y para poder llevar tanto el uso actual con el uso potencial a una matriz, se realiza una actividad previa que consiste en compatibilizar las definiciones

de las clases y tipos de cobertura con las categorías y Jerarquías de las aptitudes de uso, dado que, la simbología empleada es diferente. (Ver cuadro 4.2.3-12).

Se realizo el siguiente ejercicio, sin descuidar los usos predominantes y las potencialidades. El resultado es el siguiente:

Cuadro N° 4.2.3-12
Calificación de Conflictos de Uso de la Tierra

Uso Potencial Uso Actual	Α	Р	х	P – X	X –P
Ca	А	I	MI	MI	MI
Ca - Pn	A - SU	I - A	MI - A	MI - A	MI -A
Pi	SU	Α	МІ	A - MI	MI - A
Pj	SU	А	А	А	А
Ht	SU	SU	А	А	А
Cp- Pj	SU	А	А	A - MI	А
Cp - Ar	SU	А	A - I	A - I	A - I
Cp-Ve	SU	A - I	A - I	A - I	A - I
Ht – Pj	-	SU - A	А	А	А
Ht – Ar	-	А	A - I	A - I	A - I
Pj – Mt	-	A – SU	А	Α	А
Pj - Sv	-	A - I	A - I	A - I	A – I
Pj – Ar	-	Α	Α		А
Vh	-	Α	Α	А	А
Vh - Pj	-	А	А	А	Α
Ve	-	I	I	I	I
SV	-	I	MI	MI	MI

Fuente: CESEL S.A 2010.

Leyenda:

Capacidad de Uso Mayor de la Tierra

A : Tierras para cultivos en limpio.

P : Tierras para Pastos.X : Tierras de protección.

P-X: Tierras aptas para pastos-Protección X-P: Tierras de protección-tierras para pastos

Uso Actual de la Tierra

Ca :Cultivos agrícolas

Ca - Pn: Cultivos agrícolas-Pastos naturales

Pi :Pastos introducidos

Pj :Pajonal

Ht :Herbazal de tundra

Cp- Pj :Césped de puna-pajonal

Cp - Ar : Césped de puna-Afloramiento rocoso

Cp-Ve : Césped de puna-Vegetación escasa

Ht - Pj :Herbazal de tundra-Pajonal de puna

Ht – Ar :Herbazal de tundra-Afloramiento rocoso

Pj – Mt :Pajonal de puna-Arbustos

Pj - Ar : Pajonal de puna-Afloramiento rocoso

Pj - Sv :Pajonal de puna-Sin vegetación

Vh :Terrenos con vegetación hidromórfica

Vh - Pj : Vegetación hidromórfica-Pajonal de puna

Ve :Vegetación escasa SV :Sin Vegetación

c. Resultados

1. Definición de las Áreas de Suelo en Conflictos de Uso

Dentro del área de influencia se han identificado tierras con usos adecuados a su Capacidad de Uso Mayor, pero también se han identificados tierras con usos muy inadecuados, acelerando procesos erosivos naturales. La distribución de las áreas en conflicto se muestras en el cuadro N\(^4\).2.3-13. Las unidades en conflictos se indican en el plano CLS-96200-1-AM-16.

Cuadro N° 4.2.3-13
Superficies de Áreas cartografiadas en Conflicto de Uso de la tierra.

Convenciones Temáticas	Símbolo	Proporción	Área Ha	%
Uso adecuado	А	100	142 930,06	52,06
Uso Inadecuado	I	100	71 006,82	25,86
Uso muy Inadecuado	MI	100	128,01	0,05
Uso Subutilizado	SU	100	4 652,18	1,69
Inadecuado - Adecuado	I – A	60 - 40	1 584,91	0,58
Adecuado - Inadecuado	A - I	60 - 40	25 177,62	9,17
Adecuado - Subutilizado	A - SU	70 - 30	22 009,66	8,02
Adecuado – Muy inadecuado	A - MI	60 - 40	2 483,23	0,90
Muy inadecuado – Adecuado	MI - A	60 - 40	114,98	0,04
Subutilizado - Adecuado	SU - A	60 - 40	1 449,65	0,53
Otros (lagunas y centro poblados)	Otros	-	2 992,61	1,09
Total			274 529,73	100

Fuente: CESEL S.A 2010.

2. Descripción de los Conflictos de Uso

> Tierras en uso Adecuado

El uso adecuado corresponde a usos concordantes con la potencialidad que los suelos presentan, este uso se localiza en áreas de pendientes suaves, que son suelos aptos para pastos y donde su uso es Adecuado. Este uso adecuado también coincide con usos naturales, que en vertientes con pendientes muy pronunciadas, se encuentran cubiertos por pastos naturales los cuales son considerados como un Uso Adecuado por contrarrestar la erosión hídrica natural del suelo. También existe un uso adecuado en las áreas desarrolladas con pastos altoandinos naturales, que tienen el uso potencial para Pastos. Estas tierras ocupan la mayor superficie en el área de influencia que es 142 930,06 ha que representan el 52,06 % del área total de estudio.

Cuadro N° 4.2.3-14
Situaciones de Uso Adecuado

Uso Actual	Uso Potencial (Capacidad de Uso Mayor)
Césped de puna, Pajonal (Cp-Pj)	Tierras de protección
Vegetación hidromórfica (Vh)	Tierras de protección
Pajonal de puna (Pj)	Tierras de protección
Vegetación hidromórfica (Vh)	Tierras aptas para Pastos
Pastos introducidos o cultivados (Pi)	Tierras aptas para pastos
Pajonal de puna (Pj)	Tierras aptas para pastos
Pajonal – Matorral (Pj – Mt)	Tierras aptas para pastos
Césped de puna, Pajonal (Cp-Pj)	Tierras aptas para pastos
Vegetación hidromórfica – Pajonal de puna (Vh-Pj)	Tierras aptas para pastos

Fuente: CESEL S.A 2010.

> Tierras en Uso Inadecuado

El uso inadecuado corresponde a áreas donde el uso actual es mayor que el uso potencial que pueda soportar; es decir, están sometidas a actividades moderadamente intensivas, las cuales, exceden su capacidad de uso, ocasionando deterioro en los terrenos, debido a cultivos semestrales en pendientes empinadas y erosionadas, cuya vocación es primordialmente para Pastos, el cual se puede observar el en distrito de Coporaque. También el uso inadecuado está referido a áreas que se encuentran desprovistas o con una escasa vegetación, la cual no protege al suelo, estos se observan en casi todo el área de estudio. Estas tierras ocupan una superficie en el área de influencia de 71 006,8 ha que representan el 25,86% del área total influencia de estudio.

Cuadro N° 4.2.3-15
Situaciones de Uso Inadecuado

Uso Actual	Uso Potencial (Capacidad de Uso Mayor)
Cultivos agrícolas (Ca)	Tierras aptas para pastos
Vegetación escasa (Ve)	Tierras aptas para pastos
Sin vegetación (Sv)	Tierras para protección
Vegetación escasa (Ve)	Tierras de protección

Fuente: CESEL S.A 2010.

Tierras en Uso Muy Inadecuado

El uso muy inadecuado corresponde a áreas donde el uso actual es mayor que el uso potencial que pueda soporta; es decir, están sometidas a actividades muy intensivas las cuales exceden su capacidad de uso, ocasionando deterioro en los terrenos, debido principalmente a cultivos semestrales y áreas sin cobertura vegetal, es que se encuentran en pendientes empinadas a muy empinadas y erosionadas, cuyo potencial son tierras de Protección, estas se pueden observar en el distrito de Coporaque. Estas tierras ocupan una superficie en el área de influencia que es 128,01 ha que representan el 0,05% del área total de estudio.

Cuadro N° 4.2.3-16
Situaciones de Uso Muy Inadecuado

Uso Actual	Uso Potencial (Capacidad de Uso Mayor)
Cultivos agrícolas	Protección absoluta

Fuente: CESEL S.A 2010.

> Tierras en Uso Subutilizado

Las tierras subutilizados corresponden a áreas donde uso actual es menor que el uso potencial que pueda soportar. La calificación de la categoría como subutilizados tiene que ver con su desaprovechamiento a la aptitud que presentan. Esta unidad cartográfica en el Uso Actual de la Tierra son herbazales de tundra, que en tierras aptas para Pastos, son considerados como Subutilizados, por lo que se pueden desarrollar sistemas pastizales y una ganadería en forma extensiva de ovinos y alpacas. También se presenta una asociación en el Uso actual de la Tierra de césped de puna y pajonal, que en tierras aptas para cultivos en limpio, que son considerados como subutilizados, esto se observa dentro de la zona de vida de bosque húmedo Montano Subtropical (bh-MS). Estas tierras ocupan una superficie en el área de influencia de 4 652,18 ha que representan el 1,69% del área total de estudio.

Cuadro N° 4.2.3.-17 Situaciones de Uso Subutilizado

Uso Actual	Uso Potencial (Capacidad de Uso Mayor)
Césped de puna - pajonal	Tierras aptas para cultivos
Herbazal de tundra	Tierras aptas para pastos

Fuente: CESEL S.A 2010.

> Tierras en Uso Inadecuad Adecuado

Unidad cartográfica delimitada en áreas donde no ha sido posible separar ambos conflictos de uso, encontrándose asociadas en un 60% para la unidad de Uso Inadecuado y 40% para la unidad de Uso Adecuado. Esta unidad cartográfica presenta una asociación en el Uso Actual de la Tierra, que es cultivo agrícola con pastos naturales; por lo que en tierras aptas para pastos, los cultivos agrícolas son clasificados como uso inadecuado y mientras los pastos naturales como adecuados. Estas tierras ocupan una superficie en el área de influencia que son 1 584,91 ha, que representan el 0,58% del área total de estudio.

> Tierras en Uso Adecuado-Inadecuado

Unidad cartográfica delimitada en áreas donde no ha sido posible separar ambos conflictos de uso, encontrándose asociadas en un 60% para la unidad de Uso Adecuado y 40% para la unidad de Uso Inadecuado. Esta unidad cartográfica presenta una asociación en el Uso Actual de la Tierra de pastos naturales con áreas sin vegetación; por lo que en tierras aptas para pastos, los pastos naturales son clasificados como de uso adecuado y mientras las áreas sin vegetación son consideradas como un uso inadecuado, porque favorece la erosión del suelo, de igual manera, se procedió a evaluar en tierras de protección. Estas tierras ocupan una superficie en el área de influencia de 25 177,62 ha que representan el 9,17% del área total de estudio.

> Tierras en Adecuado-Uso Subutilizado

Unidad cartográfica delimitada en áreas donde no ha sido posible separar ambos conflictos de uso, encontrándose asociadas en un 70% para la unidad de Adecuado y 30% para la unidad de Uso Subutilizado. Esta unidad cartográfica presenta una asociación en el Uso Actual de la Tierra; de pajonal de puna con matorral; por lo que en tierras con potencial para pastos, las áreas con pajonal es considerado como adecuado, mientras el matorral es considerado como Subutilizado. También este conflicto se observa en la asociación de Uso Actual de la Tierra de cultivos agrícolas y pastos naturales, donde el potencial de la tierra es para cultivo en limpio, aquí los pastos naturales son considerados como áreas

Subutilizados. Estas tierras ocupan una superficie en el área de influencia de 22 009,66 ha, que representan el 8,02% del área total de estudio.

Tierras en Uso Adecuado-Muy inadecuado

Unidad cartográfica delimitada en áreas donde no ha sido posible separar ambos conflictos de uso, encontrándose asociadas en un 60% para la unidad de Uso Adecuado y 40% para la unidad de Uso Muy inadecuado. Esta unidad cartográfica presenta una asociación en el Uso Actual de la Tierra de pajonal de puna y sin vegetación; por lo que en tierras con potencial de Pastos; el pajonal de puna es considerado como adecuado mientras la unidad sin vegetación es muy inadecuado. Estas tierras ocupan una superficie en el área de influencia de 2 483,23 ha, que representan el 0,90% del área total de estudio.

Tierras en Uso Muy inadecuado-Adecuado

Unidad cartográfica delimitada en áreas donde no ha sido posible separar ambos conflictos de uso, encontrándose asociadas en un 60% para la unidad de Uso Muy Inadecuado y 40% para la unidad de Uso Adecuado. Esta unidad cartográfica presenta una asociación en el Uso Actual de la Tierra de cultivos agrícolas y pastos naturales; por lo que en Tierras de Protección los cultivos agrícolas son considerados como muy inadecuado, mientras que los pastos naturales son considerados como adecuados. Estas tierras ocupan una superficie en el área de influencia que son 114,98 ha que representan el 0,04% del área total de estudio.

> Tierras en Uso Subutilizado-Adecuado

Unidad cartográfica delimitada en áreas donde no ha sido posible separar ambos conflictos de uso, encontrándose asociadas en un 60% para la unidad de Uso Subutilizado y 40% para la unidad de Uso Adecuado. Esta unidad cartográfica presenta una asociación en el Uso Actual la Tierra de herbazal de tundra con pajonal de puna; por lo que en tierras con potencial de Pastos; las áreas con herbazal de tundra son consideradas como Subutilizados, y las cuales, tienen potencial para realizar siembras de pastos naturales. Mientras el pajonal de puna es considerado como adecuado. Estas tierras ocupan una superficie en el área de influencia que son 1 449,65 ha, que representan el 0,53% del área total de estudio

3. Conflicto de Uso por Distritos

En siguiente cuadro se muestra la extensión en hectáreas de los conflictos de uso en los distritos involucrados en el área de estudio; de las cuales, se puede decir que el distrito de Caylloma presenta mayores extensiones en un uso inadecuado (24 920,87 ha), así como la mayor extensión en Uso Adecuado (33 512,96 ha).

Cuadro N° 4.2.3.-18
Superficie de las Unidades en Conflicto de Uso en los Distritos Involucrados

Departamento	Provincia	Distrito	Conflicto de uso	Área en Ha
AREQUIPA CAYLLOM		CAYLLOMA	Adecuado	33512,96
			Adecuado-Inadecuado	19714,34
			Adecuado-Muy inadecuado	1722,38
			Adecuado-Subutilizado	15936,27
			Inadecuado	24920,87
			Otros	1019,8
			Subutilizado	1973,43
			Subutilizado-Adecuado	1301,5
	CAVILOMA	SIBAYO	Adecuado	14923,87
	CAYLLOMA		Adecuado-Inadecuado	1272,17
			Adecuado-Subutilizado	293,42
			Inadecuado	10347,51
			Otros	135,1
		TISCO	Adecuado	31466,73
			Adecuado-Inadecuado	878,62
			Adecuado-Subutilizado	2,95
			Inadecuado	15829,92
		Otros	247,99	
		COPORAQUE	Adecuado	24101,48
			Adecuado-Subutilizado	1555,87
			Inadecuado	1400,16
			Inadecuado-Adecuado	1584,84
			Muy inadecuado	128,01
			Muy inadecuado-Adecuado	114,98
			Otros	499,37
		Subutilizado	215,26	
CUSCO	ECDINIAD	ESPINAR	Adecuado	9148,21
CUSCO ESPINAR	ESPINAR		Adecuado-Subutilizado	2191,29
			Inadecuado	73,75
			Inadecuado-Adecuado	0,07
			Otros	605,36
			Subutilizado	2193,78
		SUYCKUTAMBO	Adecuado	25176,95
			Adecuado-Subutilizado	125,13
			Inadecuado	2517,86
			Otros	278,26

Fuente: Cesel S.A. 2010.

F. CONCLUSIONES

En cuanto a la fisiografía se Identificaron 3 Grandes Paisajes Planicie, Colina y Montaña; subdividas en diez paisajes planicie aluvial, glacial, Planicie de tobas areniscosas, montaña volcánica, Montaña sedimentaria, Montaña intrusivo, Colina volcánica (Andesitas y dacita) Colina volcánica de tobas Cristolovitricas, Colinas sedimentaria y Colinas intrusivas.

La mayor parte de la zona pertenece al gran paisaje colina, representado por los paisajes de vertientes erosiónales con pendientes mayores de 25% y superficies depresionadas de relieves ondulados y ligeramente inclinados. El resto del área es planicie aluvial y fluvio-glacial y también se observan montañas en la cabecera de las cuencas de los ríos aportantes al Apurímac

Los procesos morfodinámicos identificados en el área de influencia han sido erosión difusa en pendientes muy empinadas, erosión en surcos y cárcavas, la cuales se observan en las quebradas Azul Mayo, Chonta, Cerro Quello Apacheta. Cerro Vilafro, en el distrito de Caylloma, cerro Jatutayne, cerro Tayane y cerro Quenco en el distrito de Sibayo.

Se encontraron doce subgrupos de suelos de acuerdo a la clasificación Natural Soil Taxonomy del Departamento de Agricultura de los Estados Unidos de Norteamerica (2006): *Typic Cryofluvents* (Anamarca, Angostura, Fluvial I, Fluvial II y Huayllupata), *Aquic Cryofluvents* (Palcapampa), Typic Cryorthents (Tulpa, Suyto y Tisco), *Lithic Cryorthents* (Chilamayo, Achaccollo y Altaruma), *Fluventic Haplocryepts* (Tarucuyo), *Ustic Haplocryepts* (Antuyo), *Typic Cryaquolls* (Pusa), *Ustic Haplocryolls* (Achuyo, Curane, Yauri y Antacollo), *Cumulic Haplocryolls* (Ichocollo y Ccallcca), *Hydric Cryofibrist* (Llacmapampa), *Lithic Haplocryands* (Quilcahuayco, Huaruna, Acharrape, Anchaca, Cullpa y Palliapata) *Typic Haplocryands* (Pucara, Tocraya y Humaccala).

De acuerdo al origen del material parental, se tienen dos tipos: residual o in-situ, es decir formado en el lugar a partir de meteorización de las rocas propias de la zona; y transportado, con los subtipos coluvial, aluvial y fluvio-glacial.

Según la profundidad efectiva, los suelos son muy superficiales, superficiales y moderadamente profundos. Los factores que limitan esta profundidad son fragmentos muy gruesos, ya sea cantos rodados o rocas angulosas.

La fertilidad natural de la capa arable, de acuerdo a la información obtenida y consultada presenta niveles bajos a medios, debido a las deficiencias significativas de fósforo y nitrógeno, principalmente y algunas veces el potasio disponible.

La fertilidad química de los suelos es predominantemente baja, de reacción ligeramente ácida a extremadamente ácida, niveles altos a bajos de materia orgánica, bajos de nitrógeno, altos a muy bajo de fósforo y de medios a bajos de potasio. Los suelos de mayor fertilidad son: Tarucuyo, Suyto, Ccallca, Palcapampa y, Anchaca con un calificativo de fertilidad de alto.

La Capacidad de Intercambio Catiónico (CIC) es alta a baja debido a la variabilidad del pH y al contenido de materia orgánica en los horizontes identificados, los únicos suelos que presentaron valores alto son: Tarucuyo, Achacollo, Curane, Suyto, Antuyo, Cullpa, Antacollo, Ichocollo, Palcapampa y Anchaca,

La textura de los suelos varia entre arenoso a franco limoso. En cuanto a las otras propiedades físicas, el horizonte A presenta estructura granular, consistencia muy friable a friable, aireación y capacidad retentiva de agua son alta a medias; el horizonte B presenta estructura en bloques subangular y la capa C no presenta estructura (granos simple y masiva), consistencia firme y aireación y retención de agua alta a baja.

Los suelos de escaso desarrollo genético se reconocen por la gran cantidad de fragmentos muy gruesos dentro del perfil, su poca profundidad, la proximidad de la roca madre a la superficie y la ausencia del horizonte B; en cambio, los de desarrollo incipiente son moderadamente profundos a profundos y presentan horizonte B.

Los suelos que serán inundados por la construcción de la Represa Angostura son: Acharrape, Achuyo, Anamarca, Angostura, Fluvial I Pucara, Pusa, Quilcahuayco y misceláneo lítico; de las cuales los que ocupan mayores extensiones son: Angostura con 38,29% (1659,3 Ha), Pusa con 34,28% (1485,36), Anamarca con 17,60%(762,ha) y Pucara con 4,29% (185,73), los demás suelos ocupan extensiones menores al 1% del área total.

La Capacidad de Uso Mayor de las Tierras identificadas en el ámbito del proyecto han sido tres; Tierras Aptas para Cultivos en Limpio, Tierras Aptas para Pastos y Tierras de Protección.

Las áreas para Cultivos en Limpio tienen una calidad agrológica de media a baja con limitación, principalmente, por el factor edáfico y climático. El factor edáfico relacionado con la fertilidad del suelo y las limitaciones físicas como fragmentos groseros dentro y sobre el perfil del suelo, el factor climático relacionado con las bajas temperaturas y posibles heladas y falta de agua en las épocas de estiaje.

Las áreas con potencial para Pastos tienen una calidad agrológica de media a baja con limitación, principalmente por los factores topográfico, edáfico y climático. El factor topográfico relacionado con el potencial de erosión que pueden sufrir si no hay de por medio un manejo adecuado de los pastos (no sobrepastoreo, una adecuada carga animal).

Las tierras de protección, son áreas destinas a su conservación y rehabilitación, por lo que una intervención agrícola o ganadera, va acelerar el proceso de degradación física, las cuales se manifiestan con la presencia de surcos o cárcavas en las laderas las cuales posteriormente terminan en desprendimientos.

Los subgrupos de Uso Mayor que quedarán inundados, por la construcción de la Represa Angostura, son las tierras aptas para pastos de calidad agrológica media con limitación por suelo, pendiente y clima (P2sec, P2se), tierras de pastos de calidad agrológica baja (P3s y P3sw) y tierras de protección (Xse), de los mencionados los

que representan mayores extensiones son P2sc con 51,28% (2 222 ha), P3sw con 34,28% (1 485,36 ha) y P2sec con 9,25% (400,7 ha), los demás representan menos del 2% del área total.

Se han identificado dentro del Uso Actual de la Tierra; dos tipos de uso, los naturales y los generados por la actividad humana. Dentro de los primeros, tenemos praderas naturales como el césped de puna y pajonales y la vegetación hidromórfica y dentro del uso generado por el hombre, se tienen áreas con cultivos anuales y áreas urbanizadas.

Las unidades de uso actual de tierra que serán inundados son: las asociaciones de césped de puna y pajonal (Cp-Pj), pajonal de puna y sin vegetación (Pj-Sv), pajonal de puna y arbustos (Pj-Mt) y Pastos introducidos (Pi) entre los principales; de estos los que representan mayores extensiones son Cp-Pj con 58,71% (2 543,8 ha), Pi con 34,28% (1 485,5 ha) y Pj-Mt con 3,97% (171,97 ha).

El análisis de unidades de conflicto permite evidenciar que el área del Proyecto posee 142 930,06 hectáreas en uso Adecuado que corresponden al 52,06% del total del proyecto. La extensión del territorio en uso inadecuado corresponde a 71 006,8 hectáreas equivalentes al 25,86% del territorio, y la extensión del uso muy inadecuado es de 128,01 ha que representan el 0,05% del área total del Proyecto.

También se presentan asociaciones en el mapa de conflicto de uso entre las que se tiene el uso Inadecuado—Adecuado que ocupan una superficie 0,58% (1 584,91 ha), asociación Adecuado—Inadecuado con un 9,17% (25 177,62 ha), asociación Adecuado-Subutilizado con 8.02% (22 009,66 ha), asociación Adecuado—Muy Inadecuado con 0,90% (2 483,23 ha), asociación Muy inadecuado—Adecuado con 0.04% (114,98 ha), asociación Subutilizado—Adecuado con 0,53% (1 449,65 ha).

G. BIBLIOGRAFÍA

- 1. Baver, L. D.; W. H. Gardner y W. R. Gardner. 1973. Física de Suelos. 1ª. Ed. en español. U.T.E.H.A. México. 529 p.
- 2. Dourojeanni R. A. 1967. La Ecuación Universal de La Perdida de Suelo y su aplicación al planeamiento del uso de las tierras agrícolas. Estudio del factor de la lluvias en el Perú. UNALM- Programa de Conservación de suelos.
- 3. FAO. 1980. Metodología Provisional para la Evaluación de la Degradación de los Suelos. FAO-PNUMA-UNESCO. 86 p.
- Gobierno Regional de Cusco 2007. Zonificación Ecológica Económica del Departamento de Cusco. Peru. 171 p.
- INRENA. 1995. Mapa Forestal del Perú. Instituto Nacional de Recursos Naturales, Ministerio de Agricultura. Lima.
- 6. INRENA 2005. Base datos de recursos naturales e infraestructura del Departamento de Cusco, primera aproximación. Ministerio de Agricultura. Pg. 93. Lima.
- 7. INRENA 2005. Base datos de recursos naturales e infraestructura del Departamento de Arequipa, primera aproximación. Ministerio de Agricultura. Pg. 153. Lima.
- 8. Marshall, T.J. et al. (1996). Soil Physics. Third Edition. Cambridge University Press

- 9. Mejía, L. 1980. Conceptos básicos comunes a la pedología y geomorfología. Centro Interamericano de Fotointerpretación (CIAF). Bogotá. 278 p.
- Montenegro, H. y D. Malagón. 1990. Propiedades físicas de los suelos. IGAC. Bogotá. 813 p
- 11. Morgan, R.P.C. 1997. Erosión y Conservación del Suelo. Mundi-Prensa, Madrid.
- U.S. Department of Agriculture (USDA). Agricultural Research Service. (1997).
 Predicting Soil Erosion by Water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook Number 703.
- 13. Wischmeier, W.H. and Smith, D.D. 1978. Predicting rainfall erosion losses: a guide to conservation planning. Agric. Handbook 537. USDA. U.S.
- Schoenerberger, P.J., D.A. Wysocji an E.C. Benham. 1998. Field book for describing and sampling soils. National Soil Survey Center. United States Department of Agriculture. Lincoln, Nebraska
- U.S.D.A. 1993. SOIL SURVEY DIVISION STAFF (SSDS). Soil survey manual. Handbook No. 18. United States Department of Agriculture (USDA). Washington D. C. 437 p.
- 16. U.S.D.A. 2006. Soil Survey Staff. Keys to Soil Taxonomy. United States Department of Agriculture (USDA). Natural Resources Conservation Service. Appendix C.
- 17. U.S.D.A. 2004. Soil Survey Laboratory Methods Manual. United States Department of Agriculture (USDA). Natural Resources Conservation Service.
- 18. Zinck, J.A. 1988. Physiography and soils, ITC Lectur Note SOL4.1. International Institute for Geoinformation and Eath Observacion (ITC), Ensche (NL). 156 pp.

specialidad: Ambiental

Caracterización Ecogeográfica

No se observa

12/12/2009

ESTUDIO DE IMPACTO AMBIENTAL DE LA REPRESA DE ANGOSTURA Y GESTIÓN AMBIENTAL A NIVEL DEFINITIVO

FICHA DE EVALUACIÓN DE CAMPO

01

Observaciones

CARACTERIZACIÓN MORFOPEDOLOGÍCA SUELO ANAMARCA (Ana)

			SUELO ANAMAR
		Morfología del Perfil Modal	Caracteriz
0 cm		Franco arenoso, Color pardo (7,5YR 4/4) en húmedo, granular fino, medio;	Departamento : Arequ
40	Α	friable: raíces finas comunes. Reacción fuertemente ácida. Limite de horizonte difuso, plano al.	
10—	A	mable; raices linas comunes. Reaccion fuertemente acida. Limite de norizonte difuso, piano al.	Suelo: Anamarca
1			Clasificación: US SOIL
25 —			Unidad Geomorfológic
		Franco limoso, Color pardo (7,5YR 5/4) en húmedo, granular fino, débil;	Relieve:
45 –	С	firme; raíces finas pocas. Reacción fuertemente ácida. Limite de horizonte claro, irregular al.	Clima:
			Material Madre:
60-			Altitud m.s.n.m
			Vegetación:
70		Arena franca, Color pardo grisáceo (2Y 5/2) en húmedo, sin estructura (grano simple),	Drenaje:
	2C	no adhesivo; Con 80 % de canto rodado de tamaño de gravas, guijarro y piedras en proporciones variable.	Permeabilidad:
80 —		Reacción ligeramente ácida.	Proceso Morfogenético
			Prof. Napa Freática:
120 _			Fecha:
1			

Departamento : Arequipa	Provincia : Caylloma	Distrito : Caylloma
Suelo: Anamarca		Calicata Nº: 01
Clasificación: US SOIL TAXONOMY:	Typic Cryofluvents	
Unidad Geomorfológica: Aluvial antiguo		CUM*: P2sc, P3sc y P2sec

Elaboro : W.V.B

Plano a ligeramente ondulado Pendiente: < 15% Uso Actual: césped de puna y pajonal Perhumedo frío Precipitación Mm. 900 Aluvial Distribución de raíces: 4,189 Pedregosidad Superficial: Moderadamente pedregoso Pastos naturales altoandinos Régimen de Humedad : Ustico

Régimen de Temperatura : Cryico Bueno Rápida Epipedón: ócrico Morfogenético: Erosión fluvial ndopepedon:

Coordenadas UTM ** 217 464 8 318 886

										ANÁLIS	IS QUÍMIC	O FÍSICO Y	MECÁNICO	_
Horizonte	Prof.	На	CO ₃	C.E	С	N	M.O.	Asimilable	es ppm			Cambiable	es m.e/100 gr	Ξ

Horizonte	Harizanta Prof. DL CO ₃ C.E C N M.O.			M.O.	Asimilables ppm Cambiables m.e/100 gr							Sat. Bases	Sat de Alum	Análisis Mecánico %			Clase Textural				
Horizonte	cm.	рп	%	dS/cm	%	%	%	Р	K	C.I.C	Ca	Mg	K	Na	Al	%	%	Arena	Limo	Arcilla	Clase Textural
Α	0 - 25	5,40	0,00	0,12	2,02	0,17	3,48	3,4	123	17,6	13,75	2,56	0,90	0,39	0,20	98,9	1,1	60	38	2	Franco arenoso
С	25 - 60	5,51	0,00	0,04	1,02	0,09	1,76	4,0	291	17,28	13,00	2,51	0,83	0,46	0,30	98,2	1,8	37	51	12	Franco limoso
2C	60 - 130	6,26	0,00	0,02	0,13	0,01	0,23	4,3	99	8,80	6,10	1,90	0,44	0,36	0,00	100,0	0,0	86	10	4	Arena franco

Perfil Modal

^{*} CUM: Capacidad de Uso Mayor

^{**} Sistema PSAD 56

CESEL	INGENIEROS
CERTIFICADO EN: ISO 9001:2000,	ISO 14001:2004, OHSAS 18001:2007

C
F
Е

Revisión:

Especialidad: Ambiental Elaboro : W.V.B

ESTUDIO DE IMPACTO AMBIENTAL DE LA REPRESA DE ANGOSTURA Y GESTIÓN AMBIENTAL A NIVEL DEFINITIVO

FICHA DE EVALUACIÓN DE CAMPO

02

CARACTERIZACIÓN MORFOPEDOLOGÍCA SUELO ACHUYO (Achu)

0 c <u>m</u>	
10—	Α
18-	
20-	AC
35-	
60 —	c
80 –	
120 _	

Morfología del Perfil Modal
Franco arenoso, Color pardo gris muy oscuro (10YR 3/2) en húmedo, granular fino, medio;
friable; raíces finas comunes. Reacción muy fuertemente ácida. Limite de horizonte difuso, plano al.
Franco arenoso, Color pardo (10YR 5/3) en húmedo, granular fino débil;
firme; raíces finas pocas, fragmento gruesos en 15% del tamaño de grava y guijarro.
Reacción fuertemente ácida. Limite de horizonte claro, irregular al.
Franco, Color pardo pálido (10YR 6/3) en húmedo, sin estructura (masiva),
muy firme; con 25 % de fragmento rocoso de tamaño de gravas y guijarro en proporciones variable.
Reacción moderadamente ácida.

OULLO AUTOTO	(Acita)			
Caracterizad	ción Ecogeográfica			
Departamento : Arequipa	Provincia :	Cavlloma	Distrito : Ca	ıvlloma
Suelo: Achuyo		,	Calicata Nº:	,,
Clasificación: US SOIL TA	AXONOMY: Ustic Haplo	cryolls		
Unidad Geomorfológica:	Vertiente erosional Volcánio	0	CUM*: P2sec, P3se	, P3sc, Xse
Relieve:	Ondulado	Pendiente: 15 - 50%	Uso Actual: césped de p	ouna y pajonal
Clima:	Perhumedo frío		Precipitación Mm.	900 T°C = 3 - 6
Material Madre:	Coluvial		Distribución de raíces: 20	cm
Altitud m.s.n.m	4,260		Pedregosidad Superficial:	Pedregoso (2)
Vegetación:	Pastos naturales altoandino	os	Régimen de Humedad : L	Jstico
Drenaje:	Bueno		Régimen de Temperatura	: Cryico
Permeabilidad:	Moderado		Epipedón : Móllico	
	Erosión hídrica ligera		Endopepedon:	
Prof. Napa Freática:	No se observa		Coordenadas UTM **	Observaciones
Fecha:	12/12/2009		219 190	
			8 317 982	

ANÁLISIS QUÍMICO FÍSICO Y MECÁNICO

Horizonte Prof. pH CO ₃ C.E C N M.O.					Asimilables ppm Cambiables m.e/100 gr						Sat. Bases	Sat de Alum	Análi	sis Mecánio	o %	Clase Textural					
Tionzonte	cm.	рп	%	dS/cm	%	%	%	Ρ	K	C.I.C	Ca	Mg	K	Na	Al	%	%	Arena	Limo	Arcilla	Clase Textural
Α	0 - 20	4,82	0,00	0,20	3,38	0,29	5,8	3,4	171	16,64	8,19	0,79	0,78	0,28	0,40	96,2	3,8	68	28	4	Franco arenoso
AC	20 - 45	5,44	0,00	0,04	0,70	0,06	1,2	1,1	170	8,64	3,89	0,62	0,65	0,35	0,40	93,2	6,8	68	26	6	Franco arenoso
С	45 - 120	5,75	0,00	0,06	0,32	0,03	0,6	9,5	195	15,52	11,68	2,64	0,69	0,41	0,10	99,4	0,6	46	32	22	Franco

Perfil Modal

 ^{*} CUM: Capacidad de Uso Mayor
 ** Sistema PSAD 56

CESEL	INGENIEROS
CERTIFICADO EN: ISO 9001-2000	ISO 14001-2004 OHSAS 18001-2007

Revisión:

Clima:

Drenaje:

Permeabilidad:

Prof. Napa Freática:

ESTUDIO DE IMPACTO AMBIENTAL DE LA REPRESA DE ANGOSTURA Y GESTIÓN AMBIENTAL A NIVEL DEFINITIVO

FICHA DE EVALUACIÓN DE CAMPO

03

Observaciones

CARACTERIZACIÓN MORFOPEDOLOGÍCA SUELO QUILCAHUAYCO (Qui)

I			50
_		Morfología del Perfil Modal	
0 c <u>m</u>			
		Franco arenoso, Color pardo amarillento (10YR 5/4) en húmedo, granular fino, medio;	
10—	A	friable; raíces finas comunes. Presencia de fragmentos groseros. Reacción muy fuertemente ácida.	
		Limite de horizonte difuso, plano al.	
18-			
		Franco arenoso, Color amarillento claro (2,5YR 6/4) en húmedo, granular medio, moderado;	
20-	c	firme; raíces finas pocas. Presencia de fragmentos groseros 15%. Reacción fuertemente ácida.	
		Limite de horizonte claro, irregular al.	
35-			
		Rocas volcánicas de dacitas y andesitas	
60 —			
	R		
80 —			
400	1 1	'	

Departame	nto : Arequipa	Provincia: Caylloma	Distrito: Sibayo
Suelo:	Quilcahuayco		Calicata Nº: 03

Elaboro : W.V.B

Clasificación: US SOIL TAXONOMY: Lithic Haplocryands Unidad Geomorfológica: Vertiente Erosional Volcánico Relieve:

Caracterización Ecogeográfica

Material Madre: Altitud m.s.n.m Vegetación:

CUM*: P2sec, P3sc y Xse Ondulado Pendiente: 15 - 75% Uso Actual: Césped de puna y Pajonal Frío perhumedo Precipitación Mm. 900 T°C = 3 - 6 Coluvial Distribución de raíces: 15cm

4,257 Pastos naturales altoandinos Bueno

Moderado Proceso Morfogenético: Erosión hídrica ligera No se observa

12/12/2009

Régimen de Temperatura : Cryico Epipedón : ócrico Endopepedon:

Coordenadas UTM ** 219 157 8 315 547

Régimen de Humedad : Ustico

Pedregosidad Superficial: Muy Pedregoso (3)

ANIÁI ICIC	OLIMICO	EÍCICO V	MECÁNICO
ANALISIS	QUIMICO	FISICU I	MECANICO

Horizonte					C.E C N		M.O. Asimilables ppm					Cambiable	es m.e/100 gr			Sat. Bases	Sat de Alum	Análi	sis Mecánio	o %	Clase Textural
Honzonte	cm.	рп	%	dS/cm	%	%	%	Р	K	C.I.C	Ca	Mg	K	Na	Al	%	%	Arena	Limo	Arcilla	Clase Textural
Α	0 - 15	4,89	0,00	0,06	2,01	0,17	3,47	3,8	149	8,96	2,27	0,31	0,42	0,26	0,90	78,4	21,6	72	22	6	Franco arenoso
С	15 - 50	5,52	0,00	0,02	0,49	0,04	0,85	1,2	101	8,32	5,71	1,09	0,47	0,35	0,70	91,6	8,4	76	16	8	Franco arenoso
R																					

Perfil Modal

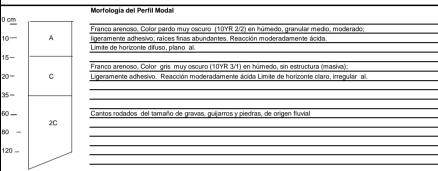
 ^{*} CUM: Capacidad de Uso Mayor
 ** Sistema PSAD 56

CESEL	INGENIEROS
CERTIFICADO EN: ISO 9004:2000	ISO 14001:2004 OHEAS 18001:2007

١

Revisión:

Especialidad: Ambiental Elaboro : W.V.B


Caracterización Ecogeográfica

ESTUDIO DE IMPACTO AMBIENTAL DE LA REPRESA DE ANGOSTURA Y GESTIÓN AMBIENTAL A NIVEL DEFINITIVO

FICHA DE EVALUACIÓN DE CAMPO

04

CARACTERIZACIÓN MORFOPEDOLOGÍCA SUELO PUSA (Pu)

Departamento : Arequipa	1	Provincia: Caylloma	Distrito : Caylloma
Suelo: Pusa			Calicata Nº: 04
Clasificación: US SOIL TA	AXONOMY:	Typic Cryaquolls	
Unidad Geomorfológica:	Planicie aluvial		CUM*: P3sw y P3swc
Relieve:	Plano	Pendiente: < 15%	Uso Actual: Pastos introducidos
Clima:	Frío perhumeo	lo	Precipitación Mm. 900 T°C = 3 - 6
Material Madre:	Aluvial		Distribución de raíces: 18 cm
Altitud m.s.n.m	4,238		Pedregosidad Superficial: Libre

4,238 Pastos introducidos Pobre Rápida Proceso Morfogenético: 60 cm 12/12/2009

Endopepedon : Observaciones Coordenadas UTM **

217 853 8 314 815

Epipedón : Móllico

Régimen de Humedad : Aquico

Régimen de Temperatura : Cryico

ANALISIS OLIMICO FÍSICO Y MECANICO

Vegetación:

Permeabilidad:

Prof. Napa Freática:

Drenaje:

Fecha:

											ANALIO	IO WOIMING	01131001	MECANICO								
Horizonte Prof.			На	CO ₃ C.E C N		M.O.	Asimilab	oles ppm			Cambiabl	es m.e/100 gı	1		Sat. Bases	Sat de Alum	Análi	sis Mecánio	co %	Clase Textural		
	Horizonte	cm.	рп	%	dS/cm	%	%	%	Р	K	C.I.C	Ca	Mg	K	Na	Al	%	%	Arena	Limo	Arcilla	Clase Textural
	Α	0 - 15	6,06	0,00	0,180	3,88	0,33	6,7	7,3	301	21,44	14,44	5,08	0,88	0,58	0,00	100,0	0,0	64	30	6	Franco arenoso
	С	15 - 35	5,05	0,00	0,05	1,29	0,11	2,2	8,7	305	15,68	7,31	1,07	0,84	0,29	0,90	91,4	8,6	56	36	8	Franco arenoso
	2C	35 - 60																				

Perfil Modal

^{*} CUM: Capacidad de Uso Mayor

^{**} Sistema PSAD 56

CESEL	INGENIEROS
CERTIFICADO EN: ISO 9001-2000	ISO 14001-2004 OUSAS 18001-2007

ŀ
ı
ı,

Código: 096200 Revisión:

Especialidad: Ambiental Elaboro : W.V.B

ESTUDIO DE IMPACTO AMBIENTAL DE LA REPRESA DE ANGOSTURA Y GESTIÓN AMBIENTAL A NIVEL DEFINITIVO

FICHA DE EVALUACIÓN DE CAMPO

05

CARACTERIZACIÓN MORFOPEDOLOGÍCA SUELO PUCARA (Puc)

0 cm		Morfología del Perfil Modal
_		Franco arenoso. Color pardo (7,5YR 5/3) en húmedo, granular fino, medio;
10-	A	friable; raíces finas comunes. Reacción fuertemente ácida. Limite de horizonte difuso, plano
15-		
		Franco arenoso. Color pardo fuerte (7,5YR 5/6) en húmedo, sin estructura, masiva;
20-	AC	ligeramente firme; raíces finas pocas. Reacción fuertemente ácida. Limite de horizonte claro,
40 —		
60 —		Franco. Color pardo claro (7,5YR 6/4) en húmedo, sin estructura (masiva),
	c	muy firme; reacción moderadamente ácida.
80 —		
100 _		
100 —		

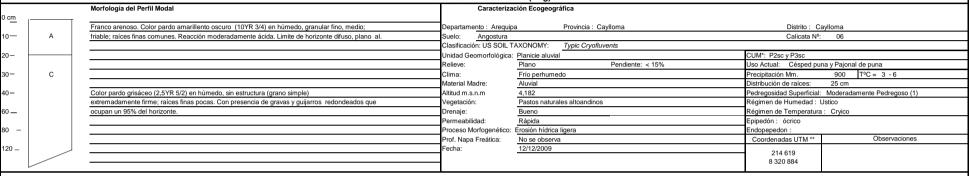
Caracterizad	ción Ecogeográfi	ica		
Departamento : Arequipa	a F	Provincia : Caylloma	Distrito : C	aylloma
Suelo: Pucara			Calicata No.	: 05
Clasificación: US SOIL TA	AXONOMY:	Typic Haplocryands		
Unidad Geomorfológica:	Colina volcánica	de andesitas y dacitas	CUM*: P3s, P3sc y	Xse
Relieve:	Ondulado	Pendiente: 15 - 75%	Uso Actual: En su mayor	ía tolar asociados a césped puna
Clima:	Frío perhumedo)	Precipitación Mm.	900 T°C = 3 - 6
Material Madre:	Residual		Distribución de raíces:	36 cm
Altitud m.s.n.m	4,352		Pedregosidad Superficial:	Pedregoso (2)
Vegetación:	Pastos naturales	s y matorrales	Régimen de Humedad :	Ustico
Drenaje:	Bueno		Régimen de Temperatura	a : Cryico
Permeabilidad:	Moderada	<u></u>	Epipedón : ócrico	
Proceso Morfogenético:	Erosión hídrica li	gera	Endopepedon:	
Prof. Napa Freática:	No se observa		Coordenadas UTM **	Observaciones
Fecha:	12/12/2009		214 724	
			8 315 971	
Ī.			0 0 1 0 0 7 1	

										ANALIS	15 QUIMIC	O FISICO T	MECANICO								
Horizonte	Prof. pH		CO ₃	C.E	С	N	M.O.	Asimilal	oles ppm			Cambiabl	es m.e/100 gr			Sat. Bases	Sat de Alum	Análi	sis Mecánio	% 00	Clase Textural
Honzonte	cm.	рп	%	dS/cm	%	%	%	Ρ	K	C.I.C	Ca	Mg	K	Na	Al	%	%	Arena	Limo	Arcilla	Ciase rextural
Α	0 - 13	5,18	0,00	0,12	2,42	0,21	4,2	5,5	277	16	3,52	0,61	0,84	0,21	0,70	88,1	11,9	46	48	6	Franco arenoso
AC	13 - 40	5,38	0,00	0,05	1,22	0,11	2,1	4,0	531	25,60	7,77	1,78	1,54	0,56	0,60	95,1	4,9	60	36	4	Franco arenoso
С	40 - 80	6,09	0,00	0,05	0,61	0,05	1,1	6,7	267	27,20	11,39	2,62	1,04	1,08	0,00	100,0	0,0	52	30	18	Franco

Perfil Modal

^{*} CUM: Capacidad de Uso Mayor ** Sistema PSAD 56

CESEL	INGENIEROS	
CENTIFICADO EN 180 0004-2000		


Código: 096200		
Revisión:		
Especialidad: Ambiental	Elaboro : W.V.B	

ESTUDIO DE IMPACTO AMBIENTAL DE LA REPRESA DE ANGOSTURA Y GESTIÓN AMBIENTAL A NIVEL DEFINITIVO

FICHA DE EVALUACIÓN DE CAMPO

06

CARACTERIZACIÓN MORFOPEDOLOGÍCA SUELO ANGOSTURA (Ang)

ANALISIS QUIMICO FISICO Y MECANICO

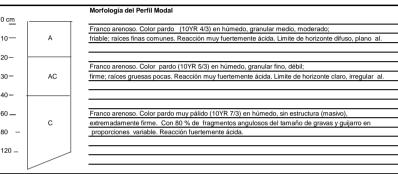
										ANALIS	IS WUINIU	J FIGICO I	MECANICO								
Horizonte	Prof.	На	CO ₃	C.E	С	N	M.O.	Asimilab	oles ppm			Cambiable	es m.e/100 gr			Sat. Bases	Sat de Alum	Análi	sis Mecánio	00 %	Clase Textural
Horizonte	cm.	рп	%	dS/cm	%	%	%	Р	K	C.I.C	Ca	Mg	K	Na	Al	%	%	Arena	Limo	Arcilla	Clase Textural
Α	0 - 20	6,09	0,12	0,00	1,32	0,11	2,3	28,3	382	14,08	4,76	0,73	1,11	0,30	1,10	86,3	13,8	62	32	6	Franco arenoso
С	20 - 90																				

Perfil Modal

^{*} CUM: Capacidad de Uso Mayor

^{**} Sistema PSAD 56

CESEL	INGENIEROS
CERTIFICADO EN: ISO 9001-2000	ISO 14001-2004 OHSAS 18001-2007


Especialidad: Ambiental Elaboro : W.V.B

ESTUDIO DE IMPACTO AMBIENTAL DE LA REPRESA DE ANGOSTURA Y GESTIÓN AMBIENTAL A NIVEL DEFINITIVO

FICHA DE EVALUACIÓN DE CAMPO

07

CARACTERIZACIÓN MORFOPEDOLOGÍCA SUELO CHILAMAYO (Chi)

o: Caylloma								
ta Nº: 07								
d de puna y pajonal								
900 T°C = 3 -6								
Distribución de raíces: 40 cm								
ficial: Muy pedregoso (3)								
ad: Ustico								
ratura: Cryico								
/ ** Observaciones								
1								

ANALISIS QUÍMICO FÍSICO Y MECANICO

										ANALIS	IS QUIMIC	O FISICO Y	MECANICO								
Horizonte	Prof.	На	CO ₃	C.E	С	N	M.O.	Asimilab	oles ppm			Cambiabl	es m.e/100 gr			Sat. Bases	Sat de Alum	Análi	sis Mecánio	00 %	Clase Textural
Horizonte	cm.	рп	%	dS/cm	%	%	%	Р	K	C.I.C	Ca	Mg	K	Na	Al	%	%	Arena	Limo	Arcilla	Clase Textural
Α	0 - 20	4,95	0,00	0,10	3,70	0,32	6,4	6,5	239	16	4,29	0,99	0,72	0,27	0,80	88,7	11,3	60	38	2	Franco arenoso
AC	20 - 40	4,88	0,00	0,05	3,41	0,29	5,9	5,5	151	16,48	2,10	0,42	0,51	0,34	1,00	77,1	22,9	68	30	2	Franco arenoso
С	40 - 80	5,34	0,00	0,03	0,89	0,08	1,5	10,0	89	7,20	4,81	0,75	0,36	0,30	0,30	95,4	4,6	62	30	8	Franco arenoso
	ĺ		ĺ	ĺ	I	1			I	ĺ	1	ĺ			1				ĺ		

Perfil Modal

^{*} CUM: Capacidad de Uso Mayor

^{**} Sistema PSAD 56

CESEL	INGENIEROS
CERTIFICADO EN: ISO 9001:2000,	ISO 14001:2004, OHSAS 18001:2007

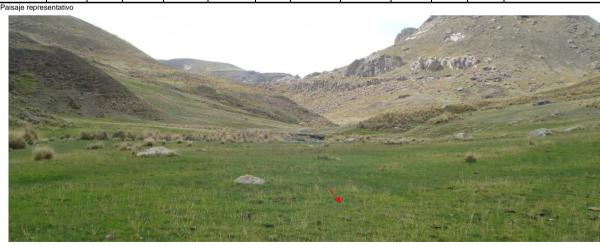
Elaboro : W.V.B

ESTUDIO DE IMPACTO AMBIENTAL DE LA REPRESA DE ANGOSTURA Y GESTIÓN AMBIENTAL A NIVEL DEFINITIVO

FICHA DE EVALUACIÓN DE CAMPO

80

CARACTERIZACIÓN MORFOPEDOLOGÍCA SUELO PALCAPAMPA (Pal)


0 c <u>m</u>	Oe
10—	
15-	
20-	С
35-	
45 —	2C
60 –	
80 _	

SUELO PALCAPAMPA (PAI)									
Morfología del Perfil Modal	Caracteriza	ción Ecogeográfica							
Orgánico. Color pardo muy oscuro (10YR 2/2) en húmedo, granular fino, medio;	Departamento : Arequip	oa Provincia : Cayl	loma	Distrito : Si	bayo				
friable; raíces finas abundantes. Reacción moderadamente ácida. Limite de horizonte difuso, plano al.	Suelo: Palcapampa	Suelo: Palcapampa Calicata Nº: 08							
	Clasificación: US SOIL T	Clasificación: US SOIL TAXONOMY: Aquic Cryofluvents							
	Unidad Geomorfológica:	: Planicies hidromórfica		CUM*: P3sw y Xsw					
Arena franco. Color pardo grisáceo (10YR 5/2) en húmedo, sin estructura (masiva);	Relieve:	Plano a inclinado	Pendiente: < 25%	Uso Actual: Vegetación	hidromorfica				
ligeramente adhesivo; Reacción fuertemente ácida. raíces finas pocas.	Clima:	Frío Perhumedo		Precipitación Mm. 900	$T^{\circ}C = 3 - 6$				
Limite de horizonte claro, irregular al.	Material Madre:	Aluvial		Distribución de raíces: 45	i cm				
	Altitud m.s.n.m	4,202		Pedregosidad Superficial:	Libre				
	Vegetación:	Pastos introducidos - vegetación	n hidromórfica	Régimen de Humedad : A	Aquico				
Arenoso. Color pardo amarillento (10YR 5/4) en húmedo, sin estructura (grano simple),	Drenaje:	Pobre		Régimen de Temperatura	: Cryico				
no adhesivo; Con 80 % de canto rodado de tamaño de gravas y guijarro en proporciones variable.	Permeabilidad:	Lenta		Epipedón: ócrico					
Reacción muy fuertemente ácida.	Proceso Morfogenético:	Erosión hídrica ligera		Endopepedon :					
	Prof. Napa Freática:	80 cm		Coordenadas UTM **	Observaciones				
	Fecha:	13/12/2009		223 747					
				8 318 226					
				0 0 10 220					

										ANALIS	IS WUINIU	O FISICO I	MECANICO								
Horizonte	Prof.	На	CO ₃	C.E	С	N	M.O.	Asimilab	les ppm			Cambiable	es m.e/100 gr			Sat. Bases	Sat de Alum	Análi	sis Mecánio	o %	Clase Textural
Horizonte	cm.	рп	%	dS/cm	%	%	%	Р	K	C.I.C	Ca	Mg	K	Na	Al	%	%	Arena	Limo	Arcilla	Clase Textural
Oe	0 - 10	6,08	0,00	0,33	19,20	1,66	33,1	44,2	773	41,92	20,38	6,00	1,65	0,97	0,00	100,0	0,0				Orgánico
С	10 - 45	5,52	0,00	0,06	1,36	0,12	2,4	10,5	560	20,48	11,94	5,83	1,26	0,48	0,10	99,5	0,5	76	20	4	Arena franco
2C	45 - 85	4,72	0,00	0,05	0,41	0,04	0,7	17,7	432	7,68	3,03	2,17	1,12	0,46	0,90	88,3	11,7	92	6	2	Arenoso

Perfil Modal

^{*} CUM: Capacidad de Uso Mayor ** Sistema PSAD 56

CESEL	INGENIEROS
CERTIFICADO EN: ISO 9001-2000	ISO 14001-2004 OHSAS 18001-2007

Elaboro : W.V.B

ESTUDIO DE IMPACTO AMBIENTAL DE LA REPRESA DE ANGOSTURA Y GESTIÓN AMBIENTAL A NIVEL DEFINITIVO

FICHA DE EVALUACIÓN DE CAMPO

09

CARACTERIZACIÓN MORFOPEDOLOGÍCA SUELO TOCRAYA (To)

0 c <u>m</u>	
10—	Α
21 —	
30-	AB
35-	В
45 —	
80 –	С
75 _	
	B

Morfología del Perfil Modal	
Franco. Color pardo (10YR 5/3) en húmedo, granular fino, medio;	
	De
friable; Reacción muy fuertemente ácida. raíces finas comunes. Limite de horizonte difuso, plano al.	Su
	Cla
Franco arcilloso. Color pardo rojizo (5YR 5/3) en húmedo, granular medio, moderado;	Un
firme; raíces finas pocas Reacción fuertemente ácida. Limite de horizonte difuso, irregular al.	Re
	Cli
Franco arenoso. Color pardo rojizo (5YR 5/3) en húmedo, estructura en bloques subangular medio,	Ma
moderado; firme; raíces finas pocas. Reacción ligeramente ácida. Limite de horizonte claro, irregular al.	Alt
	Ve
Franco. Color amarillo rojizo (5YR 6/6) en húmedo, sin estructura (masiva),	Dre
extremadamente firme. Reacción ligeramente ácida.	Pe
	Pro
	Pro
	Fe
Franco arenoso. Color pardo rojizo (5YR 5/3) en húmedo, estructura en bloques subangular medio, moderado; firme; raíces finas pocas. Reacción ligeramente ácida. Limite de horizonte claro, irregular al. Franco. Color amarillo rojizo (5YR 6/6) en húmedo, sin estructura (masiva).	

Caracterizad	ión Ecogeogr	ráfica				
Departamento : Arequipa	1	Provincia : Caylloma	Distrito : Ti	isco		
Suelo: Tocraya			Calicata Nº: (09		
Clasificación: US SOIL TA	AXONOMY:	Typic Haplocryands				
Unidad Geomorfológica:	Colina volcáni	ca de andesitas	CUM*: P2sec			
Relieve:	Ondulado	Pendiente: < 15%	Uso Actual: Pajonal de	puna		
Clima:	Frío perhume	edo	Precipitación Mm.	900	T°C = 3 - 6	
Material Madre:	Residual		Distribución de raíces:	10 cm		
Altitud m.s.n.m	4,403		Pedregosidad Superficial:	Libre		
Vegetación:	Pastos natura	ales altoandinos	Régimen de Humedad :	Ustico		
Drenaje:	Bueno		Régimen de Temperatura	a: Cryico		
Permeabilidad:	Moderado	<u> </u>	Epipedón : ócrico			
Proceso Morfogenético:	Erosión hídrica	a ligera	Endopepedon: Cámbico	1		
Prof. Napa Freática:	No se observa	a	Coordenadas UTM **		Observaciones	
Fecha:	13/12/2009	<u> </u>	 226 261		·	
			8 318 766			
				I		

										ANALIS	IS QUIMIC	J FISICO Y	MECANICO								
Horizonte	Prof.	На	CO ₃	C.E	С	N	M.O.	Asimilab	Asimilables ppm Cambiables m.e/100 gr				Sat. Bases	Sat de Alum	Análisis Mecánico %			Clase Textural			
Honzonte	cm.	рп	%	dS/cm	%	%	%	Р	K	C.I.C	Ca	Mg	K	Na	Al	%	%	Arena	Limo	Arcilla	Clase Textural
Α	0 - 10	4,97	0,00	0,09	1,79	0,15	3,08	12,1	274	21,44	10,69	3,26	0,83	0,18	0,60	96,1	3,9	52	40	8	Franco
AB	10 - 30	5,56	0,00	0,07	0,86	0,07	1,49	5,5	396	53,60	28,88	12,66	1,18	0,38	0,10	99,8	0,2	36	32	32	Franco arcilloso
В	30 - 45	6,10	0,00	0,04	0,52	0,04	0,89	13,8	543	65,60	34,52	15,16	1,53	0,44	0,00	100,0	0,0	60	28	12	Franco arenoso
С	45 - 75	6,42	0,00	0,04	0,38	0,03	0,65	10,9	512	62,40	33,12	15,83	1,42	0,47	0,00	100,0	0,0	50	34	16	Franco
R	75 a mas																				
			1	i	I		ĺ			ĺ	I		ĺ		i		1		I		

Perfil Modal

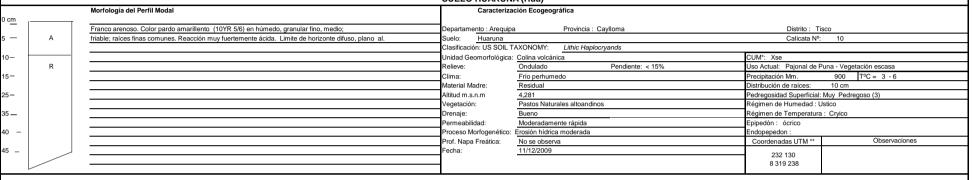
^{*} CUM: Capacidad de Uso Mayor ** Sistema PSAD 56

CESEL	. INGENIEROS
CERTIFICADO EN- ISO 9001-2000	ISO 14001-2004 OUSAS 18001-2007

A	

Código: 096200 Revisión:

Especialidad: Ambiental


Ambiental Elaboro : W.V.B

ESTUDIO DE IMPACTO AMBIENTAL DE LA REPRESA DE ANGOSTURA Y GESTIÓN AMBIENTAL A NIVEL DEFINITIVO

FICHA DE EVALUACIÓN DE CAMPO

10

CARACTERIZACIÓN MORFOPEDOLOGÍCA SUELO HUARUNA (Hua)

ANALISIS QUIMICO FISICO Y MECANICO

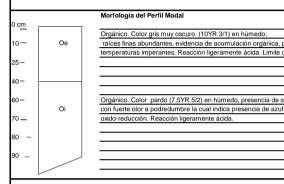
										ANALIO	IO WOIMING	O I ISICO I	MECANICO								
Horizonte	zonte Prof. pH CO ₃ C.E C N					N	M.O.	O. Asimilables ppm Cambiables m.e/100 gr						Sat. Bases	Sat de Alum	Análi	sis Mecánio	ю %	Clase Textural		
Horizonte	cm.	рΠ	%	dS/cm	%	%	%	Р	K	C.I.C	Ca	Mg	K	Na	Al	%	%	Arena	Limo	Arcilla	Clase Textural
Α	0 - 10	4,85	0,00	0,06	1,69	0,15	2,9	6,2	124	7,68	1,77	0,33	0,42	0,34	0,60	82,7	17,3	72	22	6	Franco arenoso
R																					1
																					1
																					,

Perfil Modal

^{*} CUM: Capacidad de Uso Mayor

^{**} Sistema PSAD 56

CESEL	INGENIEROS
CERTIFICADO EN: ISO 9001:2000,	ISO 14001:2004, OHSAS 18001:2007


Código: 096200		
Revisión:		
Especialidad: Ambiental	Elaboro : W.V.B	

ESTUDIO DE IMPACTO AMBIENTAL DE LA REPRESA DE ANGOSTURA Y GESTIÓN AMBIENTAL A NIVEL DEFINITIVO

FICHA DE EVALUACIÓN DE CAMPO

11

CARACTERIZACIÓN MORFOPEDOLOGÍCA SUELO LLACMAPAMPA (LIa)

·	Caracteriza	ación Ecogeográfica		·		
	Departamento : Arequip	pa Provinc	sia: Caylloma	Dis	strito : Caylloma	
, por las condiciones hidromórfica y bajas	Suelo: Llacmapam	пра		Ca	alicata Nº:	
e de horizonte difuso, plano al.	Clasificación: US SOIL	TAXONOMY: Hydric	Cryofibrists			
	Unidad Geomorfológica	: Valle fluvio glacial		CUM*: P3sw		
	Relieve:	Plano	Pendiente: < 15%	Uso Actual: V	egetación hidromo	orfica
	Clima:	Frío perhumedo		Precipitación Mn	n. 900	$T^{0}C = 3 - 6$
	Material Madre:	Orgánico		Distribución de ra	aíces: 55 cn	n
sedimentos finos del tamaño de limo.	Altitud m.s.n.m	4,462		Pedregosidad Si	uperficial: Libre	
ufre en el medio, por condiciones	Vegetación:	Vegetación hidromórfic	ca	Régimen de Hur	medad : Aquico	
	Drenaje:	Pobre		Régimen de Ter	mperatura: Cryico)
	Permeabilidad:	Lenta	,	Epipedón : HÍsti	ico	
	Proceso Morfogenético:			Endopepedon :		
	Prof. Napa Freática:	No se observa	•	Coordenadas	UTM **	Observaciones
·	Fecha:	14/12/2009	•	193 905	-	-
				8 316 33		
_				831033	~	

ANALISIS QUÍMICO FÍSICO Y MECANICO

										ANALIC	DIO CONVIC	0 1 10100 1	MECANICO								
Horizonte	Prof.	На	CO ₃	C.E	С	N	M.O.	Asimilal	Asimilables ppm Cambiables m.e/100 gr							Sat. Bases	Sat de Alum	Análi	sis Mecánio	00 %	Clase Textural
Honzonte	cm.	рп	%	dS/cm	%	%	%	Р	K	C.I.C	Ca	Mg	K	Na	Al	%	%	Arena	Limo	Arcilla	Clase Textural
Oe	0 - 40	6,34	0,00	0,50	4,69	0,40	8,1	9,2	156	28,8	23,25	1,66	0,47	0,44	0,00	100,0	0,0				Suelo Orgánico
Oi	40 - 80	6,30	0,00	0,27	7,98	0,69	13,8	17,0	68	30,40	25,08	1,64	0,26	0,39	0,00	100,0	0,0				Suelo Orgánico
				1		I					I										

Perfil Modal

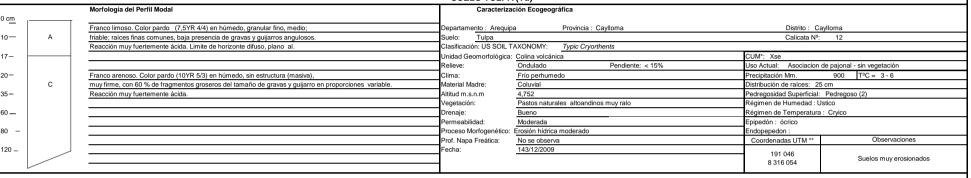
^{*} CUM: Capacidad de Uso Mayor

^{**} Sistema PSAD 56

CESEL	INGENIEROS
CERTIFICADO EN 180 0004-2000	

C R
_

Revisión:


Especialidad: Ambiental Elaboro : W.V.B

ESTUDIO DE IMPACTO AMBIENTAL DE LA REPRESA DE ANGOSTURA Y GESTIÓN AMBIENTAL A NIVEL DEFINITIVO

FICHA DE EVALUACIÓN DE CAMPO

12

CARACTERIZACIÓN MORFOPEDOLOGÍCA SUELO TULPA (Tu)

ANALISIS QUIMICO FISICO Y MECANICO

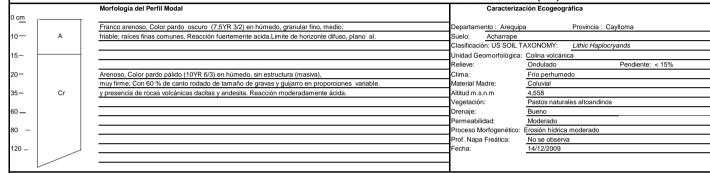
	ANALIGIO MONINICO I INICO I INICOANICO																				
Horizonte	Prof.	На	CO ₃	C.E	С	N	M.O.	Asimilab	oles ppm			Cambiabl	es m.e/100 gr			Sat. Bases	Sat de Alum	Análi	sis Mecánio	00 %	Clase Textural
Honzonte	cm.	рп	%	dS/cm	%	%	%	Р	K	C.I.C	Ca	Mg	K	Na	Al	%	%	Arena	Limo	Arcilla	Clase Textural
Α	0 - 17	4,58	0,00	0,11	4,92	0,42	8,5	4,8	181	20,8	3,11	0,46	0,52	0,39	2,80	61,5	38,5	44	54	2	Franco limoso
С	17 - 70	4,89	0,00	0,04	2,08	0,18	3,6	4,3	81	14,08	2,92	0,50	0,33	0,32	1,40	74,4	25,6	54	40	6	Franco arenoso
1	1	1	1	1	1	1	1		I			1	1		1	ı	1		ı		

Perfil Modal

^{*} CUM: Capacidad de Uso Mayor

^{**} Sistema PSAD 56

CESEL	INGENIEROS
CERTIFICADO EN: ISO 9001:2000,	ISO 14001:2004, OHSAS 18001:2007


)	Código: 096200										
	Revisión:										
	Especialidad: Ambiental	Elaboro : W.V.B									

ESTUDIO DE IMPACTO AMBIENTAL DE LA REPRESA DE ANGOSTURA Y GESTIÓN AMBIENTAL A NIVEL DEFINITIVO

FICHA DE EVALUACIÓN DE CAMPO

13

CARACTERIZACIÓN MORFOPEDOLOGÍCA SUELO ACHARRAPE (Ach)

Januacien IZa	cion Loogcog	unou									
o : Arequip	а	Provincia : Caylloma	Distrito : Cay	rlloma							
charrape			Calicata Nº: 13								
US SOIL T	AXONOMY:	Lithic Haplocryands									
norfológica:	Colina volcáni	ca	CUM*: Xse	CUM*: Xse							
	Ondulado	Pendiente: < 15%	Uso Actual: Pajonal de puan - sin vegetación								
	Frío perhume	edo	Precipitación Mm.	900 T°C = 3 - 6							
re:	Coluvial		Distribución de raíces: 19 cm								
m	4,558		Pedregosidad Superficial: Pedregoso (2)								
	Pastos natura	ales altoandinos	Régimen de Humedad : Ustico								
	Bueno		Régimen de Temperatura : Cryico								
d:	Moderado		Epipedón : ócrico	•							
ogenético:	Erosión hídrica	moderado	Endopepedon:								
reática:	No se observ	a	Coordenadas UTM **	Observaciones							
	14/12/2009		196 742								
			8 312 335								
			0 3 12 333								

ANALISIS QUIMICO FISICO Y MECANICO Asimilables ppm Cambiables m.e/100 gr Sat. Bases Sat de Alum Análisis Mecánico % C.E M.O. Horizonte Clase Textural dS/cm C.I.C Ca Mg Arena Limo Arcilla 5.48 0.00 2.30 0.20 3.96 7,0 101 12.8 4.58 0.37 0.34 0.30 0.20 96.5 3.5 Franco arenoso 0 - 15 0.07 Cr 15 - 90 6,03 0,00 0,05 0,60 0,05 1,03 2,6 7,68 4,24 0,50 0,34 0,28 0,00 100,0 0,0 46

Perfil Modal

^{*} CUM: Capacidad de Uso Mayor

^{**} Sistema PSAD 56

CESEL	INGENIEROS
CERTIFICADO EN: ISO 9001:2000,	ISO 14001:2004, OHSAS 18001:2007

Especialidad: A
Revisión:
Código: 09620

Elaboro : W.V.B

ESTUDIO DE IMPACTO AMBIENTAL DE LA REPRESA DE ANGOSTURA Y GESTIÓN AMBIENTAL A NIVEL DEFINITIVO

FICHA DE EVALUACIÓN DE CAMPO

14

CARACTERIZACIÓN MORFOPEDOLOGÍCA SUELO HUMACCALA (Hum)

	SUELU HUMACCALA (HI
Morfología del Perfil Modal	Caracterización Eco

0 cm	
	0
5 —	
18-	
20-	С
35-	
60 —	C2
80 –	02
120 —	

Orgánico, Color pardo muy oscuro (10YR 2/2) en húmedo, granular fino, medio;	Dej				
iable; raíces finas comunes. Reacción muy fuertemente ácida. Limite de horizonte difuso, plano al.					
	Cla				
	Un				
Franco arenoso. Color pardo (10YR 5/3) en húmedo, sin estructura (Masiva);	Re				
muy firme; raíces finas pocas. Con presencia de gravas y guijarros que ocupan 10 % del horizonte.	Cli				
Reacción moderadamente ácida. Limite de horizonte difuso, irregular al.					
	Alti				
	Ve				
Franco . Color pardo muy pálidos (10YR 7/4) en húmedo, sin estructura (masiva),	Dre				
extremadamente firme; con 15 % de gravas y guijarros angulosos en proporciones variable.	Pe				
Reacción moderadamente ácida.	Pro				
	Pro				
	Fe				

	Caracterización Ecogeográfica												
	Departamento : Arequipa	1	Distrito : C	: Caylloma									
	Suelo: Humaccala				Calicata Nº:	14							
	Clasificación: US SOIL TAXONOMY: Typic Haplocryands												
	Unidad Geomorfológica:	Colina volcánica	a de andesitas		CUM*: P2sc								
	Relieve:	Ondulado	Pendiente: < 15%		Uso Actual: herbazal de	e tundra							
	Clima:	Frío perhumed	0		Precipitación Mm. 900 T°C = 3 - 6								
	Material Madre:	Coluvial			Distribución de raíces: 20 cm								
	Altitud m.s.n.m	4,573			Pedregosidad Superficial: Pedregoso (2)								
	Vegetación:	Pastos naturale	es altoandinos		Régimen de Humedad : Ustico								
	Drenaje:	Bueno			Régimen de Temperatura : Cryico								
	Permeabilidad:	Moderado	·		Epipedón: ócrico								
	Proceso Morfogenético: E	Erosión hídrica r	noderado		Endopepedon:								
	Prof. Napa Freática:	No se observa			Coordenadas UTM ** Observaciones								
	Fecha:	14/12/2009			201 839								
Ī					8 303 609								
					0 000 000								

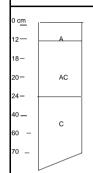
ANÁLISIS QUÍMICO FÍSICO Y MECÁNICO

	AND ILLION COMMON TO TO COMMON TO THE COMMON TO COMMON T																				
Horizonte	Prof.	На	CO ₃	C.E	С	N	M.O.	Asimilab	oles ppm			Cambiabl	es m.e/100 gr			Sat. Bases	Sat de Alum	Análi	sis Mecánio	ю %	Clase Textural
Horizonte	cm.	ρīī	%	dS/cm	%	%	%	Р	K	C.I.C	Ca	Mg	K	Na	Al	%	%	Arena	Limo	Arcilla	Clase Textural
Α	0 - 5	4,93	0,00	0,15	9,16	0,79	15,8	4,7	522	35,68	18,34	7,85	1,39	0,26	0,20	99,3	0,7				Orgánico
С	5 - 28	5,40	0,00	0,07	1,51	0,13	2,6	2,9	243	19,20	10,10	3,61	0,96	0,30	0,30	98,0	2,0	52	42	6	Franco arenoso
C2	28 - 90	5,91	0,00	0,04	1,06	0,09	1,8	2,0	248	15,04	10,16	3,32	1,05	0,30	0,20	98,7	1,3	50	28	22	Franco
			l	ĺ	1					ĺ	l				1				ĺ		

Perfil Modal

^{*} CUM: Capacidad de Uso Mayor ** Sistema PSAD 56

CESEL	INGENIEROS
CERTIFICADO EN: ISO 9001:2000,	ISO 14001:2004, OHSAS 18001:2007


Elaboro : W.V.B

ESTUDIO DE IMPACTO AMBIENTAL DE LA REPRESA DE ANGOSTURA Y GESTIÓN AMBIENTAL A NIVEL DEFINITIVO

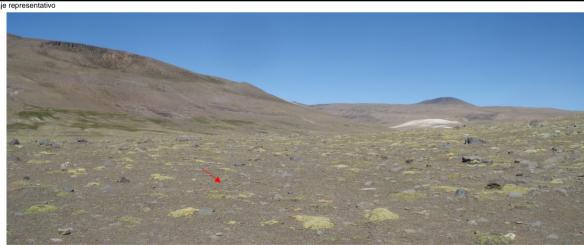
FICHA DE EVALUACIÓN DE CAMPO

15

CARACTERIZACIÓN MORFOPEDOLOGÍCA SUELO ANCHACA (An)

Morfología del Perfil Modal	
Franco arenoso. Color pardo gris muy oscuro (10YR 3/2) en húmedo, granular medio, moderado;	De
friable; raíces finas comunes. Reacción muy fuertemente ácida. Limite de horizonte difuso, plano al.	Su
	Cla
	Un
Franco arenoso. Color pardo amarillento (10YR 5/4) en húmedo, granular fino, débil	Re
firme; raíces finas pocas. Reacción fuertemente ácida. Limite de horizonte claro, irregular al.	Cli
	Ma
	Alt
	Ve
Franco arenoso. Color pardo muy pálido (10YR 7/3) en húmedo, sin estructura (Masivo),	Dre
extremadamente firme; con 60 % de gravas y guijarros angulosos en proporciones variable.	Pe
Reacción moderadamente ácida.	Pro
	Pro
	Fe

Caracterizad	ción Ecogeogra	áfica									
Departamento : Arequipa	а	Provincia : Caylloma		Distrito: Lari							
Suelo: Anchaca				Calicata Nº: 15							
Clasificación: US SOIL TA	AXONOMY:										
Unidad Geomorfológica:	Colina volcánio	a andesitas y dacitas		CUM*: P3s y P3sc							
Relieve:	Ondulado	Pendiente: < 25%		Uso Actual: Herbazal de tundra y césped de puna							
Clima:	Muy Frío perhi	ımedo		Precipitación Mm.	900	$T^{\circ}C = 1,5 - 3$					
Material Madre:	Coluvial			Distribución de raíces: 10) cm						
Altitud m.s.n.m	4,681			Pedregosidad Superficial:	Muy Pedre	egoso (3)					
Vegetación:	Herbazal de tu	ındra		Régimen de Humedad : U	stico						
Drenaje:	Bueno			Régimen de Temperatura	: Cryico						
Permeabilidad:	Moderado	•		Epipedón: ócrico							
Proceso Morfogenético:	Erosión hídrica	moderada		Endopepedon:							
Prof. Napa Freática:	No se observa			Coordenadas UTM **		Observaciones					
Fecha:	15/12/2009			204 827							
				8 294 558							
			0 254 550								


ANALISIS QUÍMICO FÍSICO Y MECANICO

Horizonte	Prof. pH			CO ₃ C.E C N		N	M.O. Asimilables ppm		Cambiables m.e/100 gr						Sat. Bases	Sat de Alum	n Análisis Mecánico %			Class Taytural	
Horizonte	cm.	рп	%	dS/cm	%	%	%	Р	K	C.I.C	Ca	Mg	K	Na	Al	%	%	Arena	Limo	Arcilla	Clase Textural
Α	0 - 12	5,09	0,00	0,08	4,67	0,40	8,05	35,3	163	17,28	5,51	0,54	0,55	0,27	0,40	94,5	5,5	72	18	10	Franco arenoso
AC	12 - 24	5,52	0,00	0,04	1,45	0,13	2,50	39,3	92	15,68	3,96	0,27	0,34	0,44	0,20	96,2	3,8	72	22	6	Franco arenoso
С	24 - 70	5,63	0,00	0,04	0,38	0,03	0,65	11,4	118	11,20	7,80	0,96	0,48	0,42	0,20	98,0	2,0	72	22	6	Franco arenoso

Perfil Modal

^{*} CUM: Capacidad de Uso Mayor ** Sistema PSAD 56