APPENDICES

Appendix 1 – References

REFERENCES

1. Environment Agency Abu Dhabi. Greenhouse Gas Emissions in Abu Dhabi Projected to Stabilise Over Next Decade. Abu Dhabi : EAD, 2019.

2. Envrionment Agency - Abu Dhabi. Greenhouse Gas Inventory and Projections for Abu Dhabi Emirate - Executive Summary of the Third Cycle. Abu Dhabi : EAD, 2019.

3. MacDonald, Mott. Environmental Screening Report. 2020.

4. —. Gap Analysis Report . March 2021. Ref. AD41-90.0 27-26-G-25301_Rev.02.

5. —. Ecosystem Services Assessment. April 2021. Ref. AD41-90.0 27-26-G-25302_Rev.02.

6. —. Dredging Management Plan Framework. May 2021. Ref. AD41-90.0 27-26-G-25303_Rev.02.

7. —. Hydrodynamic and Sediment Dispersion Modelling. May 2021. Ref. AD41-90.0 27-26-G-25304_Rev.02.

8. Mott MacDonald. Critical Habitat Assessment. May 2021. Ref. AD41-90.0 27-26-G-25305_Rev.05.

9. MacDonald, Mott. Framework Biodiversity Action Plan. May 2021. Ref. AD41-90.0 27-26-G-25306_Rev.02.

10. —. Framework Compensation Plan . May 2020. Ref. AD41-90.0 27-26-G-25307_Rev.02.

11. —. Marine Impact Assessment. June 2021. Ref. AD41-90.0 27-26-G-25308_Rev.02.

12. Nautica. Mirfa Landfall Terrestrial Ecology Report. September 2021. Ref. N684-0621-MIR-1.1.

13. —. Shuweihat Landfall Terrestrial Ecology Report. September 2021. Ref. N684-0621-SHU-1.1.

14. —. Das Island Landfall Terrestrial Ecology Report . September 2021. Ref. N684-0821-DAS-1.1.

15. Fugro. Environmental Baseline Survey Results Report Route 1 Rev 04. 2020. Ref: AD41-457-G-24202-04.

16. —. Environmental Baseline Survey Results Report Route 2 Rev 04. 2020. Ref: AD41-457-G-24203-02.

17. —. Weather Report – Statistical Report Eastern Route (Route 1) Location North . 2020. Ref: AD41-457-G-24210-04 OMU037-Eastern Route 1 Location North.

18. —. Weather Report – Statistical Report Eastern Route (Route 1) Location South. 2020. Ref: AD41-457-G-24219-01 OMU037-Eastern Route 1 Location South.

19. —. Environmental Baseline Survey Results Report – Route 1 E-0395-Document Rev 4. 2020. Ref: AD41-457-G-24202 (OEU021-Vol 1 Route 1.

20. —. Environmental Baseline Survey Results Report – Route 2 E-0395-Lightning Project Rev 02. 2020a. Ref: AD41-457-G-24203 (OEU021-VO2-Route 2.

21. —. Geophysical Survey Report – Cable Route 1A from Mirfa Landfall to Lower Zakum Island G Rev 02. 2020c. Ref: AD41-457-G-24197 (MRU093-V02-Route-1A.

22. —. Weather Report – Statistical Report Eastern Route (Route 1) Location North A . 2020d. Ref: AD41-457-G-24210 Northern Location Rev 04.

23. —. Weather Report – Statistical Report Eastern Route (Route 1) Location South. 2020e. Ref: AD41-457-G-24219 Southern Location Rev 01.

24. —. Weather Report – Statistical Report Eastern Route (Route 2) Location North. 2020f. Ref: AD41-457-G-24209.

25. —. Weather Report – Statistical Report Eastern Route (Route 2) Location South. 2020g. Ref: AD41-457-G-24218 Southern Location Rev01.

26. —. Geophysical Survey Report – Cable Route 1-A from Mirfa to Landfall to Lower Zakum Island G. 2020h. Ref: AD41-457-G-24197 (MRU093-V02-Route11A) Rev02.

27. —. *Geophysical Survey Report* – *Cable Route 1B from Mirfa to Landfall to Lower Zakum Island G*. 2020i. Ref: AD41-457-G-24197 (MRU093-V02-Route-1B) Rev02.

28. —. Geophysical Survey Report – Cable Route 2 from Shuweihat to Landfall to Das . 2020j. Ref: AD41-457-G-24199-01 (MRU093-V04-Route-2.

29. —. *Geophysical Survey Report* – *Cable Route 2A from Shuweihat to Landfall to Das* . 2020k. Ref: AD41-457-G-24200-01 MRU093-V06-Route-2B.

30. —. *Geophysical Survey Report* – *Cable Route 2B from Shuweihat to Landfall to Das* . 2020. Ref: AD41-457-G-24201-01 (MRU093-V06-Route-2B).

31. Bechtel. Environmental Impact Assessment (EIA) Offshore. s.l.: ADNOC-BEchtel, 2020. GH0000-40-STU-9034.

32. **Consultants, Blue Sea Environmental.** *Environmental Baseline Study, ADMA-OPCO's isting acilities – Zakum Oil Field .* 2011. OP/04-001/ZK-EBS/029.

33. Creocean. Project Das Island Environmental Baseline Study - Final Report March 2009. 2009. 1-07092-E.

34. Mott MacDonald. Project Lightning Baseline Gap Analysis . 2021.

35. **Dhabi, Environment Agency Abu.** *Towards Integrated Waste Management in Abu Dhabi.* Abu Dhabi : EAD and CWM, 2013.

36. Vision 2021 United Arab Emirates. [Online] July 13, 2021. https://www.vision2021.ae/en.

37. Council, Abu Dhabi Urban Planning. *Plan Abu Dhabi 2030 - Urban Structure Framework Plan.* Abu Dhabi : ADUPC, 2007.

38. Environment Agency Abu Dhabi. *Recommended STandards for Treated Wastewater Reuse and Discharge to Land in Abu Dhabi Emirate.* s.l.: EAD, 2017. EAD-EQ-PR-TR-05.

39. The United Nations Educational, Scientific and Cultural Organisation . Marawah Biosphere Reserve, United Arab Emirates. *UNESCO*. [Online] UNESCO, February 2019. [Cited: April 30, 2022.] https://en.unesco.org/biosphere/arab-states/marawah?msclkid=c8bdb760d01311ecacf8527fc707f454.

40. Abdessalaam, T.Z. Al. Marine Enviroment Conservation and Management Programs in the Emirate of Abu Dhabi - Environment Agency Abu Dhabi. *IUCN.* [Online] Unknown. [Cited: April 30, 2022.] https://www.iucn.org/sites/dev/files/import/downloads/uae_marine_environment_programs.pdf.

41. Nautica Environmental Associates. ADNOC Lightning Project - Das Island Landfall Terrestrial Ecology Survey Report. 2021.

42. ADNOC Lightning Project - Das Island Terrestrial Ecology Survey Report. 2021.

43. Abu Dhabi Ports. Al Dhafra Region Ports. *adports.* [Online] 2021. [Cited: May 17, 2022.] https://www.adports.ae/core-business/ports-terminals/ports/community-ports/al-dhafra-region-ports/#:~:text=Located%20125%20km%20from%20Abu%20Dhabi%20city%2C%20Al,local%20fishing%20i ndustry%20and%20community%20in%20the%20Emirate..

44. MarineTraffic. *MarineTraffic.* [Online] [Cited: May 16, 2022.] https://www.marinetraffic.com/en/ais/home/centerx:53.0/centery:24.7/zoom:9.

45. Mirfa International Power & Water Company. Summary of Environmental and Social Impact Study. *Mirfa International Power & Water Company.* [Online] Mirfa International Power & Water Company, 2018. [Cited: February 4, 2022.] http://www.mipco.ae/esia/.

46. Emirates Water & Electricity Co. Al Shuweihat Power and Water Complex. *Al Shuweihat Power and Water Complex.* [Online] Emirates Water & Electricity Co., 2021. [Cited: February 04, 2022.] https://www.ewec.ae/en/power-plants/shuweihat.

47. Shuweihat Asia Power Company. Shuweihat Asia Power Company - Project Details. *Shuweihat Asia Power Company.* [Online] SAPCO, 2011-2022. [Cited: February 4, 2022.] http://www.sapco.ae/Project.html.

48. Mott MacDonald. Project Lightning Environmental Screening Report. s.l. : Mott MacDonald, 2020.

49. Consortium, Samsung C&T Corporation & Jan De Nul. *Work Method Statement Trenching and Backfilling Works (TSHD Methodology Update.* 2022. JDN2688.MES.81.01.e.01.

50. Prysmian Group. *Method Statement – Submarine Cable Installation*. April. PPL20035-IE-MW-003-01.

51. Group, JDN. Rock Installation Method Statement. 2022. JDN.MES.83.01.

52. . Lay – CLV (Cable Laying Vessel) – Isaac Newton. 2019. JDN.MS.84.02.13.

53. . Post-Lay Jet Trenching – UTV1200. 2020. JDN.MS.84.03.01 .

54. Environment Agency Abu Dhabi. Air Quality Monitoring System - Ruwais Air Quality Monitoring System. *Environment Agency Abu Dhabi .* [Online] 2022. [Cited: February 07, 2022.] https://www.adairquality.ae/#Station.

55. An Introduction to the Climate of the United Arab Emirates. B, Boer. 35: 3-16, s.l. : Journal of Arid Environments, 1997.

56. Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet. Köppen, Wladimir. 3, 1884. s.l. : Meteorologische Zeitschrift, Vol. 20, pp. 351-360.

57. National Oceanic and Atmospheric Administration. Climate Normals for Abu Dhabi.

58. Meteorology, National Centre for. Climate Yearly Report. [Online] April 22, 2022. https://www.ncm.ae/services/climate-reports-yearly?lang=en.

59. al., T.B.M.J. Ouarda et. *Probability distributions of wind speed in the UAE.* s.l. : Elsevier, 2015.

60. Environment Agency Abu Dhabi. Air Quality Annial Summary Report 2020. [Online] https://www.ead.gov.ae/-/media/Project/EAD/EAD/Documents/Resources/Air-Quality-Annual-Summary-Report-2020---English.pdf.

61. Institute of Air Quality Management. *Guidance on the assessment of dust from demolition and construction.* 2014.

62. *IAQM Guidance on the assessment of dust from demolition and construction .* al., Holman et. London : Institue of Air Quality Management , 2014.

63. Fugro. Environmental Baseline Results Report - Route 1. 2020.

64. . Environmental Baseline Results Report - Route 2. 2020.

65. . Environmental Baseline Results Report - Route 1. 2020.

66. Sondergaard, M. Redox Potential. *Encyclopedia of Inland Waters.* University of Aarhus, Denmark : Academic Press, 2009.

67. Sondergaard, M. Redox Potential. Organic Compounds. Denmark : Academic Press, 2009, pp. 852-859.

68. Dzombak, David A, et al. Anthropogenic Cyanide in the Marine Environment. *Cyanide in Water and Soil.* 2005, pp. 209-224.

69. *Microbiologically Induced Corrosion of UNS N04400 in Seawater.* Gouda, V K, et al. 1, 1993, Corrosion Engineering, Vol. 9, pp. 63-73.

70. EAD. Standards and Limits for Pollution to Air and Marine Environments Occupational Exposure Pesticides and Chemical Use. Abu Dhabi : s.n. Techincal Guidance Document TG-003R.

71. Ambient Marine Water and Sediments Specifications. 2017, Abu Dhabi QCC.

72. *Improvement of Global Ocean Tide Models in Shallow Water Regions*. Yongcum Cheng, Ole Baltazar Andersen. Lisbon : s.n., 2010. Ocean Surface Topography Science Team Meeting.

73. *The NCEP Climate Forecast System Reanalysis.* Saha et al, S. 2010, Bulletin of the American Meteorological Society, Vol. 97, pp. 1015 - 1057.

74. UKHO. British Admiralty Chart 3715. s.l. : Admiralty Charts & Publications, 2017.

75. Global Environmental Modelling Systems. *Grange Resources, Albany Port Authority, Port Development, Oceanographic Studies and Dredging Program Simulation Studies.* Albany : CSIRO, 2007.

76. Fugro. *E-0395 Lightning Project, Geotechnical Factual Report - Common Corridor (Route-2, Route-2A & route-2B) Between Shuweihat and Das Island.* 2020.

77. Williams, S.J. Surfical Sediment Character of the Louyisiana offshore Continental Shelf Region. s.l.: US Geological Survey, 2007.

78. United States Environmental Protection Agency. *Profile of the Water Transportation Industry.* Washington DC : EPA, 1997.

79. Dhabi, Environment Agency - Abu. Abu Dhabi State of Environment Report . Abu Dhabi : EAD, 2017.

80. Dhabi, Statistics Centre - Abu. *Statistical Yearbook of Abu Dhabi .* Abu Dhabi : Statistics Centre - Abu Dhabi , 2020.

81. Statistics Centre Abu Dhabi. *Waste Statistics in Abu Dhabi Emirates*. Abu Dhabi : Statistic Centre Abu Dhabi, July 2020.

82. UAE Vision 2021. [Online] [Cited: January 4, 2018.] https://www.vision2021.ae/en.

83. EAD. Abu Dhabi State of Environment Report 2017. 2017.

84. Nautica Environmental Associates . *ADNOC Lightning Project - Shuweihat Landfall Terrestrial Ecology Survey Report.* 2021.

85. Nautica Environmental Associates. ADNOC Lightning Project - Mirfa Landfall Terrestrial Ecology Survey Report. 2021.

86. Shahid, S. A., Abdelfattah, M.A. and Arshad, K.R. Soil survey for the coastline of Abu Dhabi Emirate. . s.l. : Environmental Research and Wildlife Development Agency, Abu Dhabi, UAE. ERWDA Internal Report, 2004.

87. USDA. Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys . s.l. : USDA Agriculture Handbook No. 436. U.S. Government Print Office, Washington, DC, 1999.

88. World Wildlife Fund. *Arabian Peninsula: Oman and United Arab Emirates.* s.l. : National Geographic Society, 2001.

89. Meteorology, National Center of. Seismic Department. Abu Dhabi : Ministry of Presidential Affairs, 2021.

90. EAD. Environmental Atlas. [Online] [Cited: 02 19, 2018.] www.environmentalatlas.ae/cartography/geographicInheritance/earthquakesSeismicEventsAndTectonic PlateBoundaries.

91. Government of Dubai - Dubai Municipality. Seismicity of United Arab Emirates. [Online] [Cited: 02 19, 2018.] www.seismo.geodesy.ae/seismicity.aspx.

92. John, D.M. & George, J.D. *The Marine Life of Abu Dhabi - A Report for the Abu Dhabi Company for Onshore Oil Operations.* London : The Natural History Museum, 2001.

93. Al Dhaheri, S.S., Al Cibahi, A., Javed, S., GRandcourt, E., Bin Kulaib, R., & Al Mazrouei, S. *Abu Dhabi State of Environment Report.* Abu Dhabi : Biodiversity, Environment Agency Abu Dhabi, 2017.

94. *Anthropogenic and natural sources of anbient noise in the ocean.* Hildenbrand, J.A. 2009, Marine Ecology Progress Series, Vol. 395, pp. 5-20.

95. Rako- ospi, i olina and icci lin, arta. Underwater oise So rces and Effects on Marine Life. *World Seas: An Environmental Evaluation.* s.l. : Academic Press, 2019, pp. 367-389.

96. Good Practice Guide for Underwater Measurement, National Measurement Office, Marine Scotland, The Crown Estate. Robinson, S.P., Lepper, P. A. and Hazelwood, R.A. 2014, NPL Good Practice Guide No. 133, Vols. ISSN: 1368-6550.

97. Carey, W. M. and Evans, R. B. Ocean Ambient Noise: Measurements and Theory. s.l. : Springer, 2011.

98. Sounds of Indo-Pacific humpback dolphins (Sousa chinensis) in west Hong Kong: a preliminary description. PQ, Sims, et al. 1, 2012, The Journal of the Acoustical Society of America, Vol. 131, pp. 48-53.

99. *Marine Mammal Noise Exposure Criteria: updated scientific recommendations for residual hearing effects.* JJ, Southall BL: Finneran, et al. 2, 2019, Aquatic Mammals, Vol. 45.

100. 2015 - 2022 OSPAR Commission. Underwater Noise. OSPAR Commission. [Online] www.ospar.org/work-areas/eiha/noise.

101. Underground, Weather. [Online] TWC Product and Technology, 2014. [Cited: May 2, 2022.] https://www.wunderground.com/history/daily/ae/abu-dhabi/OMAA/date/2022-4-7.

102. Wunderground. [Online] [Cited: May 20, 2022.] wunderground.com.

103. Tides4Fishing. [Online] 2022. [Cited: May 2, 2022.] https://tides4fishing.com/ae/united-arab-emirates/abu-dhabi.

104. *Abu Dhabi Emirate Habitat Classification and Protection Guideline.* Al Dhaheri, S., Javed, S., Alzahlawi, N., Binkulaib.R., Cowie,W., Grandcourt, E. and Kabshawi, M. 2017, Environment Agency Abu-Dhabi (EAD).

105. Javed, S., et al. *The Abu Dhabi Red List of Species: An assessment of the conservation status of mammals, birds, reptiles, invertebrates and plants in Abu Dhabi Emirate.* Abu Dhabi, UAE : Environment Agency - Abu Dhabi, Provita and IUCN Species Survival Commission, 2020.

106. IUCN. The IUCN Red List of Threatened Species. Version 2021-3. [Online] 2022. [Cited: April 30, 2022.] https://www.iucnredlist.org>.

107. *Environmental factors affecting benthic infaunal communities of the Western Arabian Gulf.* Coles, Stephen and McCain, John. 29, 1990, Marine Environmental Research.

108. *Limits on carbon sequestration in arid blue carbon ecosystems.* Schile, L., et al. 27, 2016, Ecological Applications.

109. *Eutrophication in shallow coastal bays and lagoons: The role of plants in the coastal filter.* Glathery, K. J., Sundback, K. and Anderson, I. C. 2007, Marine Ecology Progress Series.

110. EAD. Marine Habitat Classification. Abu Dhabi, UAE : Environment Agency Abu Dhabi (EAD), 2011.

111. Seagrass habitats in the Arabian Gulf: distribution, tolerance thresholds and threats. Erftemeijer, Paul and Shuail, Dawood. 15, 2012, Aquatic Ecosystem Health and Mangement.

112. Nasser H. Chapter 12: Marine Ecosystem Diversity in the Arabian Gulf: Threats and Conservation in Biodiversity. s.l. : The Dynamic Balanace of the Planet, 2014.

113. Growth of seagrass Halophila ovalis at dugong trails compared to existing within-patch variation in a Thailand intertidal flat. Nakaoka, Masahiro and Aioi, Keiko. 184, 1999, Marine Ecology Progress Series.

114. EAD. Abu Dhabi Fisheries and Aquaculture Bulletin. 2017.

115. Jabado, Rima W., et al. *The Conservation Status of Sharks, Rays, and Chimaeras in the Arabian Sea and Adjacent Waters.* Abu Dhabi, UAE : Environment Agency - Abu Dhabi (EAD) and IUCN Species Survival Commission Shark Specialist Group, 2017.

116. *Marine mammal noise exposure criteria: updated scientific recommendations for residual hearing effects.* BL, Southall, et al. 2, 2019, Aquatic Mammals, Vol. 45.

117. Richardson, W J, et al. *Marine Mammals and Noise.* s.l. : Academic press, 2013.

118. *Dugong (Dugong dugon) vocalization patterns recorded by automatic underwater sound monitoring systems.* Ichikawa, K, et al. 3, 2006, The Journal of the Acoustical Society of America, Vol. 119, pp. 3726-3722.

119. Biosonar, hearing and noise effect on the Indo-Pacific humpback dolphins (Sousa chinensis) In: *Proceedings of Meetings on Acoustics 4ENAL.* Li, S and Wang, D. 1, 2016, Acoustical Society of America, Vol. 27.

120. *The cumulative impact of annual coral bleaching can turn some coral species winners into losers.* Grottoli, A. G., Warrier, M. E. and Levas, S. J. 20, 2014, Global Change Biology.

121. *Functional roles of sponges.* Bell, James. 79, 2010, Estuarine Coastal and Shelf Science.

122. The distribution, abundance and group dynamics of Indian Ocean humpback dolphins (Sousa plumbea) in the Emirate of Abu Dhabi (UAE). Lopez, B. D., et al. 2017, Journal of the Maine Biological Association of the United Kingdom.

123. EAD. MOCCAE and EAD Launch Programme to Save UAE's Severely Overexploited Fisheries. Abu Dhabi : EAD Press Centre, 2016.

124. Al Dhaheri S., Javid S., Alzahlawi N., Binkulaid R., Cowie W., Grandcourt E. and Kabshawi M. *Abu Dhabi Emirate Habitat Classification & Protection Guideline.* Abu Dhabi : Environment Agency - Abu Dhabi, 2017.

125. *Environmental impacts of dredging on seagrasses: A review.* Erftemeijer, Paul L. A> and Robin Lewis, Roy R. 2006, Marine Pollution Bulletin, Vol. 52, pp. 1553-1572.

126. Chronic light reduction reduces overall resilience to additional shading stress in the seagrass Halophila ovalis. Yaakub, S. M., Chen, E., Bouma, T. J., Erftemeijer, P. L. A., & Todd, P. A. 2, 2014, Marine Pollution Bulletin, Vol. 83, pp. 467-474.

127. Environmental monitoring and management of reclamation works clost to sensitive habitats. Doorn-Groen, S. M. and Foster, T. M. 2007. PROCEEDINGS OF THE EIGHTEENTH WORLD DREDGING CONGRESS (WODCON XVIII).

128. *Environmental Monitoring and Management Close to Sensitive Habitats.* Doorn-Groen, Stephanie M. 2007, Terra et Aqua, p. 8.

129. *Environmental impacts of dredging and other sediment disturbances on corals: A review.* Erftemeijer, Paul L.A., et al. 2012, Marine Pollution Bulletin, pp. 1737–1765.

130. Assessing the impacts of sediments from dredging on corals. Jones, Ross, et al. 2016, Marine Pollution Bulletin, pp. 9-29.

131. Chronic Exposure of Corals to Fine Sediments: Lethal and Sub-Lethal Impacts. Flores F., Hoogenboom M., Smith L., Cooper T., Abrego D., Negri A. 5, 2012, PLOIS One, Vol. 7.

132. *Responses of coral reefs and reef organisms to sedimenations.* S., Rogers C. 1990, Marine Ecology Progress Series, Vol. 62, pp. 185-202.

133. Coral reproduction in the worlds warmest reefs; Southern Persian Gulf (Dubai, United Arab Emirates). Baiman A. G., Baird A. H., Cavalcante G. H. 2, 2011, Coral Reefs, Vol. 30, pp. 405-413.

134. Chevron Australia Pty Ltd. Final Environmental Impact Statement/Response to Submission on the Environmental Review and Management Programme for the Proposed Gorgon Project. 2006.

135. Thomson F., McCully S., Wood D., Pace F., White P. A generic investigation into noise profiles of marine dredging in relation to the acoustic sensitivity of the marine fauna in UK waters with particular emphasis on addregate dredging: Phase 1 Scoping and review of key issues. Southamton : Cefas, 2009.

136. *Marine Mammal Noise Exposure Criteria: Initial Scientific Recommendations.* al., Southall et. 4, 2008, Aquatic Mammals, Vol. 33, pp. 273-275.

137. Finneran J., Jenkins K. *Criteria and Thresholds for US Navy Acoustic and Explosive Effects Analysis (Phase III).* s.l. : US Navy, 2017.

138. Blue Planet Marine. Survey - Monitoring Aquatic Ambient Noise and the Associated Pressure Impacts in Port Curtis and Port Alma. 2013.

139. Collisions between ships and whales. W., Laist D. 1, 2001, Marine Mammal Science, Vol. 17, pp. 35-75.

140. H., Marsh. Dugong Status Reports and Action Plans for Countries and Territories. s.l. : UNEP, 1992.

141. PAME. Arctic Marine Shipping Assessment 2009 Report. s.l. : PAME, 2009.

142. A review of potential impacts of submarine power cables on the marine environment: Knowledge gaps, recommendations and future directions. Taormina, Bastien, et al. 2018, Renewable and Sustainable Energy Reviews, Vol. 96, pp. 380-391.

143. Exponent. *Submarine Cable DC Magnetic Field in Lake Champlain and Marine Assessment.* Bowie, MD : Exponent, Inc., 2014.

144. Al Dhaheri, S., et al. *Abu Dhabi Emirate Habitat Classification and Protection Guideline.* Abu-Dhabi. : Environment Agency Abu-Dhabi, 2017.

145. Treweek, J. Ecological impact assessment. 1st. Oxford : Blackwell Science, 1999.

146. Institute of Ecology and Environmental Management. *Guidelines for ecological impact assessment in the United Kingdom.* s.l. : Institute of Ecology and Environmental Management (IEEM), 2006.

147. Millennium Ecosystem Assessment. *Ecosystems and Human Well-Being: Synthesis.* Washington : Island Press, 2005.

148. Guidelines for ecological evaluation and impact assessment. Ecology & Environmental Management In Practice. Regini, K. 29, 2000, Bulletin of the Institute of Ecology and Environmental Management, pp. 1–7.

149. Regini, K. *Guidelines for ecological impact assessment: Amended pilot.* s.l. : Institute of Ecology and Environmental Management (IEEM), 2002.

. Canadian Environmental ssessment gency. C m lative effects assessment practitioners' g ide. [Online] 2014. [Cited: January 17, 2020.] http://www.ceaa-acee.gc.ca/default.asp?lang=En&n=43952694-1&offset=1&toc=show.

151. *Implementing ecological compensation in New Zealand: Stakeholder perspectives and a way forward.* Brown, M. A., et al. 1, 2013, Journal of the Royal Society of New Zealand, Vol. 44, pp. 34–47.

152. Business and Biodiversity Offsets Programme. Biodiversity offset design handbook. Washington, D.C: BBOP. [Online] 2009. [Cited: January 17, 2020.] http://www.forest-trends.org/documents/files/doc_3126.pdf.

153. *Limits on carbon sequestration in arid blue carbon ecosystems.* Shile, L.M., Kauffman, J.B., Crooks, S., Fourqurean, J.W., Glavan, J., and Megonigal, J.P. 3, Maryland : Ecological Society of America, 2017, Vol. 27.

154. Agency, Central Intelligence. The World Factbook - UAE Economy. *The World Factbook*. [Online] 2021. [Cited: August 5, 2021.] https://www.cia.gov/the-world-factbook/countries/united-arabemirates/#economy.

155. Economy, United Arab Emirates Ministry of. *The Annual Economic Report 2020 28th Edition.* Abu Dhabi : s.n., 2020.

156. Oxford Business Group. Dubai Covid-19 Recovery Roadmap. Oxford : Oxford Business Group, 2021.

157. Dhabi, Department of Culture and Tourism - Abu. *Annual Report - Tourism .* Abu Dhabi : ADCT, 2019, Volume 2.

158. EAD. *Environmentalatlas.ae.* [Online] [Cited: June 5th, 2022.] https://www.environmentalatlas.ae/cartography/seaToSummit/commercialFisheriesFishLandingsBySite.

159. Seek, Sea -. Sea - Seek - Ebook Sailling Guide - Arabian Gulf . Sea - Seek. [Online] July 2021. [Cited: 2021 15, July .]

160. Society, Abu Dhabi Islands Archaeological. *Abu Dhabi - 8 Million Years Ago Late Miocene Fossils from the Western Region.* Abu Dhabi : ADIAS, 2005.

161. EAD. Enviroportal. [Online] [Cited: June 06, 2022.] https://enviroportal.ead.ae/map/.

162. Task Force on Climate-Related Financial Disclosures. *Recommendations of the Task Force on Climate-related Financial Disclosures.* s.l. : TFCD, 2017.

163. Christensen, J.H., K. Krishna Kumar, E. Aldrian, S.-I. An, I.F.A. Cavalcanti, M. de Castro, W. Dong, P. Goswami, A. Hall, J.K. Kanyanga, A. Kitoh, J. Kossin, N.-C. Lau, J. Renwick, D.B. Stephenson, S.-P. Xie and T. Zhou. *Climate Phenomena and their Relevance for Future Regional Climate Change. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2013.*

164. *Modelling Current and Future Climate Change in the UAE using Various GCMs in MarksimGCM.* Al Blooshi, L.S, Alyan, S, Joshua, J.N and Ksiksi, T.S. Al Ain : The Open Atmospheric Science Journal, 2019, Vol. 13. 0.2174/1874282301913010056.

165. *A Roadmap for Policy-Relevant Sea-Level Rish Research in the United Arab Emirates.* Melville-Rea, H., Eayrs, C., Anwahi, N., Burt, J.A, Holland, D., Samara, F., Paparella, F., Al Mushidi, A.H., Al-Shehhi, M.R., and Holland, D.M. 2296-7745, Abu Dhabi : Frontiers in Marine Science, 2021, Vol. 8.

166. United Arab Emirates Ministry of Climate Change and Enivronment. *National Climate Change Plan of the United Arab Emirates 2017-2050.* Abu Dhabi : United Arab Emirates Ministry of Climate Change and Enivronment, 2017.

167. Environmental Agency in Abu Dhabi . *Technical Guidance for Environmental Impact Assessment* . Abu Dhabi : s.n., 2014.

168. Abu Dhabi Occupational Safety and Health System Center (OSHAD). *Abu Dhabi Occupational Safety and Health System Framework (OSHAD-SF), Technical Guideline, Process of Risk Management.* July 2016. Version 3.0.

169. Agriculture, International Centre for Biosaline. *Soil Survey for the Emirate of Abu Dhabi - Project Brief.* Abu Dhabi : ICBA, 2015.

170. Envrionment Agency Abu Dhabi. Marine and coastal environments of Abu Dhabi Emirate. 2008.

171. (n.d.), A Chiffings. Arabian Seas, 1st Ed.

172. Mott MacDonald. *Project Lightning Ecosystem Services Assessment*. 2021. AD41-90.0/27/26-G-25302 Rev. 02.

173. Work Method Statement Trenching and Backfilling Works (JDN2688.MES.81.01.e.00). s.l. : Samsung C&T Corporation & Jan De Nul Consortium,, January 2022.

174. Consortium, Samsung C&T Corporation & Jan De Nul. Work Method Statement Trenching and Backfilling Works (JDN2688.MES.81.01.e.00). January 2022.

175. . Work Method Statement Trenching and Backfilling Works (JDN2688.MES.81.01.e.00). January 2022.

176. MacDonald, Mott. *Hydrodynamic and Sediment Dispersion Modelling.* May 2021. Ref. AD41-90.0 27-26-G-25304_Rev.02.

177. Nautica. Das Island Landfall Terrestrial Ecology Report. September 2021. Ref. N684-0821-DAS-1.1.

178. Fugro. Geophysical Survey Report – Cable Route 1B from Mirfa to Landfall to Lower Zakum Island G. 2020i. Ref: AD41-457-G-24197 (MRU093-V02-Route-1B) Rev02.

179. Geophysical, Geotechnical and Environamental Baseline Surveys for Subsea Cable Routes. Abu Dhabi : FUgro, 2020.

180. *Numerical Limitations of Hydraulic Models.* Chanson, L. and H., Toombes. Brisbane : s.n., 2011. IAHR World Congress - Balance and Uncertainty.

181. Wilmott, C. J. *Some comments on the evaluation of model performance.* Delaware : Centre for Climatic Research, University of Delaware, 1982.

182. *Evaluation of Costal Area Modelling Systems at an Estury Mouth.* Sutherland, J., Walstra, D., Chesher, T., Van Rijn, L., and Southgate, J. 2003, Coastal Engineering: An International Journal for Coastal Harbour and Offshore Engineering, Vol. 51, pp. 119-142.

183. Tides 4 Fishing. [Online] [Cited: 05 20, 2022.] tides4fishing.com.

Appendix 2 – Information on the Current
OnditionInformation on the Current
Environment
(Methodology, Data and Results)

Appendix 2.1 – WKC Hydrodynamic Modelling Report

Project Lightning Hydrodynamic & Sediment Plume Dispersion Report

Prepared for: Anthesis

Ref.: J21071_R_XX

Date: 16/05/2022

wkcgroup.com

Disclaimer

WKC Group accepts no responsibility to any parties whatsoever, following the issue of the Document, for any matters arising outside the agreed scope of the work. This Document is issued in confidence to the Client and WKC Group has no responsibility to any third parties to whom this Document may be circulated, in part or in full, and any such parties rely on the contents of the report solely at their own risk.

The copyright on this document is the property of WKC Group. This document is supplied by WKC Group on the express terms that it is to be treated as confidential and that it may not be copied, used or disclosed to others for any purpose except as authorised in writing by WKC Group.

'WKC Group' refers to WKC Environment Consultancy, its sister companies and subsidiaries.

Report Approval & Revision Record

	Project:	Project Lightning		
	Document Title:	Hydrodynamic & Sediment Plume Dispersion Report		
	Client:	Anthesis		
	Report Number:	J21071_R_XX		
Rev	Date	Prepared	Reviewed	Approved
A	30/04/2022	Gregory Ashcroft Partner	Donald Afan Principal Consultant	Gregory Ashcroft Partner
01	16/05/2022	Ravel Barnard Environmental Consultant	Gregory Ashcroft Partner	Gregory Ashcroft Partner

Table of Contents

1	Introduction	1
1.1 1.2	Background Study Objectives	1 4
2	Project Standards	5
2.1 2.2 2.3 2.3.1 2.3.2 2.4 2.5	Technical Guidance (TG13) for Hydrodynamic Modelling Technical Guidance (TG12) for Dredging and Reclamation Regulation for Protection of Maritime Environment UAE Federal Regulations Municipality Regulations and Guidelines Environment Agency Abu Dhabi Ambient Water Quality Objectives Total Suspended Solids (TSS) Criteria Selection	5 5 5 6 8 10
3	Modelling Systems	11
3.1 3.2	MIKE Hydrodynamic Flow Model MIKE Mud Transport	11 11
4	Hydrodynamic Modelling Flushing and Dredging Methodology	13
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4.3 4.4.1 4.4.1	Overview Hydrodynamic Modelling Overview Model Grids and Bathymetry Winds Tides Dredging Simulations Overview Dredging Equipment and Method Particle Size Distributions and Settling Velocities Dredging Simulations Assumptions and Limitations Hydrodynamic Modelling Dredging Simulations	13 13 13 14 23 23 24 24 24 25 35 35 37 38 38 38
5	Hydrodynamic Modelling Flushing and Dredging Results	39
5.1 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.2	Hydrodynamic Modelling Overview Mesh Sensitivity Analysis Hydrodynamic Currents Verification of Tide and Current Predictions Area of Interest Variation Dredging Assessment	39 39 40 41 43 54 56
6	Summary and Conclusions	60
6.1 6.2 6.3 6.4	Overview Hydrodynamics Dredging Assessment Recommendations	60 60 60 61
7	References	62

Appendix A - Hydrodynamic Modelling Results	64
Appendix B - Dredging Results	65

List of Tables

Table 2-1 - UAE Federal Discharge Banned Substances [4]	6
Table 2-2 - Abu Dhabi QCC Maximum Allowable Concentrations for Ambient Marine Water	6
Table 2-3 - Abu Dhabi QCC Maximum Allowable Concentrations for Ambient Marine Sediments	7
Table 2-4 - Maximum allowable concentrations of discharges to marine at point of discharge	7
Table 2-5 - Recommended Ambient Marine Water Quality Standards for Abu Dhabi	8
Table 4-1 - Summary of Hydrodynamic Modelling Approach	14
Table 4-2 - Trenching and Backfilling Schedule – Cable Routes 1 & 2	29
Table 4-3 - Particle Size Distribution and Settling Velocities	35
Table 4-4 - Particle Size Distribution and Settling Velocities of Simulated Sediment Fractions	36
Table 4-5 - Relevant Borehole Summary	36
Table 5-1 - Overview of Client ADCP Data and Tidal Station Location	39
Table 5-2 - Mesh Sensitivity Test of Existing MIKE21 HD FM for Ocean Characteristics	40
Table 5-3 - Indices of Agreement Score Qualifications [15]	44
Table 5-4 - ARMAE Score Qualifications [18]	44
Table 5-5 - Statistical Performance of MIKE21 HD FM for Ocean Characteristics	45

List of Figures

Figure 1-1 - Project Location / Modelling Domain – Route 2	2
Figure 1-2 - Project Location / Modelling Domain – Route 1	3
Figure 4-1 – Cable Route 2 – Modelling Domain Bathymetry and Domain Variable Mesh	15
Figure 4-2 – Cable Route 2 – Modelling Domain Bathymetry and ADCP Location	16
Figure 4-3 – Cable Route 2 – Local Bathymetry and Domain Variable Mesh	17
Figure 4-4 - Cable Route 2 - Local Bathymetry and Cable Route	18
Figure 4-5 - Cable Route 1 - Modelling Domain Bathymetry and Domain Variable Mesh	19
Figure 4-6 - Cable Route 1 - Modelling Domain Bathymetry and ADCP Location	20
Figure 4-7 - Cable Route 1 - Local Bathymetry and Domain Variable Mesh	21
Figure 4-8 - Cable Route 1 - Local Bathymetry and Cable Route	22
Figure 4-9 - Amplitude and Phase of Principal Lunar Semidiurnal Constituent	23
Figure 4-10 - Amplitude and Phase of Principal Solar Semidiurnal Constituent	24
Figure 4-11 - Starfish Trencher	26
Figure 4-12 - Backhoe Dredger	26
Figure 4-13 - Trailer Suction Hopper Dredger	27
Figure 4-14 - Dredging Cross Sections	27
Figure 4-15 –Waypoint Markers for Route 2	33
Figure 4-16 – Waypoint Markers and Disposal Areas for Route 1	34
Figure 4-17 - Borehole Location – Routes 1&2	37
Figure 5-1 - Cable Route 2 - Typical Ebb Tide Currents	42
Figure 5-2 - Cable Route 1 - Typical Ebb Tide Currents	42
Figure 5-3 - Cable Route 2 - Typical Flood Tide Currents	42
Figure 5-4 - Cable Route 1 - Typical Flood tide Currents	42
Figure 5-5 – Sir Bani Yas - Tidal Gauge Height Comparison - Simulated vs Observed	47

Figure 5-6 - Mubarraz Island - Tidal Gauge Height Comparison - Simulated vs Observed	47
Figure 5-7 – ADCP #1 Current Speed Comparison - Simulated vs Observed	48
Figure 5-8 - ADCP #1 U-Component Comparison - Simulated vs Observed	48
Figure 5-9 - ADCP #1 V-Component Comparison - Simulated vs Observed	48
Figure 5-10 – ADCP #2 Current Speed Comparison - Simulated vs Observed	49
Figure 5-11 - ADCP #2 U-Component Comparison - Simulated vs Observed	49
Figure 5-12 - ADCP #2 V-Component Comparison - Simulated vs Observed	49
Figure 5-13 – ADCP #3 Current Speed Comparison - Simulated vs Observed	50
Figure 5-14 - ADCP #3 U-Component Comparison - Simulated vs Observed	50
Figure 5-15 - ADCP #3 V-Component Comparison - Simulated vs Observed	50
Figure 5-16 – ADCP #4 Current Speed Comparison - Simulated vs Observed	51
Figure 5-17 - ADCP #4 U-Component Comparison - Simulated vs Observed	51
Figure 5-18 - ADCP #4 V-Component Comparison - Simulated vs Observed	51
Figure 5-19 - ADCP#1 - Observed (ADCP) Current Rose	52
Figure 5-20 - ADCP #1 - Simulated Current Rose	52
Figure 5-21 - ADCP #2 Observed (ADCP) Current Rose	52
Figure 5-22 - ADCP #2 Simulated Current Rose	52
Figure 5-23 - ADCP #3 Observed (ADCP) Current Rose	53
Figure 5-24 - ADCP #3 Simulated Current Rose	53
Figure 5-25 - ADCP #4 Observed (ADCP) Current Rose	53
Figure 5-26 - ADCP #4 Simulated Current Rose	53
Figure 5-27 –Cable Route 2 AOI - Mean Current Speeds	55
Figure 5-28 - Cable Route 2 AOI - Max Current Speeds	55
Figure 5-29 – Cable Route 1 AOI - Mean Current Speeds	55
Figure 5-30 – Cable Route 1 AOI - Max Current Speeds	55
Figure 5-31 –Cable Route 2 – Mean TSS Concentration	58
Figure 5-32 – Cable Route 2 - 95th Percentile TSS Concentration	58
Figure 5-33 – Cable Route 1 – Mean TSS Concentration	58
Figure 5-34 – Cable Route 1 – 95 th Percentile TSS Concentration	58
Figure 5-35 – Cable Route 2 – Days Exceeding TSS AWQO (33 mg/l)	59
Figure 5-36 – Cable Route 1 – Days Exceeding TSS AWQO (33mg/l)	59
Figure 5-37 - Cable Route 2 - Cumulative Deposition Depth	59
Figure 5-38 - Cable Route 1 - Cumulative Deposition Depth	59

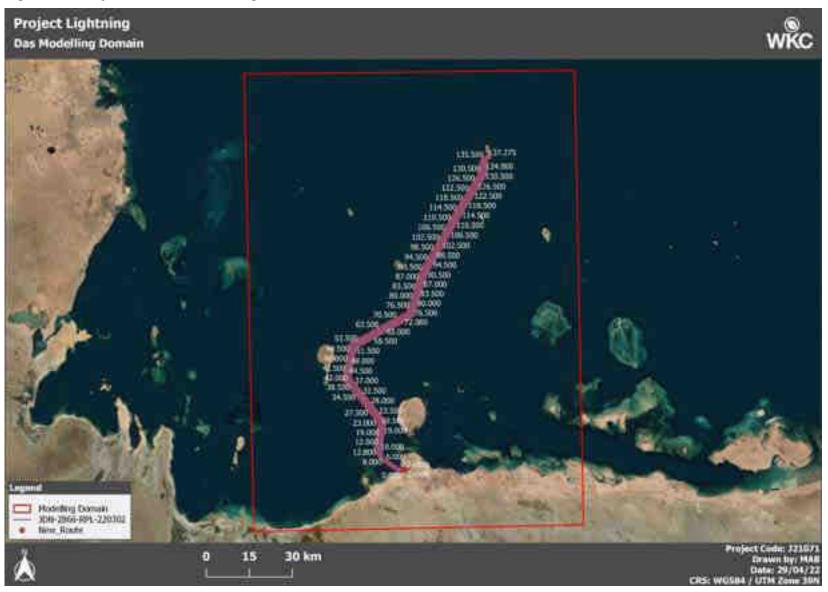
Acronyms

2D	Two-dimensional
3D	Three-dimensional
°C	Degrees Celsius
ADCP	Acoustic Doppler Current Profiler
CSD	Cutter Suction Dredger
E	Efficiency Coefficient
(E)	Exchange Coefficient
EAD	Environmental Agency Abu Dhabi
FM	Flow Model
HD	Hydrodynamic
IOA	Index of Agreement
km	kilometre
m	metre
m³/s	cubic metres per second
MAE	Mean Absolute Error
ARMAE	Adjusted Relative Mean Absolute Error
RMAE	Relative Absolute Mean Error
QCC	Quality Conformity Council
RMSE	Root Mean Square Error
TG-13	Technical Guidance for Hydrodynamic Modelling
TR/AD	Transport Module/Advection Dispersion
UAE	United Arab Emirates
US EPA	United States Environmental Protection Agency
UKHO	United Kingdom Hydrographic Office
WKC	WKC Environment Consultancy

1 Introduction

1.1 Background

WKC Environment Consultancy (WKC) has been contracted by Anthesis to undertake a hydrodynamic modelling sediment plume dispersion assessment as part of the Environmental Impact Assessment (EIA) for the proposed Project Lightning power utilities venture (the "Project") located in Abu Dhabi, United Arab Emirates (UAE).


The project will be developed in the AL Dhafra region of Abu Dhabi and consists of two sub-sea transmission cables running from onshore power supply stations at Mirfa and Shuweihat to the offshore locations of Lower Zakum and Das Island respectively as illustrated below in Figure 1-1 for Route 2 and Figure 1-2 for Route 1.

This report presents the results of the hydrodynamic modelling and sediment plume dispersion modelling associated with dredging activities. The assessment has been conducted to determine the potential environmental impacts to the marine environment.

1

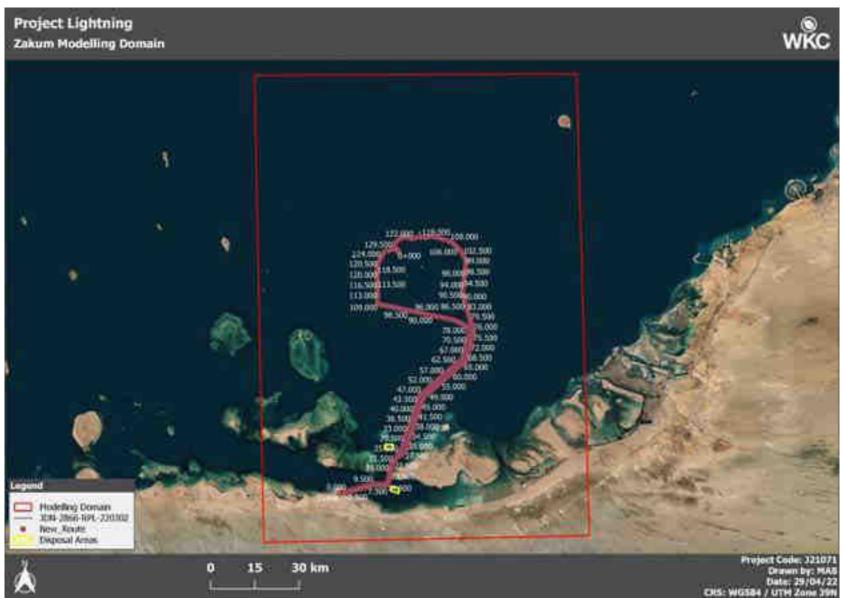


Figure 1-1 - Project Location / Modelling Domain – Route 2

Figure 1-2 - Project Location / Modelling Domain – Route 1

1.2 Study Objectives

The objective of the study is to determine whether increased suspended sediment concentration during dredging activities and the associated deposition of fine sediment may cause adverse impacts to the marine environment. These objectives can be summarised as follows:

- Simulation of hydrodynamics to feed into subsequent sediment dispersion simulations; and
- Simulations to determine the suspended sediment plume dispersion and deposition of sediment associated with dredging activities.

2 Project Standards

This section provides a summary of regulations and technical guidelines for hydrodynamic modelling studies within the Abu Dhabi Emirate. These include UAE Federal Guidance, which may be of relevance for comparative purposes. Where UAE or Abu Dhabi specific criteria are unavailable, reference has been made to widely accepted international guidance, including relevant guidelines, protocols and standards that will be applicable to the Project.

2.1 Technical Guidance (TG13) for Hydrodynamic Modelling

The Environment Agency of Abu Dhabi (EAD) issued a technical guidance document which provides general guidance for conduction hydrodynamic modelling studies and are listed as follows [1]:

- Model selection;
- General model requirements, and
- Reporting structure.

2.2 Technical Guidance (TG12) for Dredging and Reclamation

The Environment Agency of Abu Dhabi (EAD) issued a technical guidance document which provides general guidance for conduction hydrodynamic modelling studies and are listed as follows [2]

• Dredging and reclamation recommended practices.

2.3 Regulation for Protection of Maritime Environment

2.3.1 UAE Federal Regulations

Discharges to the marine environment are regulated under the 'Regulation for the Protection of Maritime Environment', UAE Cabinet [3]. The principle requirements of Chapter 3 of this regulation, pertaining to this scope of works, are as follows:

- No discharge of plastic materials including but not limited to, synthetic rope, synthetic fishing nets, plastic bags;
- No discharge of garbage including products, ceramics, glass and bottles, wood, lining and packing materials; and,

• If food leftovers generated from marine vessels, rigs, barges, manned platforms, or installation, are to be disposed of into marine environment, the discharge location should be as far as possible from land, but not less than 12 nautical miles from the nearest shoreline.

In accordance with the Council of Ministers' Decision No 37 – 2001 – Protection of the Marine Environment, the following non-degradable pollutants / Illegal compounds are not to be discharged into marine environment:

Table 2-1 - UAE Federal Discharge Banned Substances [4]

Organ phosphorus Pesticides	Polychlorinated Biphenyls	
Dimethoate	PCBs	
Malathion	Aroclor	
Organochlorine Pesticides	Tetrachlorobiphenyl	
Aldrin	Trichlorobiphenyl	
Dieldrino	Polynuclear Aromatic Hydrocarbons (PAH)	
DDT	Benzo (a) pyrene and Naphthalene	
Chloridane	Naphthalene	
Eldrin		

Note that this assessment does not pertain to discharges of any kind. Therefore, the Federal Regulations are not considered further within this assessment.

The full text of the Regulation should be referred to for further details.

2.3.2 Municipality Regulations and Guidelines

Quality standards for ambient marine water are provided by Abu Dhabi Quality and Conformity Council (QCC) for the maximum allowable concentrations for ambient marine water (Table 2-2) and maximum allowable concentrations for ambient marine sediments (Table 2-3) [5].

Parameter	Unit	General Use Areas	Marine Protected Use Areas
Cadmium	µg/l	0.7	0.3
Chromium	µg/l	0.2	0.2
Copper	µg/l	3.0	3.0
Lead	µg/l	2.2	2.2
Mercury	µg/l	0.1	0.1

Nickel	µg/l	7.0	3.0
Zinc	µg/l	15.0	15.0
Total Petroleum Hydrocarbons (TPH)	µg/l	7.0	7.0
Total Polychlorinated Biphenyls (PCBs)	µg/l	0.03	0.03
Chlorophyll (a)	µg/l	1.0	0.7
DO*	mg/l	4.0	4.0
Enterococci	CFU or MPN/100ml	35.0	35.0
* Minimum allowable concentration			

Table 2-3 - Abu Dhabi QCC Maximum Allowable Concentrations for Ambient Marine Sediments

Parameter	Unit	General Use Area
Arsenic	mg/kg	7
Cadmium	mg/kg	0.7
Chromium	mg/kg	52
Copper	mg/kg	20
Lead	mg/kg	30
Mercury	mg/kg	0.2
Nickle	mg/kg	16
Zinc	mg/kg	125
Total Polychlorinated Biphenyls (PCBs)	µg/l	22
Total Polycyclic Aromatic Hydrocarbons (PAHs)	mg/kg	1.7

Environmental specifications for land-based-liquid discharges to marine environment are provided by Abu Dhabi Quality and Conformity Council (QCC) below (Table 2-4) [6].

Table 2-4 - Maximum allowable concentrations of discharges to marine at point of discharge

Parameter	Symbol	Unit	Limit
Total Suspended Solids	TSS	mg/l	50

Parameter	Symbol	Unit	Limit
рН	-	pH Unit	6.0-9.0
Temperature	-	°C	±5 from ambient
Turbidity	-	NTU	75
Ammonia (as Nitrogen)	NH3-N	mg/l	2.0
Nitrate (as Nitrogen)	NO3-N	mg/l	30.0
Free Residual Chlorine	CI2	mg/l	0.5
Cyanide	CN	mg/l	0.05
Dissolved Oxygen	DO	mg/l	≥ 3.0
Fluoride	F	mg/l	10
Sulphide	S-	mg/l	0.1

2.4 Environment Agency Abu Dhabi Ambient Water Quality Objectives

The Environment Agency Abu Dhabi (EAD) previously developed standards and limits for marine environments prior to the implementation of QCC standards [7]. These are presented in Table 2-5, and will be adopted as guidance values where allowable ambient concentrations are not provided within the QCC standards.

Parameter		Proposed Maximum Limits	Units
l Phy	I Physical Indicators		
1	Floating Particles/Floatable/debris	Nil	mg/m2
2	Temperature (change)	±3	°C of background temperature
3	Turbidity	10	NTU
3	Transparency / Clarity	≥10	meter of Secchi Depth
4	Salinity	<5	% of background concentration
5	BOD5	5	mg/L (5day at 20°C annual average)
6	Odour	Not objectionable	-

Para	meter	Proposed Maximum Limits	Units
7	Colour	No change from background	-
ll Ch	II Chemical Indicators		
8	Ammonia (Free as N) or Ammonia (NH3-N)	0.004	mg/L
9	Arsenic (As)	0.005	mg/L
10	Cadmium (Cd)	0.001	mg/L
11	Chlorine Residual (Cl2)	0.01	mg/L
12	Chromium (Cr)	0.01	mg/L
13	Copper (Cu)	0.01	mg/L
14	Cyanide (Cn)	0.004	mg/L
15	Lead (Pb)	0.01	mg/L
16	Mercury (Hg)	-	-
17	Oil and Grease	Not visible	-
18	Petroleum Hydrocarbons	5	ppm or mg/L
19	Dissolved Oxygen (DO)	>4	mg/L
20	Total Suspended Solids (TSS)	<33	mg/L
21	Si-SiO3	890	microgram/L
22	рН	6.5 - 8.5	mg/L
23	Phenols	0.001	mg/L
24	Phosphorous Total as (P)	0.001	mg/L
	Phosphate (PO4)	34	microgram/L
25	Sulphides (S)	0.004	mg/L
26	Total Organic Carbon (TOC)	2.5	mg/L
27	Zinc (Zn)	0.01	mg/L
28	Nickel (Ni)	20	microgram/L
29	Iron (Fe)	0.3	mg/L

Para	meter	Proposed Maximum Limits	Units
30	Vanadium (V)	9.4	microgram/L
31	Nitrate (as NO3)	95	microgram/L
32	Nitrite (as NO2)	34	microgram/L
III Biological Indicators			
33	Total Coliform	70	MPN/100mL

2.5 Total Suspended Solids (TSS) Criteria Selection

As listed by EAD Ambient Water Quality Objectives (AWO's), the most relevant parameter for sediment plume assessments is Total Suspended Solids (TSS) concentrations that should not exceed 33 mg/l (0.033 kg/m³) considering the more recent QCC guidance do not provide an allowable ambient concentration for turbidity or related parameters. The guidelines however do not stipulate frequencies of exceedance or mixing zone dimensions and were not passed as law however they do provide more stringent criteria to allow for a conservative assessment.

3 Modelling Systems

The modelling study has been carried out utilising the MIKE software package (developed by DHI). The MIKE software package is a powerful and versatile tool for simulating physical, chemical, biological and ecological processes in coastal and marine areas. The package utilises multiple modules for various simulation, prediction and forecast applications; the modules utilised within this scope of works are summarised further below.

3.1 MIKE Hydrodynamic Flow Model

The MIKE Hydrodynamic (HD) Flow Model (FM) is a numerical modelling system for the simulation of water level variations and their associated flows. The model is able to run, in both two-dimensional (2D) and threedimensional (3D) modes, using multiple simulation engines, including single grid, multiple grid and flexible mesh application. The MIKE HD FM modules are the 'base' module for the software suite, the outputs of which are used as input for various other modules of differing applications.

The MIKE21 FM HD module is system for simulating 2D free-surface flows. MIKE21 is applicable for the simulation of hydraulic environments, such as lakes, estuaries, bays, coastal areas and seas, where the significance of vertical stratification can be discounted.

The 3D, baroclinic module MIKE3 FM HD, is a general non-hydrostatic numerical modelling system which simulates unsteady, 3D flows in fluids when presented with the bathymetry and other relevant ambient conditions (e.g. bed resistance, wind forcing, hydrographic boundary conditions, and atmospheric influence). MIKE3 FM HD is applicable to areas where stratification cannot be discounted, or where simulation requires the assessment of effluent with a positive or negative density differential. The fully baroclinic nature of the module enables density currents caused by this differential density to be simulated accurately, in conjunction with other dispersal effects associated tide and wind driven flows and atmospheric effects (such as surface cooling).

The software also incorporates near-field simulations which can accurately simulate the 'jet' phase of an effluent discharge (where the effluent momentum influences trajectory and mixing behaviour). These near-field simulations are linked within the MIKE3 FM HD module, enabling the influence of ambient currents on 'jet' behaviour to be simulated at the same temporal and spatial resolution as the hydrodynamic model.

Additional scientific documentation on MIKE HD FM can be provided on request.

3.2 MIKE Mud Transport

The MIKE Mud Transport (MT) module describes erosion, transport and deposition of mud or sand mixtures under the action of currents and waves. MIKE MT takes into account current and wave (where applicable) forcing, material sliding, salt-flocculation, detailed settling processes, seabed description and continuous morphological update of the seabed, whilst simulation the dispersion and deposition of sediment particulates.

The MIKE MT module varies sediment settling velocities according to salinity, wave, current speed, particle size distribution (PSD) and bed morphology. Bed erosion can be either non-uniform (i.e. erosion of soft or partly consolidated bed), or uniform (i.e. erosion of a dense and consolidated bed).

Application of the MIKE MT module include sediment transport studies, dredge turbidity simulations and sediment deposition studies for harbours, canals, rivers and navigational corridors.

Additional scientific documentation on MIKE MT can be provided on request.

4 Hydrodynamic Modelling Flushing and Dredging Methodology

4.1 Overview

In order to assess suspended sediment dispersion during trenching, dredging and backfilling activities, and comparison to relevant water quality criteria, the MIKE21 HD FM and MIKE21 MT modules were utilised. The hydrodynamic results from the MIKE21 HD FM module have been used to 'drive' the subsequent dredge induced sediment plumes using the MT module.

The hydrodynamics of the area were simulated for a baseline case and used for validation/calibration purposes, by comparison to measured ADCP data at four locations (2 each along Rout1 & 2).

Hydrodynamics are simulated concurrently with the plume simulations to take into account bed changes associated with dredging, trenching, disposal and backfilling activities.

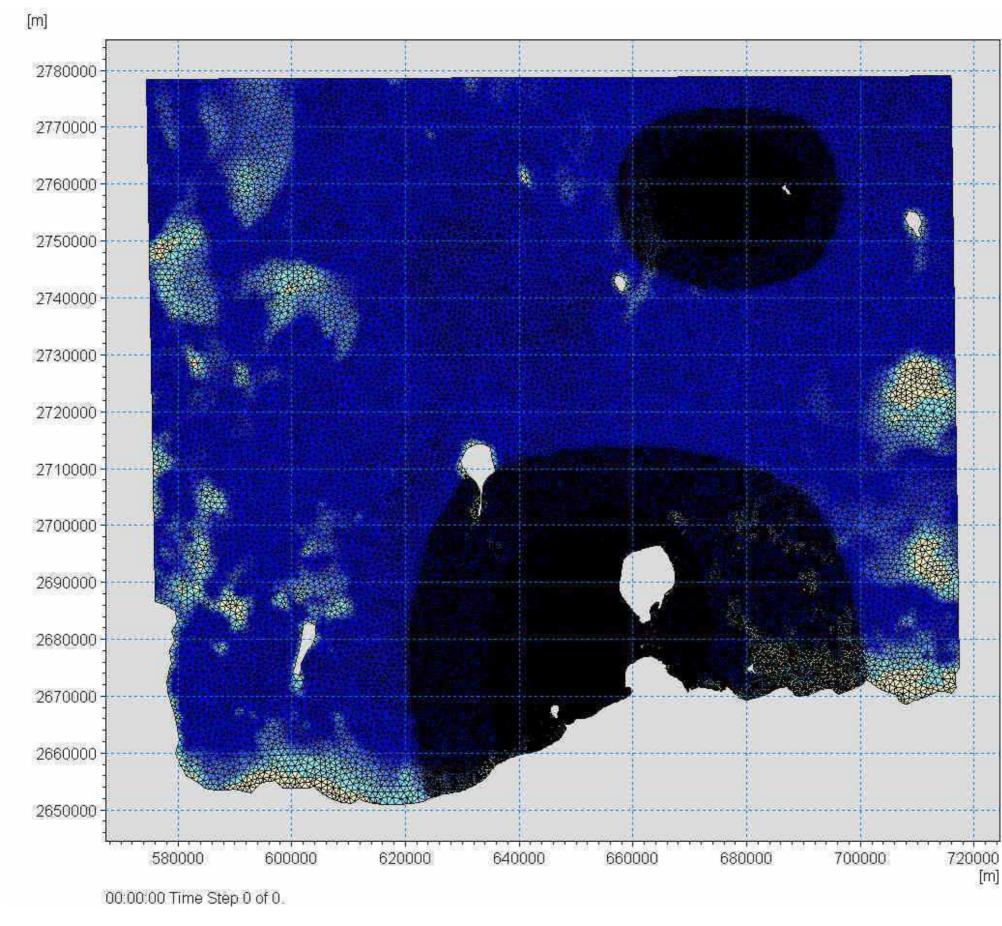
4.2 Hydrodynamic Modelling

4.2.1 Overview

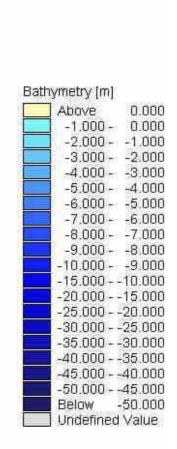
The hydrodynamics of the project area were simulated utilising the MIKE21 HD FM model, driven by meteorological data from CFSR and tidal constituent amplitude and phase predictions sourced from the DTU10 global ocean tide model from the Technical University of Denmark. [8] An overview of the hydrodynamic modelling approach is presented in Table 4-1.

Table 4-1 - Summary of Hydrodynamic Modelling Approach

Task	Hydrodynamic Modelling
Model	MIKE21 HD FM & MIKE21 HD TR/AD
Model Features	2-dimensional Horizontal and depth averaged vertical plane
Tidal Data	DTU10 global ocean tide model at $\approx 0.125^{\circ}$ resolution [8].
Meteorological Data	NCEP supported CFSR data at $\approx 0.2^{\circ}$ spatial and hourly temporal resolution. [9]
Period Modelled	A single scenario (baseline) was simulated for calibration and validation purposes, a further two, final scenarios were simulated concurrently with sediment dispersion to take into account real-time physical seabed changes associated with construction works. These scenarios were simulated for separate modelling domains covering the Cable Routes 1 & 2.
Bathymetry	Simulations were conducted utilising bathymetric data provided from the client as well as from a digitized admiralty chart 3715 (obtained from MIKE C-Map). [10]
Model Verification	Verification was conducted against ADCP current and prognostic tidal gauge height data.
Resolution	Flexible mesh, variable element size from a maximum area of 750,000 m ² (equivalent to approx. 1.7km horizonal resolution) to an area of 1400 m ² (equivalent to approx. 37 m horizontal resolution).


4.2.2 Model Grids and Bathymetry

Bathymetry within the project area was obtained from a number of sources in order to accurately portray the physical environment within the modelling domain. The sources of data utilised, in the order that they were used, are summarised below:


- Digitised British Admiralty Bathymetric Charts 3715 [10] sourced from C-MAP;
- Bathymetry survey data of the project area was provided by the client [11]; and
- Archived WKC bathymetric and topographical survey data around the project area.

The coverage and resolution of the modelling domain were decided based on knowledge of the project area, and the outcomes of a numerous modelling iterations carried out during the validation/calibration process (Section 5.1.4). The entire model includes all Abu Dhabi waters and the hydrodynamic simulation testing was conducted whereby the mesh size is varied in order to ensure model stability. Once the model is proved to be stable, the mesh size is reduced to conclude if accuracy is improved by reducing each size. Following guidelines set forth by DHI on scaling between mesh transitions, a growth factor of 3 was used. The final modelling domain mesh and bathymetry are provided below in Figure 4-1 and Figure 4-2 for Cable Route 2 Modelling Domain and Figure 4-5 and Figure 4-6 for Cable Route 1 modelling domain.

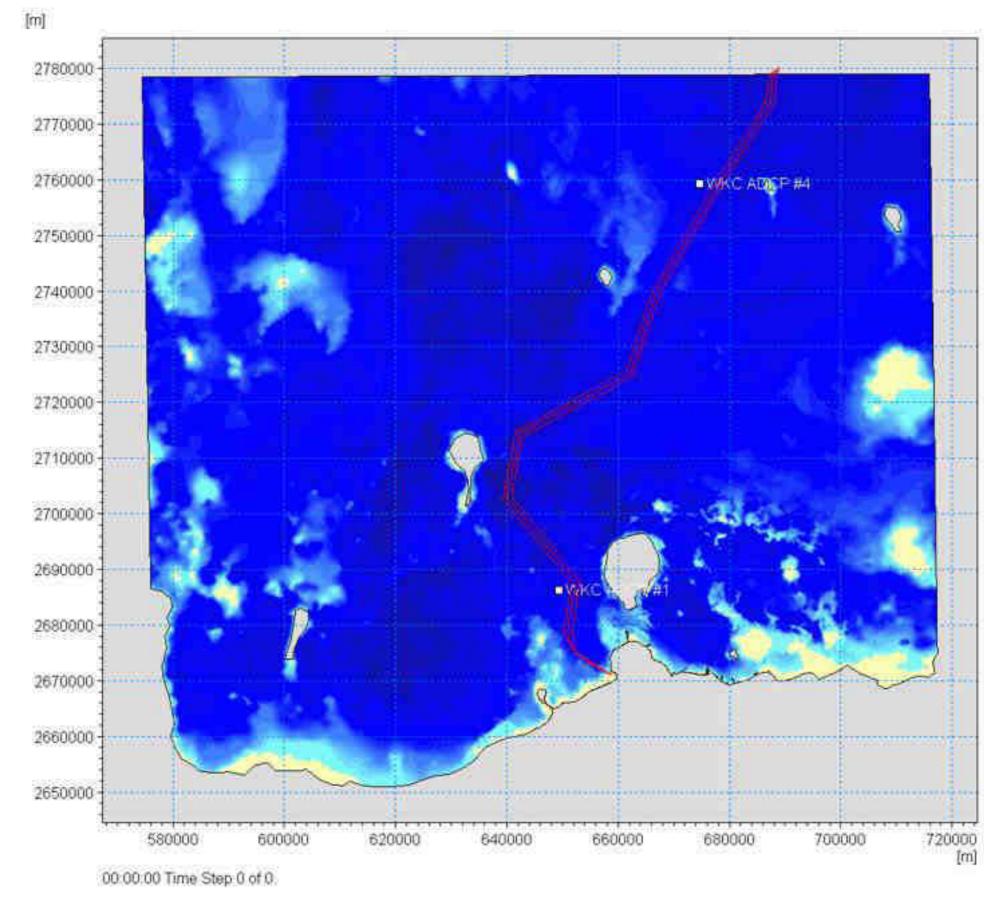
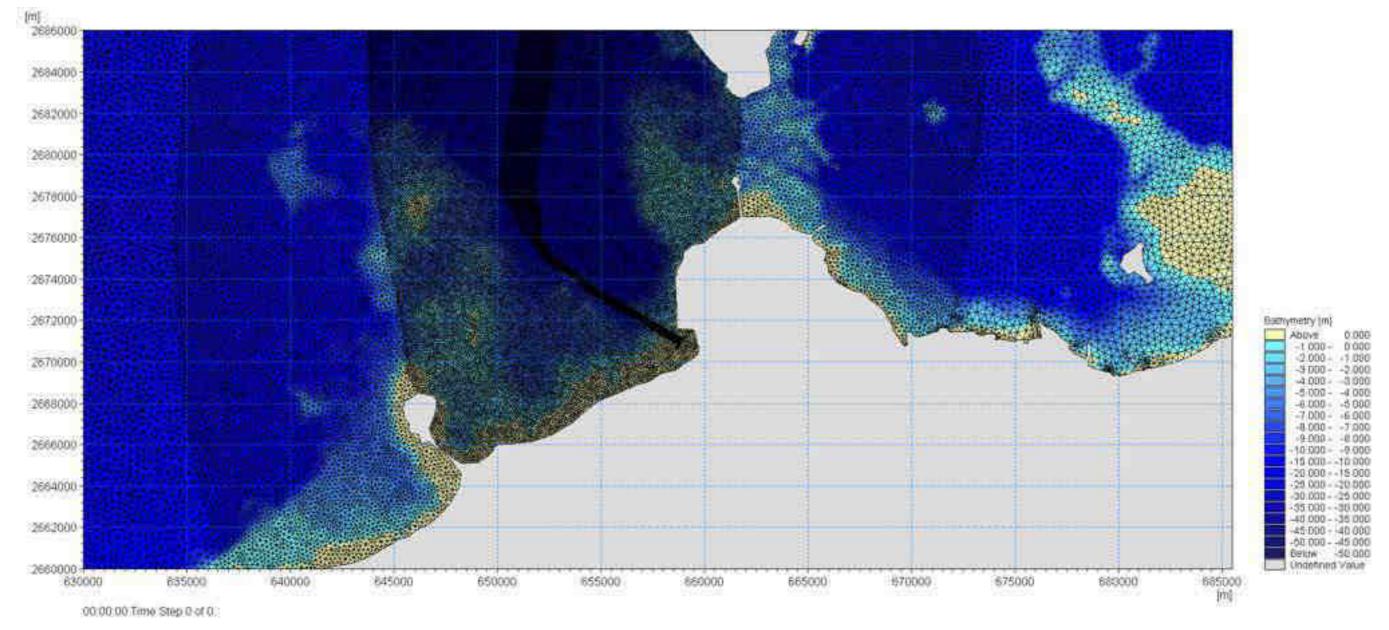
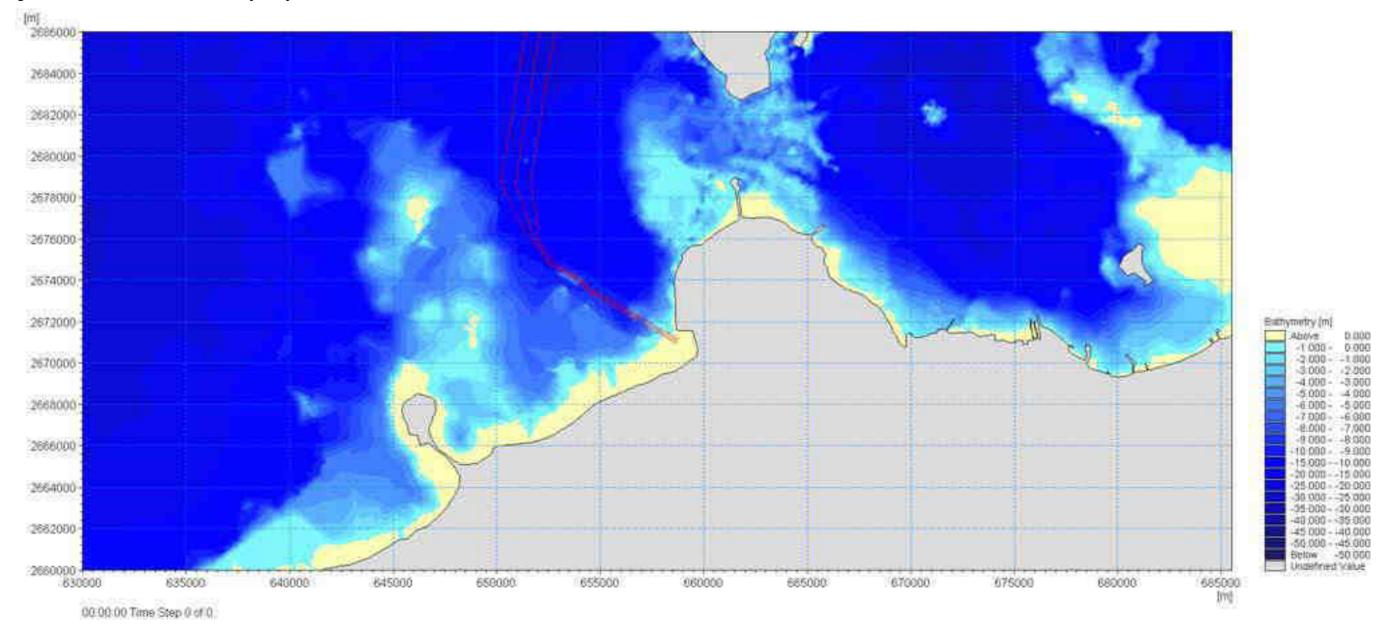
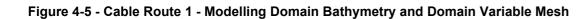

Figure 4-1 – Cable Route 2 – Modelling Domain Bathymetry and Domain Variable Mesh

Figure 4-2 – Cable Route 2 – Modelling Domain Bathymetry and ADCP Location

Bath	ymetry [m]
	Above

Above 0.000 -1.000 - 0.000 -2.000 - 1.000 -3.000 - 2.000 -4.0003.000 -5.0004.000 -6.0005.000 -7.0006.000 -8.0007.000 -9.0008.000 -10.0009.000 -15.00015.000 -25.00020.000 -35.00030.000 -45.00040.000 -50.00045.000 Below -50.000 Undefined Value	-	Action 1 freed
-2.000 - +1.000 -3.0002.000 -4.0003.000 -5.0004.000 -6.0005.000 -7.0006.000 -8.0007.000 -9.0008.000 -10.0009.000 -15.00010.000 -20.00015.000 -25.00020.000 -35.00035.000 -45.00045.000 Below -50.000	1	
-2.000 - +1.000 -3.0002.000 -4.0003.000 -5.0004.000 -6.0005.000 -7.0006.000 -8.0007.000 -9.0008.000 -10.0009.000 -15.00010.000 -20.00015.000 -25.00020.000 -35.00035.000 -45.00045.000 Below -50.000		-1.000 - 0.000
-4 0003 000 -5 0004 000 -6 0005 000 -7 0006 000 -8 0007 000 -9 0008 000 -10 0009 000 -15 00010 000 -20 00015 000 -25 00020 000 -35 00035 000 -45 00045 000 Below -50 000		
-5 0004 000 -6 0005 000 -7 0006 000 -8 0007 000 -9 0008 000 -10 0009 000 -15 00010 000 -20 00015 000 -25 00020 000 -30 00025 000 -40 00035 000 -45 00040 000 -50 00045 000 Below -50 000		-3 0002 000
+6 0005 000 -7 0006 000 -8 0007 000 -9 0008 000 -10 0009 000 -15 00010 000 -20 00015 000 -25 00020 000 -30 00025 000 -40 00035 000 -45 00040 000 -50 00045 000 Below -50 000		-4 0003 000
-7 0006 000 -8 0007 000 -9 0008 000 -10 0009 000 -15 00010 000 -20 00015 000 -25 00020 000 -30 00025 000 -35 00035 000 -45 00040 000 -50 00045 000 Below -50 000		-5.0004.000
+8 0007 000 -9 0008 000 -10 0009 000 -15 00010 000 -20 00015 000 -25 00020 000 -30 00025 000 -35 00035 000 -45 00040 000 -50 00045 000 Below -50 000		-6.0005.000
-9 0008 000 -10 000 - 9 000 -15 00010 000 -20 00015 000 -25 00020 000 -30 00025 000 -35 00035 000 -45 00045 000 -50 00045 000		-7 0006 000
-10 0009 000 -15 00010 000 -20 00015 000 -25 00020 000 -30 00025 000 -35 00030 000 -40 00035 000 -45 00045 000 Below -50 000		-8 0007 000
-15.00010.000 -20.00015.000 -25.00020.000 -30.00025.000 -35.00030.000 -40.00035.000 -45.00040.000 -50.00045.000 Below -50.000		-9.0008.000
-15.00010.000 -20.00015.000 -25.00020.000 -30.00025.000 -35.00030.000 -40.00035.000 -45.00040.000 -50.00045.000 Below -50.000		-10 0009.000
+25 00020 000 -30 00025 000 -35 00030 000 -40 00035 000 -45 00040 000 -50 00045 000 Below -50 000		
-30 000 - 25 000 -35 000 - 30 000 -40 000 - 35 000 -45 000 - 40 000 -50 000 - 45 000 Below -50 000		-20.00015.000
-35 000 - 30 000 -40 000 - 35 000 -45 000 - 40 000 -50 000 - 45 000 Below -50 000		CF (2 (2 7 2) (2 (C+1)) (2
-40 00035 000 -45 00040 000 -50 00045 000 Below -50 000		-30 00025 000
-45 00040 000 -50 00045 000 Below -50 000		-35 000 30 000
-50 00045 000 Below -50 000		-40 00035 000
Below -50.000		-45 00040 000
Below -50.000		-50 00045 000
		Undefined Value


Figure 4-3 – Cable Route 2 – Local Bathymetry and Domain Variable Mesh

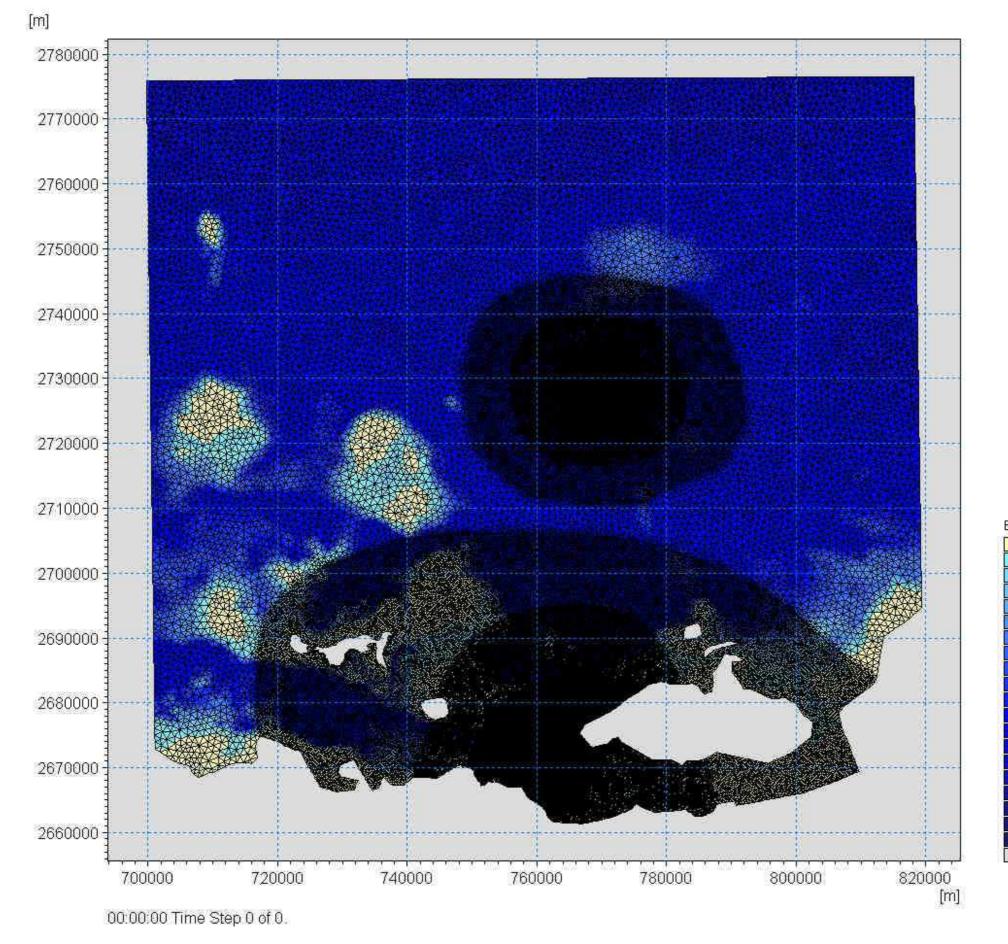


Figure 4-4 - Cable Route 2 - Local Bathymetry and Cable Route

Bathymetry [m]

Above 0.000 -1.000 - 0.000 -2.0001.000 -3.0002.000 -4.0003.000 -5.0004.000 -6.0005.000 -7.0006.000 -7.0006.000 -9.0007.000 -9.0008.000 -10.0009.000 -15.00010.000 -25.00025.000 -35.00035.000 -40.00035.000 -45.00045.000 Below -50.000	Auron & Turl
-2.0001.000 -3.000 - 2.000 -4.000 - 3.000 -5.000 - 4.000 -6.0005.000 -7.0006.000 -8.0007.000 -9.0008.000 -10.0009.000 -15.00010.000 -20.00015.000 -25.000 - 20.000 -35.00035.000 -45.00045.000 Below -50.000	Above 0.000
-3.0002.000 -4.0003.000 -5.0004.000 -6.0005.000 -7.0006.000 -8.0007.000 -9.0008.000 -10.0009.000 -15.00010.000 -25.00015.000 -35.00025.000 -35.00035.000 -45.00045.000 Below -50.000	-1.000 - 0.000
-4.0003.000 -5.0004.000 -6.0005.000 -7.0006.000 -8.0007.000 -9.0008.000 -10.0009.000 -15.00010.000 -20.00015.000 -25.00020.000 -30.00025.000 -35.00035.000 -45.00045.000 Below -50.000	-2.0001.000
-5.0004.000 -6.0005.000 -7.0006.000 -8.0007.000 -9.0008.000 -10.0009.000 -15.00010.000 -20.00015.000 -25.00025.000 -35.00025.000 -35.00035.000 -45.00040.000 -50.00045.000 Below -50.000	-3.0002.000
-6.0005.000 -7.0006.000 -8.0007.000 -9.0008.000 -10.0009.000 -15.00010.000 -20.00015.000 -25.00025.000 -35.00025.000 -40.00035.000 -45.00040.000 -50.00045.000 Below -50.000	-4.0003.000
-7.0006.000 -8.0007.000 -9.0008.000 -10.0009.000 -15.00010.000 -20.00015.000 -25.00020.000 -30.00025.000 -35.00036.000 -45.00040.000 -50.00045.000 Below -50.000	-5.0004.000
-8.0007.000 -9.0008.000 -10.0009.000 -15.00010.000 -20.00015.000 -25.00020.000 -30.00025.000 -35.00030.000 -40.00035.000 -45.00040.000 -50.00045.000 Below -50.000	-6.0005.000
-9.0008.000 -10.0009.000 -15.00010.000 -20.00015.000 -25.00020.000 -30.00025.000 -35.00030.000 -40.00035.000 -45.00040.000 -50.00045.000 Below -50.000	-7.0006.000
-10.0009.000 -15.00010.000 -20.00015.000 -25.00020.000 -30.00025.000 -35.00030.000 -40.00035.000 -45.00040.000 -50.00045.000 Below -50.000	-8.0007.000
-15.00010.000 -20.00015.000 -25.00020.000 -30.00025.000 -35.00030.000 -40.00035.000 -45.00040.000 -50.00045.000 Below -50.000	-9.0008.000
-20.00015.000 -25.00020.000 -30.00025.000 -35.00030.000 -40.00035.000 -45.00040.000 -50.00045.000 Below -50.000	-10.0009.000
-25.00020.000 -30.00025.000 -35.00030.000 -40.00035.000 -45.00040.000 -50.00045.000 Below -50.000	-15.00010.000
-30.00025.000 -35.00030.000 -40.00035.000 -45.00040.000 -50.00045.000 Below -50.000	-20.00015.000
-35.00030.000 -40.00035.000 -45.00040.000 -50.00045.000 Below -50.000	-25.00020.000
-40.00035.000 -45.00040.000 -50.00045.000 Below -50.000	-30.00025.000
-45.00040.000 -50.00045.000 Below -50.000	-35.00030.000
-50.00045.000 Below -50.000	-40.00035.000
Below -50.000	-45.00040.000
~ 같은 것은 것이 없는 것은 것이 좋아 집에 있는 것이 같이 많이 많이 많이 했다.	-50.00045.000
Undefined Value	Below -50.000
Terreteringen i suele	Undefined Value

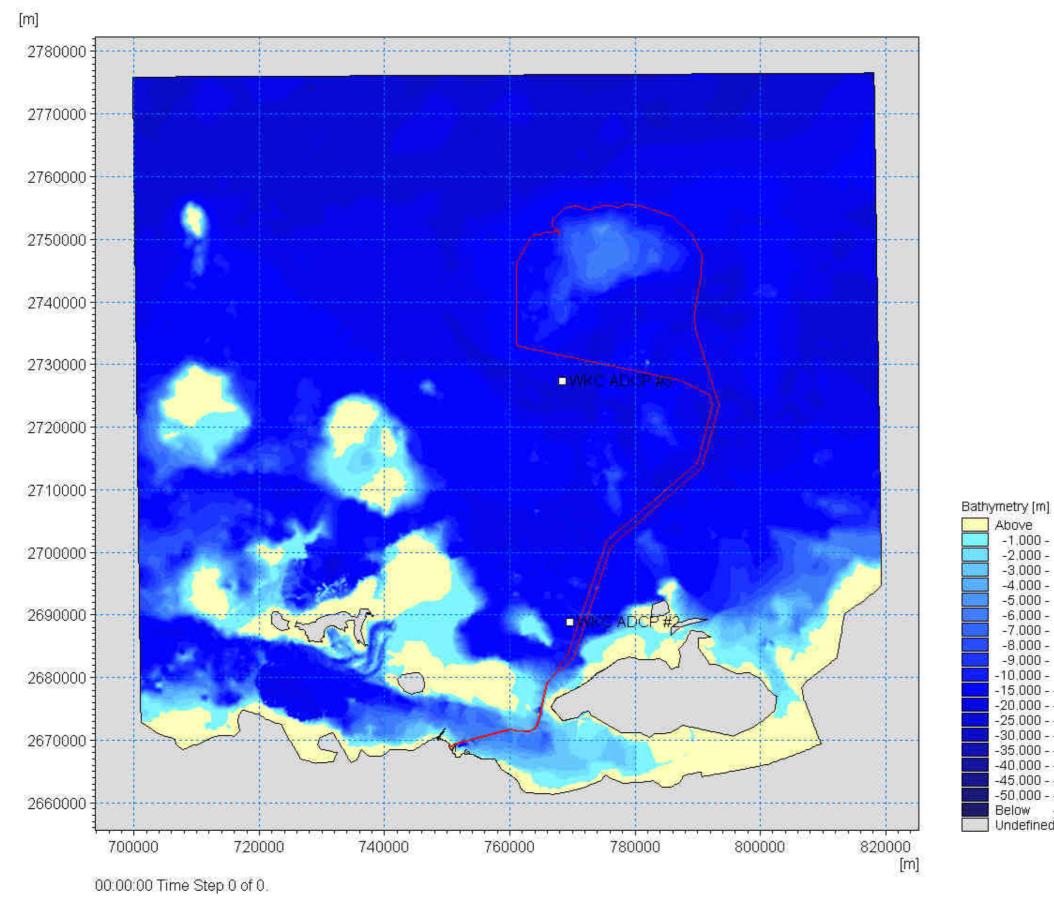


Figure 4-6 - Cable Route 1 - Modelling Domain Bathymetry and ADCP Location

ymetry [m] Above 0.000 -1.000 - 0.000 -2.000 - 1.000 -3.000 - 2.000 -4.000 - 3.000 -5.000 - 4.000 -6.000 - 5.000 -7.000 - 6.000 -7.000 - 7.000 -9.000 - 7.000 -9.000 - 7.000 -10.000 - 9.000 -15.000 - 10.000 -25.000 - 20.000 -30.000 - 25.000 -35.000 - 35.000 -45.000 - 45.000 Below -50.000 Undefined Value

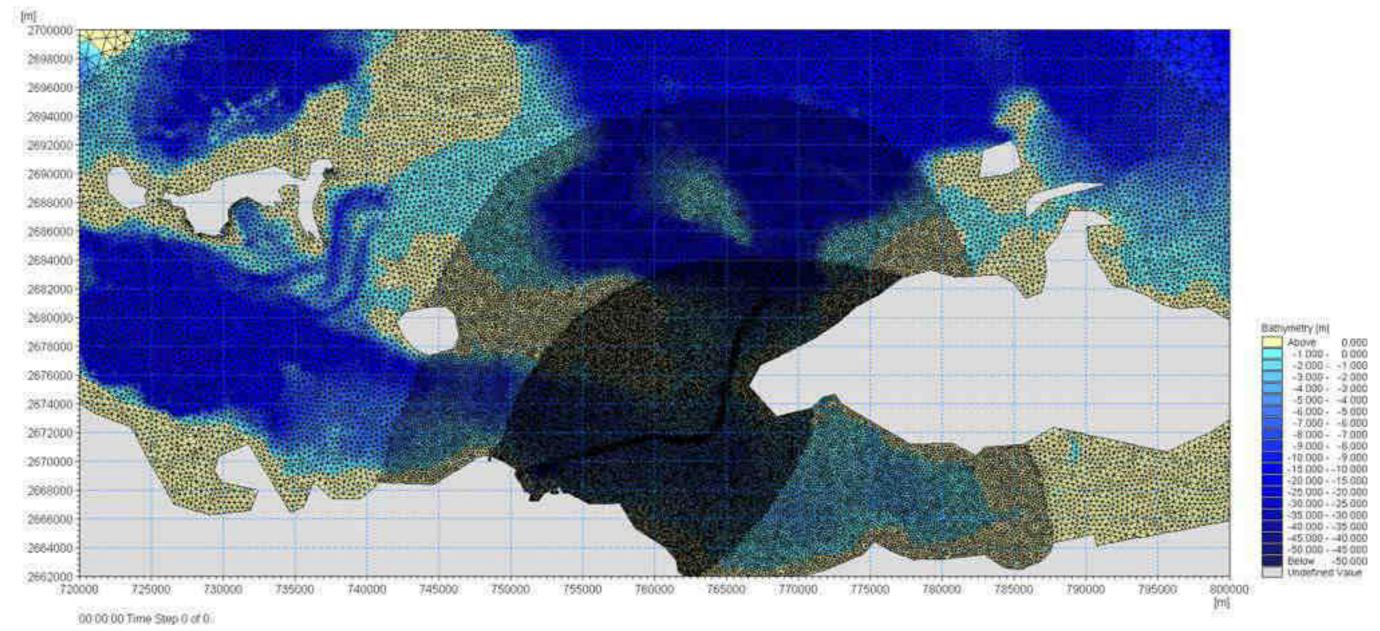
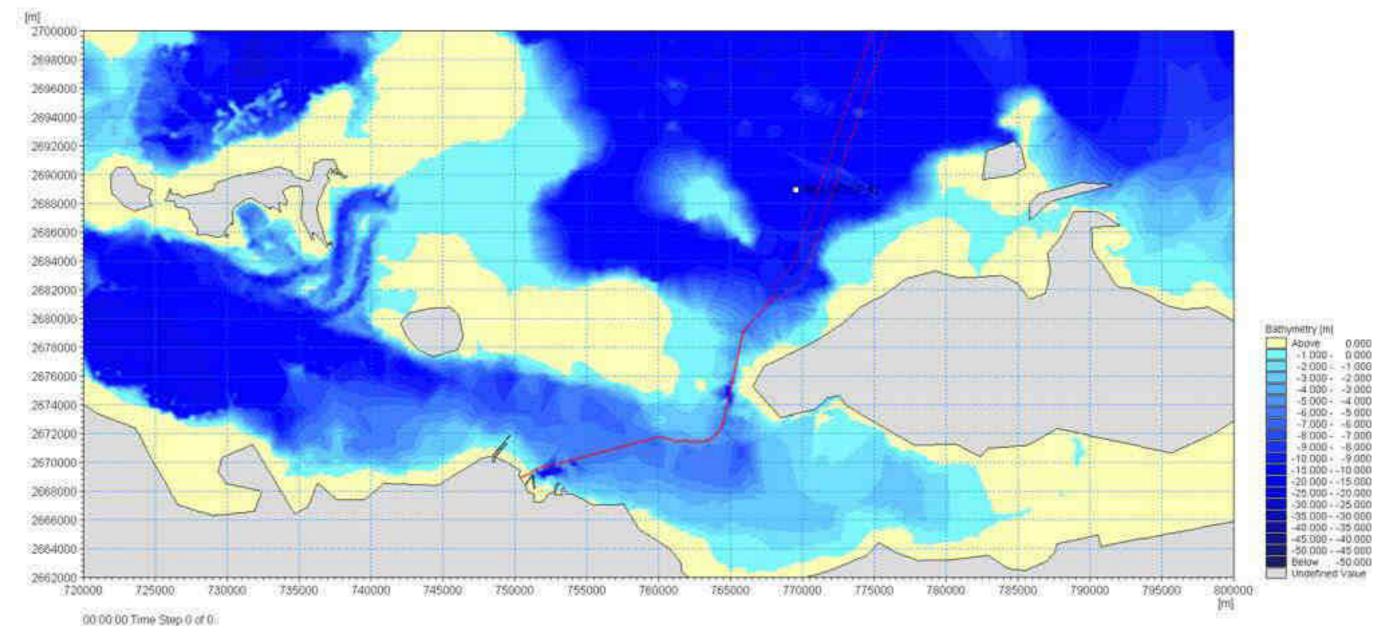



Figure 4-7 - Cable Route 1 - Local Bathymetry and Domain Variable Mesh

4.2.3 Winds

Winds was purchased to cover the simulated period which coincided with the ADCP deployment period (2020 & 2021). This wind data is reanalysed forecast data from the CFSR [9]. The CFSR routinely operates a suit of numerical weather prediction models at a range of spatial and temporal resolutions. The data utilised within this study is gridded data set at a spatial resolution of approximately 0.2°, and a temporal resolution of 1 hour.

4.2.4 Tides

In order to accurately simulate the propagation of the tides to the project area within the modelling domain, tidal boundary conditions were sourced using the DTU10 global ocean tide model from the Technical University of Denmark [8].

The amplitude and phase of the two dominant tidal constituents, the principal lunar semidiurnal (M_2) and the principal solar semidiurnal (S_2) constituents for the DTU10 global ocean tide model are presented within Figure 4-9 and Figure 4-10 for reference purposes.

The data is pre-processed in order to be recognised by MIKE and provides the user with 2D model boundary data at each open water boundary in order to allow MIKE21 HD FM to simulate the tidal and current variations within the project domain. These open water boundaries are illustrated in Figure 4-2.

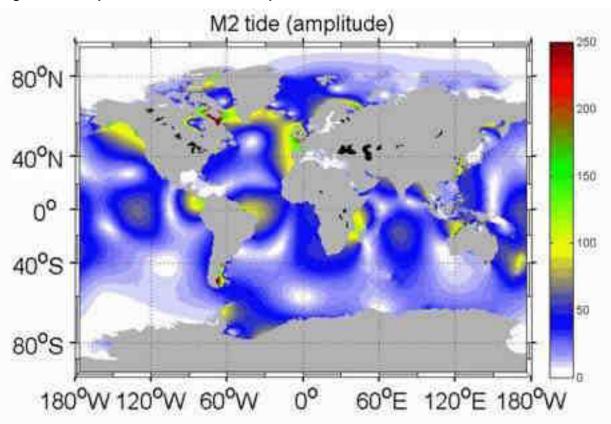
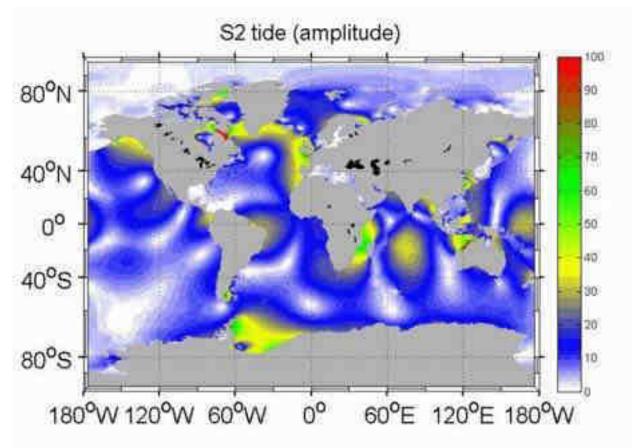



Figure 4-9 - Amplitude and Phase of Principal Lunar Semidiurnal Constituent

Figure 4-10 - Amplitude and Phase of Principal Solar Semidiurnal Constituent

4.3 Dredging Simulations

4.3.1 Overview

Dredge plume modelling predicts the physical behaviour of dredged sediments released into the water column, based on the results of the hydrodynamic modelling undertaken using MIKE HD FM module. The characteristics of the released sediment, the timing and location of releases by the dredging plan and the equipment used for dredging and soil disposal.

The dredge plume model requires a range of key inputs including engineering, geotechnical, meteorological, and oceanographic components. These inputs feed into the simulation process which uses data developed by the MIKE HD FM module to drive the dispersion of the particles released into the water column during dredging operations, whereas the behaviour and settling characteristics of the particles are determined by the parameters set in the MIKE MT FM module.

The basic methodology for the simulation of the dredging programme was as follows:

In the MIKE HD FM Module:

- Incorporate detailed bathymetry and topography data of the project region;
- Establish bathymetric grids covering the dredging region and surrounding coastlines;
- Extract meteorological data from CFSR global atmospheric forecast model for the region.

In the MIKE MT FM Module:

- Input Particle Size Distribution Data for the seabed materials which are to be dredged;
- Develop the dredge logs, for input to the dredging simulation model, which define the fine detail of the method of executing the dredging plan from detailed information provided by the client;

In post-processing:

- Analyse output from simulation(s) to provide data for initial impact assessment studies;
- Derive exceedance statistics for TSS from MIKE MT FM output, and
- Derive bed load depths for material originating from the dredging process.

The focus of this study is to determine the levels of turbidity and sedimentation likely to be experienced in the nearby waters deriving from dredging activities associated with the project.

4.3.2 Dredging Equipment and Method

The dredging methodology for the Project Lightning Project consists of multiple stages. The basic stages are summarised below:

- 1. Dredging/trenching of the Cable Trench;
- 2. Laying of the Cable; and
- 3. Backfilling the Cable Trench.

The cables will lie within trenches for the nearshore areas whereas in the offshore areas, the cables will be post-lay trenched when encountering soft sand or laid on the bottom and covered with rock when encountering hard sand. Therefore, the marine modelling studies focused on the nearshore areas due to the significant construction activities

The cable will only lie within a trench for areas near shore, or within shallow areas. The equipment used for the dredging/trenching and backfilling will be dependent on the depth of the area which requires work. The most shallow sections will be worked using amphibious 'starfish' dredgers (Figure 4-11), the intermediate areas will be worked using backhoe dredgers (BHD) (Figure 4-12), and the deeper areas will be worked using trailer suction hopper dredgers (TSHD) (Figure 4-13). At deeper areas where concerns regarding weathering or damage due to anchor drops is not a concern, the cable will be laid directly on the seabed, and no trenching will be required.

Figure 4-11 - Starfish Trencher

Figure 4-12 - Backhoe Dredger

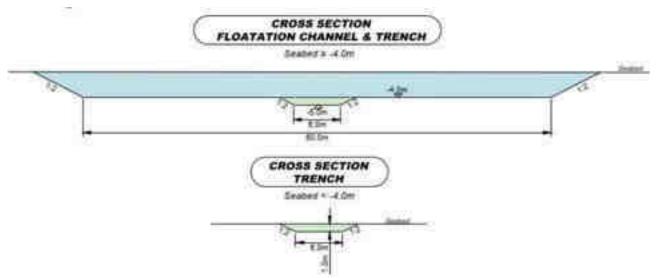


Figure 4-13 - Trailer Suction Hopper Dredger

Once the trenching has been completed, the cable will be laid within the trench and any side cast material will be backfilled, burying the cable. The method to lay the cable will be dependent on proximity to land, with nearshore areas using a float out method, and areas further offshore using a cable lay vessel. The trenching activities are complicated to a degree along the Cable Route 1, where the area is too shallow to allow access to the cable lay vessel. Within these areas, a navigation channel, sufficient for the cable lay barge will need to be cut in order to allow access, significantly increasing the scale of works within these areas. An indication of the access channel/ floatation trench dimensions are indicated within Figure 4-14, along with the standard dimensions of the relatively small trench required for the cable only.

Figure 4-14 - Dredging Cross Sections

Material along the majority of the trenched route will be side cast and reserved to fill the trench once cable laying has been completed. However, the material dredged from the access/floatation channel, cannot be replaced due to concerns regarding future assess requirements for maintenance. This excess material, highlighted in blue within Figure 4-14 will need to be disposed of offshore. The locations of these disposal areas is included within Figure 4-16

Table 4-2 presents a summary of the trenching and backfilling works, with Figure 4-15 and Figure 4-16 illustrating Cable Routes 2 & 1 respectively, providing an indication of the waypoint markers summarised within the schedule table.

Note all turbidity producing task items, including dredge volume, cutting rate, disposal rate and backfilling have been included within the simulations.

Table 4-2 - Trenching and Backfilling Schedule – Cable Routes 1 & 2

Task	Estimated days	Equipment	Volume	Start Date	End Date
Zakum - Trenching Navigation channel (Campaign 1)	37 days		59,767 m³	01-Nov-23	07-Dec-23
Trench 1 // 18.010 - 18.500	3.3	BHD	1,650 m³	01-Nov-23	04-Nov-23
Trench 1 // 18.500 - 18.700	24.0	BHD	18,190 m³	01-Nov-23	25-Nov-23
Trench 1 // 18.800 - 20.000	10.6	BHD	33,884 m³	25-Nov-23	05-Dec-23
Trench 1 // 20.000 - 20.200	1.9	BHD	6,043 m³	05-Dec-23	07-Dec-23
Zakum - Hammering scope (Campaign 1)	41 days		18,175 m³	04-Nov-23	15-Dec-23
Trench 1a // 18.010 - 18.800	13.1	BHD	5,751 m³	04-Nov-23	17-Nov-23
Trench 1a // 20.280 - 21.100	7.6	BHD	3,337 m³	30-Nov-23	08-Dec-23
Trench 1b // 18.010 - 18.800	13.1	BHD	5,751 m³	17-Nov-23	30-Nov-23
Trench 1b // 20.280 - 21.100	7.6	BHD	3,337 m³	08-Dec-23	15-Dec-23
Zakum - Trenching scope ZAKUM (Campaign 2)	116 days		503,346 m ³	17-Dec-23	12-Apr-24
Trench 1a // 0.000 - 1.020	9.9	Starfish	7,498 m³	17-Jan-24	27-Jan-24
Trench 1a // 1.020 - 1.510	2.3	BHD	3,567 m ³	17-Dec-23	20-Dec-23
Trench 1a // 1.510 - 10.000	5.7	TSHD	105,955 m³	06-Jan-24	12-Jan-24
Trench 1a_bis // 10.000 bis - 15.630 bis	38.0	BHD	40,986 m³	20-Dec-23	27-Jan-24
Trench 1a // 15.000 - 17.500	1.7	TSHD	31,200 m³	18-Jan-24	19-Jan-24
Trench 1a // 17.500 - 17.610	0.3	BHD	801 m³	21-Jan-24	22-Jan-24
Trench 1a // 17.610 - 18.010	0.3	TSHD	4,992 m³	21-Jan-24	22-Jan-24
Trench 1a // 18.800 - 20.280	4.7	BHD	10,774 m³	22-Jan-24	27-Jan-24
Trench 1a // 21.100 - 25.310	2.8	TSHD	52,541 m³	24-Jan-24	27-Jan-24
Trench 1b // 0.000 - 1.220	11.8	Starfish	8,954 m³	31-Mar-24	12-Apr-24

Task	Estimated days	Equipment	Volume	Start Date	End Date
Trench 1b // 1.220 - 1.400	0.9	BHD	1,310 m³	10-Apr-24	11-Apr-24
Trench 1b // 1.400 - 10.000	5.7	TSHD	107,328 m³	12-Jan-24	18-Jan-24
Trench 1b_bis // 10.000bis - 15.641bis	38.1	BHD	41,066 m ³	03-Mar-24	10-Apr-24
Trench 1b // 15.000 - 18.010	2.0	TSHD	37,565 m³	19-Jan-24	21-Jan-24
Trench 1b // 18.800 - 20.280	4.7	BHD	10,744 m³	15-Mar-24	19-Mar-24
Trench 1b // 21.100 - 24.150	2.0	TSHD	38,064 m ³	22-Jan-24	24-Jan-24
Zakum - Cable installation schedule					
Cable installation 1a	7.0	Cable		01-Feb-24	08-Feb-24
Cable installation 1b	7.0	Cable		17-Apr-24	24-Apr-24
Zakum - Backfiling Zakum (Campaign 2)	129 days		788,229 m ³	11-Feb-24	18-Jun-24
Backfill 1a // 0.000 - 1.020	9.9	Starfish	7,498 m³	11-Feb-24	20-Feb-24
Backfill 1a // 1.020 - 1.500	2.0	BHD	3,675 m³	11-Feb-24	12-Feb-24
Backfill 1a // 1.500 - 10.000	26.1	TSHD	176,592 m³	11-Feb-24	08-Mar-24
Backfill 1a // 10.000bis - 15.63bis - bis route	27.9	BHD	45,040 m ³	12-Feb-24	11-Mar-24
Backfill 1a // 15.000 - 17.500	7.7	TSHD	52,000 m ³	08-Mar-24	15-Mar-24
Backfill 1a // 17.500 - 17.610 Single float	1.0	BHD	825 m³	11-Feb-24	12-Feb-24
Backfill 1a // 17.610 - 18.010	1.2	TSHD	8,320 m³	15-Mar-24	17-Mar-24
Backfill 1a // 18.010 - 20.280 Combined float 1a + 1b	20.7	BHD	17,025 m ³	12-Feb-24	03-Mar-24
Backfill 1a // 20.280 - 21.100	3.3	BHD	6,150 m³	11-Mar-24	15-Mar-24
Backfill 1a // 21.100 - 25.310	12.9	TSHD	87,568 m³	17-Mar-24	29-Mar-24
Backfill 1b // 0.000 - 1.220	11.8	Starfish	8,954 m³	27-Apr-24	08-May-24
Backfill 1b // 1.220 - 1.400	0.7	BHD	1,350 m³	27-Apr-24	27-Apr-24
Backfill 1b // 1.400 - 10.000	26.4	TSHD	178,880 m³	27-Apr-24	23-May-24

30

Task	Estimated days	Equipment	Volume	Start Date	End Date
Backfill 1b // 10.000bis - 15.461bis - bis route	27.9	BHD	45,128 m ³	27-Apr-24	25-May-24
Backfill 1b // 15.000 - 18.010	9.3	TSHD	62,608 m ³	23-May-24	01-Jun-24
Backfill 1b // 18.010 - 20.280	20.7	BHD	17,025 m³	25-May-24	15-Jun-24
Backfill 1b // 20.280 - 21.100	3.3	BHD	6,150 m³	15-Jun-24	18-Jun-24
Backfill 1b // 21.100 - 25.310	9.4	TSHD	63,440 m³	01-Jun-24	11-Jun-24
Das - Trenching scope (Campaign 2)	143 days		159,081 m³	29-Jun-24	19-Oct-24
Trench 2 // -0.850 - 1.440	30.5	Starfish	17,791 m³	29-Jun-24	30-Jul-24
Trench 2 // 1.440 - 2.750	15.3	BHD	6,708 m³	14-Jul-24	30-Jul-24
Trench 2 // 2.750 - 5.030	1.5	TSHD	28,454 m³	28-Jul-24	30-Jul-24
Trench 2a // -0.850 - 1.440	28.2	Starfish	16,448 m³	11-Aug-24	09-Sep-24
Trench 2a // 1.440 - 2.750	18.3	BHD	8,051 m³	19-Aug-24	06-Sep-24
Trench 2a // 2.750 - 5.030	1.5	TSHD	28,454 m ³	21-Aug-24	22-Aug-24
Trench 2b // -0.850 - 1.440	30.9	Starfish	18,013 m³	18-Sep-24	19-Oct-24
Trench 2b // 1.440 - 2.750	15.3	BHD	6,708 m³	29-Sep-24	15-Oct-24
Trench 2b // 2.750 - 5.030	1.5	TSHD	28,454 m³	01-Oct-24	02-Oct-24
Das - Backfilling scope (Campaign 2)	106 days		223,923 m ³	14-Aug-24	26-Nov-24
Backfill 2 // -0.850 - 1.440	23.4	Starfish	17,791 m³	14-Aug-24	06-Sep-24
Backfill 2 // 1.440 - 2.750	5.3	BHD	9,825 m³	14-Aug-24	19-Aug-24
Backfill 2 // 2.750 - 5.030	7.0	TSHD	47,424 m ³	14-Aug-24	21-Aug-24
Backfill 2a // -0.850 - 1.340	21.6	Starfish	16,448 m ³	24-Sep-24	15-Oct-24
Backfill 2a // 1.340 - 2.750	5.7	BHD	10,575 m³	24-Sep-24	29-Sep-24
Backfill 2a // 2.750 - 5.030	7.0	TSHD	47,424 m ³	24-Sep-24	01-Oct-24
Backfill 2b // -0.850 - 1.550	23.7	Starfish	18,013 m³	03-Nov-24	26-Nov-24
Backfill 2b // 1.550 - 2.750	4.9	BHD	9,000 m³	03-Nov-24	07-Nov-24

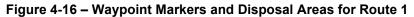

Task	Estimated days	Equipment	Volume	Start Date	End Date
Backfill 2b // 2.750 - 5.030	7.0	TSHD	47,424 m³	03-Nov-24	10-Nov-24
Das - Cable installation schedule					
Cable installation 2	10.0	Cable		04-Aug-24	14-Aug-24
Cable installation 2a	10.0	Cable		14-Sep-24	24-Sep-24
Cable installation 2b	10.0	Cable		24-Oct-24	03-Nov-24

Figure 4-15 – Waypoint Markers for Route 2

4.3.3 Particle Size Distributions and Settling Velocities

The formation of sediment plumes is largely associated with the finer fraction of material. It is therefore necessary to understand the relative distribution of material, particularly that smaller than 100 microns (1 micron = 10^{-6} m).

The particle settling velocity values were based on analyses of sand and silt by CSIRO Australia data from previous dredging programs using a sedigraph, shown below in Table 4-3 [12]. Sodium hexametaphosphate was used by CSIRO as the medium through which the measured particles fall. The data was later corrected to consider the difference in the settling velocities in sea water and with consideration of drag resulting in a terminal velocity in seawater.

	Size (micron)	Settling Rate (mm/s)	Group	Descriptor	
	2000	3156.000			
	1000	789.000	8	Coarse Sand	
	600	284.200	0	Coarse Sand	
	400	126.300			
	250	49.300	7	Fine Sand	
	150	17.760	7		
	100	7.890	6	Very Fine Sand	
	80	5.050	0	very i me Gand	
	60	2.842	5	Coarse Silt	
u	40	1.262	5	Coarse Silt	
ibuti	20	0.316	4	Medium Silt	
Distr	10	0.079	3	Very Fine Silt	
Size	5	0.020	3	very Fille Sit	
Particle Size Distribution	2	0.003	2	Medium Clay	
Part	1	0.001	1	Very Fine Clay	

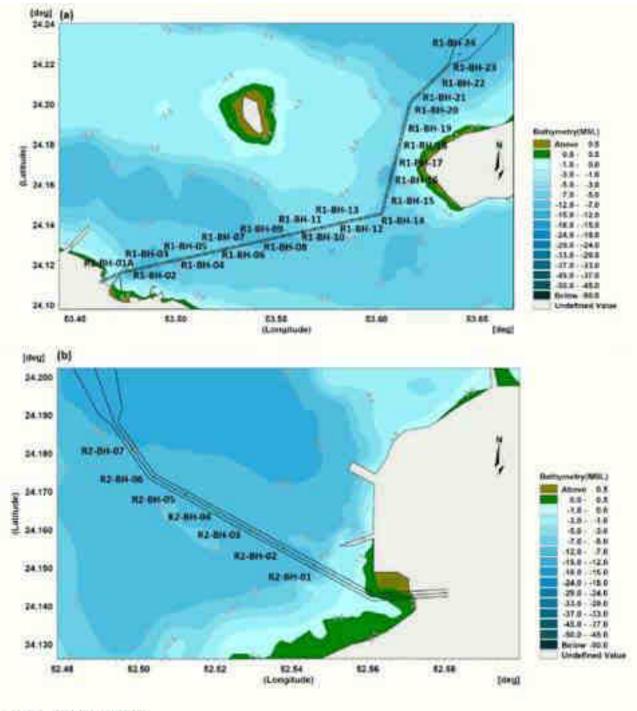
Table 4-3 - Particle Size Distribution and Settling Velocities

For the purposes of this modelling study, the material was divided into 8 groups based on the PSD information from a geotechnical surveys [13] and the Wentworth Grain Size Chart, developed by the United States Geological Survey [16].

The geotechnical surveys indicated that a variety of sediment types along the route of the trenching area, ranging from very silty sand (>20% silt content) to sandy gravel (<5% silt content). Sand and silt fractions of the potentially resuspended sediment were simulated. Considering that the Gravel category would consist of particles with a diameter of more than 2mm, these particles will not contribute to the overall sediment suspension due to dredging was not included in the model.

Due to the vast majority of sediment in the area consisting of Sand, this category was divided into 3 different classifications, namely Coarse Sand, Fine Sand and Very Fine Sand with particles size ranges as indicated in Table 4-4. Silt fractions were also broken down into three fractions, and clay broken into two fractions, considering these fractions are likely to settle more slowly and contribute disproportionally to water turbidity.

	Size (micron)	Settling Rate (mm/s)	Group	Descriptor
	>400	789.000	8	Coarse Sand
ion	150-400	25.0 (Estimated)	7	Fine Sand
Particle Size Distribution	80-150	6.470	6	Very Fine Sand
ize Di	40-80	2.052	5	Coarse Silt
ticle S	20-40	0.316	4	Medium Silt
Part	5-20	0.049	3	Very Fine Silt
	2-5	0.003	2	Medium Clay
	<2	0.001	1	Very Fine Clay


Table 4-4 - Particle Size Distribution and Settling Velocities of Simulated Sediment Fractions

The characteristics of the sediment within the dredged areas was defined utilising a number of boreholes from the geotechnical surveys [13], with the appropriate borehole characteristics being selected based on proximity. Table 4-5 presents the location, and characteristics of these boreholes, with Figure 4-17 presenting the location of these boreholes along the proposed Cable Routes 1 & 2.

Table 4-5 - Relevant Borehole Summary

Borehole Ref	Coordinates East (m)	Coordinates North (m)	Water Depth (m)	Borehole Depth (m)	% Silt	% Sand	%Gravel	
Route 2	Route 2							
BH-01	657092	2671534	3.9	2.9	21	73	6	
BH02	656228	2672038	8.4	3.5	6	69	25	
BH-03	655363	2672542	7.9	3.5	20	74	6	
Route 1								
BH-01	751802	2609184	8.8	3.3	12	84	4	
BH-04	752763	2669443	10.3	3.2	33	64	3	
BH-14	764371	2675509	5.2	3.3	20	75	5	
BH-15	764665	2673464	6.3	3.4	5	67	28	
BH-17	765082	2673418	7.7	3.0	17	79	4	
BH-21	766221	2679183	6.0	3.0	5	30	65	

Figure 4-17 - Borehole Location – Routes 1&2

4.3.4 Dredging Simulations

The dredge programme was simulated by MIKE MT FM to predict the behaviour of particles released into the water column, driven by 3D currents from MIKE HD FM, the dredge log and particle size distributions at each time step.

The dredge modelling predicted the X-Y-Z coordinates of all particles throughout the full simulation and the results were stored on a 10-minute timestep. These results were then analysed to determine the distribution

of TSS developed over the total simulation, as well as the maximum depth-averaged concentrations which were attained over the entire dredge programme.

4.4 Assumptions and Limitations

The movement of the coastal ocean is controlled by the principles of mass, energy and momentum conservation. Numerical hydrodynamic modelling attempts to solve complex flow situations using empirical approximations and derivations of these principles. All numerical models make approximations to solve these principles and therefore have inherent limitations [14].

In addition to these inherent limitations, numerical modelling requires that input data be selected which itself has inherent limitations, and where input data is unavailable educated assumptions must be made. The following section highlights the limitations of the input data and assumptions which have been selected. Note, these assumptions and limitations do not invalidate the conclusions of the modelling study and the best-known source of data available within the confines of the project scope of work have been selected where possible.

The modelling assessment has been carried out utilising the most accurate data available at this time, however a number of assumptions/calculations were used to fill data gaps. Where selected methodologies or data gaps limit the assessment, these are summarised below:

4.4.1 Hydrodynamic Modelling

The bathymetric data collected was a combination of bathymetry points obtained through digitisation of historic navigation charts, bathymetric (both physical survey data and Satellite Derived (SDB) data) obtained from the client, as well as relevant archived WKC bathymetric data surrounding the project area. Bathymetry obtained from the navigational charts were used for most of the surrounding areas within the modelling domain whilst the accurate survey data was used specifically around the area of interest. The ocean floor is a dynamic and constantly changing environment, therefore it is possible that for certain bathymetric data used, some variation between modelled bathymetry and actual bathymetry may exist. It is however not expected that this variation is significant enough to change the outcomes of this assessment.

4.4.2 Dredging Simulations

- Dredging simulations were carried out based on the methodology supplied by the contractor with estimated dredge rates, volumes and spill rates supplied by the dredging contractor. There is likely to be minor variations in theses agreed values during the actual dredging operations.
- The dredge modelling relies on the best available meteorological and bathymetric information and information concerning the proposed dredging methodology and material to be dredged. All these inputs can be subject to error and so where there was potential uncertainty in model parameters, conservative values were chosen such that the model would tend to overestimate the impact.

5 Hydrodynamic Modelling Flushing and Dredging Results

5.1 Hydrodynamic Modelling

5.1.1 Overview

In order to provide simulation data which captured a full spring/neap tidal cycle and achieved steady state equilibrium, validation simulations were conducted from 18/02/22 to 10/03/22 to coincide with the deployment of the four ADCPs for validation purposes. Separate simulations were conducted for Cable Route 2 area cable route 1 area, with the modelling domain boundary provided within Figure 1-1 and Figure 1-2 respectively.

Table 5-1 provides a summary of the ADCP data and tidal stations used for model calibration and validation with the locations of the ADCPs shown in Figure 4-2 and Figure 4-6.

		Period	Location (UT	M)	
ADCP	Interval	Start	End	Easting	Northing
ADCP #1	20 Min	20/02/2022 13:00:00	09/03/2022 11:40:00	674643	2759342
ADCP #2	20 Min	19/02/2022 12:00:00	10/03/2022 11:20:00	649411	2686217
ADCP #3	20 Min	19/02/2022 10:20:00	10/03/2022 09:40:00	769562	2688942
ADCP #4	20 Min	20/02/2022 10:00:00	09/03/2022 09:20:00	768330	2727302
Mubarraz	10 Min	-	-	740621	2706173
Sir Bani Yas	10 Min	-	-	667407	2692103

Table 5-1 - Overview of Client ADCP Data and Tidal Station Location

For the analysis of the proposed sediment dispersion during trenching and backfilling operations, the planned dates (November 2023 to November 2024) and durations of each construction activities for Cable Routes 1&2 was used, with the exception that the simulations were run within 2021 and 2022 in order that representative meteorological data was available to force the simulations. Simulation periods for the assessment scenarios are summarised below:

•	Cable Route 2	29/06/21 – 01/12/21	10 minute time-step
•	Cable Route 1	01/11/20 – 01/07/21	10 minute time-step

5.1.2 Mesh Sensitivity Analysis

The model used for the project was based on an existing baseline hydrodynamic modelling mesh developed for the Ruwais area with the boundaries being extended east and west for the Cable Routes 1 & 2 respectively.

The two models (Cable Routes 1 & 2) were calibrated (maximum current speeds) against two ADCP's (that were recently deployed along each of the routes) as well as prognostic tidal data and is illustrated in Figure 4-2 and Figure 4-6.

The opportunity was taken at this stage to reanalyse the mesh sensitivity to resolution.

The first three revisions of each mesh were purely focused on ensuring emphasis was placed in properly defining any coastline differences as per updated satellite imagery dated the 31st of December 2020. The mesh resolution is relatively course (maximum element size of 1,500,000 m² for Rev 1 at the ADCP locations) and gradually reduced whilst testing the overall simulation stability of the initial mesh structures. Mesh revision 2 (element size of 150,000 m² at the ADCP locations) proved to be stable enough for the first round of calibration checks were performed utilising the two sets of ADCP data for each route.

The mesh elements were then further reduced for Mesh 3 and again further reduced for Mesh 4. The progression of the mesh element sizes is presented in Table 5-2 and illustrates how mesh convergence is reached between Mesh No.2 and the Mesh No. 4 (Final Mesh) with slight decreases in correlation between observed and simulated current characteristics.

The overall resolution of the mesh is variable, however the sensitivity analysis was conducted at areas of the ADCP locations. The intention of the sensitivity analysis is to determine whether any increase in resolution (which reduces simulation time significantly) would result in a significant increase in model accuracy. The goal in these assessments is to maintain a reasonable run time using available computing power, whilst retaining accuracy fit for purpose in environmental assessment.

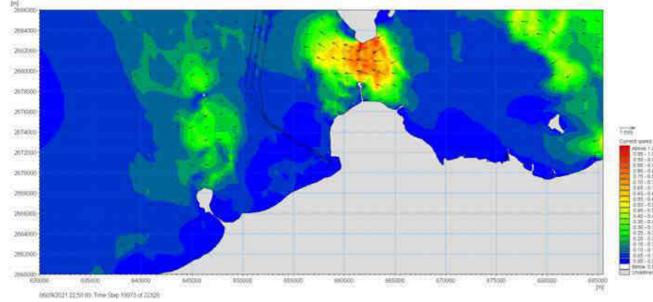
A maximum fine resolution of approximately 37m horizontal resolution was maintained, as any further improvement in validation was small and not sufficient to justify proportionally increased run-times considering the objectives of the model set-up.

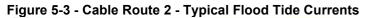
Mesh No.	2	3	4(Final)
Smallest Element Size (Approx. Horizontal Resolution)	1000m	100m	37m
Parameter	IOA	IOA	IOA
Ideal Score	1	1	1
ADCP1 – Avg Current Speed	0.82	0.78	0.77
ADCP1 – Avg Current Direction	0.84	0.81	0.81
ADCP2 – Avg Current Speed	0.82	0.83	0.79
ADCP2 – Avg Current Direction	0.6	0.57	0.56
ADCP3 – Avg Current Speed	0.84	0.88	0.87
ADCP3 – Avg Current Direction	0.88	0.86	0.84
ADCP4 – Avg Current Speed	0.89	0.91	0.90
ADCP4 – Avg Current Direction	0.87	0.90	0.89

Table 5-2 - Mesh Sensitivity Test of Existing MIKE21 HD FM for Ocean Char	acteristics
---	-------------

5.1.3 Hydrodynamic Currents

Currents speeds within the two areas of interest are variable both within the domain and between Cable Route 1 & 2 domains. Currents within both the areas of interest are complicated by nearby islands and shoals creating both restricted channels with high current speeds and sheltered areas with limited tide or wind driven currents.


The tides are generally of a mixed diurnal and semi-diurnal nature. The current velocities within the project area are largely driven by the flood and ebb tidal events with some influence from wind effects (due to the predominant north-westerly wind direction).


The area of landfall with the Abu Dhabi mainland for Cable Route 2 area is sheltered by both the Jebel Dhana headland and Sir Bani Yas Island. Current speeds are high through the narrow channel that separates Sir Bani Yas Island from the Abu Dhabi mainland, however currents on either side of the Jebel Dhana headland are sheltered during both the flood and ebb tide, and are generally below 0.1m/s.

Current speeds within the nearshore area of Cable Route 1 are generally higher during both the flood and ebb tide, and are largely tidal driven due to some sheltering from wind affects from islands and shoals offshore. The currents are generally in the east to west orientation following the lay of the mainland coast with the channel that separates the mainland from both Marawah and Abu al Abyad Islands. The cable route turns towards the north and exploits and existing channel between tidal shoals, where an existing navigation channel has been dredged. Currents supplying and emptying the nearshore areas during the flood and ebb tide respectively are particularly strong through this channel, frequently exceeding 1.0 m/s.

Figure 5-1 and Figure 5-2 present a typical ebb tide at both Cable Routes 2 and Cable Routes 1 respectively whereas Figure 5-3 and Figure 5-4 present the flood tide.

Figure 5-1 - Cable Route 2 - Typical Ebb Tide Currents

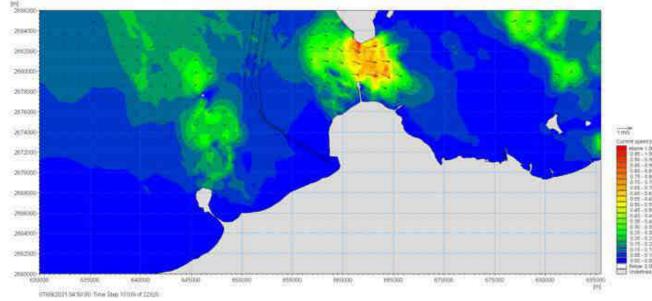
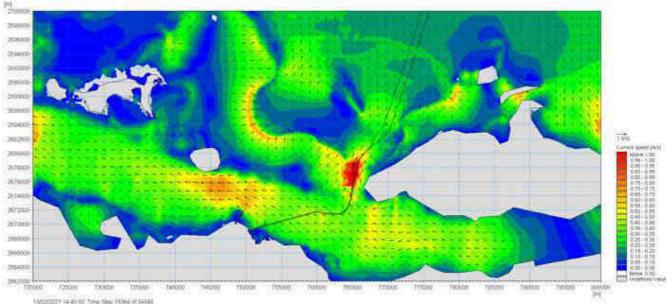
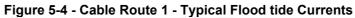
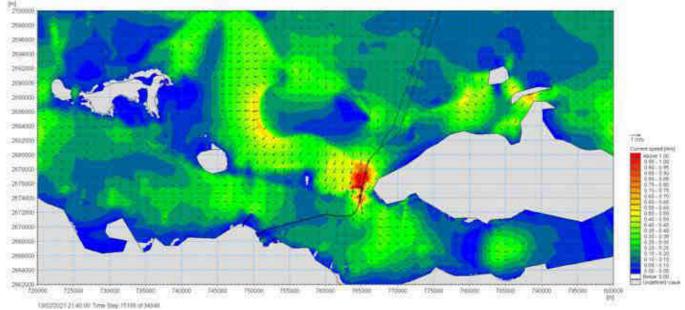





Figure 5-2 - Cable Route 1 - Typical Ebb Tide Currents

5.1.4 Verification of Tide and Current Predictions

The tidal currents and gauge heights utilised within the assessment were simulated to coincide with the period for which the ADCP's were deployed to allow direct comparison. The location of the ADCP's can be seen in Figure 4-2 and Figure 4-6 and verification of the accuracy of the currents in the region of interest was possible due to measured current speeds and direction observed at these locations. The hydrodynamics of the simulated model were calibrated using the measured current speed and direction data collected from four ADCPs, two along each of the proposed cable routes 1 & 2.

A comparison between the simulated (depth averaged current speeds and directions) and observed midcolumn current speeds and directions at the location of the ADCP deployments was conducted. Mid-Column ADCP speeds and directions were chosen to equalise the potential opposing influence of seabed an sea surface friction.

Additionally, a comparison of simulated and prognostic gauge height (water level) data at both Sir Bani Yas and Mubarraz Island was conducted. The correlation between simulated and observed prognostic water levels at both Sir Bani Yas and Mubarraz Island are shown in Figure 5-5 and Figure 5-6 respectively. The correlation between simulated and observed current speeds and current directions at the four ADCP locations are provided within Figure 5-7 to Figure 5-18. Observed and simulated current roses are illustrated in Figure 5-19 to Figure 5-26.

These figures provide a graphical representation of how accurately MIKE21 HD FM is simulating the ocean physics when compared to measured ADCP data in the form of time series plots as well as current rose plots.

Note: Considering the locations of the areas where both ADCP's were deployed, the mid-column data bin was used for the observed data due to this bin layer being less influenced by bed and wind friction (which are depth averaged within the 2D simulations).

To statistically analyse model performance, the Index of Agreement (IOA) is calculated through comparison between observed (ADCP data) and simulated model data and is compared to the semantic scale presented in Table 5-3 with explanation of the various metrics and indices given in the text that follows. Furthermore, the Relative Mean Absolute Error (RMAE) and an Adjusted Relative Mean Absolute Error (ARMAE) was used to analyse the model performance using the semantic scaled presented in Table 5-4 with the ARMAE scores also included in Table 5-5.

Table 5-3 - Indices of Agreement Score Qualifications [15]

Range	Qualification
0.9 < x < 1.0	Excellent
0.8 < x < 0.9	Very Good
0.6 < x < 0.8	Good
0.5 < x < 0.6	Reasonable
0.3 < x < 0.5	Poor
x < 0.3	Bad

Table 5-4 - ARMAE Score Qualifications [18]

Range	Qualification
x < 0.2	Excellent
0.2 < x < 0.4	Good
0.4 < x < 0.7	Reasonable
0.7 < x < 1	Poor
x > 1	Bad

Presented below, Table 5-5 illustrates the mean absolute error (MAE) root-mean-square error (RMSE), the coefficient of efficiency (E), the IOA, RMAE and ARMAE, for Gauge heights, Current Speeds and Current Directions, along with the ideal score for each test.

The RMSE can be described as the standard deviation of the difference for predicted and observed pairing at the ADCP location. The RMSE is a quadratic scoring rule which measures the average magnitude of the error. The RMSE is a good measure of model performance, but since large errors are weighted heavily, its value can be distorted. The MAE is a measure of comparison similar to the RMSE but puts less emphasis on the largest errors. RMSE and MAE are equal to the unit of the values being analysed.

E can range from negative infinity to 1 with larger values indicating a better fit. E measures the one to one relationship between the observed and simulated values and hence is sensitive to bias and proportional effects.

The IOA [15] can take a value between 0 and 1, with 1 indicating perfect agreement. The IOA is the ratio of the total RMSE to the sum of two differences, the difference between each prediction and the observed mean, and the difference between each observation and the observed mean. Therefore, the IOA is a measure of the match between departure of each prediction from the observed mean and the departure of each observation from the observed mean and the departure of each observation from the observed mean.

From the statistical analysis of the simulated and observed water heights, the simulated tidal variations show an excellent correlation to the prognostic tidal data for the 2020 data period and is illustrated in Figure 5-5 and Figure 5-6 below.

Model performance statistics can be used to calibrate and/or validate hydrodynamic models in an objective way. One statistical method used to analyse the performance is to evaluate the RMAE [16].

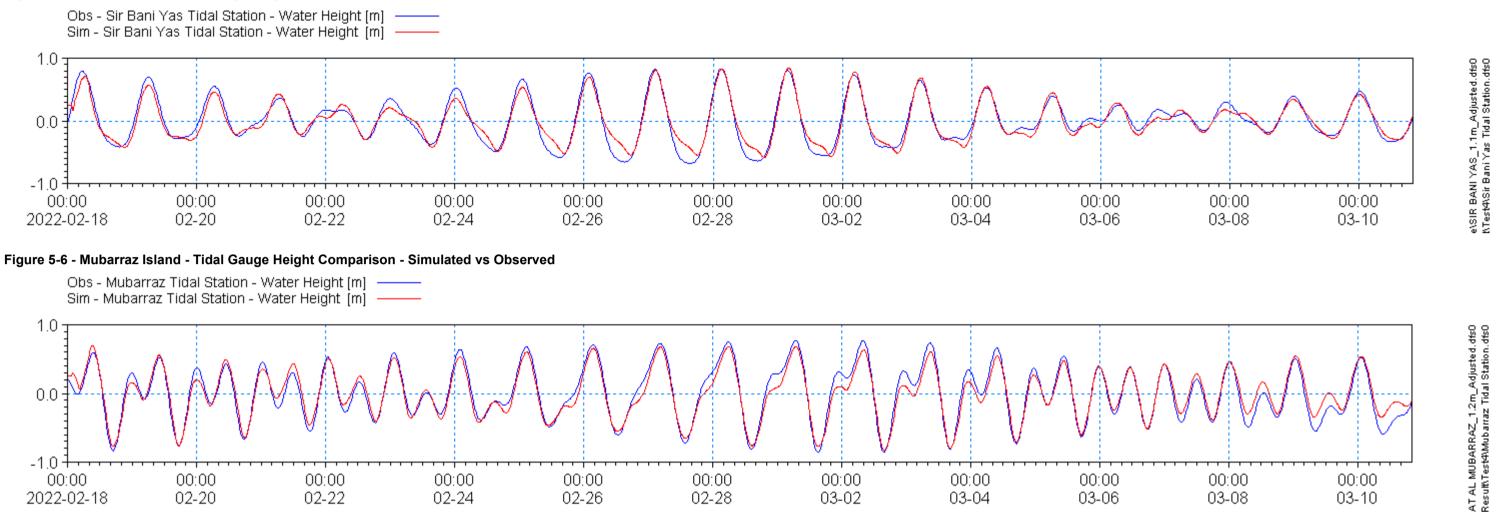
$$RMAE = \frac{\langle |Y - X| \rangle}{\langle X \rangle}$$

Where:

$$<|X|> = \frac{1}{N} \sum_{n=1}^{N} |x_n|$$
$$<|Y|> = \frac{1}{N} \sum_{n=1}^{N} |y_n|$$

However, a RMAE value of zero implies a perfect match between predictions and observations, which in practice can never be achieved as the RMAE includes contributions from the measurement error. A way of reducing the influence of the observational errors is to introduce an Observational Error (OE) component and subtract this from each absolute error, thus defining an Adjusted RMAE.

$$ARMAE = \frac{\langle |Y - X| - OE \rangle}{\langle X \rangle}$$

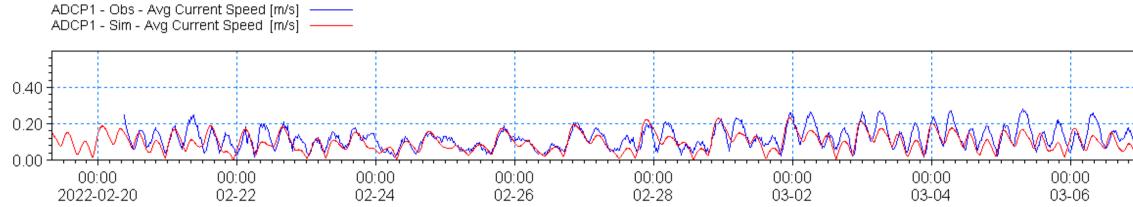
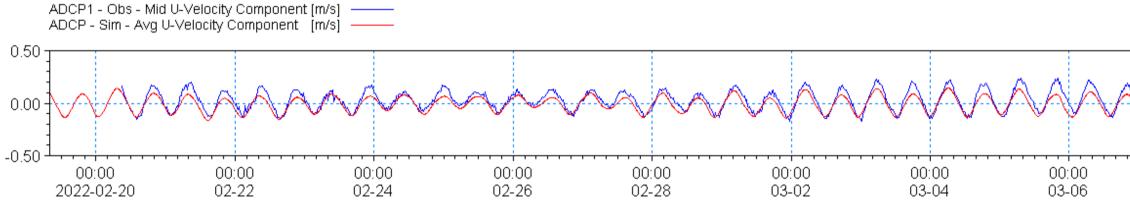
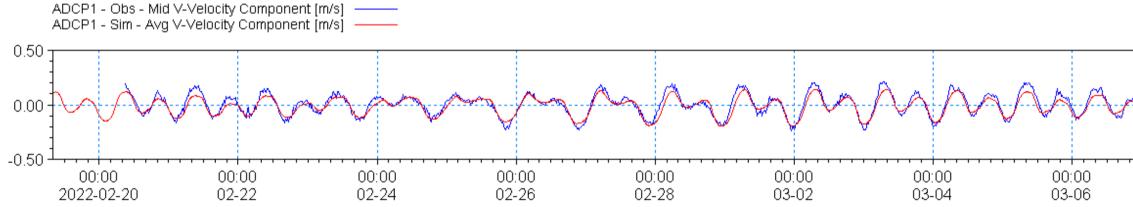

OE depends on a number of things such as water clarity/turbidity, correct and proper installation of the equipment as well as inherent device accuracy factors. In a previous study, an average observational error for current speeds is 0.05 m/s was considered but for conservative purposes and based on past experience, an observational error of 0.015 m/s was considered for currents in this assessment [16].

	MAE	RMSE	Е	ARMAE	IOA
Ideal Score	0	0	1	0	1
Sir Bani Yas - Prognostic Gauge Heights	0.0725	0.0938	0.9108	-	0.9799
Mubarraz - Prognostic Gauge Heights	0.0827	0.1009	0.9164	-	0.9810
ADCP1 – Avg Current Speed	0.0378	0.0481	-0.044	0.050	0.7753
ADCP1 – Avg Current Direction	0.6754	1.4686	0.3132	-	0.8120
ADCP1 – Mid Column U-Velocity Component	0.0442	0.0535	0.4512	0.095	0.8999
ADCP1 – Mid Column V-Velocity Component	0.0299	0.0380	0.7580	0.094	0.9507
ADCP2 -Avg Current Speed	0.0368	0.0456	-0.3474	0.050	0.7915
ADCP2 – Avg Current Direction	1.5945	2.611	-1.1898	-	0.5649
ADCP2 – Mid Column U-Velocity Component	0.0376	0.0466	-0.0812	0.154	0.7245
ADCP2 – Mid Column V-Velocity Component	0.0445	0.0544	0.5991	0.098	0.9304
ADCP3 – Avg Current Speed	0.0379	0.0482	0.5386	0.041	0.8725
ADCP3 – Avg Current Direction	0.5672	1.2939	0.4243	-	0.8493
ADCP3 – Mid Column U-Velocity Component	0.0585	0.0727	0.7572	0.079	0.9443
ADCP3 – Mid Column V-Velocity Component	0.0487	0.0595	0.5766	0.103	0.8950
ADCP4 – Avg Current Speed	0.0430	0.0546	0.5719	0.046	0.9059
ADCP4 – Avg Current Direction	0.4808	1.1251	0.5801	-	0.8911
ADCP4 – Mid Column U-Velocity Component	0.0456	0.0561	0.8458	0.078	0.9676
ADCP4 – Mid Column V-Velocity Component	0.0589	0.0757	0.7786	0.091	0.9490

Visual comparison of graphical observed and simulated results indicated that the validation of both the modelling domains (see Figure 4-1 and Figure 4-5) can be considered excellent. Statistical comparison of the observed and simulated data shows that validation is very good to excellent. A single metric analysed returned 'good' validation, that being the current direction at ADCP #2, however note that both the u-component and v-component validation is considered to be very good or excellent.

Figure 5-5 – Sir Bani Yas - Tidal Gauge Height Comparison - Simulated vs Observed

Figure 5-7 – ADCP #1 Current Speed Comparison - Simulated vs Observed

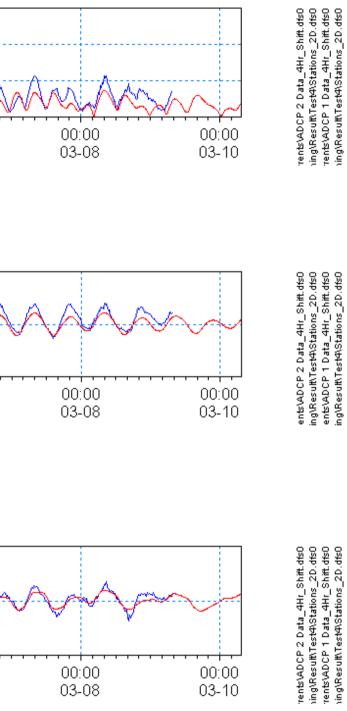
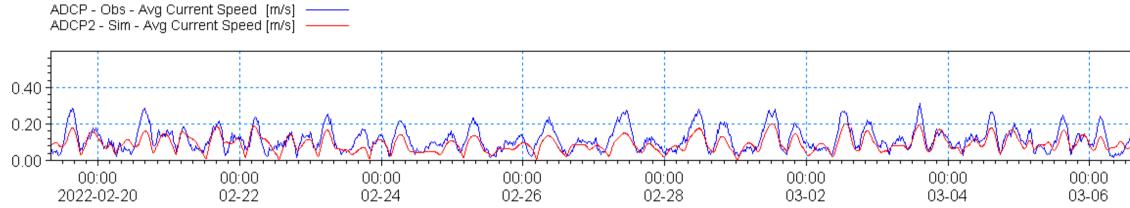
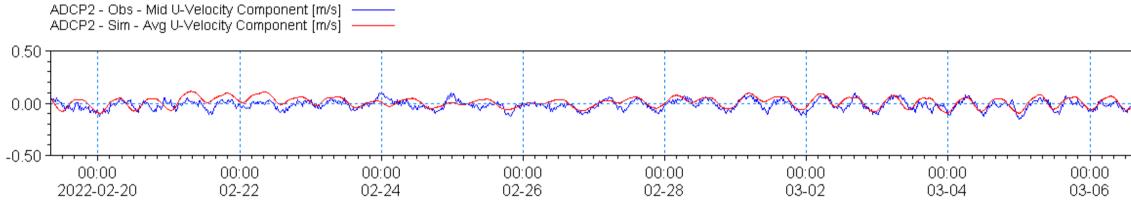
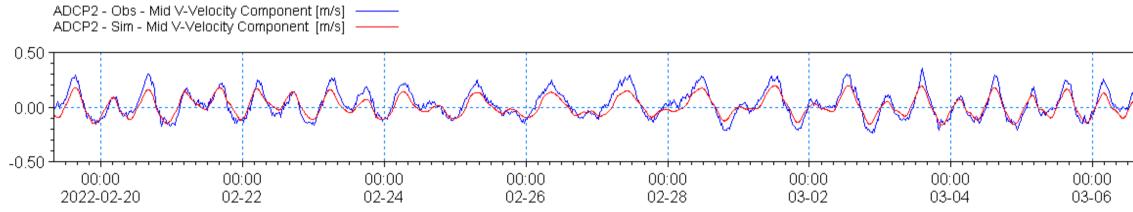
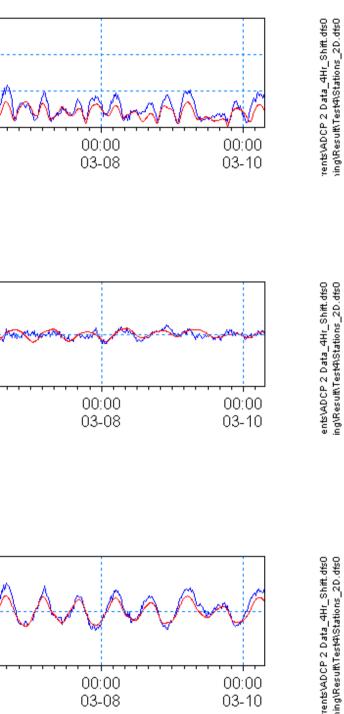

Figure 5-8 - ADCP #1 U-Component Comparison - Simulated vs Observed

Figure 5-9 - ADCP #1 V-Component Comparison - Simulated vs Observed

Figure 5-10 – ADCP #2 Current Speed Comparison - Simulated vs Observed


Figure 5-11 - ADCP #2 U-Component Comparison - Simulated vs Observed

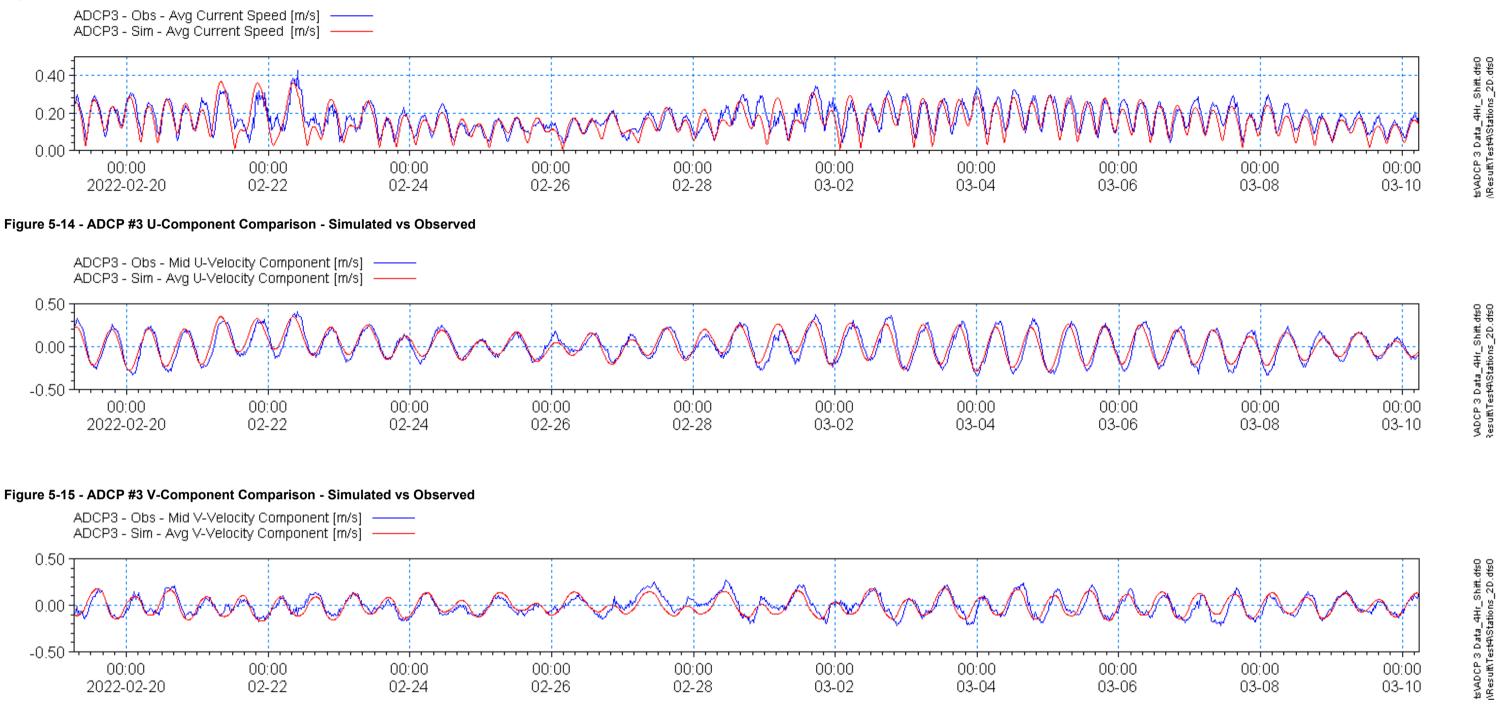

Figure 5-12 - ADCP #2 V-Component Comparison - Simulated vs Observed

Figure 5-13 – ADCP #3 Current Speed Comparison - Simulated vs Observed

Figure 5-16 – ADCP #4 Current Speed Comparison - Simulated vs Observed

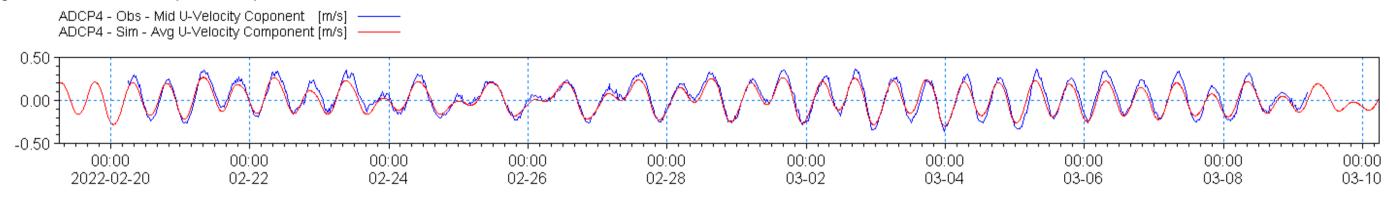
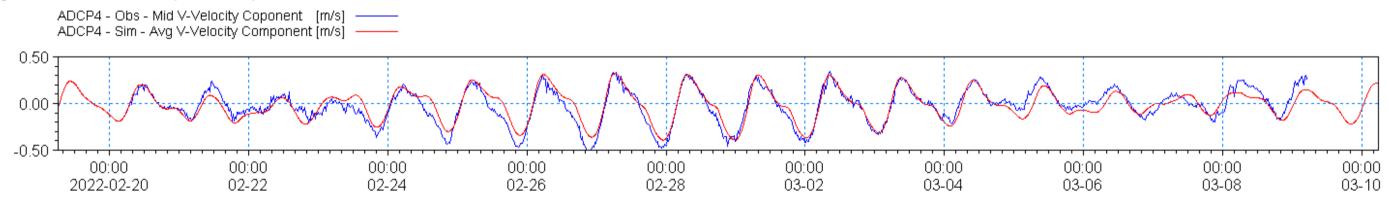
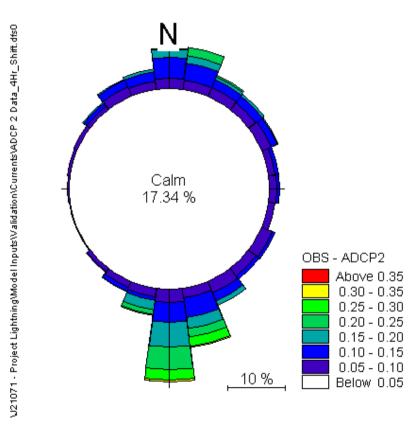




Figure 5-17 - ADCP #4 U-Component Comparison - Simulated vs Observed

Figure 5-18 - ADCP #4 V-Component Comparison - Simulated vs Observed



*nts/ADCP 3 Data_4Hr_Shift.dfs0 ng/ResuftTest4/Stations_2D.dfs0 *nts/ADCP 4 Data_4Hr_Shift.dfs0 ng/ResuftTest4/Stations_2D.dfs0

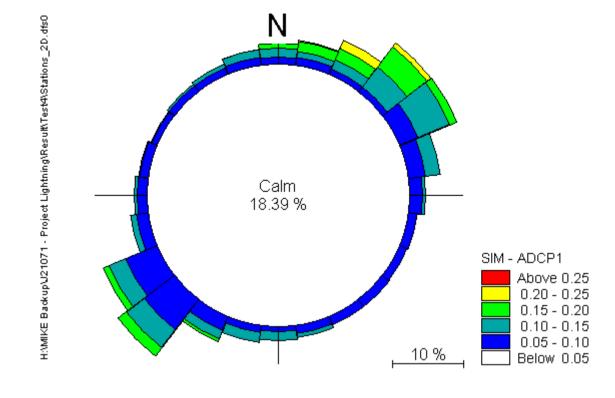
\ADCP 3 Data_4Hr_Shift.dfs0 ?esult.Test4\Stations_2D.dfs0 \ADCP 4 Data_4Hr_Shift.dfs0 ?esult.Test4\Stations_2D.dfs0

ts:VADCP 3 Data_4Hr_Shift.dfs \NesultTest4NStations_2D.dfs ts:VADCP 4 Data_4Hr_Shift.dfs \NesultTest4NStations_2D.dfs

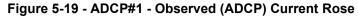
Anthesis Project Lightning

52

Hydrodynamic Sediment Plumes Modelling Report J21071_R_XX Figure 5-22 - ADCP #2 Simulated Current Rose

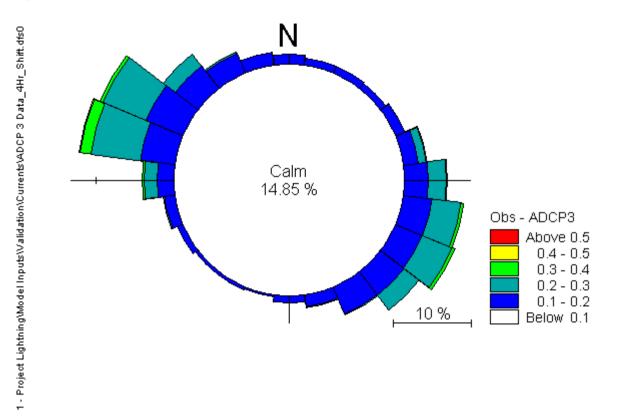

Ν

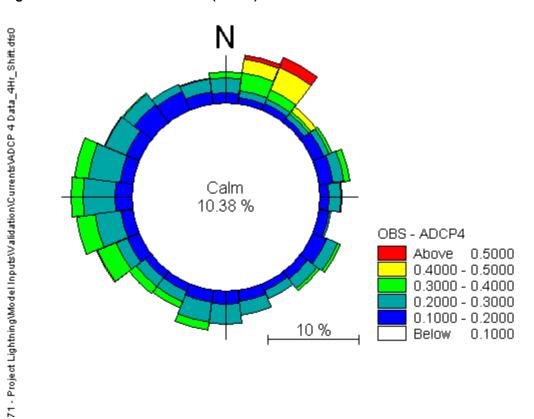

Calm


16.68 %

_ 10 % _

H:MilKE Backup\U21071 - Project Lightning\Result\Test4\Stations_2D.dfs0





Sim - ADCP2 Above 0.35 0.30 - 0.35 0.25 - 0.30 0.20 - 0.25 0.15 - 0.20 0.10 - 0.15 0.05 - 0.10 Below 0.05

Figure 5-23 - ADCP #3 Observed (ADCP) Current Rose

Figure 5-25 - ADCP #4 Observed (ADCP) Current Rose

Hydrodynamic Sediment Plumes Modelling Report J21071_R_XX

Figure 5-24 - ADCP #3 Simulated Current Rose

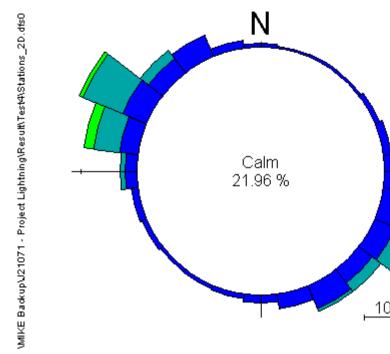
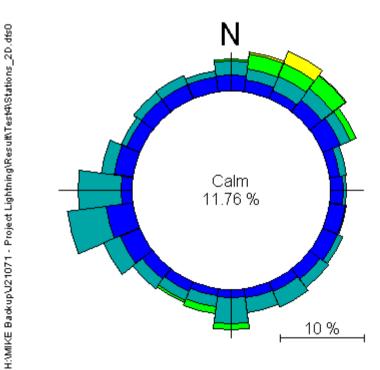
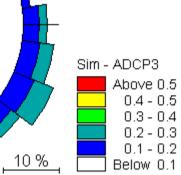
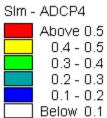





Figure 5-26 - ADCP #4 Simulated Current Rose

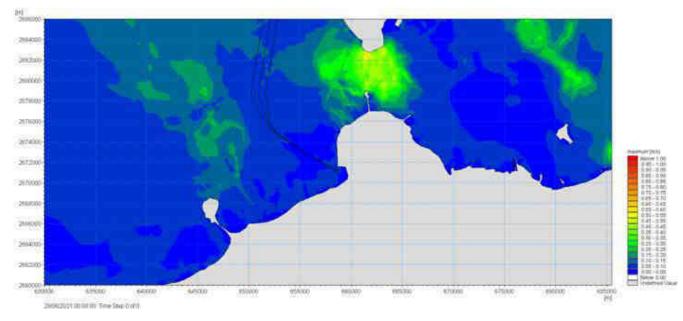
5.1.5 Area of Interest Variation

Cable Route 2

Currents within the area of interest, where dredging and backfilling will occur, are largely tidal in nature. However, currents within the area are complicated by the presence of Sir Bani Yas island, and the Jebel Dhana headland. Whereas normally the currents would be orientated east to west along the coastline of Abu Dhabi, these two feature create a shadow effect within the area of interest, instead the tides pass through the narrow channel between the mainland and Sir Bani Yas Island.

Average currents speeds within the area where trenching and backfilling will occur are below 0.05 m/s, with maximum current speeds rarely exceeding 0.3 m/s. It is anticipated that this area of relatively low currents speeds will limit dispersion of any sediment suspended into the water column, which although may reduce the area of impact, will result in less efficient dilution of TSS concentrations within this area.

Cable Route 1


The area of interest containing the proposed trenched areas along the proposed Cable Route 1 is partially separated from the open Gulf by various islands and shoals, which complicates and restricts tidal flows within this area. In general, the tidal currents move along the coastline in an east to west direction but are deflected by various shoals and islands.

Average current speeds along the majority of the trenched route are approximately 0.2 m/s reaching a maximum of 0.4 - 0.5 m/s. A small gap in the shielding influence of the islands and shoals lies immediately west of Abu al Abyad Island, although shallow, a small access channel has been historically dredged here. This gap allows the flood and ebb to move in a north and south direction, however the restriction here results in average current speeds of up to 0.7 m/s and maximum currents speeds of over 1.5 m/s.

Figure 5-27 and Figure 5-28 present the mean and maximum current speeds respectively for the area of interest surrounding the proposed Cable Route 2 trenching area, whereas Figure 5-29 and Figure 5-30 present the same for the area of interest along the proposed Cable Route 1.

Results of the simulation in video format for both the pre-development and post-development scenarios are provided in Appendix A.

Figure 5-27 – Cable Route 2 AOI - Mean Current Speeds

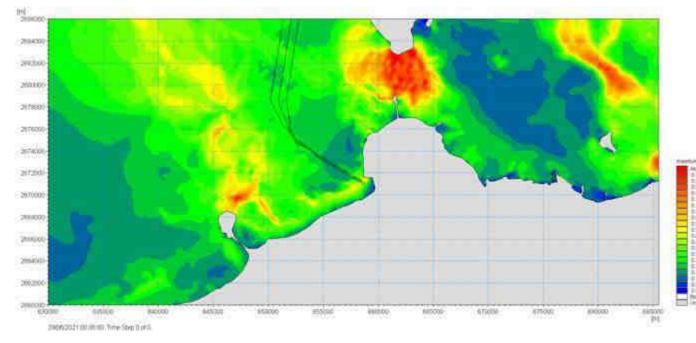


Figure 5-29 – Cable Route 1 AOI - Mean Current Speeds

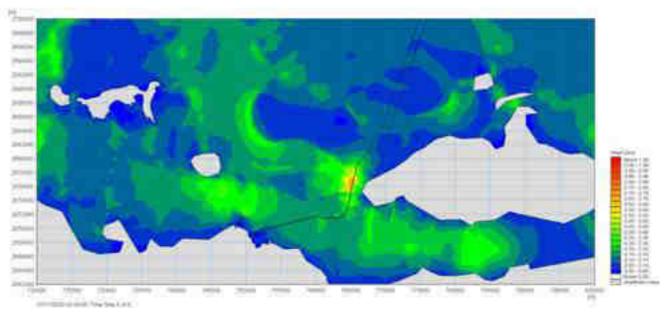
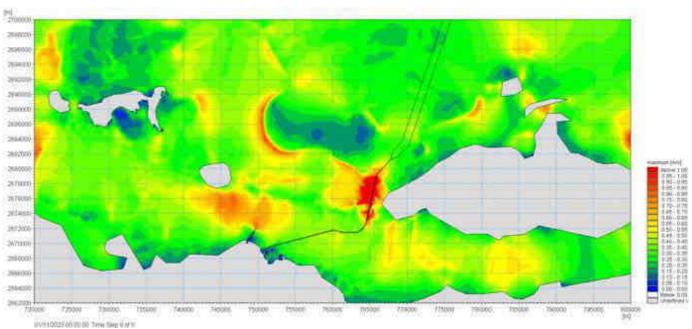



Figure 5-30 – Cable Route 1 AOI - Max Current Speeds

0.00 0.00 0.00 0.00 0.00

5.2 Dredging Assessment

Two dredging scenarios were simulated within separate domains to take into account proposed trenching, backfilling and dumping methods for the proposed cable routes 1 & 2. These simulations was conducted to predict turbidity concentrations and deposition patterns during the dredging activities that are proposed for the channel as discussed in Section 4.3.2.

The results were analysed to determine the mean concentration and predicted maximum Total Suspended Solids (TSS) concentration in kg/m³ exceeded 5% of the time (otherwise known as the 95th percentile) across the region as well as the total deposition/sedimentation depth/thickness resulting from the dredging activities. The statistics were conducted over the entire dredging period (approximately 5 months for Cable Route 2 and 8 months for Cable Route 1).

The mean and 95th percentile concentrations are presented for Route 2 in Figure 5-31 and Figure 5-32 and for Route 1 within Figure 5-33 and Figure 5-34.

Suspended sediment concentrations within the trenching area of the Cable Route 1 are, on average, anticipated to meet ambient water quality objectives (33 mg/l), however within a minority of conditions (i.e. <5% of the time) the area exceeding the ambient water quality objective is predicted to spread over 5 km to the south-west. Suspended sediment generation rate within this area is relatively limited due to the small volume being trenched and backfilled, and the relatively small size of the equipment conducting the work. The sediment being dredged within the area is also relatively high in silt content, increasing the potential for suspended sediment to remain suspended within the water column for longer period of time before settling on the seabed. Low current speeds within the area of interest greatly reduce suspended sediment dispersion and dilution. The shadow created by the Jebel Dhana headland creates a relatively slack area where sediment dispersion is not optimal.

The potential for suspended sediment generation within Cable Route 2 trenching area is greater than that for Cable Route 2, due to the longer length of cable route that requires trenching, and the requirement to dredge a navigation/floating channel to allow access of the cable lay vessel, and the use of two disposal areas. Although sediment generation is larger, current speeds are generally significantly higher in this area, particularly within the shallow areas which require substantial dredging for the navigation/floating channels. The higher currents aid dispersion in two ways, first they will generally increase the dilution rate of any dispersed sediment, but also by ensuring that the sediment being dredge is of a larger particle size due to natural erosion processes. Mean TSS concentrations, when averaged throughout the entire 8 month programme, are anticipated to be below AWQOs, however for a minority of the time (<5%) an areas of approximately 5-10 km² may exceed AWQOs within the proximity of the dredging of the navigation/floatation channel.

The trenching and backfilling involved within the construction programme for both Cable Routes 1 & 2, are sparsely spread both temporally (occurring over 5 months and 8 months respectively) and spatially (consisting of a very narrow (Figure 4-14) dredge cross section over a long overall length). Due to this sparsity in activities, the statistical analysis of concentrations (e.g. mean and 95th percentile) may be considered too optimistic when looking at the potential for significant exceedance in AWQOs. Therefore Figure 5-35 and Figure 5-36 present the area within which a certain number of days are expected to exceed AWQOs. Exceedances within the AOI for Cable Route 2 are expected to occur for over two weeks, whereas within Cable Route 1 AOI, exceedance is generally limited to less than one week, likely due to the faster mixing processes associated with higher current speeds.

In the immediate areas surrounding the dredging activities, high dropout rates of course material (coarse and medium sand particles) are predicted and is likely to cause deposition in the vicinity near the dredger.

However, although a large volume of the dredged material is relatively course, certain areas do contain fine fractions which may spread further afield and deposit on sensitive habitats.

The deposition depth associated with the dredging activities along Cable Route 2 are presented within Figure 5-37. Although sediment within the area does contain a fair fraction of silt, the limited currents speeds within the area general restrict dispersion of suspended sediment, therefore deposition depth is generally limited to < 1mm, with the area of deposition greater than 1 mm extending over approximately 2 km².

Depositions associated with the trenching and navigation/floating channel within Cable Route 1 AOI is generally larger. This is likely due to the larger volume of work, the fact that disposal areas will be used, and the higher current speeds increasing dispersion. The area where deposition is predicted to be greater than 1 mm is anticipated to cover approximate 40 km², whereas the area where deposition is anticipated greater than 5 mm is anticipated to cover approximately 15 km².

Video output of the dredging activities are included in Appendix B.

Figure 5-31 – Cable Route 2 – Mean TSS Concentration

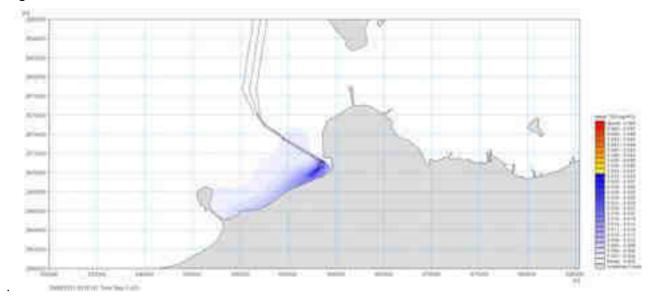


Figure 5-32 – Cable Route 2 - 95th Percentile TSS Concentration

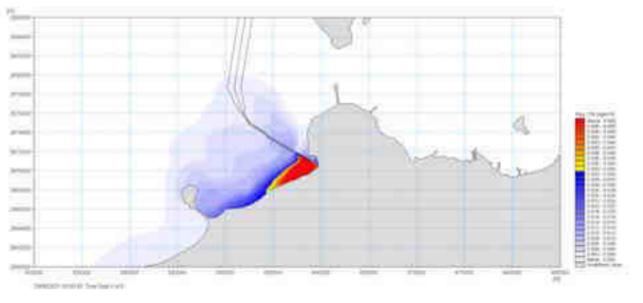


Figure 5-33 – Cable Route 1 – Mean TSS Concentration

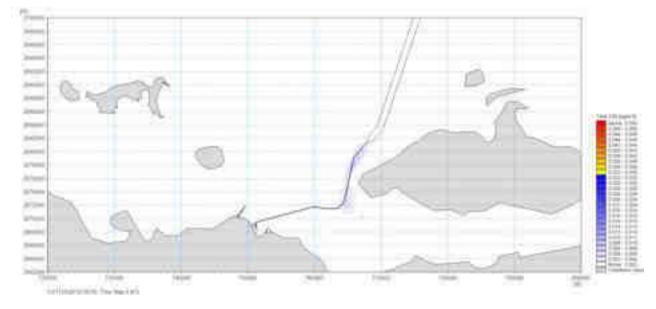


Figure 5-34 – Cable Route 1 – 95th Percentile TSS Concentration

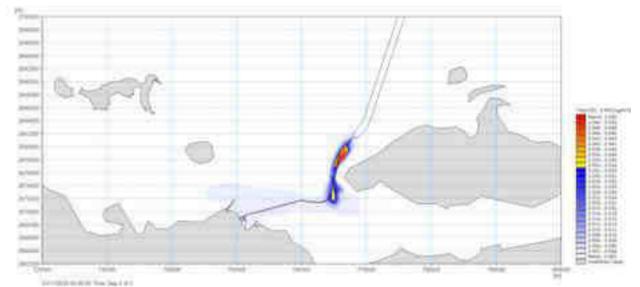
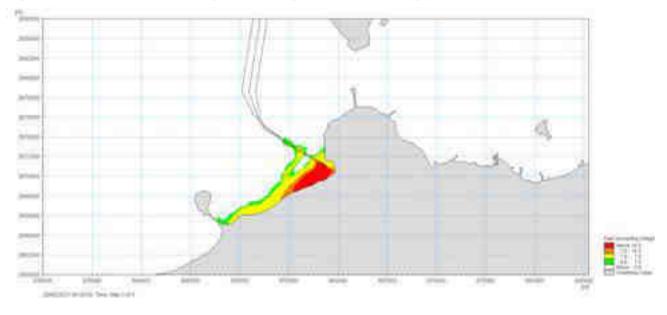



Figure 5-35 – Cable Route 2 – Days Exceeding TSS AWQO (33 mg/l)

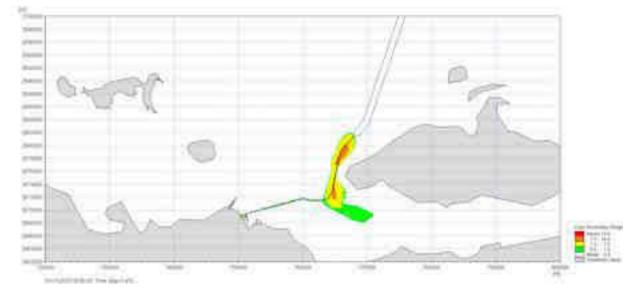
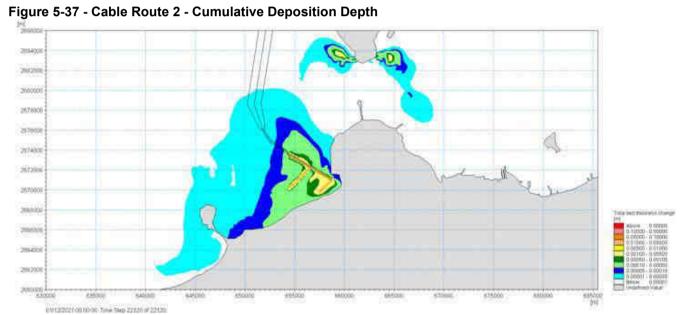
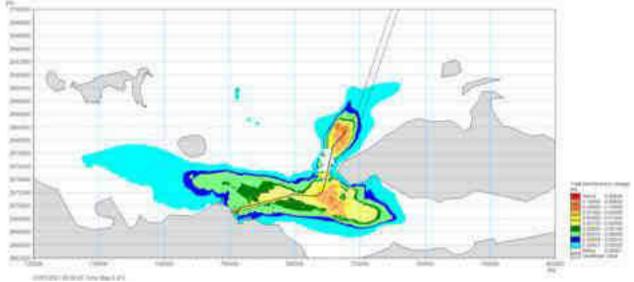




Figure 5-38 - Cable Route 1 - Cumulative Deposition Depth

Figure 5-36 – Cable Route 1 – Days Exceeding TSS AWQO (33mg/l)

6 Summary and Conclusions

6.1 Overview

WKC Environment Consultancy (WKC) has been contracted by Anthesis to undertake a hydrodynamic modelling sediment plume dispersion assessment as part of the Environmental Impact Assessment (EIA) for the proposed Project Lightning power utilities venture (the "Project") located in Abu Dhabi, United Arab Emirates (UAE).

The objective of the study is to determine whether increased suspended sediment concentration during dredging activities and the associated deposition of fine sediment may cause adverse impacts to the marine environment.

6.2 Hydrodynamics

The hydrodynamics of the project area were simulated utilising the MIKE21 HD FM model, driven by meteorological data from CFSR and tidal constituent amplitude and phase predictions sourced from the DTU10 global ocean tide model from the Technical University of Denmark.

Currents speeds within the two areas of interest are variable both within the domain and between Cable Routes 1 & 2 domains, being generally higher at the Cable Route 1 location. Currents within both the areas of interest are complicated by nearby islands and shoals creating both restricted channels with high current speeds and sheltered areas with limited tide or wind driven currents.

The tides are generally of a mixed diurnal and semi-diurnal nature. The current velocities within the project area are largely driven by the flood and ebb tidal events with some influence from wind effects (due to the predominant north-westerly wind direction).

Validation was conducted again data obtained at four locations using ADCPs. Validation of the hydrodynamics was considered to be very good to excellent.

6.3 Dredging Assessment

Two dredging scenarios were simulated within separate domains to take into account proposed trenching, backfilling and dumping methods for the proposed cable 1 & 2. These simulations were conducted to predict turbidity concentrations and deposition patterns during the dredging activities that are proposed for the cable routes.

Suspended sediment concentrations within the trenching area of Cable Route 2 are, on average (over 5 months), anticipated to meet ambient water quality objectives (33 mg/l), however within a minority of conditions (i.e. <5% of the time) the area exceeding the ambient water quality objective is predicted to spread over 5 km

to the south-west. Mean TSS concentrations within Cable Route 1 area of interest, when averaged throughout the entire 8-month programme, are anticipated to be below AWQOs, however for a minority of the time (<5%) an area of approximately 5-10 km² may exceed AWQOs within the proximity of the dredging of the navigation/floatation channel.

The deposition depth associated with the dredging activities along Cable Route 2 is generally limited to < 1mm, with the area of deposition greater than 1 mm extending over approximately 2 km². Depositions associated with the trenching and navigation/floating channel within Cable Route 1 area of interest is predicted to be greater than 1 mm cover approximately 40 km², whereas the area where deposition is anticipated greater than 5 mm is anticipated to cover approximately 15 km².

6.4 Recommendations

It is recommended that silt curtains are employed as this will help limit any sediment transport away from the dredged areas and will help mitigate and impacts brought about by the dispersion of the sediment plumes on the water quality and any ecological receptors in the area. Silt curtains are an effective method in significantly reducing the transportation of fine sediment during dredging and reclamation activities.

It is further recommended that real time WQ (turbidity) monitoring take place during dredging activities as a further mitigation measure whereby dredging would be stopped once TSS levels are exceeded during dredging operations.

7 References

- [1] E. Environemnt Agency Abu Dhabi, "Technical Guidance for Hydrodynamic Modelling," EAD, Abu Dhabi.
- [2] E. Environment Agency Abu Dhabi, "Technical Guidance for Dredging and Reclamation," EAD, Abu Dhabi.
- [3] "Council of Ministers Decree No. 37 of 2001 Regulation for the Protection of the Maritime Environment," UAE Cabinet, 2001.
- [4] "Council of Ministers Decree No. 23 of 2001 Concerning the protection of ports, shore, and maritime territory from oil pollution incidents," UAE Cabinet, 2001.
- [5] QCC, "Ambient Marine Water and Sediments Specifications," Abu Dhabi QCC, 2017.
- [6] QCC, "Environment Specifications for Land Based Liquid Discharges to Marine Environment," Abu Dhabi QCC, 2017.
- [7] "Technical Guidance Document for Standards and Limits for Pollution ato Air and Marine Environments, Occupational Exposure, Pesticides and Chemical Use," Environment Agency Abu Dhabi, Abu Dhabi, 2014.
- [8] O. B. A. Yongcum Cheng, "Improvement of Global Ocean Tide Models in Shallow Water Regions," in Ocean Surface Topography Science Team Meeting, Lisbon, 2010.
- S. Saha et al, "The NCEP Climate Forecast System Reanalysis," Bulletin of the American Meteorological Society, vol. 97, pp. 1015 - 1057, 2010.
- [10] UKHO, "British Admiralty Chart 3715," Admiralty Charts & Publications, 2017.
- [11] Fugro, "Geophysical, Geotechnical and Environamental Baseline Surveys for Subsea Cable Routes," FUgro, Abu Dhabi, 2020.

- [12] Global Environmental Modelling Systems, "Grange Resources, Albany Port Authority, Port Development, Oceanographic Studies and Dredging Program Simulation Studies," CSIRO, Albany, 2007.
- [13] Fugro, "E-0395 Lightning Project, Geotechnical Factual Report Common Corridor (Route-2, Route-2A & route-2B) Between Shuweihat and Das Island," 2020.
- [14] L. Chanson and T. H., "Numerical Limitations of Hydraulic Models," in IAHR World Congress Balance and Uncertainty, Brisbane, 2011.
- [15] C. J. Wilmott, "Some comments on the evaluation of model performance," Centre for Climatic Research, University of Delaware, Delaware, 1982.
- [16] J. W. D. C. T. V. R. L. a. S. J. Sutherland, "Evaluation of Costal Area Modelling Systems at an Estury Mouth," Coastal Engineering: An International Journal for Coastal Harbour and Offshore Engineering, vol. 51, pp. 119-142, 2003.

Appendix A - Hydrodynamic Modelling Results

Appendix B - Dredging Results

Appendix 2.2 – Nautica Environmental Baseline Surveys

Appendix 2.2.1 – Mirfa Landfall Terrestrial Ecology Survey Report


ADNOC Lightning Project Mirfa Landfall Terrestrial Ecology Survey Report

Μ

MOTT

MACDONALD

NEA Reference: N684-0621-MIR-1.1 dated September 2021

N⁰	Table of Contents	Page
1.0	Background and Survey Conduct	1
	1.1 Background	1
	1.2 Survey Conduct	1
2.0	Methodology	14
	2.1 Noise Measurements	14
	2.2 Soil and Groundwater Inspection and Analysis	15
	2.3 Ecology Survey Methodology	16
3.0	Survey Results	18
	3.1 Noise Measurement Analysis	18
	3.2 Soil Analysis	21
	3.3 Ecology Survey	22
4.0	Conclusions, Recommendations & Mitigation Measures	61

Annexes

- AReferencesBPhotographic DocumentationCover:White-eared Bulbuls, *Phycnonotus leucotis*.
- Credits: Plates ©NEA, unless otherwise credited.

Document Issue and Revision

Issue Date	Author(s)	Checked	Approved	lssue №	Comment
17.06.2021	RP/BR/DT/VP	RP/DT	VP	1.0	1 st Issue
12.09.2021	RP/BR/DT/VP	RP/DT	VP	1.1	2 nd Issue

©2021 Nautica Environmental Associates LLC (NEA). This document has been prepared for the above titled project and should not be relied upon or used for any other project without first obtaining the written consent of NEA. NEA will accept no responsibility or liability for this document to any party other than the client for whom it was commissioned.

P.O. Box 44780 Abu Dhabi, UAE T: +97126731250 F: +97126731054 <u>management@nea.ae</u>

Approved Training Centre Unimed by The Also Diski Center for Technical and Vacational Solucation and Training (ACTVET) Linense Net CERO/2020

Reference to Figures in Report					
1	Survey Area with Trap and Sampling Locations	1			
2	Survey Area Habitat Map	2			
3	Survey Area with Cardinal Point Locations	3			
4	Survey Area with Points of Interest	4			
5	Survey Area Track Map	5			

Reference to Tables in Report					
1	Survey Field Visits	2			
2	Mirfa Survey Records	8			
3	Noise measurement metrics for Mirfa Landfall site MN01	19			
4	Noise measurement metrics for Mirfa Landfall site MN02	19			
5	Noise measurement metrics for Mirfa Landfall site MN03	20			
6	Soil Sampling Locations	21			
7	Habitat Description & % cover (Pipeline Footprint)	23			
8	Plant species recorded during the survey	38			
9	Mammal and Reptile species recorded during survey	44			
10	Bird species recorded during the survey	52			
11	Arthropod species recorded during the survey	57			

Reference to Plates in Report					
1	NEA Technician using soil augur on site wearing PPE	2			
2	Noise meter deployed on location	14			
3	NEA scientist using soil augur on location	15			
4	Recording gecko tracks in sand	16			
5	Camera Trap deployed on location	17			
6	Domestic cat recorded on location	17			
7	Sand Sheets & Low Dunes (Top)	25			
8	Sand Sheets & Low Dunes (Bottom)	25			
9	Avicennia marina	27			
10	Avicennia marina in flower	27			
11	Metopograpsus messor	28			
12	Rope entangled with mangrove pneumatophores	28			

Reference	e to Plates in Report	Page
13	Coastal Sabkha (Top)	30
14	Coastal Sabkha (Bottom)	30
15	Mudflats & Sand Exposed at Low Tide (Top)	32
16	Mudflats & Sand Exposed at Low Tide (Bottom)	32
17	Halopeplis perfoliata	35
18	Suaeda vermiculata	35
19	Tetraena qatarensis	36
20	Suaeda vermiculata	36
21	Avicennia marina	37
22	Heliotropium kotschyi	37
23	Arabian Red Fox, <i>Vulpes vulpes arabica</i>	41
24	White-spotted Lizard, Acanthodactylus schmidtii	41
25	Feral Cat, <i>Felis catus</i>	42
26	Cheesman's Gerbil, Gerbilus cheesmani	42
27	Arabian Red Fox Tracks	43
28	Cheesman's Gerbil tracks	43
29	Kentish Plover, Charadrius alexandrus	48
30	White-eared Bulbuls, <i>Pycnonotus leucotis</i>	48
31	Grey Francolin, Francolinus pondicerianus	49
32	Grey Francolin tracks	49
33	Greater Hoopoe-lark, Alaemon alaudipes	50
34	Western Osprey, Pandion haliaetus	50
35	Red-wattled Lapwing, Vanellus indicus	51
36	Western Reef Heron, <i>Earetta gularis</i>	51
37	Darkling Beetle, <i>Pimelia</i> sp. tracks	55
38	colonies of Desert Runner Ants, Cataglyphis niger	55
39	Asian Dwarf Honey bee, <i>Apis florea</i>	56
40	Desert Locust, <i>Schistocerca gregaria</i>	56
41	People camping recreationally	59
42	Numerous tyre tracks & a caravan & 4x4 vehicle	59
43	Discarded litter (Top)	60
44	Discarded litter (Bottom)	60

1.0 Background and Survey Conduct

1.1 Background

Mott MacDonald (MM), on behalf of the Abu Dhabi National Oil Company (ADNOC), has commissioned Nautica Environmental Associates LLC (NEA), an Abu Dhabi based environmental consultancy, to conduct environmental surveys at three landfall locations for the ADNOC Lightning Project, namely Mirfa, Shuweihat and Das Island.

This document relates to the field elements conducted at Mirfa and provides the results from the survey undertaken at that location.

1.2 Survey Scope and Conduct

1.2.1 Scope

The scope included evaluations of the following, along landfall pipeline footprints, as shown in Figure 1:

- Evaluation of habitats and associated species.
- Ambient noise measurements, over weekend and week-day periods.
- Soil and groundwater sampling and analysis to evaluate possible contamination.

1.2.2 Conduct

The field elements were conducted over 6 days, between 04 and 31 May 2021, at Mirfa, as shown in Table 1. A minimum of two NEA staff were on-site, supported by NEA 4x4 vehicle.

Surveys were conducted using a combination of walkover and vehicle drive throughs of the site location, deploying camera traps and noise meters, and undertaking soil sampling, where deemed appropriate.

Additionally, at certain locations within the Plot, in order to provide additional photographic records of habitat and general conditions, cardinal point photographs were taken (North, South, East and West). Camera traps were deployed for a minimum of one overnight period (≥12 hours).

Table 1 provides an overview of site visits and activities undertaken by NEA specialists during the ecological survey. Figure 1 shows a map of the survey area with camera trap and noise meter locations. Figure 2 shows a habitat map of the area (see Annex A for records). Figure 3 shows cardinal point locations where photographic documentation of the area from fixed locations has been taken and provided in Annex

C. Figure 4 shows locations of points of interest (waypoints), detailed in Table 2 and discussed in subsequent sections. Figure 5 shows the track map of NEA staff movements across the area.

In the current circumstances, COVID-19 mitigation involved NEA field scientists wearing full eye and nose/mouth masks, with gloves, when travelling to/from and when on-site (Plate 1).

Table 1: Survey Field Visits								
Day	Date	NEA Staff						
1	19.05.2021	Survey planning and Preparation	RP, AM, PM, BC					
2	20.05.2021	Survey walkover & Trap/Meter deployment	RP, AM, PM					
3	21.05.2021	Survey walkover	RP, AM, PM					
4	22.05.2021	Trap retrieval	RP, AM, PM					
5	24.05.2021	Noise Monitoring	RP, AM					
6	31.05.2021	Noise Monitoring	RP, AM					

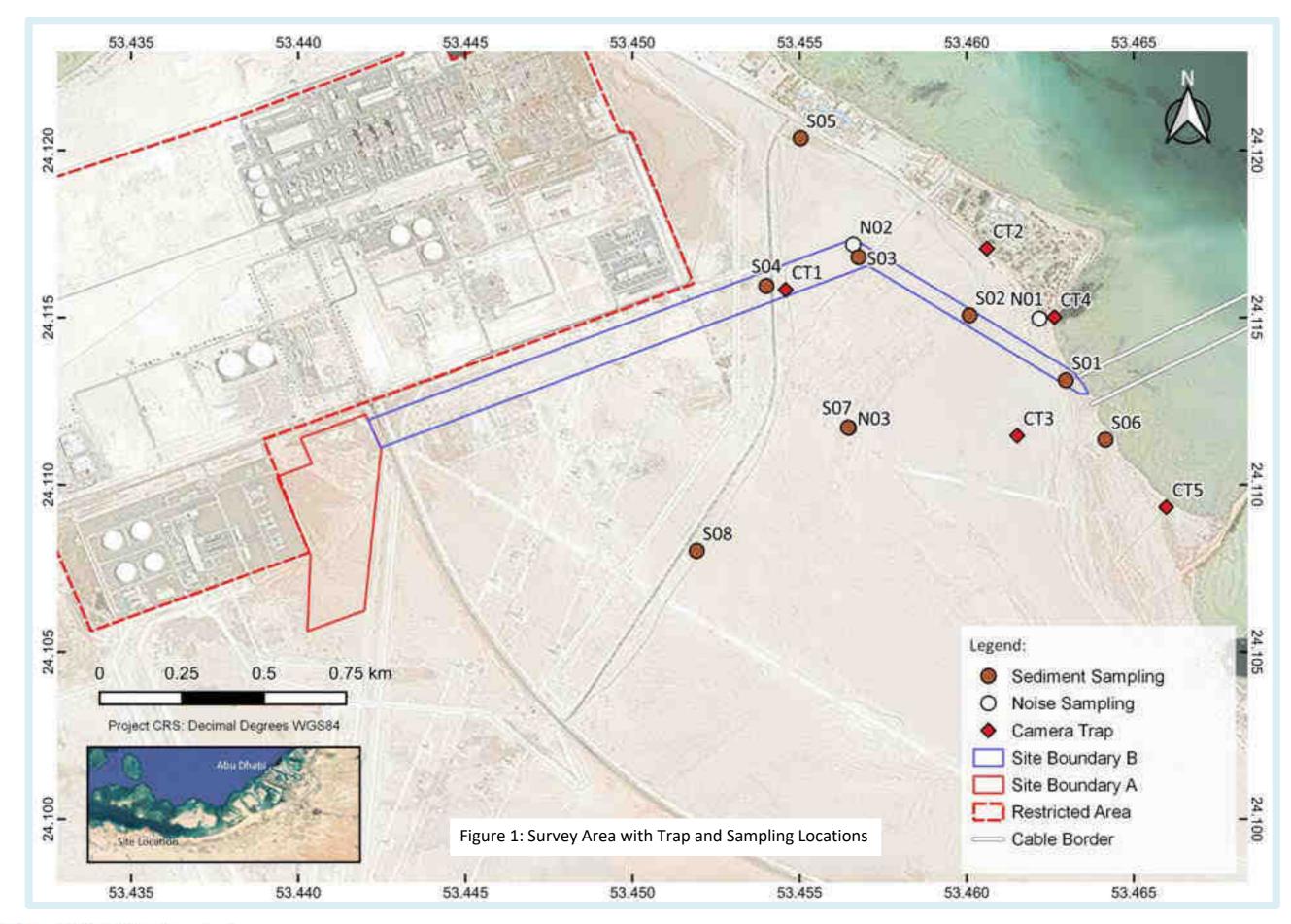
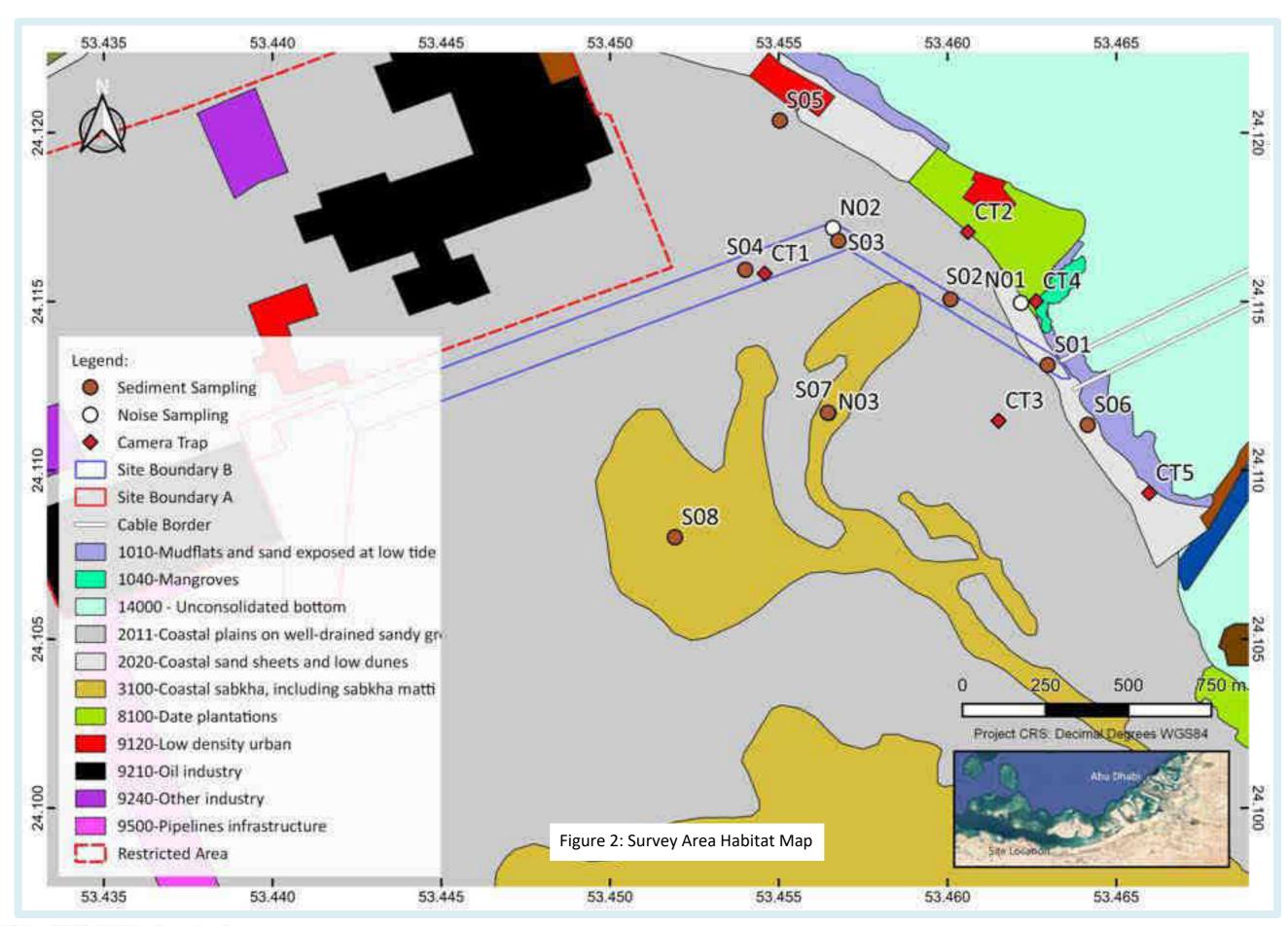
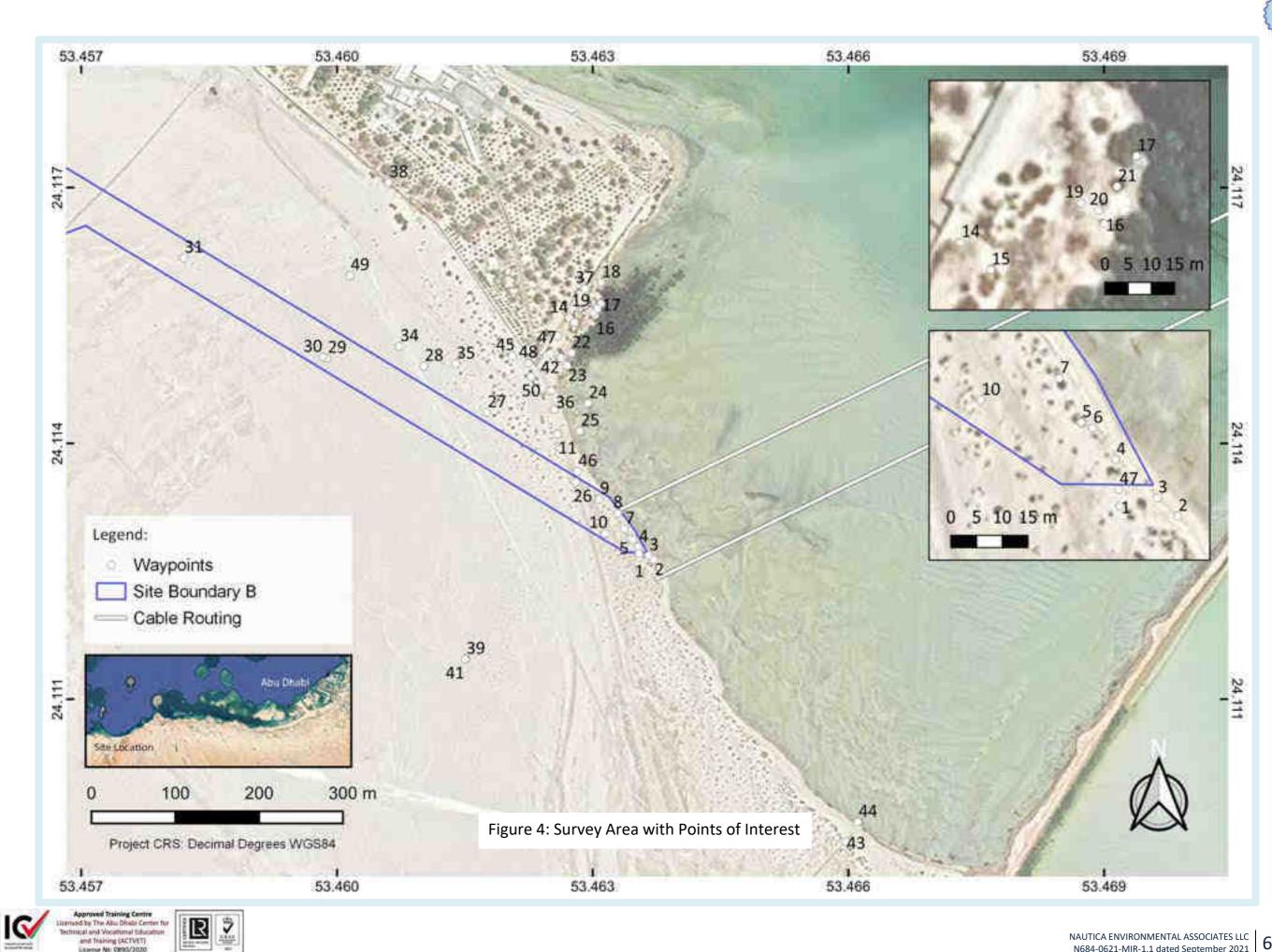

Table Key: RP = Ross Pappin / AM = Aneeta Mathew / PM = Paulo Mendoza / BC = Bonnie Corneta

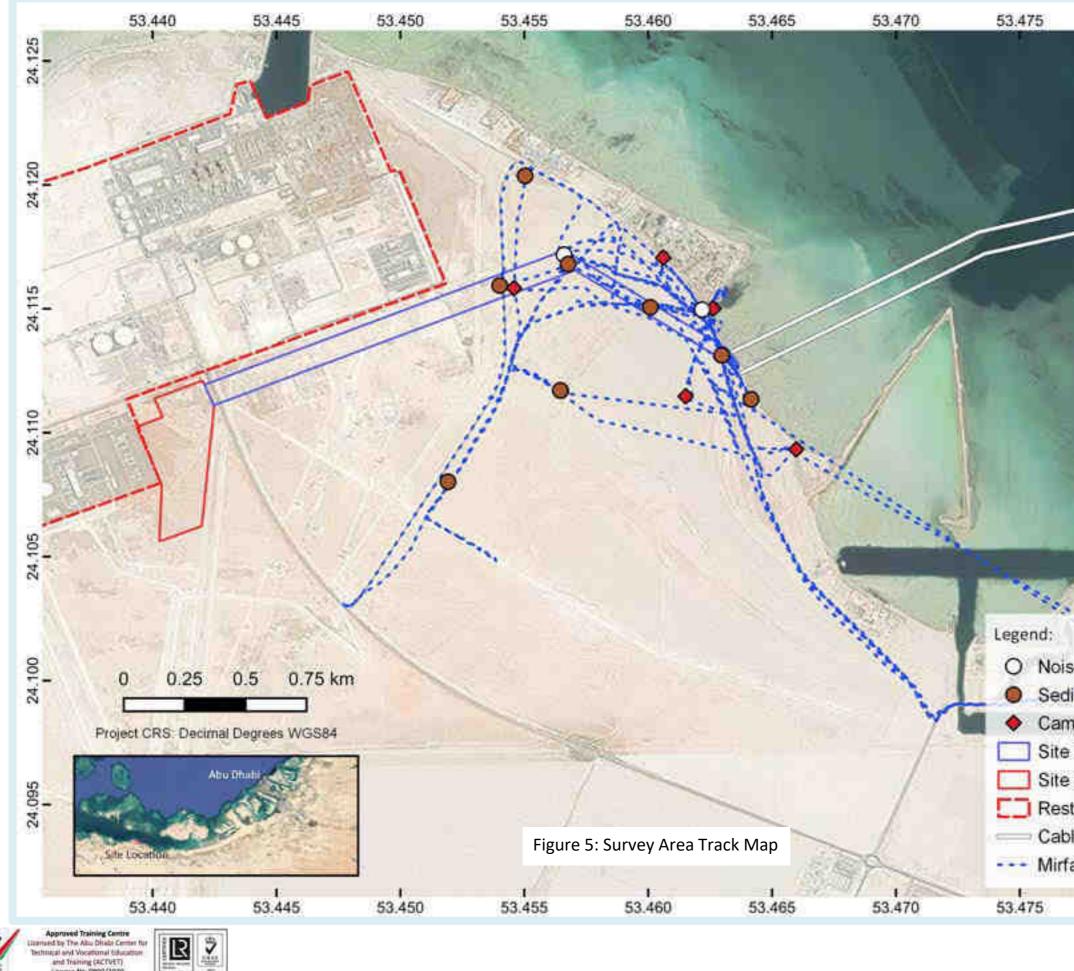
Plate 1: NEA Environmental Technician using soil augur on site wearing PPE



oproved Training Centre R of by The Also Dhalo Center for soil and Vocational Silucation and Training (ACTVET) Lisanse No: 0890/3030

3





16

and Training (ACTVET) Lisanse No: 0890/3030

The Altu Ditabl Center for

cal and Vocational Education and Training (ACTVET) Lisanse No: 0890/3030

16

53.485

24,125

24 20

24.115

24.110

24.105

24,100

24.095

1

53.485

O Noise Sampling Sediment Sampling Camera Trap Site Boundary B Site Boundary A Restricted Area - Cable Border --- Mirfa Tracks

53,480

53.480

Table 2: Mirfa Survey Records									
ID	Unit Type	Date	Time	Duration	Latitude (N)	Longitude (E)	Notes		
N01	Noise Sampling	21/05/2021	06:46	15min	24.114964	53.46217196	NA		
N02	Noise Sampling	21/05/2021	07:48	15min	24.11718101	53.45660102	ΝΑ		
N03	Noise Sampling	21/05/2021	08:13	15min	24.11170201	53.456468	ΝΑ		
S01	Sediment Sampling	20/05/2021	15:20	NA	24.113124	53.46296397	NA		
S02	Sediment Sampling	20/05/2021	16:35	NA	24.115064	53.46008504	ΝΑ		
S03	Sediment Sampling	20/05/2021	16:55	NA	24.116805	53.45676304	NA		
S04	Sediment Sampling	20/05/2021	17:25	NA	24.115942	53.45400397	NA		
S05	Sediment Sampling	21/05/2021	18:36	NA	24.12036102	53.45502899	NA		
S06	Sediment Sampling	21/05/2021	11:53	NA	24.11134796	53.464148	ΝΑ		
S07	Sediment Sampling	21/05/2021	16:57	NA	24.11170998	53.45644997	NA		
S08	Sediment Sampling	21/05/2021	18:12	NA	24.10802202	53.45192098	NA		
CP1	Cardinal Point	21/05/2021	10:21	NA	24.11269	53.46365	NA		
CP2	Cardinal Point	21/05/2021	10:27	NA	24.11318	53.46329	NA		
CP3	Cardinal Point	21/05/2021	10:38	NA	24.11462	53.46252	NA		
CP4	Cardinal Point	21/05/2021	10:47	NA	24.11542	53.46279	NA		

Table 2: Mirfa Survey Records									
ID	Unit Type	Date	Time	Duration	Latitude (N)	Longitude (E)	Notes		
CP5	Cardinal Point	21/05/2021	11:00	NA	24.11589	53.4631	NA		
CP6	Cardinal Point	21/05/2021	11:08	NA	24.11491	53.4627	ΝΑ		
CP7	Cardinal Point	21/05/2021	11:12	NA	24.11447	53.46294	ΝΑ		
CP8	Cardinal Point	21/05/2021	12:12	NA	24.11436	53.46176	NA		
CP9	Cardinal Point	21/05/2021	12:18	NA	24.11491	53.46102	NA		
CP10	Cardinal Point	21/05/2021	12:19	NA	24.115	53.45988	NA		
CP11	Cardinal Point	21/05/2021	12:26	NA	24.11681	53.45675	NA		
CP12	Cardinal Point	21/05/2021	12:28	NA	24.11583	53.45458	NA		
CP13	Cardinal Point	21/05/2021	20:29	NA	24.11681	53.45675	NA		
CP14	Cardinal Point	22/05/2021	09:21	NA	24.10956	53.46611	NA		
CT1	Camera Trap	21/05/2021	20:54	12hrs	24.11583	53.45458	Arabian Red Fox & Feral Cat		
CT2	Camera Trap	21/05/2021	21:01	12hrs	24.11706	53.4606	Nothing captured		
CT3	Camera Trap	21/05/2021	21:07	12hrs	24.11147	53.46151	Cheesman's Gerbil		
CT4	Camera Trap	21/05/2021	21:18	12hrs	24.11501	53.46262	Arabian Red Fox & Feral Cat		
CT5	Camera Trap	21/05/2021	21:26	12hrs	24.10933	53.46597	Nothing captured		

Table 2: Mirfa Survey Records									
ID	Unit Type	Date	Time	Duration	Latitude (N)	Longitude (E)	Notes		
WPT1	Handheld GPS	21/05/2021	10:20	NA	24.11266	53.46355	Western Reef Heron		
WPT2	Handheld GPS	21/05/2021	10:20	NA	24.11264	53.46371	Kentish Plover × 6		
WPT3	Handheld GPS	21/05/2021	10:21	NA	24.11269	53.46365	Cardinal Point 1		
WPT4	Handheld GPS	21/05/2021	10:23	NA	24.11279	53.46353	Arabian Red Fox tracks		
WPT5	Handheld GPS	21/05/2021	10:25	NA	24.11288	53.46344	Cat tracks		
WPT6	Handheld GPS	21/05/2021	10:26	NA	24.11287	53.46347	Fox scats		
WPT7	Handheld GPS	21/05/2021	10:27	NA	24.113	53.46337	Large bird tracks (Grey Francolin?)		
WPT8	Handheld GPS	21/05/2021	10:27	NA	24.11318	53.46329	Cardinal Point 2		
WPT9	Handheld GPS	21/05/2021	10:30	NA	24.11335	53.46308	Trash		
WPT10	Handheld GPS	21/05/2021	10:33	NA	24.11294	53.46315	Small bird tracks (House Sparrow?)		
WPT11	Handheld GPS	21/05/2021	10:37	NA	24.11411	53.46258	Lesser Sand Plover × 2		
WPT12	Handheld GPS	21/05/2021	10:38	NA	24.11462	53.46249	Kentish Plover × 2		
WPT13	Handheld GPS	21/05/2021	10:38	NA	24.11462	53.46252	Cardinal Point 3		
WPT14	Handheld GPS	21/05/2021	10:45	NA	24.11547	53.46272	Eurasian Collared Dove		
WPT15	Handheld GPS	21/05/2021	10:47	NA	24.11542	53.46279	Cardinal Point 4		

Table 2: Mirfa Survey Records									
ID	Unit Type	Date	Time	Duration	Latitude (N)	Longitude (E)	Notes		
WPT 16	Handheld GPS	21/05/2021	10:53	NA	24.11551	53.46303	House Sparrow × 6		
WPT17	Handheld GPS	21/05/2021	10:58	NA	24.11564	53.46309	Asian Dwarf Honey Bee × 100+		
WPT18	Handheld GPS	21/05/2021	11:00	NA	24.11589	53.4631	Cardinal Point 5		
WPT19	Handheld GPS	21/05/2021	11:01	NA	24.11555	53.46298	White- eared Bulbul		
WPT20	Handheld GPS	21/05/2021	11:02	NA	24.11553	53.46302	Bean Caper		
WPT21	Handheld GPS	21/05/2021	11:03	NA	24.11558	53.46305	Greater Hoopoe-lark		
WPT22	Handheld GPS	21/05/2021	11:06	NA	24.11506	53.46275	Mottled Crab		
WPT23	Handheld GPS	21/05/2021	11:08	NA	24.11491	53.4627	Cardinal Point 6		
WPT24	Handheld GPS	21/05/2021	11:12	NA	24.11447	53.46294	Cardinal Point 7		
WPT25	Handheld GPS	21/05/2021	11:14	NA	24.11415	53.46285	House Sparrow × 4		
WPT26	Handheld GPS	21/05/2021	12:05	NA	24.11355	53.4628	Common Greenshank		
WPT27	Handheld GPS	21/05/2021	12:12	NA	24.11436	53.46176	Cardinal Point 8		
WPT28	Handheld GPS	21/05/2021	12:18	NA	24.11491	53.46102	Cardinal Point 9		
WPT29	Handheld GPS	21/05/2021	12:19	NA	24.115	53.45988	Cardinal Point 10		
WPT30	Handheld GPS	21/05/2021	12:22	NA	24.11501	53.45984	Pile of debris		

Table 2: Mirfa Survey Records									
ID	Unit Type	Date	Time	Duration	Latitude (N)	Longitude (E)	Notes		
WPT31	Handheld GPS	21/05/2021	12:24	NA	24.11618	53.4582	Pile of debris		
WPT32	Handheld GPS	21/05/2021	12:26	NA	24.11681	53.45675	Cardinal Point 11		
WPT33	Handheld GPS	21/05/2021	12:28	NA	24.11583	53.45458	Cardinal Point 12		
WPT34	Handheld GPS	21/05/2021	20:26	NA	24.11514	53.46073	Arabian Toad-headed Agama		
WPT35	Handheld GPS	21/05/2021	20:27	NA	24.11493	53.46139	White-eared Bulbul		
WPT36	Handheld GPS	21/05/2021	20:29	NA	24.1144	53.46255	Cardinal Point 13		
WPT37	Camera Trap	21/05/2021	20:54	12hrs	24.11581	53.46291	Camera Trap 1		
WPT38	Camera Trap	21/05/2021	21:01	12hrs	24.11706	53.4606	Camera Trap 2		
WPT39	Camera Trap	21/05/2021	21:07	12hrs	24.11147	53.46151	Camera Trap 3		
WPT41	Handheld GPS	21/05/2021	21:10	NA	24.11147	53.4615	Cheesman's Gerbil Burrow		
WPT42	Camera Trap	21/05/2021	21:18	12hrs	24.11501	53.46262	Camera Trap 4		
WPT43	Camera Trap	21/05/2021	21:26	12hrs	24.10933	53.46597	Camera Trap 5		
WPT44	Handheld GPS	22/05/2021	09:21	NA	24.10956	53.46611	Cardinal Point 14		
WPT45	Handheld GPS	22/05/2021	09:55	NA	24.11503	53.46206	Heliotropium kotschyi		
WPT46	Handheld GPS	22/05/2021	10:03	NA	24.11367	53.46282	Eurasian Curlew		

Table 2: Mirfa Survey Records							
ID	Unit Type	Date	Time	Duration	Latitude (N)	Longitude (E)	Notes
WPT47	Handheld GPS	22/05/2021	10:05	NA	24.11271	53.46354	Kentish Plover × 3
WPT48	Handheld GPS	22/05/2021	10:15	NA	24.11526	53.46259	Laughing Dove
WPT49	Handheld GPS	24/05/2021	19:33	NA	24.11494	53.46224	Grey Francolin × 3
WPT50	Handheld GPS	31/05/2021	07:04	NA	24.11597	53.46015	Red-wattled Lapwing nest (Eggs × 4)
WPT51	Handheld GPS	31/05/2021	09:28	NA	24.11478	53.46227	Osprey
Table Key:							
NA = Not Applicable							
CT = Camera Trap							
CP = Cardinal Point							
ID = Site ID							
min = Minute(s)							
Lat + Long in Decimal Degrees WGS84							

WPT = Waypoint

2.0 Methodology

2.1 Noise Measurements

Baseline noise measurements were carried out at three sites at the Mirfa location and included both weekday and weekend measurement periods. Measurements at each site were carried out for 15-minutes and repeated for day and night-time (total of four measurements per site). Surveys were undertaken in parallel with ongoing ecological surveys of the location.

Measurements were collected using a bench and field-calibrated Rion NL-52 integrating Class 1 (IEC 61672-2002) sound level meter, with data stored on the device's internal memory as well as on detailed field-sheets. Measurement locations were chosen to minimise reflective phenomena or interruptive weather conditions in accordance with ISO1996-1:2016.

Reported parameters included maximum and average noise levels as well identification of specific sound events where feasible and were reflective of the characteristics of the ambient noise environment and nature of the project.

- Measurements Overview:
 - 15-minutes each site (day/night/weekday/weekend).
 - Total 1 hour per site.
 - Total 3 hours at location.
- Parameters:
 - o LAeq, LAMax, LA10, LA50, LA90.

Plate 2: Noise meter deployed on location

2.2 Soil and Groundwater Inspection and Analysis

A visual survey of the surface for any signs of contamination was conducted in parallel with ecological and noise survey data collections at the location.

Where visible contamination was identified, a GPS waypoint will be collected. For large areas, a tracked path was walked around the edge, using the GPS tracklog to map the extent of contamination.

All identified instances were reported with accompanying geo-referenced photographs.

8 soil samples were collected by hand augur along the cable corridor (see Figure 1) and analysed at an ENAS accredited laboratory. Data is provided in Annex B.

No groundwater samples were collected, as there were no sources within or near to the survey footprint.

Plate 3: NEA scientist using soil augur on location (NEA File Photo)

2.3 Ecology Survey Methodology

Field activities involved day-time drive-over and walkabouts in selected areas, with one overnight trapping effort involving deployment of Bushnell camera traps (Plate 3) at selected locations. Figure 1 details trap and photo locations.

Bushnell camera traps were deployed at locations considered potentially suitable for mammal and/or reptile activity, such as near burrows or in areas of particularly dense vegetation and/or visible track activity.

Binoculars were also used to help find and identify bird species within the area and where possible, high-definition pictures were taken and have been used in this report, where deemed appropriate.

All photos displayed in this report were taken on location unless otherwise stated (NEA File Photo).

Plate 4: Recording gecko tracks in sand

Approved training campe Literated by The Allu Dirate Center It Technical and Viscettinal Uducation and Training (ACTVET) Literate No. (0890/3000

Plates 5 & 6: Camera Trap deployed on location (top); domestic cat recorded on location (bottom)

Approved Training Centre Literand by The Alta Disbit Center for Technical and Vocational Subaction and Training (SCTURT) Literate No. 0950/2000

3.0 Survey Results

3.1 Noise Measurement Analysis

A baseline survey was conducted in the area of the proposed landfall, including three separate locations, with four fifteen-minute measurements each, representative of residential noise receptors, such as those to the north of the alignment. The locations of the noise measurement station (N01-N03) are shown in Figure 1.

The combined measurement period at each location was 1 hour, representing weekday, weeknight, weekend day and weekend night time periods. The aim of the noise measurements is to provide an indication of existing ambient conditions as well as to identify any significant anthropogenic noise sources which may affect any subsequent assessments of noise. Measurements were collected using a bench- and field-calibrated Rion NL-52 integrating Class 1 (IEC 61672-2002) sound level meter (SLM) with data stored on the device's internal memory as well as on detailed field-sheets. The SLM and microphone were field calibrated before and after each measurement to detect and account for any drift in the measured noise levels. Measurement locations were chosen to minimise reflective phenomena or interruptive weather conditions in accordance with ISO1996-1:2016.

3.1.1 Noise Measurement Locations

The Mirfa landfall area would currently be classified as 'residential with light traffic' (day and night-time noise limits of 50 dBA and 40 dBA respectively). The completion of the landfall infrastructure would expectedly result in these areas being reclassified as 'heavy industry' (limits of 70 dBA and 60 dBA respectively), however the infrastructure itself would not likely add to the ambient noise environment and as such, all ambient noise levels have been assessed against the more stringent residential limits for day and night-time periods of 50 dBA and 40 dBA, respectively.

3.1.2 Noise Result and Analysis

A breakdown of measured noise metrics for the measurement sites at the Mirfa landfall is provided in Tables 3, 4 and 5 overleaf.

Only two of the noise measurements exceeded the statutory noise limit for the given period. These were the weeknight noise level at N02 and the weekday period at N03, each exceeding the ambient limit by less than 2 dBA. There is no obvious cause for the increased noise level in either case. Overall, the noise climate of the landfall area is relatively undisturbed by anthropogenic noise. Further, the site is sufficiently removed from the nearest noise sensitive receptor that any increase in noise levels as a result of Project activities are unlikely to affect the overall ambient noise environment in a way which may cause significant impact to residential properties.

Table 3: Noise measurement metrics for Mirfa Landfall, site N01						
Site			N01			
Period		Week Day	Week Night	Weekend D	Weekend N	
L _{Aeq}	dBA	48.9	34.3	40.4	36.2	
L _{max}	dBA	66.2	49.2	53.3	52	
L ₁₀	dBA	52.8	35.9	43.3	37.1	
L ₅₀	dBA	47.9	33.8	39.4	36.0	
L ₉₀	dBA	43.0	33.0	36.0	35.0	
Environmental Conditions						
Average Windspeed	m/s	1.95	1.23	3.51	0.76	
Max Windspeed	m/s	4.47	2.17	5.11	2.31	
Average Temp	°C	35.6	25.2	37.4	32.3	
Average Humidity	%	64.8	91.5	40.8	75.3	
Table Key:						

Table 3: Noise measurement metrics for Mirfa Landfall, site N01

Table Key:

Exceeds the relevant ambient noise limit of 50 dBA (daytime) or 40 dBA (night-time)

D = Day / N = Night / dBA = Decibels / m/s = Metres per Second / °C = Degrees Centigrade / % = Percentage

Table 4: Noise measurement metrics for Mirfa Landfall, site N02						
Site			N02			
Period		Week Day	Week Night	Weekend D	Weekend N	
L _{Aeq}	dBA	36.6	41.6	36.7	31.7	
L _{max}	dBA	46.4	49.9	47.8	53.6	
L ₁₀	dBA	37.9	42.4	39.4	32.6	
L ₅₀	dBA	36.4	41.5	36.0	30.3	
L ₉₀	dBA	35.5	40.9	33.9	29.5	
		Environment	al Conditions			
Average Windspeed	m/s	2.56	1.43	4.03	1.72	
Max Windspeed	m/s	3.11	1.78	5.31	2.89	
Average Temp	°C	28.4	24.2	37.7	31.5	

Approved Training Centre lannad by Tre Alla Dhab Center for Technical and Vocational Galacitue and Training (ACTVET) Liberse Net 0890/2020

Table 4: Noise measurement metrics for Mirfa Landfall, site N02					
Site	te N02				
Period	Period Week Day Week Night Weekend D Weekend N				
Average Humidity	%	85.2	92.4	47.1	80.5
Table Key:					
Exceeds the relevant ambient noise limit of 50 dBA (daytime) or 40 dBA (night-time)					
D = Day / N = Night / dBA	A = Decibel	s / m/s = Metres p	er Second / °C = De	egrees Centigrade,	/ % = Percentage

Table 5: Noise measurement metrics for Mirfa Landfall, site N03						
Site		N03				
Period		Week Day	Week Night	Weekend D	Weekend N	
L _{Aeq}	dBA	51.5	39.8	35.2	35.9	
L _{max}	dBA	66.2	58.8	52.3	54.7	
L ₁₀	dBA	55.0	43.8	37.0	37.0	
L ₅₀	dBA	50.6	37.8	34.7	35.7	
L ₉₀	dBA	44.0	35.7	33.2	34.1	
		Environmen	tal Conditions			
Average Windspeed	m/s	2.24	1.90	3.87	0.56	
Max Windspeed	m/s	3.39	2.50	5.11	0.92	
Average Temp	°C	30.9	24.4	35.8	29.8	
Average Humidity	%	75.7	93.4	53.8	85.8	
Table Key:						

Exceeds the relevant ambient noise limit of 50 dBA (daytime) or 40 dBA (night-time)

D = Day / N = Night / dBA = Decibels / m/s = Metres per Second / °C = Degrees Centigrade / % = Percentage

3.2 Soil Analysis

Soil sampling was undertaken during site visits in May, at eight targeted locations within the survey area via a hand auguring tool to a target depth of 2m below ground level (bgl) or to the depth where bedrock or groundwater was encountered.

The excavated soil was placed on a clean plastic sheet, free from potential contaminants or cross contaminants. The soil samples were sealed and marked and stored in a dedicated sample box for transportation to the laboratory. The coordinates for the monitoring locations are presented in Table 6 and locations are provided in Figure 1.

Table 6: Soil Sampling Locations				
Site ID	Latitude	Longitude	Depth (m)	
S01	24.1131	53.463	1.2	
S02	24.1151	53.4601	1.0	
S03	24.1168	53.4568	1.1	
S04	24.1159	53.454	1.0	
S05	24.1204	53.455	1.0	
S06	24.1113	53.4641	1.4	
S07	24.1117	53.4564	1.0	
S09	24.108	53.4519	1.0	

Table Notes: Latitude / Longitude in WGS84 Decimal Degrees / m = Metres

The full results are presented in Table B1, Annex B. The results were compared with the Abu Dhabi Quality and Conformity Council (ADQCC) Environmental Specification for Soil Contamination Soil Limits for Industrial and Commercial use (ADS 19/2017). A copy of the standards is provided at Table B2, Annex B.

Results for all locations/depths where in compliance with the standards and there were no visible signs of soil contamination or significant odour recorded from any location or any sample collected.

3.3 Ecological Survey

3.3.1 Habitat Overview

The habitat classifications described in this report are defined based on a **priori** schema classification system devised by Brown and Boer in 'Interpretation Manual of the Major Terrestrial Natural and Semi-natural Habitat Types of Abu Dhabi Emirates'. These categories have been expanded by the EAD to include elements of land use and land cover.

NEA was part of a consortium that produced a habitat map for the whole of the emirate of Abu Dhabi, under contract from EAD. The main tool used in mapping was satellite imagery, but with a lot of ground-truthing by NEA. A computer was "trained" to recognise spectral signatures of habitats, and these were then mapped automatically. The accuracy of the map was confirmed by visiting a very large number of pre- selected random points. The distribution of the habitats discussed in this report are shown in Figure 2, which has been taken from the final habitat map for the emirate (which is available on the EAD website).

The latest revision of the Environment Agency Abu Dhabi (EAD) Habitat Map was referred to and was found to be generally accurate for the overall site and larger habitat expanses. However, some habitats, including some considered as critical, are completely absent from the map. The most notable example of a missing habitat is the area of mangroves on the coast to the south-east of the private villa compound.

A couple of habitats identified on-ground cover small areas, that are often interspersed within major habitat-types (such as beach rock within sandy beaches and mudflats) and are therefore absent from the map. It must be noted that the habitat map covers the whole of Abu Dhabi Emirate, so it was necessary to use a Minimum Mapping Unit (MMU) to limit the size of each habitat unit that would be separately mapped. This is likely the reason why some habitats covering minor areas were not picked up by the computer.

The proposed pipeline route will initially make landfall over an area of intertidal mudflats exposed at low tide. Upon reaching the coastline, the proposed route passes diagonally over a strip of coastal sand sheets and low dunes that at the point of planned dissection are approximately 150 metres wide. From this point on, the route will traverse exclusively over approximately 2.6km of the habitat: coastal plains on well-drained sandy ground, until the onshore processing plant is reached.

The greater survey area (within 500m of the pipeline footprint) encompasses a total of 9 terrestrial habitats. Of these, Oil Industry (EAD Habitat Code (HC) 9210), Low Density Urban (EAD HC 9120), Date Plantations (EAD HC 8100) and Pipelines Infrastructure (EAD HC 9500) constitute the anthropogenic habitats within the greater

survey area. Natural habitats present within the greater site comprise of Mudflats and Sand Exposed at Low Tide (EAD HC 1010), Coastal Sand Sheets and Low Dunes (EAD HC 2020), Coastal Sabkha (EAD HC 3100), Mangroves (EAD HC 1040) and Coastal Plains on Well-drained Sandy Ground (EAD HC 2011).

The proposed pipeline will be directly situated in four of the abovementioned habitats. The threat status, area in km², description and percentage cover of the four habitats directly situated within the proposed route are presented in Table 7. Figure 2 shows an updated habitat distribution map that reflects changes made by NEA (addition of mangroves) to the pre-existing habitat map produced by EAD.

Habitats present at the site that are classified as critical and environmentally sensitive are discussed in greater detail in subsequent sections, with marine habitats/species not forming a part of this scope.

	· · · · · · · · · · · · · · · · · · ·				
H/T	Description	Threat Status	Area (km ²)	% Cover	
1010	Mudflats and sand exposed at low tide	Critical Habitat	0.00637273	1.8%	
2011	Coastal plains on well- drained sandy ground	Not Sensitive or Critical	0.33734763	95.09%	
2020	Coastal sand sheets and low dunes	Environmentally Sensitive Habitat	0.01069161	3.01%	
3100	Coastal sabkha, including sabkha matti	Not Sensitive or Critical	0.00034359	0.1%	
Table Notes:					
H/T = Habitat Type;					

Table 7: Habitat Description & % cover (Pipeline Footprint)

3.3.1.1 Coastal Sand Sheets & Low Dunes (2020)

This habitat type has a patchy coastal distribution within the Abu Dhabi emirate. With more than 3% vegetation cover, perennial grasses and dwarf shrubs are the most prominent elements of the flora here.

An interesting feature of the soil here is that it lacks direct influence of salt despite its proximity to the coast. This enables the growth is salt intolerant species (*glycophytes*). Heavy rains at the onset of winter followed by occasional showers provide favourable conditions for desert annuals although they are scarce during prolonged warmer periods.

These coastal white sands also support breeding Chestnut-bellied Sandgrouse, *Pterocles exustus*, a national priority species and also the Black-crowned Finch-Lark, *Eremopterix nigriceps*.

The landscape of this habitat is characterised by hummocky terrain on pale coralline and oolitic sand. These coarse sands are derived almost exclusively from the remnants of marine organisms and carbonate sediments. They are generally favourable for plant growth in arid regions because of their capacity to store water often for substantial periods.

After the winter showers, water percolates through the upper sand layers, to be stored in the sub surface layers where it is not lost through evaporation or surface run-off. Even plants with shallow roots are able to tap into this periodic reserve and once established they serve to stabilise the dunes.

Coastal Sand Sheets and Low Dunes currently face great pressures from the widespread coastal development in Abu Dhabi. They are likely to continue to deteriorate in the absence of impact mitigation measures and are hence classified as an environmentally sensitive habitat.

Plates 7 & 8: (top & bottom) Sand Sheets & Low Dunes

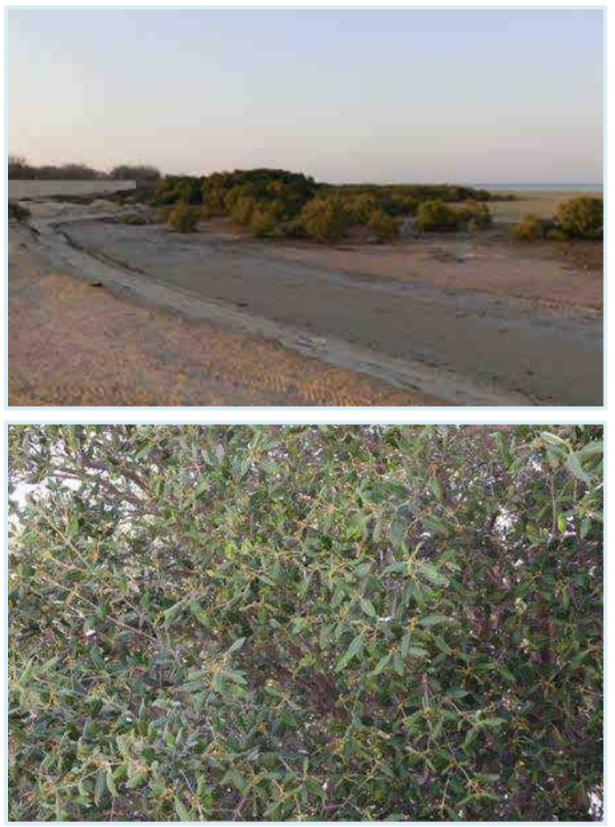
3.3.1.2 Mangroves (1040)

This habitat consists of inter-tidal areas dominated by the Grey Mangrove, *Avicennia marina*. Within the study area, the sheltered embayment to the south of Shuweihat Power Complex contains a mangrove forest that covers approximately 119,000m². *Avicennia marina* is an evergreen tree or shrub, growing up to 6-7 metres high.

The trunk is light brown and branches green. The leaves are dark glossy green and oval shaped with a pointed tip. Flowering between May and June, the flowers are orange-yellow. In the past, they could be used as wood for fuel and young branches as fodder for livestock.

Mangroves in Abu Dhabi are a protected critical habitat and occur along much of the coastline, but at a higher density in intertidal lagoons and surrounding off-shore islands. Mangroves are considered as a critical habitat due to a number of factors that include:

- They act as a nursery for juvenile fish and support sponges, worms, crustaceans, molluscs and algae and also provide shelter from wind and waves, to the benefit of many species of wader, herons, egrets, flamingos, gulls and terns;
- They provide protection to coastal areas from storms, with their root system also stabilising underlying sediment which is rich in nutrients;
- Some bird species nest in mangroves, particularly Western Reef Heron, *Egretta gularis*, and Striated Heron, *Butorides striata*, in the UAE, migratory birds also rest in them and feed on the insects that they support.


The mangroves in the study area appeared to be in good health with healthy leaves and branches (Plates 9 & 10) and no apparent diseases or dead trees were observed. Fish fry and the Mottled Crab, *Metopograpsus messor*, a grapsid crab that inhabits mangroves, were found in abundance between the mangrove pneumatophores. Plate 11 shows the latter photographed during the survey.

Covering a relatively small area (119,000m²), the mangroves present in the survey area were absent from the EAD habitat. Figure 2 reflects the changes made by NEA to the existing habitat map, which now includes the mangroves, following investigations conducted on-ground.

Plates 9 & 10: (top) Avicennia marina; (bottom) Avicennia marina in flower

Plates 11 & 12: (top) Metopograpsus messor; (bottom) rope entangled with mangrove pneumatophores

yd W

41.618

3.3.1.3 Coastal Sabkha (3100)

Sabkha is originally an Arabic term referring to flat, salt encrusted desert that is usually devoid of any plant cover. The high concentration of salts on the sabkha surface prevents the growth of most flora. Halophytes (salt tolerant plants), however, may occur when there is a thin layer of sand over the surface. Soil salinity is another factor exerting a highly selective effect on plant growth.

High concentrations of salts on the sabkha surface prevents growth of most plant species and as a consequence sabkha appears to be distinctly barren. Plant species associated with this habitat type, predominantly halophytes such as the chenopod *Haloxylon salicornicum*, are restricted to the margins. Some species do germinate on the sabkhas but only after a period of heavy rainfall as this leads to a temporary reduction in the salt concentrations. *Tetraena mandavillei* is one such species. Once the plants have gained a foothold, they may survive for some years in a state of dormancy by shedding their succulent leaves. They then develop new leaves and resume growth after further heavy downpours.

Coastal sabkha is a major landscape feature in Abu Dhabi Emirate, and extends for over 300km from near Sila in the west, to the border of Dubai Emirate and beyond in the east. Although sabkha occurs in deserts throughout the world, the coastal sabkha present in Abu Dhabi has been described as the best example found anywhere and is deserving of world heritage status. The habitat is of particular interest to petroleum geologists.

Very low densities of plant life, a lack of shade and soils high in salt concentration make for harsh conditions that prevents any significant faunal and floral communities being able to inhabit such areas. That being said, a few species are associated with this habitat, but very few would be considered to wholly rely upon it.

A few small lacertids can be found on areas of sabkha, namely, these are Spotted Toadheaded Agama *Phrynocephalus maculatus*, Gulf Sand Gecko, *Pseudoceramodactylus khobarensis* and Arabian Toad-headed Agama, *Phrynocephalus arabicus*,

P. arabicus was found in close proximity to an area of coastal sabkha during the survey. The only other species proven to frequent the sabkha habitat in the site of study was Arabian Red Fox, *Vulpes vulpes arabica*, identified here by their tracks. Being highly mobile, home ranges of up to 50km are common. Though unlikely to find food in such barren expanses, foxes will instead traverse areas of sabkha into favourable habitats where food is more plentiful.

Plates 13 & 14: (top & bottom) Coastal Sabkha

3.3.1.4 Mudflats & Sand Exposed at Low Tide (1010)

This habitat consists of intertidal, coastal areas where sand and mud are deposited by tides and is mostly devoid of vegetation. Found along most of the mainland coast and surrounding offshore islands, mudflats cover approximately 290.94km² of the emirate of Abu Dhabi. The mudflats in the study area extend from the shoreline for 800 metres and cover an area of approximately 0.59km².

This is an important habitat for many species of shorebirds and waders and during certain times of the year, many thousands of birds can be present at this habitat throughout the country on any given day, feeding on benthic invertebrates during low tides.

Mudflats are often devoid of vegetation but can also be found with less than 10% vegetation cover. No plants are generally found in these habitats, with the exception of one species of seagrass, *Halodule uninervis*, which can be exposed at low tide (usually sparse).

According to the EAD Habitat Map this habitat type at the project location covers approximately an area of within the greater survey area, and 1.8% of the Proposed Pipeline Footprint. This is an important habitat for wading birds feeding on benthic invertebrates during low tides.

Plates 15 & 16: (top & bottom) Mudflats & Sand Exposed at Low Tide

3.3.2 Flora

With the exception of the *Conocarpus lancifolius* trees planted alongside the private villa perimeter wall at the east of the site boundary, just seven naturally occurring species of vascular plant were recorded across each habitat in the survey area, as follows:

- Salsola imbricata;
- Halopeplis perfoliata;
- Heliotropium kotschyi;
- Suaeda vermiculata;
- Avicennia marina (Grey Mangrove);
- Tetraena qatarensis;
- Tetraena simplex;

All these species are locally common along the UAE coast and are perennial, halophytic chenopods, except **Salsola imbricata**, which is an annual halophytic plant. No glycophytes were recorded in the survey though little rainfall had occurred in the months preceding the survey so it is likely that the seven plants recorded in the survey will be supplemented by additional annual glycophytes following periods of rain in cooler months.

Halopeplis perfoliata is the dominant plant within the coastal sand sheets and low dunes habitat, and indeed at the site overall, where it frequently forms monospecific stands. Common along the Arabian Gulf coast and inland, this halophytic shrub can be frequently found growing next to salt marshes and sabkhas.

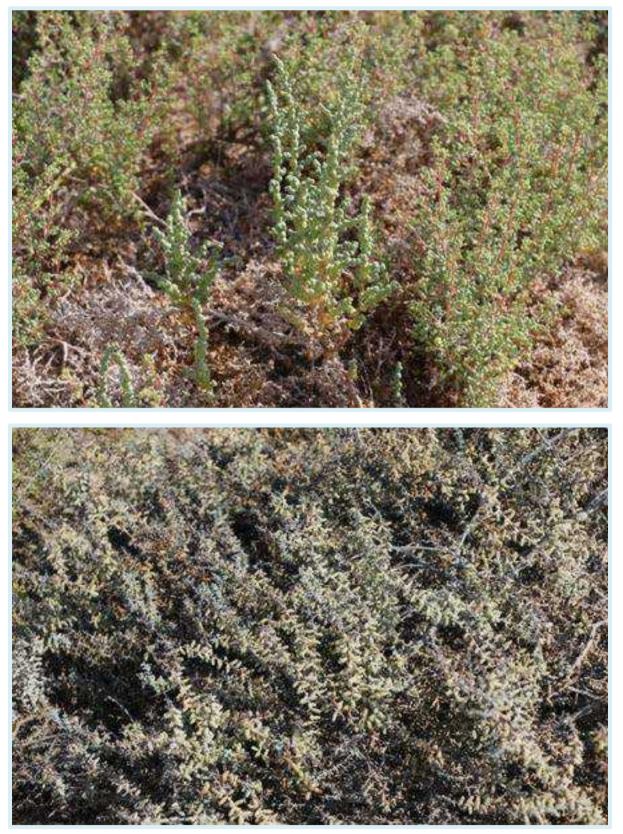
H. perfoliata is described as a perennial and woody shrub, with stems that are covered in green, clustered flowers that form strings of beads. Flowering occurs from September to December.

The presence of *Heliotropium kotschyi* was determined at the site through the identification of a single specimen, making it the rarest plant in the survey area at the time of investigation. However, despite its uncommon presence in the survey area, it is common and widespread at coastal sites throughout the UAE, though less so in parts of the northern emirates.

H. kotschyi is described as a perennial and woody shrub with stems that are up to 60cm long, containing small, white flowers. *H. kotschyi* flowers all year round making it an important plant for pollinating insects. Plate 22 shows the lone specimen found in the survey, in flower.

A mature stand of the Grey Mangrove (*Avicenna marina*) Is present within the eastern intertidal shoreline where the coast to the north of the mangroves protrudes and creates shelter from wave action, which has allowed a relatively small but dense mangrove forest to develop. The mangroves here range in height from 2 to 5m.

Salsola imbricata was found on a couple of occasions during the survey. Common on both coasts of the UAE, this herb is found in saline sand and on disturbed ground. This plant was one of the first plants to colonise coastal landfills. *S. imbricata* is an annual herb that has 30-80cm long stems which are covered in green and brown leaves that form strings of beads. This plant flowers from September to December.


Tetraena qatarensis (Plate 19) occurs frequently in the survey area, particularly within the habitat transitional zone between coastal, low dunes and sandy coastal plains. *T*. **qatarensis** is one of the commonest and widely dispersed plants in the UAE. It occurs from coastal sites and offshore islands to deep sand deserts in the far south of the country. *T*. **qatarensis** is described as a small shrub with dense branches that extend up to 80cm in length. Its glossy, green leaves are cylindrical and are 0.3cm to 0.8cm long. Flowering from December to March, the flowers are small, white, and enclosed by green and brown sepals. This dwarf shrub was once used for purgative treatment on livestock.

Grazing pressures on the naturally occurring vegetation at the site are considered to be very low to non-existent. Livestock is not kept within the site or within adjacent lands and no evidence was found to suggest wandering livestock (such as domestic camels) frequent the site. Wild grazers (gazelle for example) may visit the site from time to time, but this was unsubstantiated during the study.

Plates 17 & 18: (top) Halopeplis perfoliata (foreground); (bottom) Suaeda vermiculata

Approved Training Centre Literated by The Altu Divisit Center for Technical and Vocational Education and Training (SCTUET) Literate Net 0890/2000

Plates 19 & 20: (top) Tetraena qatarensis; (bottom) Suaeda vermiculata

Plates 21 & 22: (top) Avicennia marina; (bottom) Heliotropium kotschyi

Table 8: Plant species recorded during the survey				
Family name	Scientific Name	Status During Survey	Status in UAE/IUCN	
Amaranthaceae	Halopeplis perfoliata	The dominant plant species in the coastal dune habitat, occurring in high densities	UAE: Common saltmarsh plant IUCN: NE	
Amaranthaceae	Salsola imbricata	Occasionally noted	UAE: Common halophyte IUCN: NE	
Amaranthaceae	Suaeda vermiculata	Occasionally noted	UAE: Common halophyte IUCN: NE	
Avicenniaceae	Avicennia marina	A dense and mature stand present on the shoreline	UAE: Locally common IUCN: NE	
Boraginaceae	Heliotropium kotschyi	Rare in the survey area. Only a single specimen found	UAE: Common on the coastline of the UAE IUCN: NE	
Zygophyllaceae	Tetraena qatarensis	Most abundant flora within the overall site	UAE: Common to AD coast & N. Emirates. IUCN: NE	
Zygophyllaceae	Tetraena simplex	Occasionally noted	UAE: Common IUCN: NE	

Table Key: C-Name = Common Name / IUCN = International Union for the Conservation of Nature / NE = Not Evaluated / UAE = United Arab Emirates

3.3.3 Mammals and Reptiles

An extensive diurnal walkover was conducted to search for the presence of mammals and reptiles within the site boundary. Five camera traps were also set overnight to record any nocturnal specimens. The traps were set at locations deemed to be support the highest density of fauna based on the frequency of ecological indicators such as tracks, burrows, and scats.

Arabian Red Fox, *Vulpes vulpes arabica*, Feral Cat, *Felis catus* and Cheesman's Gerbil, *Gerbillus cheesmani*, were the only mammals recorded in the survey; their presence initially indicated by frequent tracks, later proven through camera trap footage. An occupied burrow belonging to the latter was also located.

Lizard tracks were seen in several locations, normally where the density of vegetation was a higher such as along the low dunes landward of the beach. Gecko prints were clearly visible here although it would be very difficult to identify the gecko to species level using the tracks alone, due to the size of the prints and the almost identical prints of several geckos associated with such locations in the UAE.

Additional prints made by a small lizard were seen in the same location. These tracks were identified as being made by a member of the Phrynosomatidae family that are commonly referred to as the Fringe-toed Lizards. Tracks made by these lizards show a tail drag mark and, as their common name suggests, fringed toes of varying lengths. Based on the location and proximity to the coast, it is most likely that a Schmidt's Fringe-toed Lizard, *Acanthodactlyus schmidti*, made the tracks, but this cannot be verified by tracks alone.

Arabian Red Fox, *Vulpes Vulpes arabica* (Plate 23), tracks were frequently recorded during the diurnal survey. The numerous tracks indicated that the foxes were most active around the villas. A camera trap was placed at the end of a chokepoint where a villa compound wall at one side and mangroves at the other, funnels mobile fauna along a narrow strip which eventually leads to a gap in a fence that is clearly, frequently used by cats and foxes. Plates 23 and 25 show camera trap stills of a fox and cat traversing under the fence, respectively.

The Arabian Red Fox is known to be solitary, so it is possible that the tracks found belonged to one fox present within the study boundary. Common and widespread throughout the UAE, the Arabian Red Fox is highly adaptive to most habitats, such as deserts, mountains, and urban environments. Foxes feed on reptiles, rodents, and birds, which are all present in the survey area.

A small burrow that was clearly excavated by a rodent was found next to a pile of discarded anthropogenic debris approximately 50 metres away from an abandoned falcon trappers hide. A camera trap was subsequently placed pointing in the direction of the burrow entrance in order to identify the occupant.

Upon reviewal of the data captured by the camera trap, an identification of Cheesman's gerbil was able to be ascertained from stills captured by the camera trap which was triggered on several occasions as the gerbil entered and exited its burrow. Plate 26 shows the Gerbil, captured on camera in the early hours of the morning of 22.05.21.

Cheeseman's Gerbil is a common and widespread rodent in sandy deserts and gravel plain environs in the UAE. It is a nocturnal, desert-dwelling species that lives in semipermanent burrows to escape the midday heat. Burrows are sometimes dug close to one another, forming colonies. A primarily herbivorous species, they also occasionally feed on invertebrates such as beetles and arachnids.

A single Arabian Toad-headed Agama, *Phrynocephalus arabicus*, was the sole reptilian species sighted and thus identified to species level throughout the entire survey period, showing the site supports a low diversity of reptiles. The agama was seen within a habitat transitional zone between sabkha and coastal plains where vegetation is sporadic, and some is dead/dormant.

P. arabicus is a small agamid, highly specialised for life on soft, aeolian sand and is one of the most common lizards in the UAE, found wherever there are sand sheets, dunes or sandy plains. They are most often seen during the heat of midday, as was the case during the survey.

Plates 23 & 24: (top) Arabian Red Fox, *Vulpes vulpes arabica*; (bottom) (NEA File Photo) White-spotted Lizard, *Acanthodactylus schmidtii*

Plates 25 & 26: (top) Feral Cat, Felis catus; (bottom) Cheesman's Gerbil, Gerbilus cheesmani

Plates 27 & 28: (top) Arabian Red Fox Tracks; (bottom) Cheesman's Gerbil tracks

Table 9: Mammal and Reptile species recorded during the survey				
C-Name	Scientific Name	Status During Survey	Status in UAE & IUCN	
Arabian Red fox	Vulpes vulpes	Common. Numerous tracks were found, and an individual was captured several times on camera trap	UAE: Common and widespread IUCN: LC	
Feral Dog	Canis lupus familiaris	Tracks were observed, but no actual sightings	UAE: Common with human habitation IUCN: LC	
Feral Cat	Felis catus	Caught on camera trap at a few locations	UAE: Common with human habitation IUCN: LC	
Cheesman's Gerbil	Gerbillus cheesemani	A burrow belonging to the species was located. A specimen was later captured on camera trap	UAE: Common / IUCN: LC	
Arabian Toad-headed Agama	Phyrocephalus arabicus	One sighted within an area of coastal sabkha	UAE: Common / IUCN: LC	
Gecko	Buopus sp.	Tracks seen on a couple of occasions	UAE: Common and widespread IUCN: LC	
Fringe-toed Lizard	<i>Acanthodactylus</i> sp.	Tracks seen on a couple of occasions	UAE: Common and widespread IUCN: LC	

Table Key:

C-Name = Common Name / IUCN = International Union for the Conservation of Nature

LC = Least Concern / UAE = United Arab Emirates

3.3.4 Birds

Avifauna at the site was assessed throughout the days of 20th to the 22nd of May and on the morning of 24th of May 2021. Systematic counts of all species present were made using 10X binoculars and 20-60X telescopes. Every bird encountered during the survey was able to be identified to species level, using criteria outlined in various popular references.

Incidental observations were made covering the site overall. In addition, a dedicated duration was selected for a stationary count of shorebirds using a telescope from an elevated position on the beach ridge overlooking the intertidal flats where avian activity is concentrated at the site.

In total, 13 species of birds, totalling 73 individuals were recorded during the site visits. Counts of all the birds seen on the three days are given in Table 13, scientific names for all taxa, as well as IUCN status are presented therein.

Just six species of waders were recorded in the survey. The low diversity of shorebirds is not unusual for the time of the survey (early summer) as shorebird numbers using the site will naturally decline from April onwards as birds depart northwards to breeding grounds, although reduced (though still significant) numbers of nonbreeders are likely to remain all summer, as they do in intertidal areas along the entirety of Abu Dhabi's coastline. Numbers will then start to increase again from late August onwards, as wintering birds arrive, and south-bound migrants pause to refuel.

The most numerous wader recorded in the survey was Kentish Plover, *Charadrius alexandrinus*, which was counted on 16 occasions foraging along the sandy beach and on the mudflats at low tide. The site is considered to be a suitable location for this species to breed, though no nests, fledglings, or any behaviour indicating breeding at the site was found in this instance.

One avian species was proven to be breeding at the site at the time of the survey. A single, Red-wattled Lapwing, *Vanellus indicus*, nest was located at night while NEA ecologists were driving between noise monitoring sites. The nest consisted of a scrape on the ground in a sparsely vegetated area, approximately one hundred metres inland of the vegetated coastal dune strip. The lapwing was incubating its eggs when first sighted but took flight upon seeing the survey vehicle from approximately 30 metres away. After the lapwing left the nest, four eggs were visible inside the scrape type nest. *V. indicus* nests are difficult to detect as the eggs are cryptically coloured and usually match the substrate on which they sit. It is therefore likely that additional nests are present at the site but remain well hidden. A photo was not taken of the nest as it was decided that the risk of disturbance from taking a close-up photo (the only option at night) was too great. A GPS coordinate, however, was swiftly taken of the breeding site by an ecologist on-foot.

Approved Training Centre annued by The Also Disable Center for bothing al and Viscational Education and Training (ACTVET) Listense No. (2850/3000)

Red-wattled Lapwing is an Indo-malayan species. It is now resident in much of Arabia, being dispersive, it is rapidly colonising new sites, particularly ephemeral wetlands which are generally man-made in Arabia. They nest colonially around fresh and saltwater pools, sewage ponds, lakes, and lagoons. The population in the country is almost certainly spreading and increasing due to proliferation of groundwater abstraction (which frequently results in the formation of surface flashes) which allows the species to frequent sites that were previously too arid and inhospitable. A recent trend in the UAE has been noted towards breeding in simply well-watered market gardens and fields of vegetables (Aspinall 2010).

Another bird that has been introduced to the UAE, the presence of Grey Francolin, *Francolinus pondicerianus*, (Plate 31) within the site footprint was initially indicated acoustically by their distinctive call, often heard in the early morning. Further evidence of the species common presence within the site footprint came from their tracks which were clearly imprinted into the soft coastal sands just above the high tide mark. Plate 32 shows tracks made by *F. pondicerianus*, along a mesh fence that marks the southern boundary of the EAD pearl oyster cultivation centre. A small covey of three francolins were eventually seen on the last morning of the survey as the birds were foraging along the vegetated, sandy hummocks. Up until the 1950s Grey francolin was restricted to the Batinah (Oman), Ra's al-Khaimah and some inland cultivations such as that at Dhaid (Guichard & Goodwin, 1952). Their presence in the survey area is therefore indicative of this species' increasing population and rapid spread from the north and east of the UAE.

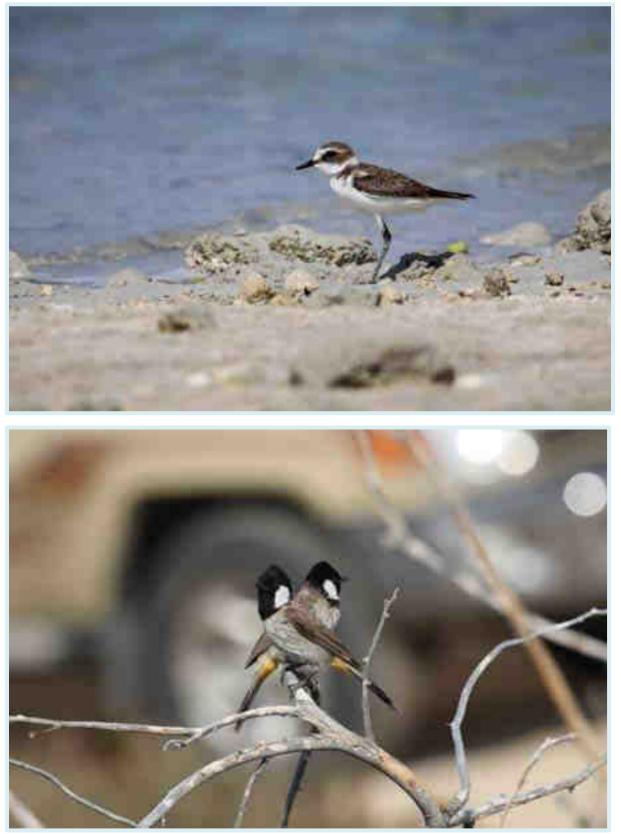
Western Osprey, **Pandion haliaetus**, was recorded on a single occasion in the survey when an individual was seen in-flight passing over the stand of mangroves situated to the north-eastern shoreline of the site. Western Osprey has a very large global range being absent only from Antarctica, at both coastal and freshwater environments. The resident population on the coasts and islands of the Abu Dhabi emirate is one of the densest anywhere in the world. The Arabian Gulf population is thought to be genetically isolated from those in the Red Sea, which also has a large population. Osprey eyries are large and conspicuous and can grow to a very large size, as nesting materials are added every breeding season. Therefore, it is clear that Osprey seen during the survey are not breeding at the site or in adjacent land, as no eyries were visible. Instead, Osprey are likely to use the coastal site to catch fish or merely pass through the site in search of more plentiful fishing waters.

The UAE Osprey population is thought to number 75 to 100 pairs but is declining, most likely as a result of development on islands and increased human disturbance. *P. haliaetus* has one of the largest worldwide ranges of any bird and has an increasing population globally. Therefore, the species is considered as 'Least Concern' on the IUCN Red List of threatened species.

Approved Training Centre sensed by The Also Dhale Center for listing and Vicentinal Education and Training (ACTVET) [sitemes No: Dest/3000

The most numerous avian species recorded was the House Sparrow, **Passer domesticus**. House Sparrows are the most widely distributed wild bird. They are found in most parts of the world and are a very common resident breeder in the UAE. They are often seen near human habitation and frequently roost and nest in buildings. They were frequently observed in the survey area away from sabkha and sparsely vegetated though in a higher concentration around the mangroves and adjacent to the occupied villas.

Two additional very common passerine species, associated with areas of human habitation were encountered during the survey area. These were Laughing Dove, *Spilopelia senegalensis* and Eurasian Collared Dove, *Streptopelia decaocto*. The former was recorded in higher numbers, eight in total, while six of the latter were sighted and heard, making their distinctive and frequently heard *coo-cooh-co* call, from the *Conocarpus* trees within the private villa grounds. The two species are quite easy to distinguish because of the smaller size of *S. senegalensis* and presence of a distinctive black stripe around the back of the neck of *S. decaocto*.


One wader recorded in the survey is listed as 'Near Threatened' on the IUCN Red List of threated species and has a declining population. This was Eurasian Curlew, *Numenius arquata.* Three were seen in the survey foraging on the intertidal flats at low tide. In the UAE, *N. arguata* occurs predominantly as a winter visitor and passage migrant and does not breed in the country. However, juveniles do not migrate to northerly breeding grounds in spring, therefore, a small number over-summer in the UAE, which explains their presence in low numbers noted in the survey. Threats to the above-mentioned threatened species include loss and disturbance of mudflats from construction works, development of high-tide roosting sites, and pollution.

All other avian species recorded in the survey are listed as 'Least Concern' on the IUCN Red List of threatened species. All bird species recorded during the survey are listed in below in Table 10, with threatened species highlighted in red.

Plates 29 & 30: (top) (NEA File Photo) Kentish Plover, *Charadrius alexandrus*; (bottom) White-eared Bulbuls, *Pycnonotus leucotis*

Approved Training Centre Literated by The Alls Divide Center Technical and Vicentinal Education and Training (ACTVET) Literate Nr. 0890/2000

Plates 31 & 32: (top) Grey Francolin, *Francolinus pondicerianus*; (bottom) Grey Francolin tracks

Approved Training Centre Januard by The Allar Ditato Center for Technopal and Vincotinal Soluciture and Training (ACTVET) Linense No: 0850/3000

Plates 33 & 34: (top) (NEA File Photo) Greater Hoopoe-lark, *Alaemon alaudipes*; (bottom) (NEA File Photo) Western Osprey, *Pandion haliaetus*

Approved Training Center I Instant by The Alia Dirate Center I Techniqal and Viscettmal Uducation and Training (ACTVET) Listense Alia UERO/3020

Plates 35 & 36: (top) (NEA File Photo) Red-wattled Lapwing, *Vanellus indicus*; (bottom) (NEA File Photo) Western Reef Heron, *Egretta gularis*

Approved Training Centre Literated by The Alus Disale Center for Technical and Viscational Education and Training CECTURT Literate Net (2010/2020

Table 10: Bird species recorded during the survey				
Common Name	Scientific Name	Count	Status On-site	Status in UAE / IUCN
Grey Francolin	Francolinus pondicerianus	3	Tracks frequently noted. Heard calling from within private villa grounds. A covey of 3 later observed	UAE: Common resident breeder IUCN: LC
Western Reef Heron	Egretta gularis	4	Four seen on the intertidal mudflats	UAE: Common resident breeder IUCN: LC
Osprey	Pandion haliaetus	1	Flew overhead on a single occasion over the mangrove area	UAE: Moderately common resident breeder IUCN: LC
Red-wattled Lapwing	Vanellus vanellus	1	One adult found incubating a nest of 4 eggs	UAE: Common resident breeder IUCN: LC
Kentish Plover	Charadrius alexandrinus	16	Seen foraging along beach and on intertidal flats	UAE: Common resident breeder IUCN: LC
Lesser Sand Plover	Charadrius mongolus	6	Seen foraging along beach and on intertidal flats	UAE: Migrant/visitor primarily in winter IUCN: LC
Eurasian Curlew	Numenius arquata	3	Three seen foraging on intertidal flats	UAE: Migrant/visitor primarily in winter IUCN: NT
Common Greenshank	Tringa nebularia	1	One seen on the beach at high tide	UAE: Migrant/visitor primarily in winter

Table 10: Bird species recorded during the survey									
Common Name	Scientific Name	Count	Status On-site	Status in UAE / IUCN					
				IUCN: LC					
Eurasian Collared Dove	Streptopelia decaocto	6	Commonly seen within trees in and adjacent to the private villas	UAE: Very common resident breeder IUCN: LC					
Laughing Dove	Spilopelia senegalensis	8	Commonly seen within trees in and adjacent to the private villas	UAE: Very common resident breeder IUCN: LC					
Greater Hoopoe-lark	Alaemon alaudipes	1	One seen running between dwarf shrubs inland of the coastal dunes	UAE: Common resident breeder IUCN: LC					
White-eared Bulbul	Pycnonotus leucotis	8	Commonly seen within the mangroves and trees adjacent to the private villas	UAE: Very common resident breeder IUCN: LC					
House Sparrow	Passer domesticus	15	Commonly seen within the mangroves and trees adjacent to the private villas	UAE: Very common resident breeder IUCN: LC					
Table Key: IUCN = Internationa	al Union for the Conservation of Na	ture / LC =	Least Concern						

Table Key: IUCN = International Union for the Conservation of Nature / LC = Least Concern

3.3.5 Arthropods

Arthropods were assessed in the area during day-time walkover investigations. Anthropogenic debris was also moved to look for insects hiding beneath. All Arthropod species recorded during the survey are listed in Table 11. Any arthropod species observed were recorded, photographed and where possible were identified to species level. Most insects are difficult to survey because of their small size, complex taxonomy, and cryptic habits. Flight seasons of particular insects may last for only a few days or weeks. Immature stages of most insects are very difficult to identify to species level.

Insects were found to be uncommon across the site at the time of survey. In fact, only four species were recorded throughout the duration of the survey. Namely, these were the Asian Dwarf Honeybee, *Apis florea*, Desert Locust, *Schistocera gregaria*, Desert Runner Ant, *Cataglyphis bicolor* and Darkling Beetle, *Pimelia* sp.

The honeybees (*Apis florea*) were abundant within the flowering mangroves at the time of the survey, where numbers in excess of 100 were observed pollinating the mature stand of Grey Mangroves, *Avicennia marina* (Plate 21). *A. florea* builds open nests primarily in trees but has also been known to use other structures such as walls. Honeybees (Apidae) are kept commercially worldwide, and honey is considered of economic importance worldwide. Although honey from these bees is collected by people in some countries, including Oman, in the UAE this bee is not cultivated.

Desert Locust, *Schistocera gregaria*, was recorded once during the survey. Swarms of these locusts have been decimating crops in East Africa and the Middle East in recent years. It is estimated that Desert Locusts can consume the equivalent of their body weight (2 g [0.07 oz]) each day in green vegetation. They are polyphagous and feed on leaves, shoots, flowers, fruit, seeds, stems and bark. Nearly all crops, and non-crop plants are also eaten. Although this species can form plagues, the lone individual seen during the survey is of little concern.

Widespread over much of the UAE, Desert Runner Ant, *Cataglyphis bicolor*, colonies can be frequently found under bushes, or in the open on gravelly and sandy plains. A diurnal insect, *C. bicolor* is predominantly subterraneous, but also less frequently nests in timber structures above ground.

Tracks made by a Darkling Beetle, **Pimelia** sp., were frequently seen around the vegetated beach hummocks (Plate 37). Darkling beetles are mainly nocturnal and primarily feed on seeds and leaves. The females lay eggs in rotten plants and upon hatching, the larvae feed on the decaying plant material until they become adults. To protect themselves, these beetles bury their heads in sand while keeping their bodies covered by a hard, exposed shell.

Plates 37 & 38: (top) Darkling Beetle, *Pimelia* sp. tracks; (bottom) colonies of Desert Runner Ants, *Cataglyphis niger*

Plates 39 & 40: (top) Asian Dwarf Honey bee, *Apis florea*; (bottom) (NEA File Photo) Desert Locust, *Schistocerca gregaria*

Approved Training Centre Iseraed by The Alia Divide Center 1 Technique and Vecetorial Uducation and Training (ACTVET) Linense Nr. 0890/3020

	Table 11: Arthropod species recorded during the survey									
C-Name	Scientific Name	Status On-site	Status in UAE / IUCN							
Desert Locust	Schistocerca gregaria	Seen on one occasion	UAE: Common to Abu Dhabi Emirate IUCN: NE							
Asian Dwarf Honeybee	Apis florea	>50 pollinating mangrove flowers	UAE: Common to Abu Dhabi Emirate IUCN: NE							
Desert Runner Ant	Cataglyphis niger	Ant colonies made by this species seen within the vegetated coastal dune strip	UAE: Common to Abu Dhabi Emirate IUCN: NE							
Darkling Beetle	Pimelia sp.	Tracks seen and photographed on coastal dune habitat	UAE: Common to Abu Dhabi Emirate IUCN: NE							

Table Key:

C-Name = Common Name / IUCN = International Union for the Conservation of Nature

NE = Not Evaluated / LC = Least Concern / UAE = United Arab Emirates

3.3.6 Geomorphology

The area of study is located within the district of Mirfa, a strip of the UAE mainland along the Arabian Gulf coast from Thumariyah to the west and Tarif to the east. The coastline of Mirfa is situated in the mid-section of the extensive Khor Al Bazim lagoonal channel system that stretches for approximately 80km from its open, western flank marked by Al Bazam Al Gharbi Island to its eastern, semi-enclosed limits to the south of Abu Al Abyad Island where it becomes locally intertidal.

A series of offshore islands, of which the closest from the site of study is Jananah Island (9km away), form part of a coastal complex of barrier islands and lagoons. These barrier islands protect the mainland coast from wave action, allowing carbonate muds to accumulate and mangrove swamps to develop within the sheltered lagoons.

Onshore beach ridges, such as those seen at the site of study, consist of hummocky terrain on pale coralline and oolitic sand. These coarse sands are derived almost exclusively from the remnants of marine organisms and carbonate sediments and are locally elevated some 2 to 4m above sea level.

The beach ridges and thin coastal dunes at the site of study are backed inland by coastal sabkha. The sabkha is very flat, sloping slightly towards the coast. Its surface lies above the level of normal spring tides. Occasional storm induced flooding, however, transports carbonate muds onto its surface.

3.3.7 Anthropogenic Use

The site is evidently used recreationally for a couple of activities, some of which were observed taking place during the survey period. A small number of people were camping at the site in several tents, trailers, and motorhomes. The area seems to be well-used for this purpose as it has its own place marker on Google Maps named as "Mirfa Saltwater Camping" and people were continuing to use the site in early summer when temperatures reach intolerable levels, making it very likely that a higher number of persons utilise the site for camping through the cooler months.

Human litter associated with camping such as plastic bottles, disposable barbeques and tin cans were strewn along the beach, although a smaller proportion of the litter was probably washed up on high tides. Some people have seemingly attempted to clean up after themselves as some full bin bags were left in-situ at camping locations (Plate 43 and 44).

During low tides people were observed driving and walking across the intertidal flats and occasionally, small fishing vessels came in closer to shore. People were also seen fishing from the long breakwater that extends for 800m to the southeast of the survey area.

Tyre track marks intersect much of the site but are concentrated along the beach where a number of vehicles evidently park for camping, especially over the weekend. People living locally that reside in the private, walled villas to the north/northeast of the survey area, gain access by means of a sand/gravel track that runs parallel to the coast just north of the beach. A smaller number of vehicles access the villas from a track that follows the outer Mirfa Power Complex facility fence.

Plates 41 & 42 (top) People camping recreationally (background); (bottom) Numerous tyre tracks & a caravan & 4x4 vehicle

Approved Training Centre Literated by The Also Disable Center for Technical and Vocational Education and Training (ACTUET) Literate Net (DERO/2020)

Plates 43 & 44: (top & bottom) Discarded litter

Approved Training Centre larmand by The Alia Dhabi Center bichnical and Vocational Uslacith and Training (ACTVET) Literase No: USIO/3020

4.0 Conclusions, Recommendations & Mitigation Measures

4.1 Ambient Noise

The ambient noise climate of the project area shows little effect of anthropogenic disturbance. Two minor exceedances of the UAE residential ambient noise limits were observed, albeit over the shorter averaging period of 15 minutes, and in both cases the exceedances were less than 2 dBA above the limit.

Given the relatively undisturbed nature of the project site, and the nature of the proposed pipeline development, the operation of the cable alignment is not expected to cause long-term changes to the noise climate of the area or result in prolonged exceedances of the applicable noise limits.

4.2 Soil and Groundwater

The collection of soil samples was completed using a hand-augur and pre-prepared sample containers. Analysis of the eight collected samples was undertaken by a ESMA approved third-party laboratory (Element LLC). The vast majority of analytes were below the detection limits and were not registered in the analysis at all. Of those parameters which could be measured, all were recorded below screening or clean-up thresholds as outlined by the ADQCC soil standards.

Due to unavailability of suitable surface sampling locations or wells, groundwater samples were not collected from the site.

4.3 Terrestrial Ecology

The pipeline landfall location site encompasses a number of terrestrial habitats both natural and anthropogenic. A high percentage of the proposed footprint (95.19%) will be directly situated in habitats of species-poor, low ecological value i.e. coastal sabkha and sparsely vegetated coastal plains. Two critical habitats, however, will be directly impacted by the development and are discussed in detail below.

The footprint of the proposed pipeline landfall route traverses directly over a sporadically populated stand of immature mangroves (see datasheets CP1 & CP2 in Annex B). A relatively small number of immature mangroves and saplings (>10 and >20, respectively) will be at risk of being directly impacted by the development. Any direct loss of mangrove trees should be identified. Replanting of a greater quantity of mangroves (twice the area of mangrove disturbed or twice the number of mature trees lost) is the mitigative strategy against loss of this critical habitat. However, such plans are lengthy in terms of stakeholder commitment (>5 years), expensive to undertake and difficult to manage and monitor success rates effectively. As such, we recommend that the proposed route is altered slightly to avoid any direct loss of mangroves.

Approved Training Centre Instanced by The Also Divisio Center for Instanced and Viccettonal Education and Training (ACTVET) Linense Nr: CENO/2020

Another critical habitat that will be subject to some level of alteration/degradation through the development is intertidal mudflats and sand exposed at low tide. The proposed route passes over approximately 800 metres of this habitat when fully exposed on the lowest tides. Although low numbers of birds were foraging here at the time of the survey, this is largely related to the time of year. Much greater numbers of shorebirds, with some very likely consisting of threatened species, will undoubtedly use the site from autumn to spring, therefore, we recommend that the development takes place from July to September when disturbance to migrants and over-wintering birds from the construction of the pipeline on intertidal flats will be negligible.

A couple of ecologically sensitive receptor sites were identified during the survey. Namely, these were an active, Red-wattled lapwings nest containing four eggs and a burrow belonging to a Cheesman's Gerbil. Neither of these sites are located within the pipeline footprint but are close enough to be vulnerable to damage from vehicles associated with the development, particularly the lapwing nest which is just 90 metres from the pipeline's planned location.

After an incubation period of 28-30 days, once the lapwing eggs have hatched, juvenile, Red-wattled lapwings fledge and leave the nest when they are approximately four weeks old. Commencement of any construction activities should be postponed until mid-July at a minimum, which will ensure that the lapwings (and other birds potentially breeding nearby) have left the area before the start of the development.

The Cheesman's Gerbil burrow is likely to be periodically occupied through each season and is consequently susceptible to damage year-round. It is therefore recommended that the area where the gerbil burrow is situated (WPT 41) is avoided by vehicles and personnel associated with the works.

As most of the fauna at the site consists of highly mobile species, habitat fragmentation associated with a long, linear feature (such as a pipeline) would be primarily limited to smaller fauna with reduced mobilities such as lizards, gerbils, and non-flying insects.

If the pipeline will be situated above-ground, it would pose as an impassable object to these animals and could therefore limit their ability to feed and search for mates. The area where this potential risk of this would be highest is the location where the pipeline route intersects the beach and low coastal dunes area, where the highest density of fauna resides. Burying the pipeline here would lessen the potential ecological impact.

Anthropogenic activity at the site was found to be quite high, with the beach area in particular being used for recreational activities throughout the week.

Additional terrestrial ecology mitigation measures towards minimising impacts associated with the proposed construction not mentioned above are listed in brief below:

- Efficient transportation plan to minimise unnecessary vehicle movements across sensitive habitats.
- Avoid increased noise levels leading to behavioural impacts to wildlife in the area.
- Raise awareness to workers in the area to the habitats/species sensitivity (posters in accommodation).

ADNOC Lightning Project Mirfa Landfall Terrestrial Ecology Survey Report

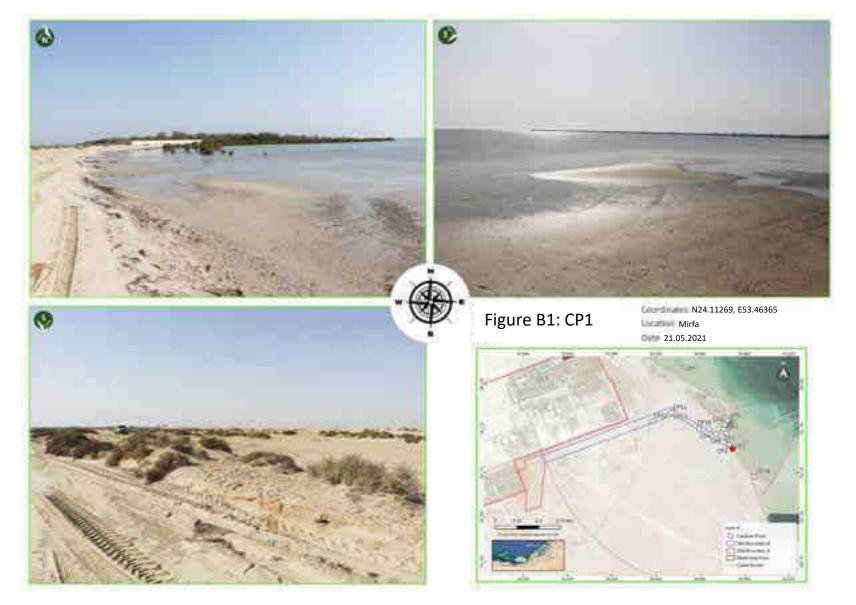
NEA Reference: N684-0621-MIR-1.1 dated September 2021

ANNEX A References

Annex A – References

The following references were available and/or used on the current survey:

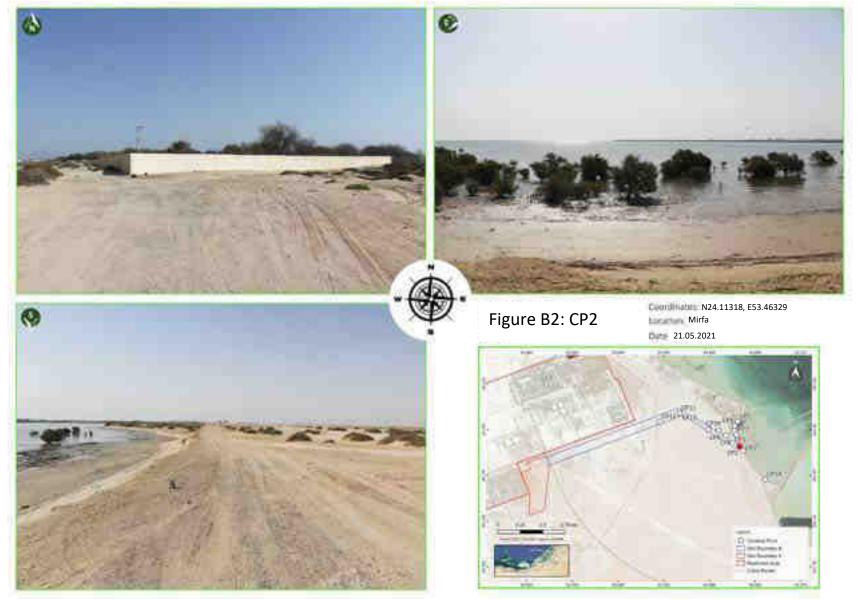
- Al Dhaheri, S., Javed, S., Alzahlawi, N., Binkulaib, R., Cowie, W., Grandcourt, E. and Kabshawi, M. (2017). Abu Dhabi Emirate Habitat Classification and Protection Guideline. Environment Agency Abu-Dhabi.
- Aspinall S.J. (2005). *Birds [of the UAE]. In:* Hellyer and Aspinall (eds.). The Emirates: A Natural History. Trident Press, UK.
- Aspinall S.J. (2010). *Breeding Birds of the United Arab Emirates*. Environment Agency Abu Dhabi, UAE.
- Brown G. and Boer B. (2004). *Interpretation Manual of the Major Terrestrial Natural and Semi-natural Habitat Types of Abu Dhabi Emirate*. ERWDA, Abu Dhabi.
- M.V.D. Jongbloed, G.R. Feulner, B.Boer, A.R Western (2003). *The comprehensive guide to the Wild Flowers of the United Arab Emirates*. ERWDA, Abu Dhabi.
- Environment Agency Abu Dhabi (2015). *Terrestrial Habitat Classification*. EAD Enviro-portal Viewer. https://enviroportal.ead.ae/geoportal.
- Hellyer, P. and Aspinall, S.J. (Eds.) (2005). *The Emirates—A Natural History*. Trident Press, London, and the Environment Agency, Abu Dhabi.
- Gardner, A. (2013). *The amphibians and reptiles of Oman and the UAE*. Frankfurt am Main: Edition Chimaira.
- IUCN (2017). *Red List of Threatened Species*. http://www.iucnredlist.org.
- Javed S. (2008). Birds. In Perry R. *Terrestrial Habitats of Abu Dhabi Emirate*. Environment Agency Abu Dhabi.
- Jennings M. (2010). *Atlas of the Breeding Birds of Arabia*. Fauna of Arabia Vol. 25. KACST, Riyadh and Senckenburg, Germany.
- Ornithological Society of the Middle East, the Caucasus and Central Asia (OSME). (2012). Simplified OSME list of bird taxa.
- Guichard & Goodwin (1952) Notes on Birds Collected in Oman and Hadhramaut.
- Perry R. (ed.) (2008). *Terrestrial Environment of Abu Dhabi Emirate*. Environment Agency, Abu Dhabi, UAE.
- Porter R. and Aspinall S.J. (2010). *Birds of the Middle East*. Second Edition. Christopher Helm, London

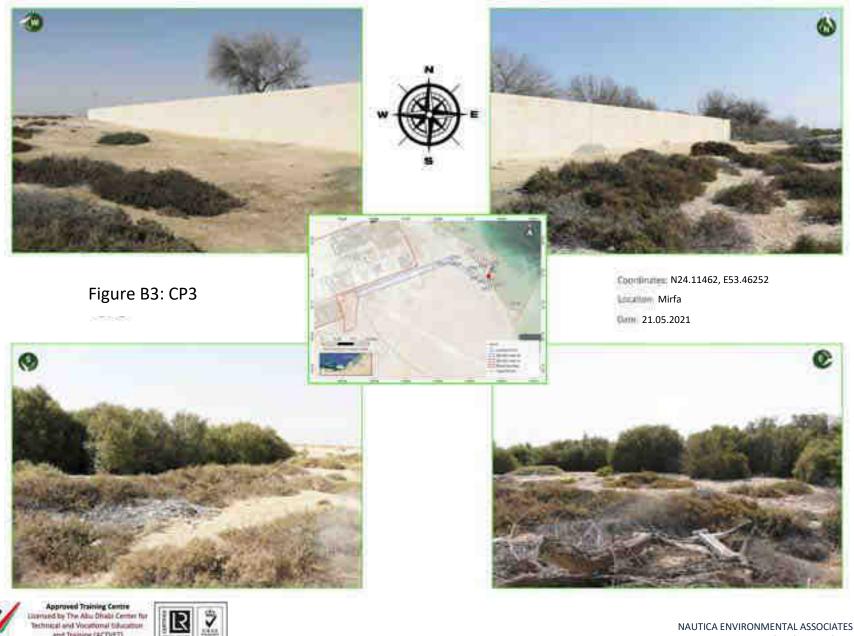

ADNOC Lightning Project Mirfa Landfall Terrestrial Ecology Survey Report

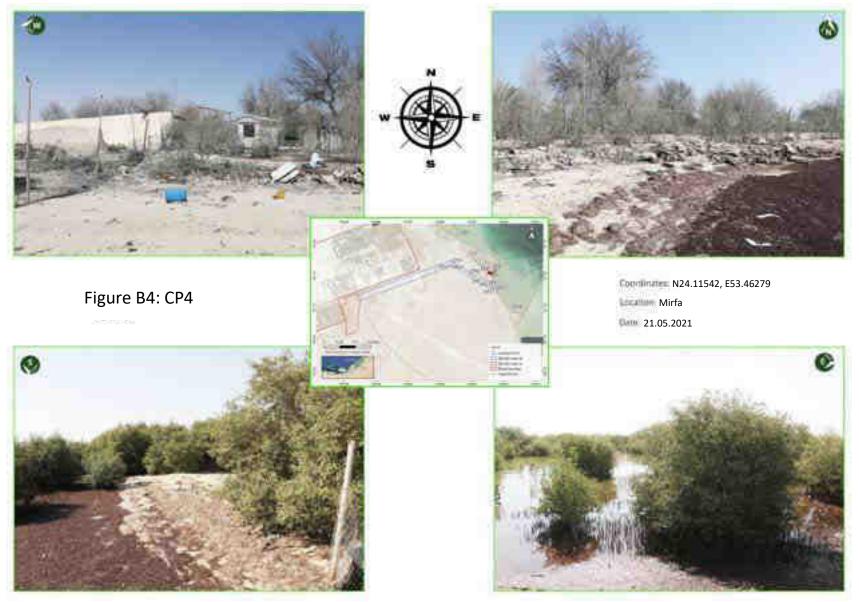
NEA Reference: N684-0621-MIR-1.1 dated September 2021

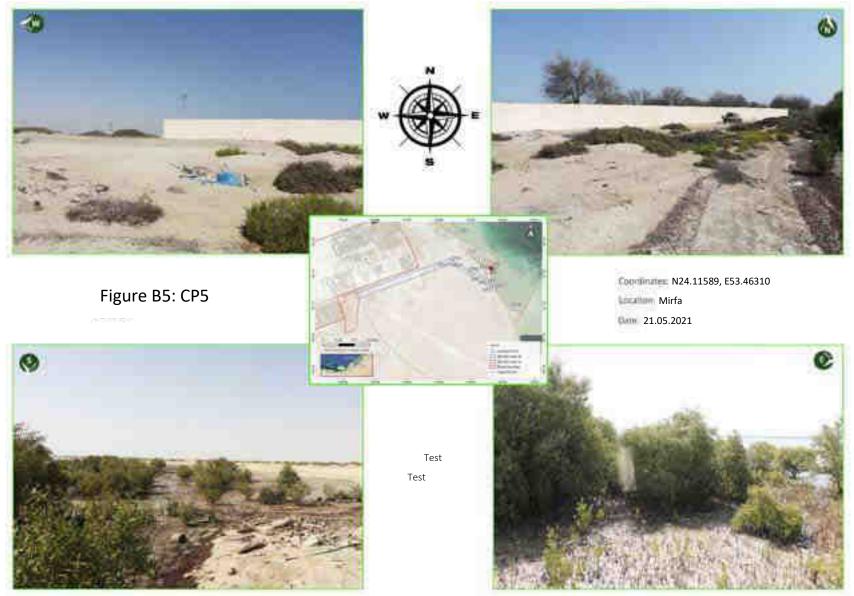
ANNEX B

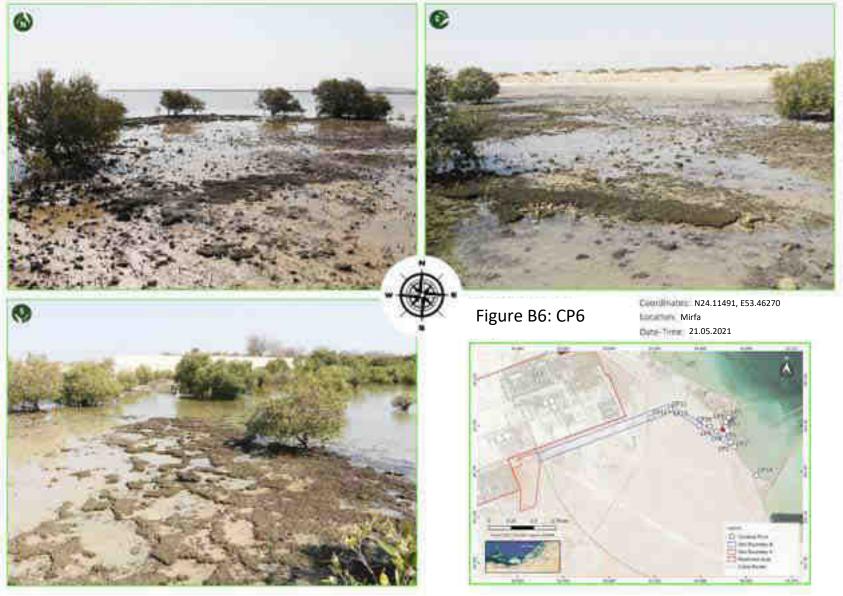
Photographic Documentation and Data Sheets



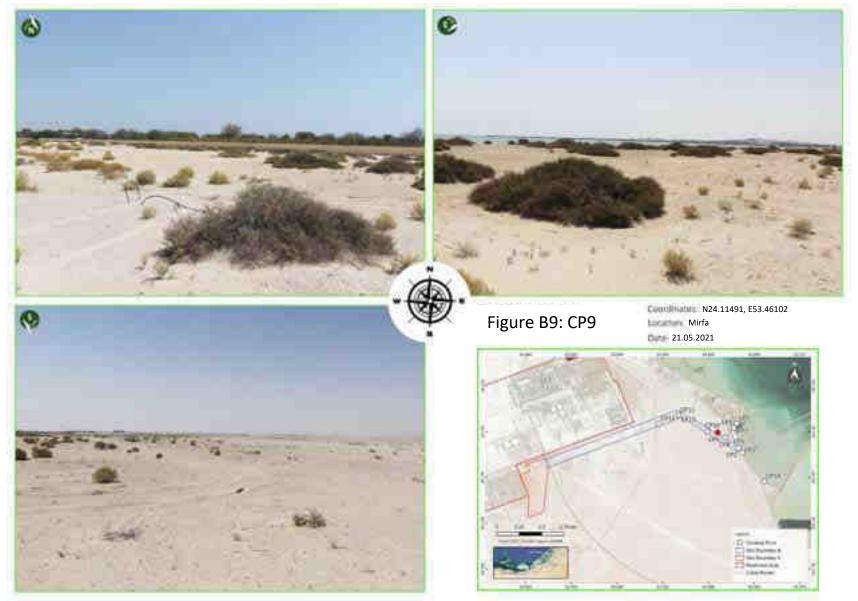


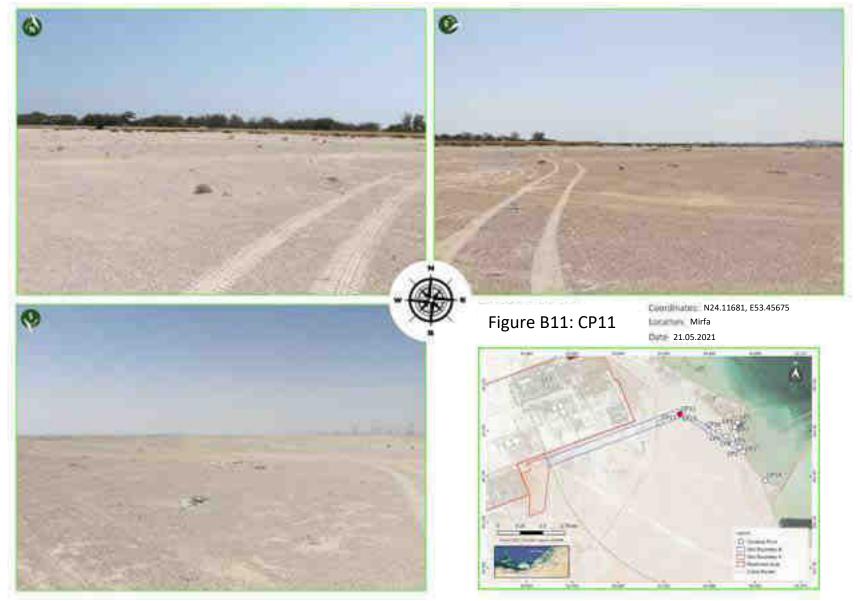






7





2

Approved Training Centre Literated by The Alta Dhabi Center for Techniqal and Vocational Usualities and Training (ACTVET) Literate Nat (2000/2020

			Table B1: So	oil Analyses				
Test Method	Parameter Name	Unit	Detection Limit	MS01	MS02	MS03	MS04	MS05
pH [BS 1377-3: 2018] Soil-DXB	рН	pH units	0.1	9	8.5	8.8	8.7	8.8
Oil & Grease [APHA 5520 E]-DXB	Oil and Grease	%	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Nitrogen (Ammonia) [HACH 8155] Solids-DXB	Nitrogen (Ammonia)	mg/kg	0.25	2.1	1.5	1.55	1.75	2.05
Nitrogen (Ammonia) [HACH 8155] Solids-DXB	Ammonium	mg/kg	0.32	2.7	1.93	1.99	2.25	2.64
Nitrogen (Ammonia) [HACH 8155] Solids-DXB	Ammonia	mg/kg	0.3	2.55	1.82	1.88	2.12	2.49
Salinity [APHA 2520 B]-DXB	Salinity	ppt	1	2.4	1.7	7.6	4.7	1.9
Sulphide [HACH 8131/DIN 38405-D27]-DXB	Sulphide (S ²⁻)	mg/kg	5	<5	<5	<5	<5	<5
Fluoride [HACH 8029]-DXB	Fluoride	mg/kg	0.5	4	5.1	3.2	4	3.4
Nitrate [HACH 8039]-DXB	Nitrate	mg/kg	0.22	10.5	14.3	18.8	10.2	0.62
Metals ICP OES [APHA 3120 B] SSS-DXB	Cadmium (Cd)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Metals ICP OES [APHA 3120 B] SSS-DXB	Aluminium (Al)	mg/kg	130	3320	2750	2940	2500	2310
Metals ICP OES [APHA 3120 B] SSS-DXB	Arsenic (As)	mg/kg	1	2.9	3.5	3.9	3.9	2.6
Metals ICP OES [APHA 3120 B] SSS-DXB	Barium (Ba)	mg/kg	3	26.6	18.2	21.2	21.9	18.1
Metals ICP OES [APHA 3120 B] SSS-DXB	Chromium (Cr)	mg/kg	1	13.4	10.9	11.5	10.1	11.5
Metals ICP OES [APHA 3120 B] SSS-DXB	Cobalt (Co)	mg/kg	1	1.7	1.7	1.9	1.2	1.5
Metals ICP OES [APHA 3120 B] SSS-DXB	Copper (Cu)	mg/kg	3	5.3	5.3	5.8	4.8	4.8
Metals ICP OES [APHA 3120 B] SSS-DXB	Lead (Pb)	mg/kg	1	1.8	1.7	1.2	1.3	1.2
Metals ICP OES [APHA 3120 B] SSS-DXB	Manganese (Mn)	mg/kg	3	85.5	88.2	123	68.4	93.7
Metals ICP OES [APHA 3120 B] SSS-DXB	Nickel (Ni)	mg/kg	1	6.8	8.4	10.8	8.6	7.3
Metals ICP OES [APHA 3120 B] SSS-DXB	Phosphorus (P)	mg/kg	50	209	245	245	208	214
Metals ICP OES [APHA 3120 B] SSS-DXB	Zinc (Zn)	mg/kg	3	11.9	6.6	10.7	6.4	12.6
Chromium (Hexavalent) [HACH 8023] Solids-DXB	Chromium (VI)	mg/kg	0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Metals ICP OES [APHA 3120 B] SSS-DXB	Antimony (Sb)	mg/kg	1	<1.0	<1.0	<1.0	<1.0	1.2
Metals ICP OES [APHA 3120 B] SSS-DXB	Beryllium (Be)	mg/kg	1	<1.0	<1.0	<1.0	<1.0	<1.0
Mercury by PSA [EPA 245.7] SSS-DXB	Mercury (Hg)	mg/kg	0.01	<0.010	<0.010	<0.010	<0.010	<0.010
VPH C5-C10 by GC-FID [EPA 8015B]-SSS-DXB	VPH C5-C10	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
EPH C10-C40 by GC-FID [EPA 8015B] SSS-DXB	EPH C10-C40	mg/kg	50	<50	<50	<50	<50	<50
PAH in Soils [EPA 8270 D]-DXB	Acenaphthene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
PAH in Soils [EPA 8270 D]-DXB	Acenaphthylene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
PAH in Soils [EPA 8270 D]-DXB	Anthracene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
PAH in Soils [EPA 8270 D]-DXB	Benzo(a)anthracene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

MS06	MS07	MS08
8.8	8.6	8.7
<0.01	<0.01	<0.01
9	1.7	1.9
11.6	2.19	2.44
10.9	2.06	2.31
1.8	5.6	4.4
<5	<5	<5
3.6	3.5	5.4
16.3	22.1	13.2
<0.5	<0.5	<0.5
2050	2850	2520
3.3	4.4	3.9
45.9	13	19.1
9.4	11.2	10
1	1.6	1
4.8	4.9	4.5
2.2	1.2	1.6
79	88.5	57.9
6	9.4	8.3
235	207	149
8.8	7.8	9.4
<0.4	<0.4	<0.4
<1.0	1.1	<1.0
<1.0	<1.0	<1.0
<0.010	<0.010	<0.010
<0.05	<0.05	<0.05
<50	<50	<50
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01

			Table B1: So	oil Analyses					
Test Method	Parameter Name	Unit	Detection Limit	MS01	MS02	MS03	MS04	MS05	1
PAH in Soils [EPA 8270 D]-DXB	Benzo(a)pyrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	•
PAH in Soils [EPA 8270 D]-DXB	Benzo(b)fluoranthene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<
PAH in Soils [EPA 8270 D]-DXB	Benzo(g,h,i)perylene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
PAH in Soils [EPA 8270 D]-DXB	Benzo(k)fluoranthene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	•
PAH in Soils [EPA 8270 D]-DXB	Chrysene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	4
PAH in Soils [EPA 8270 D]-DXB	Dibenzo(a,h)anthracene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	4
PAH in Soils [EPA 8270 D]-DXB	Fluoranthene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	4
PAH in Soils [EPA 8270 D]-DXB	Fluorene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	4
PAH in Soils [EPA 8270 D]-DXB	Indeno(1,2,3-c,d)pyrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	4
PAH in Soils [EPA 8270 D]-DXB	Naphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
PAH in Soils [EPA 8270 D]-DXB	Phenanthrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
PAH in Soils [EPA 8270 D]-DXB	Pyrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Phenols Soil [EPA 8270D]-DXB	2,4,5-Trichlorophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenols Soil [EPA 8270D]-DXB	2,4,6-Trichlorophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenols Soil [EPA 8270D]-DXB	2,4-Dichlorophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenols Soil [EPA 8270D]-DXB	2,4-Dimethylphenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenols Soil [EPA 8270D]-DXB	2-Chlorophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenols Soil [EPA 8270D]-DXB	2-Methylphenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	•
Phenols Soil [EPA 8270D]-DXB	2-Nitrophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	•
Phenols Soil [EPA 8270D]-DXB	4-Chloro-3-methylphenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenols Soil [EPA 8270D]-DXB	4-Methylphenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenols Soil [EPA 8270D]-DXB	4-Nitrophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	•
Phenols Soil [EPA 8270D]-DXB	Pentachlorophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	•
Phenols Soil [EPA 8270D]-DXB	2,3,4,6-Tetrachlorophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	•
Phenols Soil [EPA 8270D]-DXB	2,6-Dichlorophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	4
Phenols Soil [EPA 8270D]-DXB	3-Methylphenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	•
Phenols Soil [EPA 8270D]-DXB	Phenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	•
VOCs in Soil [EPA 8260 B]-DXB	Dichlorodifluoromethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	•
VOCs in Soil [EPA 8260 B]-DXB	Chloromethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	•
VOCs in Soil [EPA 8260 B]-DXB	Vinyl Chloride	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	•
VOCs in Soil [EPA 8260 B]-DXB	Bromomethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	4

MS06	MS07	MS08
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05

			Table B1: Sc	oil Analyse	es				
Test Method	Parameter Name	Unit	Detection Limit	MS01	MS02	MS03	MS04	MS05	I
VOCs in Soil [EPA 8260 B]-DXB	Chloroethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	•
VOCs in Soil [EPA 8260 B]-DXB	Trichlorofluoromethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	~
VOCs in Soil [EPA 8260 B]-DXB	1,1-Dichloroethene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	4
VOCs in Soil [EPA 8260 B]-DXB	Methylene Chloride	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	~
VOCs in Soil [EPA 8260 B]-DXB	1,2-Dichloroethene(trans)	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	~
VOCs in Soil [EPA 8260 B]-DXB	1,1-Dichloroethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	~
VOCs in Soil [EPA 8260 B]-DXB	1,2-Dichloroethene(cis)	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	~
VOCs in Soil [EPA 8260 B]-DXB	2,2-Dichloropropane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	•
VOCs in Soil [EPA 8260 B]-DXB	Bromochloromethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	~
VOCs in Soil [EPA 8260 B]-DXB	Chloroform	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	•
VOCs in Soil [EPA 8260 B]-DXB	1,1,1-Trichloroethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	•
VOCs in Soil [EPA 8260 B]-DXB	1,1-Dichloropropene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	~
VOCs in Soil [EPA 8260 B]-DXB	Carbon Tetrachloride	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	•
VOCs in Soil [EPA 8260 B]-DXB	1,2-Dichloroethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	~
VOCs in Soil [EPA 8260 B]-DXB	Benzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	~
VOCs in Soil [EPA 8260 B]-DXB	Trichloroethene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	~
VOCs in Soil [EPA 8260 B]-DXB	1,2-Dichloropropane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	~
VOCs in Soil [EPA 8260 B]-DXB	Bromodichloromethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	~
VOCs in Soil [EPA 8260 B]-DXB	Dibromomethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	~
VOCs in Soil [EPA 8260 B]-DXB	1,3-Dichloropropene(cis)	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	~
VOCs in Soil [EPA 8260 B]-DXB	Toluene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	•
VOCs in Soil [EPA 8260 B]-DXB	1,3-Dichloropropene(trans)	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	•
VOCs in Soil [EPA 8260 B]-DXB	1,1,2-Trichloroethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	~
VOCs in Soil [EPA 8260 B]-DXB	1,3-Dichloropropane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	~
VOCs in Soil [EPA 8260 B]-DXB	Tetrachloroethene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	~
VOCs in Soil [EPA 8260 B]-DXB	Dibromochloromethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	~
VOCs in Soil [EPA 8260 B]-DXB	1,2-Dibromoethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	~
VOCs in Soil [EPA 8260 B]-DXB	Chlorobenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	~
VOCs in Soil [EPA 8260 B]-DXB	1,1,1,2-Tetrachloroethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<
VOCs in Soil [EPA 8260 B]-DXB	Ethyl benzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	~
VOCs in Soil [EPA 8260 B]-DXB	m,p-Xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	~

MS06	MS07	MS08
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05		
.0105	<0.05	<0.05

			Table B1: Sc	oil Analyses				
Test Method	Parameter Name	Unit	Detection Limit	MS01	MS02	MS03	MS04	MS05
VOCs in Soil [EPA 8260 B]-DXB	o-Xylene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Styrene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	iso-Propylbenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Bromoform	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,1,2,2-Tetrachloroethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,2,3-Trichloropropane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	n-Propylbenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Bromobenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,3,5-Trimethylbenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	2-Chlorotoluene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	4-Chlorotoluene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	tert-Butylbenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,2,4-Trimethylbenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	sec-Butylbenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	p-Isopropyltoluene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,3-Dichlorobenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,4-Dichlorobenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	n-Butylbenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,2-Dichlorobenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,2-Dibromo-3-Chloropropane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,2,4-Trichlorobenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Hexachlorobutadiene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Naphthalene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,2,3-Trichlorobenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

;	MS06	MS07	MS08
	<0.05	<0.05	<0.05
	<0.05	<0.05	<0.05
	<0.05	<0.05	<0.05
	<0.05	<0.05	<0.05
	<0.05	<0.05	<0.05
	<0.05	<0.05	<0.05
	<0.05	<0.05	<0.05
	<0.05	<0.05	<0.05
	<0.05	<0.05	<0.05
	<0.05	<0.05	<0.05
	<0.05	<0.05	<0.05
	<0.05	<0.05	<0.05
	<0.05	<0.05	<0.05
	<0.05	<0.05	<0.05
	<0.05	<0.05	<0.05
	<0.05	<0.05	<0.05
	<0.05	<0.05	<0.05
	<0.05	<0.05	<0.05
	<0.05	<0.05	<0.05
	<0.05	<0.05	<0.05
	<0.05	<0.05	<0.05
	<0.05	<0.05	<0.05
	<0.05	<0.05	<0.05
	<0.05	<0.05	<0.05

Table B2: ADQCC Soil Limits for Industrial and Commercial use								
Parameter	Unit	Screening level	Clean-up level					
Antimony (Sb)	mg/kg (DW)	470	4700					
Arsenic (As)	mg/kg (DW)	30	300					
Beryllium (Be)	gm/kg (DW)	2.3	23.0					
Cadmium (Cd)	mg/kg (DW)	980	9800					
Chromium (Cr VI)	mg/kg (DW)	63	630					
Cobalt (Co)	mg/kg (DW)	350	3500					
Lead (Pb)	gm/kg (DW)	8.0	80					
Mercury (Hg)	mg/kg (DW)	46	460					
Nickel (Ni)	gm/kg (DW)	22	220					
Selenium (Se)	gm/kg (DW)	5.8	58					
Asbestos	gm/10 kg (DW)	5.0	5.0					
Benzene	mg/kg (DW)	51	510					
Toluene	gm/kg (DW)	47	470					
Ethylbenzene	mg/kg (DW)	250	2500					
Xylene	gm/kg (DW)	2.5	25.0					
Benzo (a) pyrene (BaP)	mg/kg (DW)	2.9	29					
Polychlorinated Biphenyls	mg/kg (DW)	330	3300					

Table Notes:

- Taken from Environmental Specification for Soil Contamination ADS 19/2017
- Mg/kg = milligram per kilogram
- Gm/kg = gram per kilogram
- DW = Dry Weight

					Figure B3:	Noise D	oata Sheet	N01				
User:	Ross Pappin				0		Job I		N684	Pro	oject:	MM Lightning
Report No:	N684-0621-I		Survey Date:	Survey Date:		nents	Cheo	cked:	DT	Dat	-	
Site No:	N01		Mic. Height:		155cm		Free	Field	\checkmark	Fac	ade:	NA
Location Description (draw a little p	icture of the	e area):							Noi	ise Source:	
<u></u>	- All	2F	THE-		504	CTI		502 N01	CTA		osque, aircraft, pow oming tide, genera	er complex, boats, birds tor
Period	Cal	ibration		Wind	Т	ime		LAeq	Cars (tally)		Trucks (tally)	Comment
renou	Start	End	Speed	Direction	On	Off	f	LACY	cars (tany)		Hucks (tally)	comment
Day (Week)	94.3dB	94.0dB	1.2m/s	N(340°)	17:43	17:58	48.9					24.05.21
Night (Week)	94.2dB	93.9dB	1.4m/s	S(181°)	04:45	05:00	34.3					31.05.21
Day (Weekend)	93.9dB	94.0dB	2.9m/s	NW(328°)	12:22	12:37	40.4					21.05.21
Night (Weekend)	94.3dB	94.0dB	0.6m/s	E(99°)	21:20	21:35	36.2					21.05.21
General Weather Con	ditions:											
Noise measurements	were collected	d only during	g periods of low wi	nd speed								
Specific Conditions:			Calm	Fog			Precipitatio	n	Frost	Tonal		Impulse
BS4142 Compliance:			\checkmark		х			х	х			
Factory Cal. Date:			16.05.2021									
Checked:			Doug Tilbury					Date:		16/06/202	1	

Specific Conditions:	Calm	Fog	Precipitation	Frost	Tonal					
BS4142 Compliance:	✓	Х	Х	Х						
Factory Cal. Date:	16.05.2021									
Checked:	Doug Tilbury	Doug Tilbury Date: 16/06/202								
Key to Abbreviations: Mic = Microphone / LAeq = Equivalent Continuous Level / NW = Northwest / E = East / S = South / N = North / m/s = Metre per second / dB = Decibe										
		min = Minute								

bel / Cal = Calibration / cm = Centimetre /

					Figure	B4: Noise Dat	ta Sheet N02				
Jser:	Ross Pappin	n					Job No:	N684	Project:	MM Lightning	
Report No:	N684-0621	-MIR-1.0	Survey Date:		See comments		Checked:	DT	Date:	-	
ite No:	N02		Mic. Height:		155cm		Free Field	\checkmark	Facade:	N/A	
ocation Description (draw a little p	icture of the	area):						Noise Source:	Noise Source:	
N02 CT2 S04 CT1 S03 S02 N01 CT4 Mosque, aircraft, birds, p										, power complex	
Period	Ca Start	libration End	Speed	Wind Direction	T On	ime Off	LAeq	Cars (tally)	Trucks (tally)	Comment	
ay Week)	94.4dB	94.0dB	1.6	S(160°)	07:00	07:15	36.6	I		31.05.2021	
ight Veek)	94.3dB	93.9dB	1.7	S(172°)	5:10	5:25	41.6			31.05.2021	
ay Veekend)	94.0dB	94.0dB	4.1m/s	NW(300°)	15:46	16:01	36.7			21.05.2021	
ight Veekend)	94.3dB	94.1dB	2.6m/s	E(88°)	21:45	22:00	31.7			21.05.2021	
eneral Weather Con	ditions:										
oise measurements	were collecte	d only during	periods of low v	vind speed							
pecific Conditions:			Calm		Fog		Precipitation	Frost	Tonal	Impulse	
64142 Compliance:			\checkmark		Slight		X	Х			
actory Cal. Date:		1	5.05.2021								
hecked:		D	oug Tilbury				Date:	16	/06/2021		

Specific Conditions:	Calm	Fog	Precipitation	Frost	То					
BS4142 Compliance:	\checkmark	Slight	Х	х						
Factory Cal. Date:	16.05.2021									
Checked:	Doug Tilbury	Doug Tilbury Date: 16/06/20								
Key to Abbreviations: Mic = Mic	rophone / LAeq = Equivalent Continuo	us Level / NW = Northwest / E	E = East / S = South / m/s = Met	re per second / dB = De	cibel / Cal = C					
	Minute									

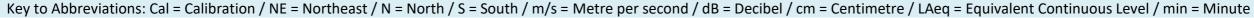


					Figure	B5: Noise Da	ta Sheet N03			
User:	Ross Pappi	n					Job No:	N684	Project:	MM Lightning
Report No:	N684-0621	-MIR-1.0	Survey Date:		See com	ments	Checked:	DT	Date:	-
Site No:	N03		Mic. Height:		155cm		Free Field	√	Facade:	N/A
Location Description (draw a little p	icture of the	area):						Noise Source:	
S07 N03 CT3 S06 Power complex, aircraft, birds, vehicles										
Period	Са	Calibration		Wind	-	Гime	LAeq	Cars (tally)	Trucks (tally)	Comment
T CHOU	Start	End	Speed	Direction	On	Off	Licy	curs (cury)	Tracks (tany)	commen
Day (Week)	94.4dB	94.0dB	2.5m/s	S(167°)	07:34	07:49	51.5			31.05.2021
Night (Week)	94.4dB	94.0dB	1.6m/s	S(188°)	05:37	05:52	39.8	П		31.05.2021
Day (Weekend)	94.2dB	93.9dB	5.7m/s	N(17°)	17:09	17:24	35.2			21.05.2021
Night (Weekend)	94.3dB	94.0dB	1.0m/s	NE(52°)	22:09	22:24	35.9			21.05.2021
General Weather Con	ditions:									
Noise measurements	were collecte	d only during	g periods of low w	vind speed						
Specific Conditions:			Calm		Fog		Precipitation	Frost	Tonal	Impulse
BS4142 Compliance:			\checkmark		х		х	Х		
Factory Cal. Date:		1	16.05.2021							
Checked:		[Doug Tilbury				Date:	16/	06/2021	

Specific Conditions:	Calm	Fog	Precipitation	Frost	То
BS4142 Compliance:	✓	Х	Х	х	
Factory Cal. Date:	16.05.2021				
Checked:	Doug Tilbury		Date:	16	/06/2021
Kouto Abbroviations: Cal - C	alibration / NE - Northeast / N - Nort	th / C - Couth / m/c - Motro	par second / dB - Desibel / cm	- Contimotro / 1 Aca -	Equivalant Co

ADNOC Lightning Project Mirfa Landfall Terrestrial Ecology Survey Report

NEA Reference: N684-0621-MIR-1.1 dated September 2021

ANNEX C Quaity Control Documentation

Contents:

Part 1: Field Documentation	C1
Part 2: Noise Datasheets	C7
Part 3: NEA Licences and Accreditations	C10
Part 4: Equipment Specifications and Calibration	C14

Part 1: Field Documentation

Table C1, below, details field logs, provided on subsequent pages.

Table C1: Field Documentation				
Figure №	Description	Usage		
Figure C1	NEA Field Log Day 20.05.2021	Daily log of activities		
Figure C2	NEA Field Log Day 21.05.2021	Daily log of activities		
Figure C3	NEA Field Log Day 22.05.2021	Daily log of activities		
Figure C4	NEA Field Log Day 24.05.2021	Daily log of activities		
Figure C5	NEA Field Log Day 31.05.2021	Daily log of activities		

Figure C1: NEA Activity Log 20.05.2021					
Project № & Client:		: N684	Date/Day:	20.05.2021 / Thursday	
	Site Team	: RP, AM, PM	PD/PM:	DT/RP	
Vessel(s)/Vehicle(s)	: Pick-up	Visitors:	None	
	Weather	: -	W/Source:	AD MET	
Time	ID	Activities / Notes			
11:57	NEA	Depart NEA office	Depart NEA office		
14:25	MH	Arrived Mirfa Hotel and ch	Arrived Mirfa Hotel and checked in		
15:05	MH	Depart to site			
15:20	MS01	MS01 – Soil sampling	MS01 – Soil sampling		
16:35	MS02	MS02 – Soil sampling			
16:55	MS03	MS03 – Soil sampling			
17:25	MS04	MS04 – Soil sampling			
18:35	MS04	Stopped by CICPA personr	nel – document	check	
19:05	MH	Arrived back at Mirfa Hote	Arrived back at Mirfa Hotel and debrief		
Chang	e of Plans:	None			
EQ,	/PE issues:	None			
Incidents/PIR №: N		None			

Key to Abbreviations: NEA = Nautica Environmental Associates LLC / ID = Site ID / EQ = Equipment PE = Personnel / PIR = Process Improvement Report / PM = Paulo Mendoza / AM = Aneeta Mathew RP = Ross Pappin / DT = Doug Tilbury / CICPA = The Critical Infrastructure and Coastal Protection Authority MH = Mirfa Hotel

PM Name:

Ross Pappin

PM Signature and Stamp:

Ronti

Figure C2: NEA Activity Log 21.05.2021					
Project № & Client:		: N684	Date/Day:	21.05.2021 / Friday	
	Site Team	RP, AM, PM	PD/PM:	DT/RP	
Vessel(s)/Vehicle(s	: Pick-up	Visitors:	None	
	Weather	: -	W/Source:	AD MET	
Time	ID	Activities / Notes			
08:05	MH	Depart MH to site			
08:16	Site	Ecology walkover survey			
11:53	MS06	MS06 – Soil sampling			
12:18	MN01	MN01 – Noise monitoring	(Day – Weeken	d)	
13:14	MH	Return to Mirfa Hotel	Return to Mirfa Hotel		
15:11	MH	Depart to site	Depart to site		
15:46	MN02	MN02 – Noise monitoring	MN02 – Noise monitoring (Day – Weekend)		
16:57	MN03+07	MN03 – Noise monitoring	MN03 – Noise monitoring (Day – Weekend); MS07 – Soil sampling		
18:12	MS08	MS08 – Soil sampling			
18:36	MS05	MS05 – Soil sampling	MS05 – Soil sampling		
18:55	CT01	Deployed CT – 01			
19:01	СТ02	Deployed CT – 02			
19:11	СТ03	Deployed CT – 03			
19:19	CT04	Deployed CT – 04			
19:24	CT05	Deployed CT – 05			
21:10	MN01	MN01 – Noise monitoring	(Night – Weeke	end)	
21:40	MN02	MN02 – Noise monitoring	(Night – Weeke	end)	
22:05	MN03	MN03 – Noise monitoring	(Night – Weeke	end)	
22:35	MH	Arrived back at Mirfa Hote	Arrived back at Mirfa Hotel and debrief		
COP/ I	EQ/PE/PIR:	None			

Key to Abbreviations: NEA = Nautica Environmental Associates LLC / ID = Site ID / EQ = Equipment / PE = Personnel / PIR = Process Improvement Report / CT = Camera Trap / PM = Paulo Mendoza / AM = Aneeta Mathew / RP = Ross Pappin / DT = Doug Tilbury

PM Name:

Ross Pappin

PM Signature and Stamp:

osti

Approved Training Centre Literated by The Alta Dhale Center for Technical and Viscational Education and Training (ACTVET) Literate Net OREO/2020

Figure C3: NEA Activity Log 22.05.2021					
Project № & Client:		N684	Date/Day:	22.05.2021 / Saturday	
	Site Team:	RP, AM, PM	PD/PM:	DT/RP	
Vessel(s)/Vehicle(s):	Pick-up	Visitors:	None	
	Weather:	-	W/Source:	AD MET	
Time	ID	Activities / Notes			
06:00	MH	Team brief			
06:57	MH	Depart MH to site			
07:16	CT05	Retrieved CT – 05			
07:50	СТ03	Retrieved CT – 03			
07:54	CT01	Retrieved CT – 01	Retrieved CT – 01		
07:57	CT04	Retrieved CT – 04			
08:03	CT02	Retrieved CT – 02			
08:39	MH	Return to Mirfa Hotel			
10:51	MH	Depart Mirfa Hotel to Shu	weihat		
13:30	13:30 HEC Arrive HEC, debrief and prep for following day		g day		
Chang	ge of Plans:	None			
EQ	/PE issues:	None			
Incide	nts/PIR №:	None			

Key to Abbreviations: NEA = Nautica Environmental Associates LLC / ID = Site ID / EQ = Equipment / PE = Personnel / PIR = Process Improvement Report / CT = Camera Trap / PM = Paulo Mendoza / AM = Aneeta Mathew / RP = Ross Pappin / DT = Doug Tilbury / MH = Mirfa Htel

PM Name:

Ross Pappin

PM Signature and Stamp:

Figure C4: NEA Activity Log 24.05.2021				
Projec	t № & Clien	t: N684	Date/Day:	24.05.2021 / Monday
	Site Tean	n: RP, AM	PD/PM:	DT/RP
Vessel(s)/Vehicle(s): Pick-up	Visitors:	None
	Weathe	r: -	W/Source:	AD MET
Time	ID	Activities / Notes		
13:00	NEA	Brief and EQ prep NEA of	ffice, AD	
16:00	NEA	Depart NEA by road		
17:30	MN01	Arrived Mirfa site		
17:40	MN01	MN01 – Noise monitorin	g (Day – Weekda	y)
18: 10	MN02	MN02 – Noise monitorin	g (Day – Weekda	y) – Too windy
18:35	MN02	Depart to NEA office		
21:10	NEA	Arrived NEA office and de	ebrief	
Chang	ge of Plans:	None		
EQ	/PE issues:	None		
Incide	nts/PIR №:	None		
-		ocess Improvement Report / AN Tilb	𝖊 = Aneeta Mathev ury	= Site ID / EQ = Equipment / PE = v / RP = Ross Pappin / DT = Doug
I	PM Name:	Ross Pappin	CA ENVIR	0
PM Name: Ross Pappin PM Signature and Stamp: Mathieutication			MENTA	
ABU DHABI UPE				

Figure C5: NEA Activity Log 31.05.2021				
Project № & Client:		t: N684 Date/Day: 31.05.2021 / Monday		
	Site Tean	n: RP PD/PM: DT/RP		
Vessel(s)/Vehicle(s	s): Pick-up Visitors: None		
	Weathe	er: - W/Source: AD MET		
Time	ID	Activities / Notes		
03:32	HEC	Depart Hans Esser for Mirfa site		
04:38	MN01	MN01 – Noise monitoring (Night – Weekday)		
05:09	MN02	MN02 – Noise monitoring (Night – Weekday)		
05:35	MN03	MN03 – Noise monitoring (Night – Weekday)		
06:46	MN02	MN02 – Noise monitoring (Day – Weekday)		
07:33	MN03	MN03 – Noise monitoring (Day – Weekday)		
07:55	MN03	Depart Mirfa location for Hans Esser		
09:20	HEC	Arrived back at Hans Esser		
Chang	ge of Plans:	None		
EQ	/PE issues:	one		
Incide	nts/PIR №:	None		
•	Key to Abbreviations: NEA = Nautica Environmental Associates LLC / ID = Site ID / EQ = Equipment PE = Personnel / PIR = Process Improvement Report / RP = Ross Pappin / DT = Doug Tilbury / HEC = Hans Esser camp			
PM Name: Ross Pappin		Ross Pappin		
PM Name: Ross Pappin PM Signature and Stamp: Not Charles LLC - A Charles LLC				
So CIATES LLC . ABU DHABI UNE				

Part 2: NEA Licenses and Accreditations

Table C2, below, provides a list of NEA licenses and accreditations, provided on subsequent pages.

Table C3: NEA Licenses and Accreditations				
Figure №	Description	Usage		
Figure C6	NEA Trade License	-		
Figure C7	NEA EAD Registration	-		
Figure C8	NEA Quality Assurance Accreditation	-		

Figure C6: NEA Trade License

In the second se

Professional License

Litance No	괜	CN-1006173	th.	الد الرياضة
ADCCI Nel		228824	1	ملوية لقرقة
Establishment Cent WOKRE	11		18	رزارة لموارد فيشرية وتترطن يحادة تبنشاد
Establishment Cent ODRFA	旺		14	ولارة حضا تظما وكوري لاوليا الطة التكاة
Legal Furm	Livrited Liability Com	cany	_ ئىرگە ئات سۆرلې؟ سەيرىغ	للبلان لقانوني
			وترتبك الزمانة البينية ومع	4.747
Trade Name		INENTAL ASSOCIATES - LLC		
Establishment Date	(account of the second	05/05/2007	<u>8</u>	فيخ النجن اجتذاد
Issue Date	8	16/05/0021		نليح الاصناب
Expiry Date	1	09/02/2022		*1617 (SUR

100			
- A_⊥ Pathar	الأمارات تعريبه الشعنا United Arab Emerates	بند (الر علم PETER ARTHUR MELLYER	41208291
Pattoer	United Kingdom	ریخان جرائی HICHARD JOHN HORNBY	20029757
Pathoer	United Kingdom	الورش مولد اللي أن VERYAN GUY HENRY PAPPIN	20029756
Field Auto Training Walling Projection Salvivities OF Tenting OK and Gas Facility Barray Phoning, A Gamathaniy Environment Phoni	sultancy and studies and tese e phot Measuring OF Environm en Consultancy al Photography and Informatio short Training spec OJ And Gas Fleets And F	ریک در در دست کند کنید راندر دستمی را استریز اندازی دستر داره استریک (Management Epigreening) اینا سران افریا راندی ا	الزيد أير عدى هذية ا
	and invest without experime	ار معار و معرب و آمو بر عمر من با النبیة الاستان ، بو فی النصور بو معنا الیاد الو (۲۰۱ فی ۲۰٫۰) از سال (۲۰٫۰) معرف الله الله الله الله الله الله الله الل	
Imulal Ernall		management@inex.ee	ه القادتر فرسم
Winted Mutalle		107 11606 1340408	. تۇمۇر ئۇسىي
			0

Annual State Con-

Best selected to black and

3

ليغتية الوطيحي

	Figu	ure C7: NEA E	AD Registration	
			5 Smironmers Agenc	и алта У мирная
EC-	69/06	ارد معت		
ECR-	778(21	رقم التوصنية		
Date of insue	25/5/2021	للربح الاصدار		
Date of Expiry	14/5/2022	1427 AL		
	4.3	ي في مجـال البي	إعتماد مكتب استشاره	
		(1)	• فنة	
	Registra	ition of Enviro	nmental Consultancy	
		* Cla	ass A	
Office Name:	Nautica Environe	nental Associates	الونيك للزملة البينية لامرم	بىر ئىكتىر:
Type of Office:	Local (100 %)		محلي (100%)	رەلكىن
Address:	Office M3, East Sheikha Zoyed A Bidg Al Meena Straet, Abu Dhabi	shmad and Others.	هزيرد لرطبي - غرق 14 - غارع لليناء - بناية البياد ثيمه سعيد المد راهرين - قمز الن سائب رام 3	لعبوان:
	ancy – Abu Dhabi	lo signature require	رمليس الكثر وفية - لا يتعلقب أي توقيع ed	مرنة البينية . از

Part 4: Support Equipment Specifications

Table C4, below, provides a list of key equipment either used or on hand for the survey programme, with specifications provided on subsequent pages.

	Table C4: Survey equipment available				
Figure №	Description	Usage			
Figure C9	Beacon on a Belt (BOB)	DGPS locational system			
Figure C10	Trimble GoXT handheld unit	DGPS locational system			
Figure C11	Nikon Forestry Pro Laser Rangefinder	Tree height measurements (NU)			
Figure C12	Bushnell Camera Traps	Small mammal/reptile activity			
Figure C13	Sherman Traps	Small mammal activity			
Figure C14	Anabat Detector	Bat Detection			
Figure C15	Malaise Traps	Insect trapping			
Figure C16	RIDGID Micro-inspection unit	Den/Borrow/Hole investigation (NU)			
Figure C17	Pitfall Trap	Insect / small reptile trapping			
Figure C18	Mavik Pro 2 UAV (Drone)	Aerial photography/videography			

Beacon-on-a-Belt (BoB)

Cable-free Differential Correction Receiver

and Samethin

- Provides real-line OGPS accuracy to magazing receivers
- Cattle-free
 conversarie at key with
 framatic Good spheror 3
- Buggel, orgonoesi: stratup
- Notice rejecting beacon receiver

for Boll"3 receiver lets you add. the extra precision of real-time differential GPS to your GIS projects- without adding the encombranes of a bulky radio pack. The system incorporates a beacon receiver, an antenna and battery in size sumpact rable line" package that you wear on your helt. The Boll nexture decodes GPS differential correction information from Incal MSK hearing and then transmits that information to any GPS receives that accepts. standard RTCM SC-104 data. eliminating the need to postproceus your data. Rest of all, this is completely rable-first when used with Trimble's Geol/aplane* 2.

Thinkle's Beacon on a Belt

Real Arrive DGPS Accuracy

The accuracy of differential GPS not softy means that your databases have better data. It also makes locating previously mapped smets in the field quicket and tours accurate tuo. With differential GPS. distinguishing between thirdy queed assets in fast and unamhighour. Back in the office years alver three new. Silver the data years suffected was convected as your gethered it, you can trainife that data directly into your GUS without the delay of a separate postprocycsing step

Remote an a Dell (Ball) Animar .

Cable From Committee

To complement the convenience of Tituble's handbold GeoExplorer* 3 system, the Bolt differential overtwe communicates with that system automatically — with no cabling or accessories whatnever. There's nothing to connect, andbing to forget, and instituting to carry on your back. Your crews will succe fastes and incur less descoting due to magged or broken cables.

Rupped and Easy to Operate

No matter where your data collection and update projects take you, the Boll receiver is ready to follow. Shockpool and water resistant, it will withstand all the rigors of fieldwork, is any weather. Hight out of the fors the Boll receiver is ready to start working with your Trimble GPS/GIS data collection system. Within seconds of powering on, it automatically wheth the best beacon and starts manuniting corrections. If you want to reconfigure the maxime in the field an easy to use two button interface simplifies the process.

Powerful Software

For more extensive configurations the versatile PC-BoB office software makes it easy to exclude beacon stations, define custom display names for stations, and coordigate the initial tracking made. All in all, the BoB member is the roost correnient and service ever shoringed

A second se

Figure C12: Beacon-on-a-Belt (BOB)

Beacon-on-a-Belt (BoB)

Cable-free Differential Correction Receiver

FRAMINES STAROARD ACT · Hell and Indexe · Dial channel Meannam Beth Keying (MSR) IMDrennial CPS · Chargeng cable for reternal furthers (DG25) bewon receive · PC 808 without its configuration and diagnostics . Calife Dee real visce Solt to the Trimble Gavillayhour 3 mapping + Printed manual and Quick Reference Card system in the Linited States · Ciarly seell modom cable + Assumationally, marks the annuagest or closest bearer signal, or care be lists to track a specified beavier station OFTIGANL ADDRESONER · Ruged, don, and wave rectant beaming initiates carrierite hatting, which and carrierite Entered planet pld · Compact, registance helt maturiset disage adapters, tobally splitter calify and and absolder · Demulty to note and pressing signals pai. All day teternal techargeable battery Sample two battan/new LEDI superlays - Full DGPS status in the field via Geoffaginere 3 in a belt theft Heat the 280.00 00 ENG! - Advanced configuration when the PC-Boll with any **Bdf with Centrolouer 3** DEEDO NO ENCO - Advanted diagramities via PC Sold software Bull with Geologiani 3: 20100/10/15/01 HARIVALUE ENCOUCATIONS 10013-00 Entertial geneer kit 20.4 cm (#17) H + 30.7 cm (817)W + 10.7 cm these part reserved, and has not it into 115 only. Therease the U.S. control trees how the final services particularies 14.773 D fat annual \$ 18 kg (7.56 Hed Sec. 1 1.1 W. President States Operating - 10 C to +10 C +-14 F to +122 F) **Interim** Sonage: -20 C to +70 C [-4 F to +158 F] Ep to 98% non-confirming 325 232 at 2409 hand & data him, it may be: in alli to party PERMITANDA SPECIFICATIONS Call Hart Stee -25 serveds operation Non-weighted street and the state of the sta +57 seconds topical Slew cast for 200 Karge: 245.5.325 kill: freeman. Spaine 300.Hz 10, 100 to 200 h/s surrenine turn MX mail Salard prime if X7CM 30.104 fraint picture N545A-0182 Barberg Bli. **Up to 10 hours** 前日日 **Trimble** en barriaer -2010 a and a final state. the fact that have THE LOCK PERSON PERSON IN APPROXIMENT

Figure C13: Trimble GeoXT 2005 Series

DATASHEET

GeoXT handheid

KEY FEATURES

High-performance submeter GPS with integrated SBAS and EVEREST multipath technology

Microsoft Windows Mobile version. 5.0 software, allowing maximum fleability in software choice

512 MB onboard memory plus removable SD memory

Bluetooth and wireless LAN connectivity options

Bugged handheld with all-day battery

TrinsPia technology for wireless camera support

THE TOTAL GPS PLATFORM FOR ALL YOUR GIS FIELD REQUIREMENTS

The GeoXT[®] handheid, from Trimble's GeoExplorer® series, is the essential tool for maintaining your GIS. A high performance, submeter GPS receiver combined with a ruggod handheid computer, the GeoXT hundheid is ideal for use by utility companies, local government organizations, federal agencies, or anyone managing table or mapping critical infrastructure who needs accurate data to do the jub right—the first time.

Delivering consistent submeter accuracy both real-time and postprocessed, the GreaXT handheid is the most dependable submeter solution available. And it's specifically designed with your GIS in mind.

Real-world submeter performance

The GeoXT hundheid is optimized to provide the reliable, high accuracy location data when and where you need it. With advanced features like EVERET multipath rejection technology, the GeoXT handheid outputs quality GPS positions even under canopy, in urbain canyons, and in all the everyday environments you work in

If you need submeter accuracy in real time, you can use corrections from a satellite-based sugmentation system (SBAS) like WAAS or EGNOS, or use the integrated Bluetoeth® radie to connect to a Trimble® Gno8escon® receiver. And if you need that extra edge in precision, you can collect data with Trimble TerraSync software or the GPScorrect® extension for ESR ArcPad softwarg, and then postprocess back in the office.

Software to fit your workflow

The GeoXT handheld comes with a powerful 416 Milz processor running the most advanced operating system available—Microsoft® Windows Mobile* version 5.0 software. Windows Mobile is the industry standard spen platform for mobile devices, so you can choose a software solution to match your verkflow, whether off-the-shell or purpose built.

Windowe Mobile version 5.0 features familiar Microsoft software, including Word Mobile, Excel Mobile, and Dutlock[®] Mobile, giving you all the tools you need for a sessingle acktunge of data between the field and the office.

Built for the field

The GeoXT handheld has an integrated battery, good for a full day's work: simply charge the battery overright and you're ready to go again. The GeoXT handheld will last the distance, and its rugged design can take a lot of pumitment. Sain, hall, or shine, it's built to keep working, whatever the weather throws at you.

Convenient connectivity

With the GeoXT handheld you have the fexibility to work exactly the way you want to. Do you need to access the internet or your organization's secure ontwork to get the most up to date data? No problem—with the GeoXT handheld you have built in wireless LAN and Bluetooth technology to ensure you may connected.

Using the built-in wireless LAN and TrimPix" technology, the GeoXT transfreed can insprect to a range of WFI-rapable Nikon digital cameras for automated capture of digital images. Download the TrimPix software and you have initideal solution for easily collecting high resolution digital photos to link to your GPS positions.

All the memory you need

There's plenty of storage space in the GeoXT handheid for all your GIS data, and with its fait processor even big graphics files load quickly. Because the GeoXT handheid rum Windows Mobile version 5.0 software, all your data and applications are stored in penalterst memory, to your data it completely safe. And with a Secure Digital (SD) memory card slist, you can add gigabytes of memory for all your map data.

Accuracy you can rety on

Accurate information is crucial to making informed decisions and improving the way you do business. The GeoXT delivers consistent autometer accuracy both real-time and postprocessed, so you know your GB has the information that others can depend on to do the job right—this time, next time and every time.

Approved Training Centre lannasd by The Alas Dhala Center for Technical and Vocational Galacitue and Training (ACTVET) Liberse Net 0850/2020

Figure C13: Trimble GeoXT 2005 Series

GeoXT handheld

STANDARD FLATORES

- Numerous Marcowski Winstews Melalis sension Lif softwares STS Mill Well S.Sold prinsions STS Mill Well environment Subject Well services and sensibility Subject and water restrict damps Add day thermuly softwarpaties beings Add the stream

- PH
 Subtractor security in real time
 Subtractor security in real time
 Striff and time constitute support
 NUCL and TUP postate support
 NUCL and TUP postate support
 NUCL subtpart security to be longer

- You Table State of the second of the

- An execution of the power ranging and USE data ratios Cantong Network Game Cantong Network Game

- · Hand street
- · Data Int
- OFTEMAL PLATINES

- Evention of wave
 Evention of wave
 Evention Officer and extension for USA Available
 Events USA Available
 Events of the field chine and power rand
 Officer and extension
 Officer and extensin
 Officer and extension
 Officer and

TEORECAL SPECIFICATIONS

HURLER PECHICADORS	
	A 1998 A 1997 WE WANTED TO A 1998 A 1998
- Barris - Barris	et a 88 on a 27 include a 28 in 28 include R R by 17.76 32 ents bettere
and the second s	AND MALE THAT FRA 270 X Login Property
	LE MY MAY and 112 ME stands (that due
- Marriery	The part party and printing cards when
The state of the s	10 million (100 million)
Time the 195 or headings!	55 Wette
Romai faith DR and mills	pd
High Swith 275, healthan, H	
Belley, bland	LEAD with intrust out, reifurgeable in and
	Ja West Asset
Alexer operation	
Temperature .	
Operating .	
And the second second second	新生物+的生14号11的k号
Lang West-Jree	bisheats AP and maximum inch how one in
	contrast gra, dash and observe memory.
and an end of the second se	
The second secon	The second statement of the se
	Blammerte', Kill 17th metalloss LAN
	2 chann with compliant? we support module
(Brianal)	Secol siz removal DUS secol Op adaptor.
	CP102 Road Comparting one popped too date
Restorth Aufler	and the second se
Charle and host pages.	Tartel Pers, Otart Push
Chart support long	Ziel 10 Metersform
met support mily	The Tempter Lating (3000
California	Advanced Avtiliant (11, 281 v 321 phote
22/2/0 14420/2/1	IZ.S.E-cope, with Sadlape
Auto	a and smalled, revised and physical authors
Interface Teacher	nees, 3cm march Panel (SPS ambuel Arginise)
11 Participe con	cist keyt, handwetting tempetien patteries
Contract Contract Contract Contract	i when anne wenning, and methodology
1011	
Garren	1213 Costs and Operant
Interpretated and interes	
Ventorie rate	111 (11 (11 (11 (11 (11 (11 (11
Treat to face the	Forest frage I
Armonials	AN A ULLA, YEL ILL EVALUATE AND
second large distances infrare spinster	and a committee
Forth perturn send	Submitter
Carrier and processed	
Whith L characters tracking in	All a los
Well, 12 nematical traditions	
With 27 million that little	
Wei & wrang making	
Real Lines 201AT or internet W	The second in the second se
the loss court to permit at	Con Internet an annual and a second the
Alaret Sphills must be resented by	and holds start with the Augustation party
analytic or the M. Anderson or its interest of	C. Surgar internet Area to living later
and the scheme of the	
Address of the later water and	and any series that we desire the second sec
fast Marked Ad along All spins	a an another provide the spin or state and and and a second
and the loss to a fee	
The second second second second	Supervises to be added and summer of the solider.
	A dire, manufacts allogation of Th Support, and Community.
and the second se	tion, the family support of the section of the site is

Contraction of the second and door

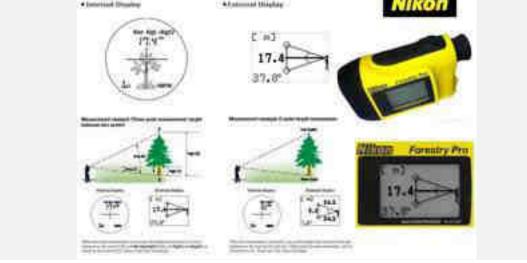


Figure C14: Nikon Forestry Pro Laser Rangefinder Specifications

Unit Specifications:				
1.	Magnification:	6.0x		
2.	Objective Lens Diameter:	21mm		
3.	Angle of View:	6°	A And Ballin	
4.	Laser Type:	Class 1M		
5.	Range:	11-550 yd / 10-500 m		
6.	Exit Pupil Diameter:	3.5 mm		
7.	Eye Relief:	18.2 mm		
8.	Distance Display Increments:	[Internal Display]		
9.	Actual Distance:	Every 0.5m/yd. or 1.0' ou	t to 100 m/yd or feet	
		1.0 m/yd or 1.0' beyond 1	.00 m/yd or feet	
10.	Horizontal distance and height:	0.2 m/yd or 0.5' up to 100	0 m/yd or feet	
	`	1.0 m/yd or 1.0' up to 100	0 m/yd or feet	
11.	Angle:	0.1° up to 10° / 1° beyond	d 10°	
	Angle: ernal Display:	0.1° up to 10° / 1° beyond	d 10°	
	-	0.1° up to 10° / 1° beyond 0.5 m/yd or 1.0'	d 10°	
	ernal Display:	0.5 m/yd or 1.0'	d 10°	
	ernal Display: Actual Distance:	0.5 m/yd or 1.0'	d 10°	
	ernal Display: Actual Distance: Horizontal distance and height:	0.5 m/yd or 1.0' 0.2 m/yd or 0.5'		
	ernal Display: Actual Distance: Horizontal distance and height: Angle:	0.5 m/yd or 1.0' 0.2 m/yd or 0.5' 0.1°		
	ernal Display: Actual Distance: Horizontal distance and height: Angle: Weatherproofing:	0.5 m/yd or 1.0' 0.2 m/yd or 0.5' 0.1° 3.3' (1.0 m) to 10 minute		
	ernal Display: Actual Distance: Horizontal distance and height: Angle: Weatherproofing: Environment:	0.5 m/yd or 1.0' 0.2 m/yd or 0.5' 0.1° 3.3' (1.0 m) to 10 minute RoHS/WEEE compliant	S	
	ernal Display: Actual Distance: Horizontal distance and height: Angle: Weatherproofing: Environment: Power Source: Dimensions:	0.5 m/yd or 1.0' 0.2 m/yd or 0.5' 0.1° 3.3' (1.0 m) to 10 minute RoHS/WEEE compliant (1) CR2 battery 5.0 x 2.8 x 1.8" (12.7 x 7.1)	S	
	ernal Display: Actual Distance: Horizontal distance and height: Angle: Weatherproofing: Environment: Power Source:	0.5 m/yd or 1.0' 0.2 m/yd or 0.5' 0.1° 3.3' (1.0 m) to 10 minute RoHS/WEEE compliant (1) CR2 battery	S	
	ernal Display: Actual Distance: Horizontal distance and height: Angle: Weatherproofing: Environment: Power Source: Dimensions:	0.5 m/yd or 1.0' 0.2 m/yd or 0.5' 0.1° 3.3' (1.0 m) to 10 minute RoHS/WEEE compliant (1) CR2 battery 5.0 x 2.8 x 1.8" (12.7 x 7.1)	S	

Figure C15: Bushnell Camera Trap Specifications			
Model:	119876		
Sensor Resolution	2, 8, 20MP		
Images Resolution:	3MP sensor wit	h 2MP compression and	20MP interpolation
Flash:	48 LEDs No-Glov	w	
Flash Range (ft/m):	100ft/30m		
Backlit LCD Display:	B&W text LCD		
Colour:	Brown		
Battery Type:	AA (8)		
Battery Life:	up to 12 mo.		
Video Resolution:	1920x1080p		
Infrared Sensor Range:	80ft / 25m		
Multi Flash Mode:	Yes		
Hyper Night Vision:	Yes	OT	
Field Scan 2x:	Yes	- Frank	

Figure C16: Sherman Trap Specifications

Sherman traps are an environmentally friendly way to research small mammal populations and can be used for mammal collection, teaching and environmental impact studies.

Sherman folding traps have the advantage of folding down to a size and shape which is easy to transport. The trap works by use of a trigger platform which causes the door to shut when the animal runs into the trap.

This is a 'live catch' trap and should be checked regularly. Where appropriate traps should be provided with water and food.

The Small Folding Aluminum Trap is suitable for trapping small animals such as mice and shrews. The Sherman Trap is available in a range of sizes to suit specific needs as shown below.

Figure C17: Anabat Express Bat Detector Unit Specifications

The Anabat Express is a compact and weatherproof recorder that is designed to be deployed in the field for several weeks. It will record bat calls which can then be used for species identification or activity monitoring.

Camouflaged and compact, the unit has a weatherproof casing and omni-directional weatherproof microphone with a 1.5m extension cable. An optional five-metre microphone extension cable allows you to position the microphone away from the unit, which makes it easier to site the recorder in an inconspicuous location, or to raise your microphone up to an elevated position when needed.

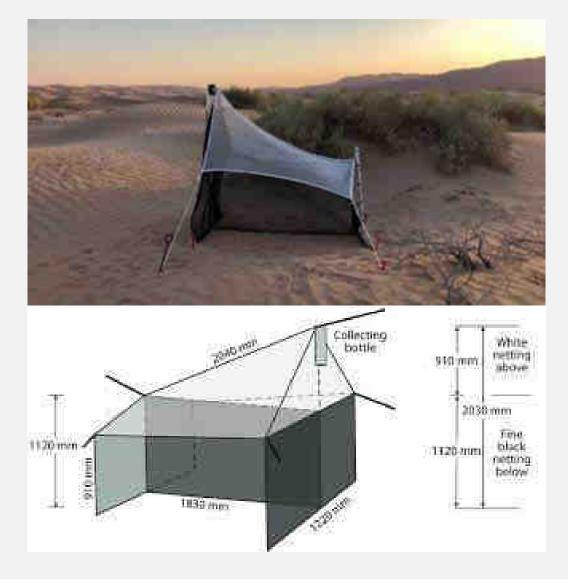
The Express is powered by 4 x AA batteries. The unit should record for around 14 nights on one set of batteries and up to 30 nights with high quality lithium batteries. Supplied with a padded case, wrist strap, 1.5m microphone extension, a magnet for status checking and USB cable.

Features:

- New, easy-to-use interface for setup & download;
- Weatherproof, camouflaged plastic case (IP67);
- Weatherproof, compact microphone;
- Records temperature and battery voltage;

Specifications:

- Dimensions: (H) 182 x (W) 119 x (D) 43mm;
- Weight: 385g (without batteries)
- Built-in GPS for location, transect tracking, setting the clock and calculating sunset/rise;
- Runs for 14 nights on 4 AA batteries and up to 30 nights with lithium-ion batteries;
- One-touch for continuous, scheduled or night-only recording modes. SD card memory and easy downloading.


Figure C18: Malaise Trap Specifications

A malaise trap is a large, tent-like structure used for trapping flying insects, particularly Hymenoptera and Diptera.

The trap is generally made of a material such as terylene netting and can vary in colour. Insects fly into the tent wall and are funnelled into a collecting vessel attached to highest point (see diagram below).

Typical Dimensions; Tall end height = 1.7m; Short end height = 0.9m; Width = 1.15m and Length = 1.88m. The opening is around 12–15 mm (0.47–0.59 in), and can vary according to the size of insect desired.

If using a dry agent, a smaller hole results in a faster death, limiting the amount of damage a newly caught insect can inflict on older, fragile specimens. In ethanol, this is less of a concern. Larger holes can potentially allow in more butterfly, moth and/or dragonfly species.

mail William

d Training (ACTVET)

Apr 0990/3000

Figure C19: RIDGID Micro-inspection Camera (Hole/Burrow Investigations)

The Ridgid 37888 micro CA-300 inspection camera is the next evolution of the SeeSnake micro inspection camera, it allows you to perform more detailed visual inspections in even harder-to-reach areas (see Plate below of an NEA scientist's use in a burrow investigation).

Comfortable pistol-grip design, one-hand controls, and large screen make it easy to detect and diagnose the unreachable. It comes standard with a rugged anodized aluminum camera head with 4 super bright LEDs.

Easily rotate the active image counter-clockwise to see in any situation. This micro CA300 inspection camera provides solutions whenever and wherever you need them. Easily record still images and videos of problems in hard-to-reach areas.

Specifications:

- 1. Item Name: Inspection Camera
- 2. Model: 37888
- 3. SV Code: 291302AAKY3
- 4. Brand: Ridgid
- 5. Resolution: 320 x 240
- 6. Video Output: 3 Feet (90 cm) RCA cable included (640 x 480 resolution)
- 7. Power Supply: 3.7V Li-Ion battery 5VAC adapter
- Cable Length: 3 Feet (90cm) expandable to 30 Feet (9m) w-optional extensions

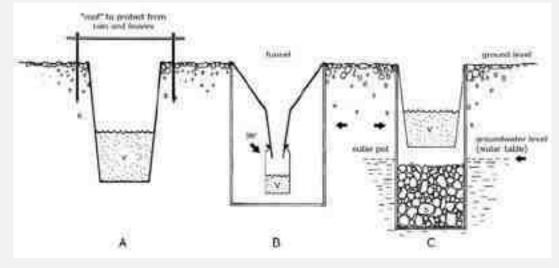


Figure C20: Pitfall Trap Specifications

A pitfall trap is a device used to trap insects that are active on the ground surface. Pitfall traps usually consist of a beaker that is buried so that the lip of the beaker is level with the ground surface. The trap is then left and returned to, at a later date, to inspect 'the catch'.

The diagram below the photograph of an NEA deployment, depicts the several variations of pitfall trap layout, with a recurring theme. Insects reaching the lip of the beaker slip and fall in and are then unable to climb back out. Sometimes alcohol or another substance is poured into the trap so that any insects falling in are killed. The rationale behind this is that predatory insects falling in to the trap will eat the rest of the catch.

Figure C21: Mavic Pro 2 (Aerial photography/videography)

The Mavic 2 Pro from DJI is a drone that balances power, portability, and professional-quality visuals with the inclusion of a 20MP Hasselblad L1D-20c gimbal camera. The camera delivers a 1" CMOS sensor with an adjustable f/2.8 to f/11 aperture, support for a 10-bit Dlog-M color profile, and 4K 10-bit HDR video capture. The Mavic 2 Pro utilizes a low-drag aerodynamic body design for achieving speeds up to 47.7 mph, a four-cell LiPo battery for up to 31 minutes of flight time, and low-noise propellers for filming without being distracting. This power and performance are coupled with a variety of dynamic shooting modes and other capabilities that help you achieve cinematic results.

1.	Item Name:	Mavic Pro 2
2.	Model:	37888
3.	SV Code:	291302AAKY3
4.	Brand:	DJI
5.	Camera:	Hassleblad 20MP, 1" CMOS, 77° FOV, f/2.8 to f/11
6.	Max Video Output:	4k 10 bit HDR (.MP4, .MOV), 5472 × 3648 Stills (.JPG or .DNG)
7.	Power Supply:	15.4V, 3850 mAh, LiPo 4S
8.	Transmission Length:	8 km (line of sight)

Appendix 2.2.2 – Shuweihat Landfall Terrestrial Ecology Survey Report

ADNOC Lightning Project Shuweihat Landfall Terrestrial Ecology Survey Report

NEA Reference: N684-0621-SHU-1.1 dated September 2021

Table o	of Conte	ents	Page
1.0	Backgr	ound and Survey Conduct	1
	1.1	Background	1
	1.2	Survey Conduct	1
2.0	Metho	dology	15
	2.1	Baseline Noise Measurements	15
	2.2	Soil and Groundwater Inspection and Analysis	15
	2.3	Ecology Survey Methodology	16
3.0	Survey	Results	19
	3.1	Noise Measurement Analysis, Locations and Results	19
	3.2	Soil and Groundwater Analysis	22
	3.3	Ecological Survey	24
4.0	Conclu	sions	74

Annexes

А	References
В	Data Sheets
С	Quality Control Documentation
Cover	Front cover – Asian Dwarf Honey Bee, Apis florea
Credits	Photos ©NEA on-site 2021, unless otherwise annotated.

Document Issue and Revision					
Issue Date	Author(s)	Checked	Approved	Issue №	Comment
17.06.2021	RP/BR/DT/VP	RP/DT	VP	1.0	1 st Issue
12.09.2021	RP/BR/DT/VP	RP/DT	VP	1.1	2 nd Issue

©2021 Nautica Environmental Associates LLC (NEA). This document has been prepared for the above titled project and should not be relied upon or used for any other project without first obtaining the written consent of NEA. NEA will accept no responsibility or liability for this document to any party other than the client for whom it was commissioned.

Approved Training Centre Literated by The Alta Dirich Center for Technical and Vacational Education and Training (ACTVET) Literate Net (0855/2020)

Figures used in Report

Ū	•	
Nº	Description	Page
1	Shuweihat Landfall Location	3
2	Shuweihat Habitat Map	4
3	Cardinal Point Locations	5
4	Track map of Ecologists' Movements	6
5	Points of Interest	7

Tables used in Report

•••	Deve della s	
Nº	Description	Page
1	Shuweihat Field Visit Overview	2
2	Shuweihat Survey Records	8
3	Noise measurement metrics for Shuweihat Landfall, site N01	20
4	Noise measurement metrics for Shuweihat Landfall, site N02	21
5	Noise measurement metrics for Shuweihat Landfall, site N02	21
6	Soil Sampling Locations	22
7	Groundwater Sampling Locations	23
8	Groundwater Results above Limits of Detection	23
9	Habitat Description & % cover (Pipeline Footprint)	26
10	Plant species recorded during the survey	46
11	Mammal and Reptile species recorded during the survey	52
12	Kentish Plover Nest Information and Coordinates	54
13	Bird species recorded during the survey	60
14	Arthropod species recorded during the survey	69

Plates used in Report

Nº	Description	Page
1	Noise meter deployment on location	16
2	Mangrove evaluations on location	17
3	Bird observations using monocular on location	17
4	Camera Trap deployed on location close to fox tracks	18
5	Fox recorded on location	18

Plates used in Report

Nº	Description	Page	
6	Grey Mangrove, Avicennia marina	28	
7	Grey Mangrove, <i>Avicennia marina</i>	28	
8	Mottled Crab, <i>Metopograpsus messor</i>	29	
9	Grey Mangrove, <i>Avicennia marina</i>	29	
10	Mangrove pneumatophores covered with some algae	30	
11	Fishing rope and nets entangled with mangrove pneumatophores	30	
12	Saltmarsh in the study area	31	
13	Saltmarsh adjacent to a tidal creek	32	
14	NEA ecologist surveying saltmarsh habitat	32	
15	Coastal Sabkha in the study area	33	
16	Coastal Sabkha	34	
17	Close-up of Coastal Sabkha	34	
18	Storm Beach Ridge at the location	35	
19	Mudflats and Sand Exposed at Low Tide	36	
20	Sheltered Tidal Flats with Cyanobacterial Mats	37	
21	Tetraena qatarensis	40	
22	Tetraena simplex	41	
23	Arthrocnemum macrostachyum	41	
24	<i>Cistanche Tubulosa</i> (dead)	42	
25	Cornulaca aucheri	43	
26	Anabasis setifera	43	
27	Stipagrostis plumosa	44	
28	Haloxylon salicornicum	44	
29	Suaeda vermiculata	45	
30	Arthrocnemum macrostachyum and Halopeplis perfoliate	45	
31	Mesalina adramitana	49	
32	Hooded Malpolon, <i>Malpolon moilensis</i>	50	
33	A pair of Arabian Red Foxes, <i>Vulpes vulpes arabica</i>	50	
34	Feral Dog tracks	51	
35	Red Fox scats	51	
36	NEA ecologists using a telescope to count shorebirds	53	

Plates used in Report

Nº	Description	Page	
37	House Sparrow, Passer domesticus	55	
38	Kentish Plover nest, Charadrius alexandrines	55	
39	Western Reef Heron, Egretta gularis, on intertidal mudflats & sand	57	
40	large tracks probably made by Grey Heron, Ardea cinerea	57	
41	Greater Hoopoe-lark, Alaemon alaudipes	59	
42	White-eared Bulbul, Pycnonotus leucotis	59	
43	Asian Dwarf Honey Bee, Apis florea	64	
44	Blue-spotted Arab Butterfly, Colotis phisadia	64	
45	Oriental Wasp, <i>Campsomeriella thoracica</i>	65	
46	Globe Skimmer, Pantala flavescens	65	
47	Carmine Darter, <i>Crocothemis erythraea</i>	66	
48	Sulphurous Jewel Beetle, Julodis euphratica castelnau	66	
49	Streaky-wing Antlion, Lopezus fedtschenkoi	67	
50	Regal Blowfly, <i>Chrysomya marginalis</i>	67	
51	Small Salmon Arab Butterfly, <i>Colotis amata</i>	68	
52	Tiger Beetle, <i>Cicindelidae</i> sp.	68	
53	Pseudofaecal balls of sand made by Scopimera crabricauda	72	
54	Unidentified biota in the intertidal zone	72	
55	Large metal buoy washed ashore in the landfall area	73	

1.0 Background, Scope and Conduct

1.1 Background

Mott MacDonald (MM), on behalf of the Abu Dhabi National Oil Company (ADNOC), commissioned Nautica Environmental Associates LLC (NEA), an Abu Dhabi based environmental consultancy, to conduct environmental surveys at three landfall locations, for the ADNOC Lightning Project. These are located at Mirfa, Shuweihat and Das Island.

Figure 1 shows the Shuweihat landfall location to the south of the existing Shuweihat Power Complex (SPC) and on-land routing to the SPC on its eastern edge.

This document relates to the survey conducted at Shuweihat between 22-24.05.2021 (Table 1) and provides a report on the results from the surveys undertaken.

1.2 Scope and Conduct

1.2.1 Scope

The scope included evaluations of the following, along landfall pipeline footprints as shown in Figure 1:

- Evaluation of habitats and associated species.
- Ambient noise measurements, over weekend and week-day periods.
- Soil and groundwater sampling and analysis to evaluate possible contamination.

1.2.2 Conduct

A minimum of two NEA staff were on-site, supported by NEA 4x4 vehicle. Surveys were conducted using a combination of walkover and vehicle drive through of the site location, deploying camera traps and noise meters and undertaking soil sampling at selected locations.

Additionally, at certain locations within the survey area and in order to provide additional photographic records of habitat and general conditions, cardinal point photographs were taken from South, East and West (North was excluded on security grounds).

Table 2 provides an overview of site visits and activities undertaken by NEA specialists during the ecological survey. Figure 2 shows a habitat map of the plot location,

together with sampling locations and camera traps. Camera traps were deployed at for one overnight period (\geq 12 hours) at these locations.

Cardinal point locations are shown in Figure 3 (see Annex B for records). Figure 4 shows points of interest and Figure 5 shows a track map or NEA staff movements across the location. These are detailed in Table 2 and discussed in subsequent sections.

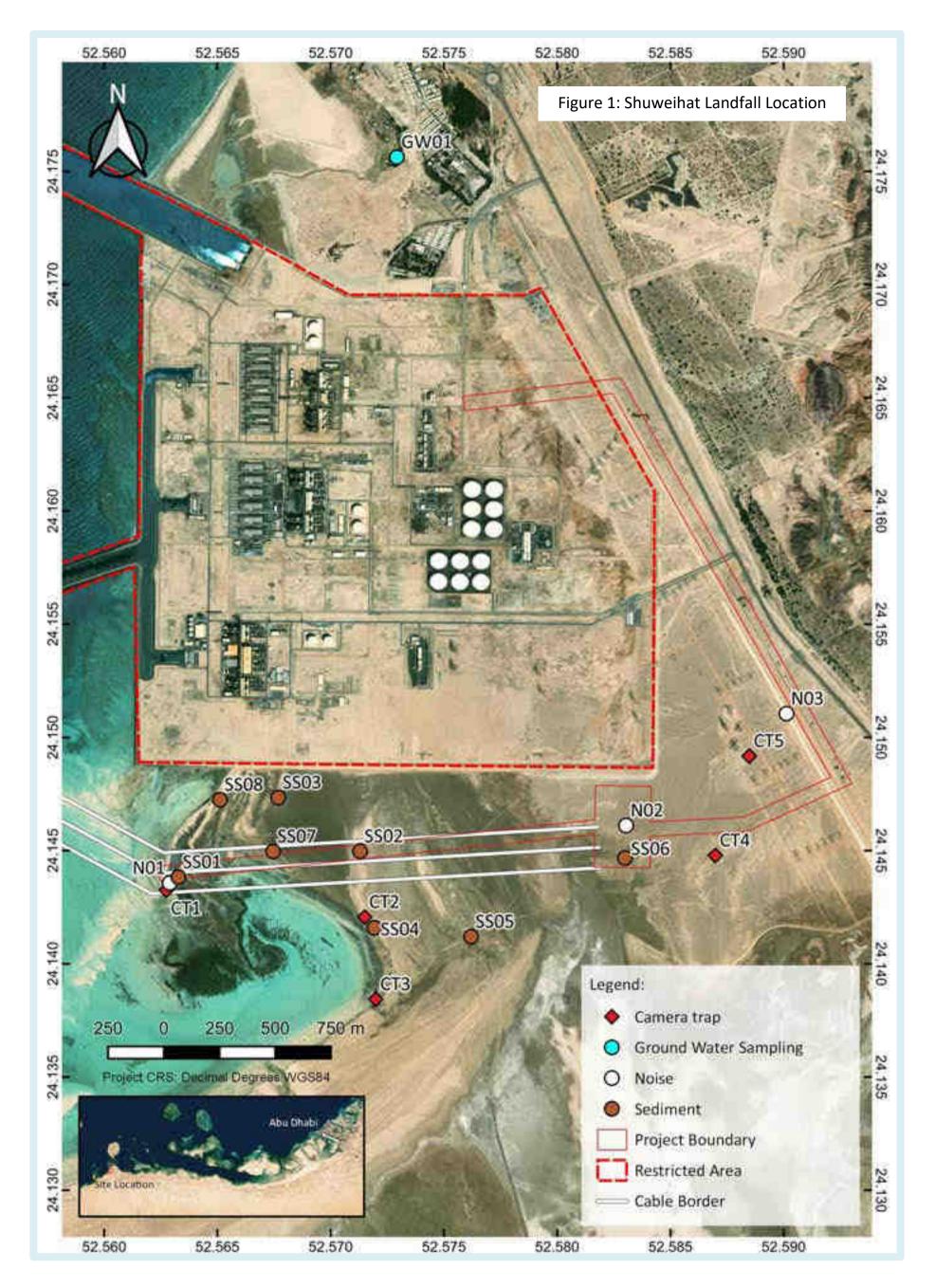
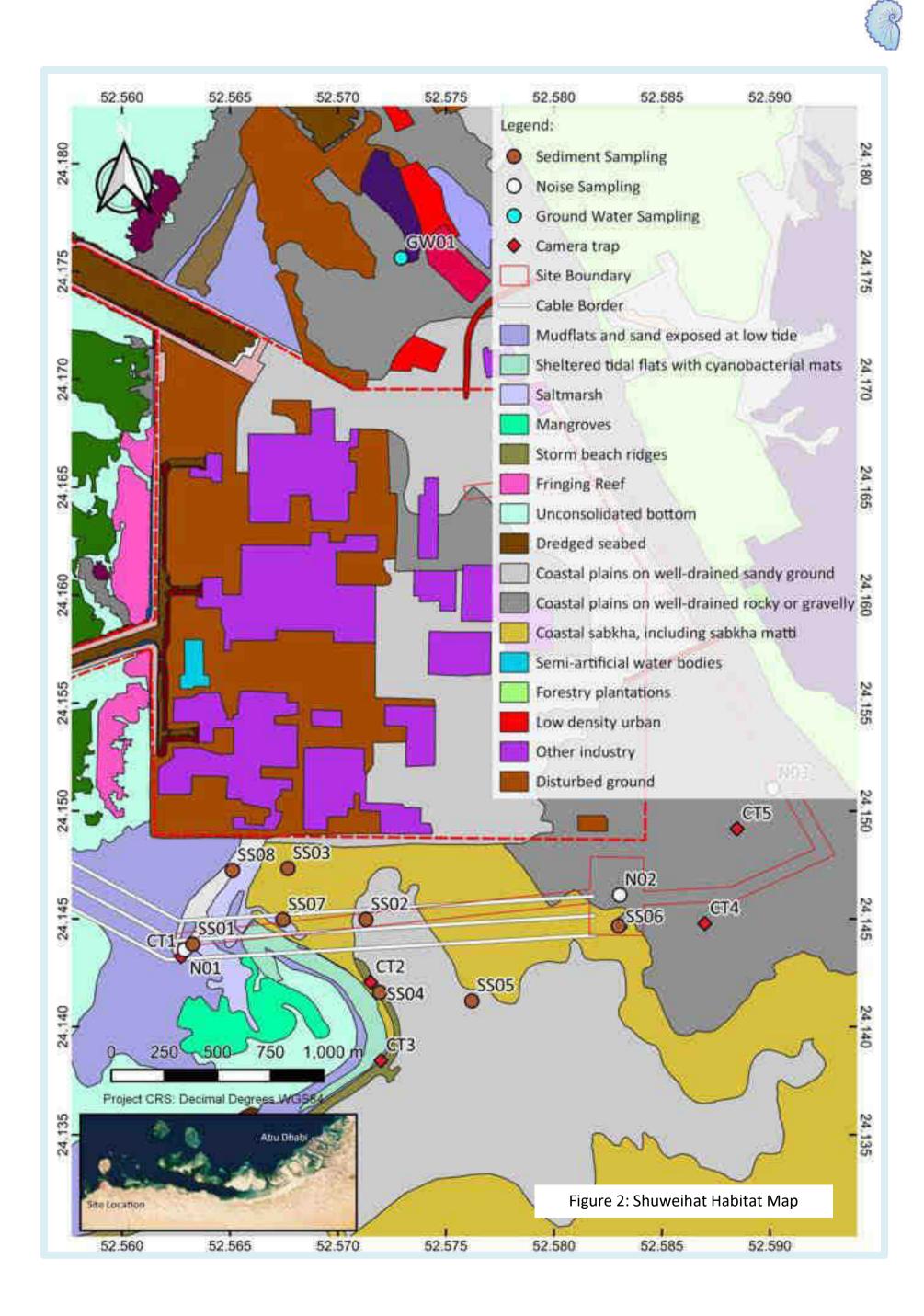
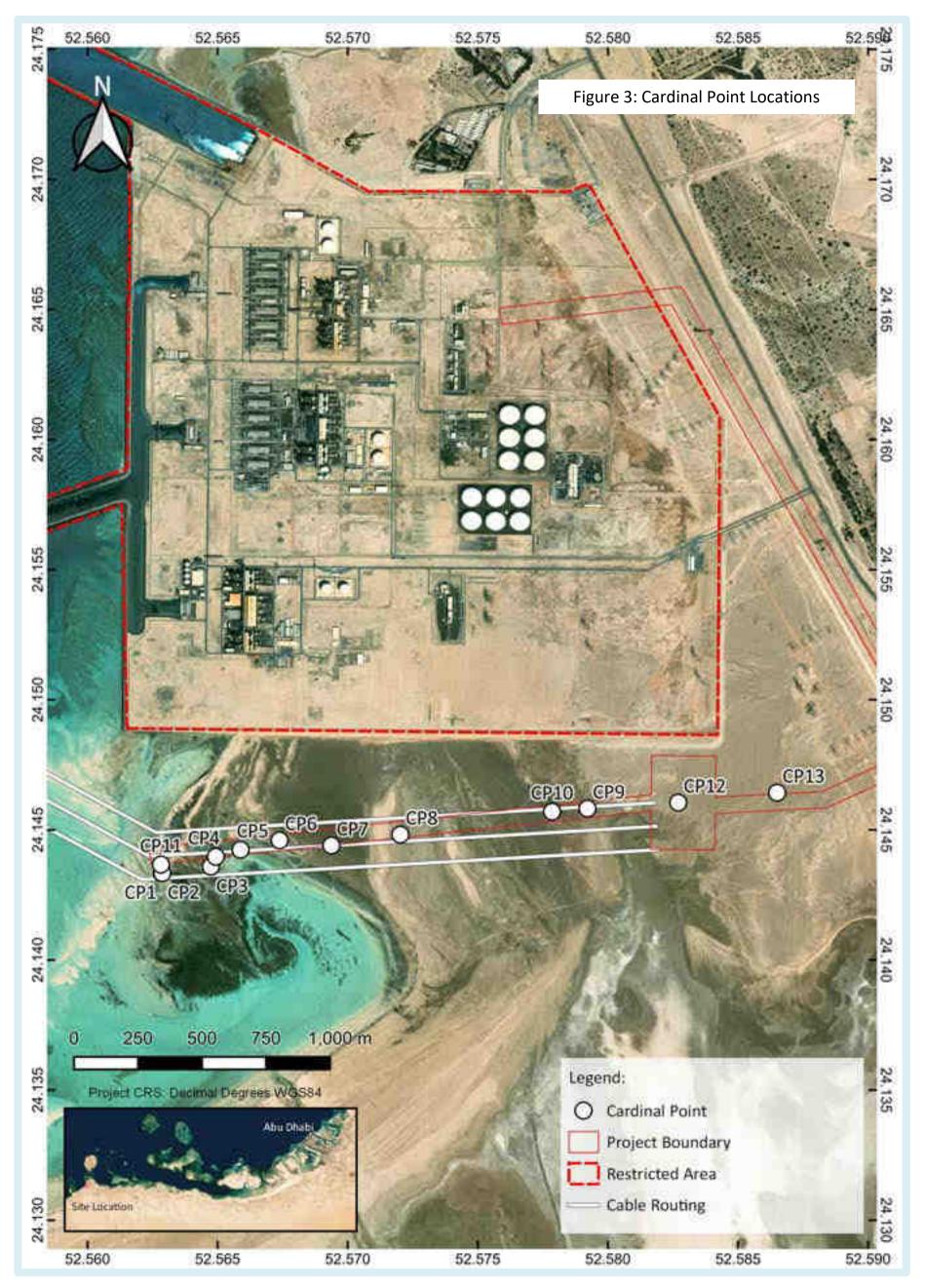
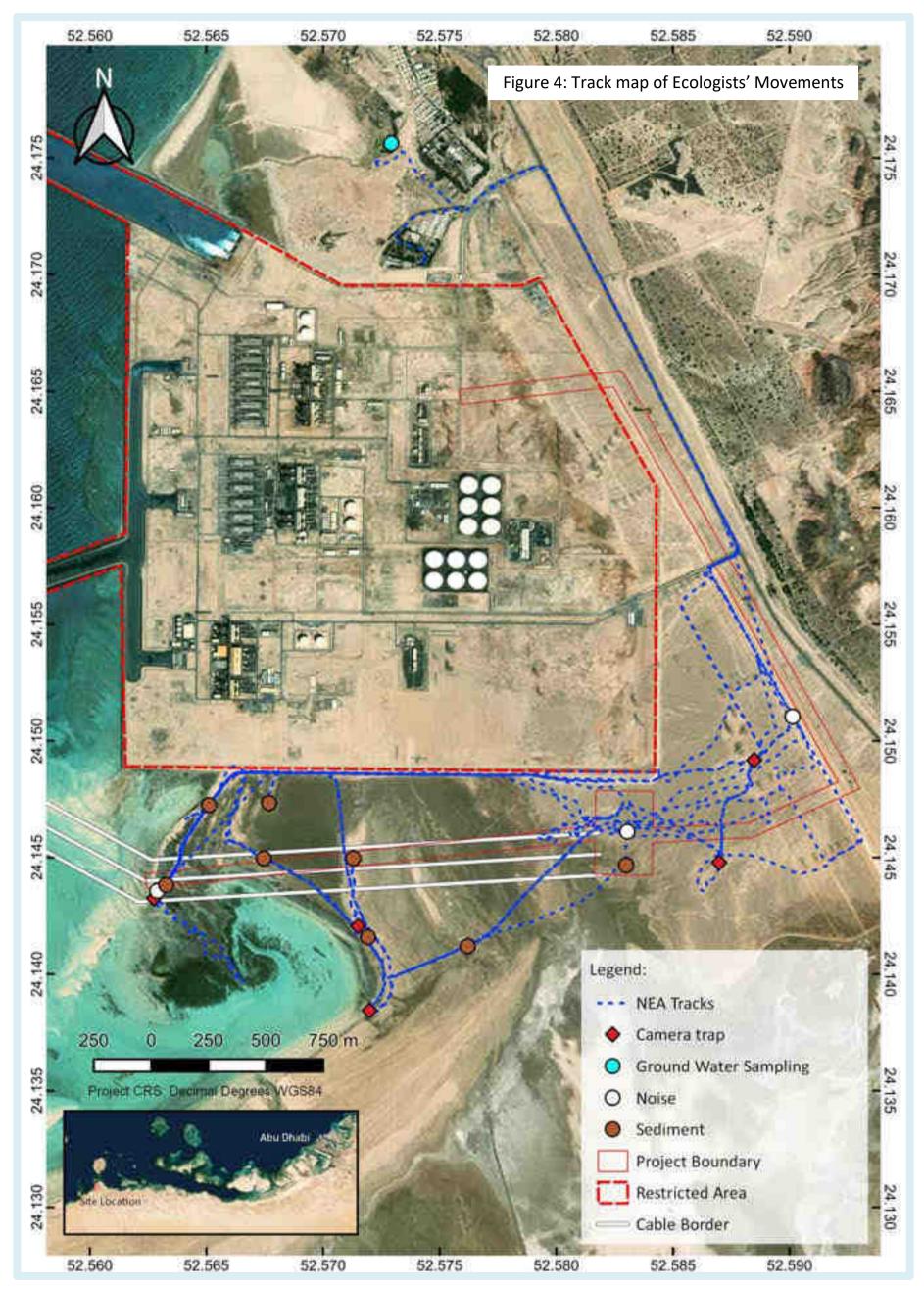
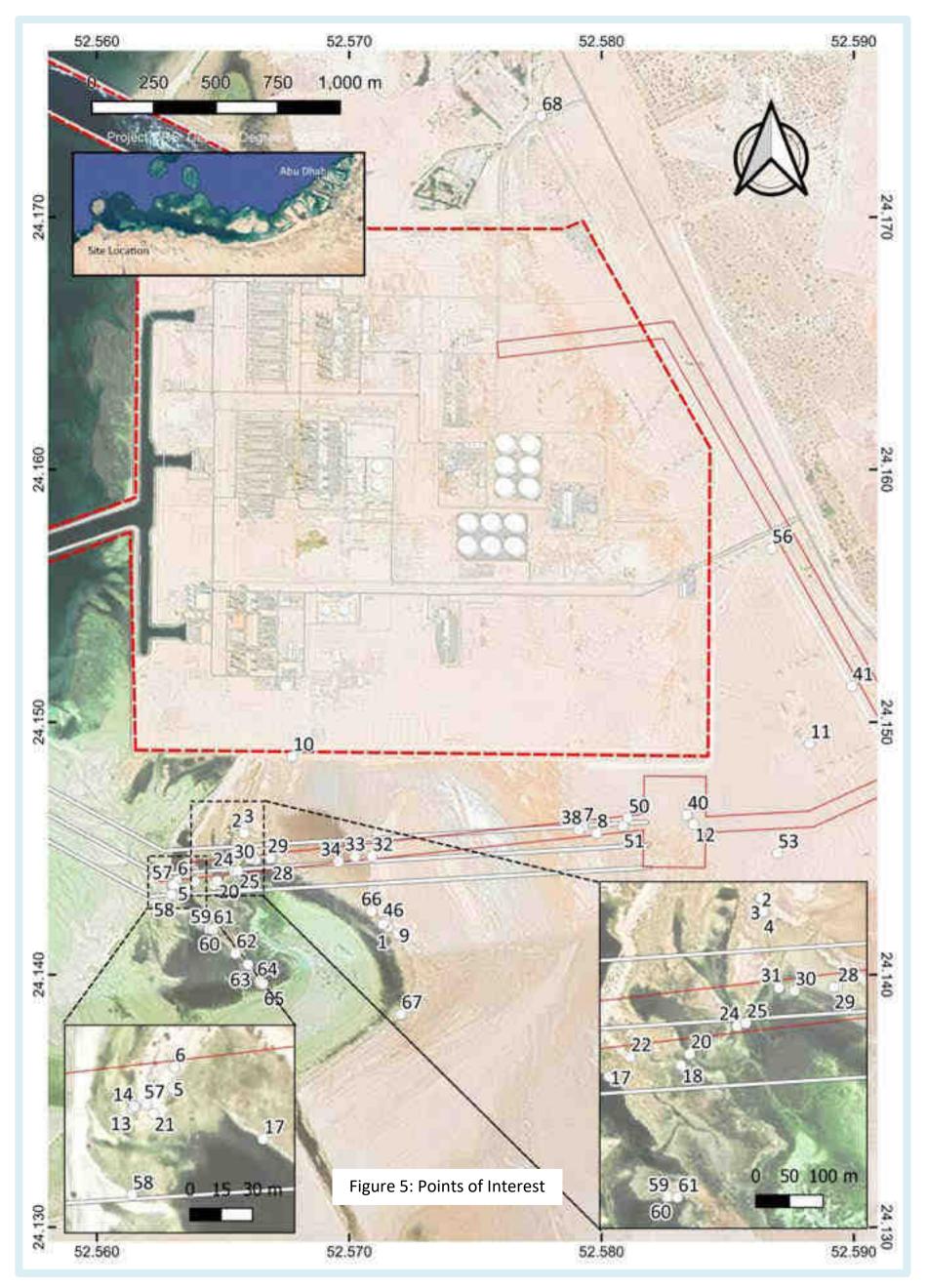

In the current circumstances, COVID-19 mitigation involved NEA field scientists wearing full eye and nose/mouth masks, with gloves, when on-site and travelling to and from the location.

Table 1: Shuweihat Field Visit Overview			
Day	Date	Survey Activity	NEA Staff
1	19.05.2021	Survey planning and Preparation	RP, AM, PM
2	22.05.2021	Survey walkover & CT/NM deployment	RP, AM, PM
3	23.05.2021	Mangrove walkover & CT/NM deployment	RP, AM, PM
4	24.05.2021	Walkover, Trap/Meter Retrieval & GW	RP, AM, PM
Table Key:			
GW = Ground Water Sampling			
CT = Camera Trap			
NM = Noise Meter			
NEA Staff: RP = Ross Pappin / AM = Aneeta Mathew / PM = Paulo Mendoza			




NAUTICA ENVIRONMENTAL ASSOCIATES LLC N684-0621-SHU-1.1 dated September 2021


NAUTICA ENVIRONMENTAL ASSOCIATES LLC N684-0621-SHU-1.1 dated September 2021



NAUTICA ENVIRONMENTAL ASSOCIATES LLC N684-0621-SHU-1.1 dated September 2021

	Table 2: Shuweihat Survey Records								
ID	Unit Type	Date	Time	Duration	Latitude	Longitude	Notes		
GW01	Ground Water Sampling	24/05/2021	09:20	NA	24.17562526	52.57292094	NA		
N01	Noise Sampling	22/05/2021	17:30	15min	24.14356397	52.56288604	NA		
N02	Noise Sampling	22/05/2021	20:30	15min	24.14610227	52.58304192	NA		
N03	Noise Sampling	22/05/2021	19:55	15min	24.15104399	52.59012404	NA		
SS01	Sediment Sampling	22/05/2021	14:15	NA	24.14382298	52.56327102	NA		
SS02	Sediment Sampling	22/05/2021	14:45	NA	24.14496526	52.57129242	NA		
SS03	Sediment Sampling	22/05/2021	17:00	NA	24.14733506	52.56767981	NA		
SS04	Sediment Sampling	22/05/2021	16:40	NA	24.14159004	52.57192902	NA		
SS05	Sediment Sampling	22/05/2021	16:25	NA	24.14119399	52.576197	NA		
SS06	Sediment Sampling	22/05/2021	16:15	NA	24.14466611	52.58298727	NA		
SS07	Sediment Sampling	22/05/2021	14:30	NA	24.14495797	52.567452	NA		
SS08	Sediment Sampling	22/05/2021	17:15	NA	24.14724296	52.56511101	NA		
CP1	Cardinal Point	23/05/2021	09:46	NA	24.14334	52.56285	NA		
CP2	Cardinal Point	23/05/2021	09:47	NA	24.14334	52.56287	NA		
CP3	Cardinal Point	23/05/2021	09:53	NA	24.14359	52.56474	NA		
CP4	Cardinal Point	23/05/2021	10:11	NA	24.14397	52.56493	NA		

	Table 2: Shuweihat Survey Records								
ID	Unit Type	Date	Time	Duration	Latitude	Longitude	Notes		
CP5	Cardinal Point	23/05/2021	10:15	NA	24.14424	52.56588	NA		
CP6	Cardinal Point	23/05/2021	10:21	NA	24.1446	52.56738	NA		
CP7	Cardinal Point	23/05/2021	10:52	NA	24.1444	52.56937	NA		
CP8	Cardinal Point	23/05/2021	10:57	NA	24.14482	52.57202	NA		
CP9	Cardinal Point	23/05/2021	11:07	NA	24.14582	52.57921	NA		
CP10	Cardinal Point	23/05/2021	11:10	NA	24.1457	52.57785	NA		
CP11	Cardinal Point	23/05/2021	17:28	NA	24.14367	52.56282	NA		
CP12	Cardinal Point	23/05/2021	18:06	NA	24.14605	52.5827	NA		
CP13	Cardinal Point	23/05/2021	18:22	NA	24.14643	52.5865	NA		
CT1	Camera trap	23/05/2021	17:38	12hrs	24.14325	52.56274	Arabian Red Fox		
CT2	Camera trap	23/05/2021	17:50	12hrs	24.14206	52.5715	Arabian Red Fox		
CT3	Camera trap	23/05/2021	18:01	12hrs	24.13843	52.57199	Arabian Red Fox		
CT4	Camera trap	23/05/2021	18:34	12hrs	24.14478	52.58698	Nothing captured		
CT5	Camera trap	23/05/2021	18:43	12hrs	24.14917	52.58848	Nothing captured		
WPT 1	Handheld GPS	22/05/2021	15:08	NA	24.14189	52.57153	Greater Hoopoe-Lark		
WPT 2	Handheld GPS	22/05/2021	15:12	NA	24.14578	52.56579	White-eared Bulbul		

	Table 2: Shuweihat Survey Records								
ID	Unit Type	Date	Time	Duration	Latitude	Longitude	Notes		
WPT 3	Handheld GPS	22/05/2021	15:12	NA	24.14579	52.5658	Grey Heron × 2		
WPT 4	Handheld GPS	22/05/2021	15:15	NA	24.1456	52.56583	Kentish Plover nest (Eggs × 3)		
WPT 5	Handheld GPS	22/05/2021	15:25	NA	24.14363	52.56315	Kentish Plover		
WPT 6	Handheld GPS	22/05/2021	16:08	NA	24.14372	52.56316	Kentish Plover nest (Eggs × 1)		
WPT 7	Handheld GPS	22/05/2021	17:02	NA	24.14584	52.57926	Fox tracks		
WPT 8	Handheld GPS	22/05/2021	17:03	NA	24.1456	52.5798	Camel Skeleton		
WPT 9	Handheld GPS	22/05/2021	18:40	NA	24.1416	52.57193	Kentish Plover × 2		
WPT 10	Handheld GPS	22/05/2021	19:58	NA	24.14864	52.56774	Kentish Plover nest (Eggs × 3)		
WPT 11	Handheld GPS	22/05/2021	20:06	NA	24.14914	52.58824	Hadramaut Sand Lizard		
WPT 12	Handheld GPS	23/05/2021	09:20	NA	24.14596	52.58364	Greater Hoopoe-Lark		
WPT 13	Handheld GPS	23/05/2021	09:27	NA	24.14354	52.56296	Graceful Prinia		
WPT 14	Handheld GPS	23/05/2021	09:27	NA	24.14355	52.56297	Western Reef Heron		
WPT 15	Handheld GPS	23/05/2021	09:46	NA	24.14334	52.56285	Cardinal Point 1		
WPT 16	Handheld GPS	23/05/2021	09:47	NA	24.14334	52.56287	Cardinal Point 2		
WPT 17	Handheld GPS	23/05/2021	09:50	NA	24.14341	52.56358	Grey Heron × 2		
WPT 18	Handheld GPS	23/05/2021	09:53	NA	24.14356	52.56463	White-eared Bulbul		

	Table 2: Shuweihat Survey Records								
ID	Unit Type	Date	Time	Duration	Latitude	Longitude	Notes		
WPT 19	Handheld GPS	23/05/2021	09:53	NA	24.14359	52.56474	Cardinal Point 3		
WPT 20	Handheld GPS	23/05/2021	09:55	NA	24.14371	52.56476	Mottled Crab		
WPT 21	Handheld GPS	23/05/2021	10:05	NA	24.14352	52.56306	Western Reef Heron		
WPT 22	Handheld GPS	23/05/2021	10:08	NA	24.14367	52.56389	Desert Hyacinth (Dead)		
WPT 23	Handheld GPS	23/05/2021	10:11	NA	24.14397	52.56493	Cardinal Point 4		
WPT 24	Handheld GPS	23/05/2021	10:13	NA	24.14408	52.56545	Discarded fishing equipment		
WPT 25	Handheld GPS	23/05/2021	10:14	NA	24.14412	52.56558	Eurasian Curlew × 3		
WPT 26	Handheld GPS	23/05/2021	10:15	NA	24.14424	52.56588	Cardinal Point 5		
WPT 27	Handheld GPS	23/05/2021	10:21	NA	24.1446	52.56738	Cardinal Point 6		
WPT 28	Handheld GPS	23/05/2021	10:26	NA	24.1446	52.56691	Fox tracks		
WPT 29	Handheld GPS	23/05/2021	10:27	NA	24.1446	52.56686	Grey Heron		
WPT 30	Handheld GPS	23/05/2021	10:28	NA	24.14455	52.56629	Kentish Plover		
WPT 31	Handheld GPS	23/05/2021	10:28	NA	24.14459	52.56606	Common Redshank		
WPT 32	Handheld GPS	23/05/2021	10:46	NA	24.14468	52.57089	Fox tracks		
WPT 33	Handheld GPS	23/05/2021	10:48	NA	24.14467	52.57023	Heron tracks (probably WRH)		
WPT 34	Handheld GPS	23/05/2021	10:50	NA	24.14447	52.56957	Heron tracks (probably GH)		

	Table 2: Shuweihat Survey Records								
ID	Unit Type	Date	Time	Duration	Latitude	Longitude	Notes		
WPT 35	Handheld GPS	23/05/2021	10:52	NA	24.1444	52.56937	Cardinal Point 7		
WPT 36	Handheld GPS	23/05/2021	10:57	NA	24.14482	52.57202	Cardinal Point 8		
WPT 37	Handheld GPS	23/05/2021	11:07	NA	24.14582	52.57921	Cardinal Point 9		
WPT 38	Handheld GPS	23/05/2021	11:08	NA	24.14573	52.57911	Fox tracks		
WPT 39	Handheld GPS	23/05/2021	11:10	NA	24.1457	52.57785	Cardinal Point 10		
WPT 41	Handheld GPS	23/05/2021	12:05	NA	24.15142	52.58992	Blue-cheeked Bee-eater		
WPT 42	Handheld GPS	23/05/2021	17:28	NA	24.14367	52.56282	Cardinal Point 11		
WPT 43	Camera trap	23/05/2021	17:38	12hrs	24.14325	52.56274	Camera Trap 1		
WPT 44	Camera trap	23/05/2021	17:50	12hrs	24.14206	52.5715	Camera Trap 2		
WPT 45	Handheld GPS	23/05/2021	17:51	NA	24.14214	52.57144	White-spotted Lizard		
WPT 46	Handheld GPS	23/05/2021	17:53	NA	24.14206	52.57144	Antlion		
WPT 47	Handheld GPS	23/05/2021	17:55	NA	24.142	52.57133	Tiger Beetle		
WPT 48	Camera trap	23/05/2021	18:01	12hrs	24.13843	52.57199	Camera Trap 3		
WPT 49	Handheld GPS	23/05/2021	18:06	NA	24.14605	52.5827	Cardinal Point 12		
WPT 50	Handheld GPS	23/05/2021	18:12	NA	24.14619	52.58104	Domestic dog tracks		
WPT 51	Handheld GPS	23/05/2021	18:15	NA	24.14588	52.58085	Fox scat		

	Table 2: Shuweihat Survey Records								
ID	Unit Type	Date	Time	Duration	Latitude	Longitude	Notes		
WPT 52	Handheld GPS	23/05/2021	18:22	NA	24.14643	52.5865	Cardinal Point 13		
WPT 53	Handheld GPS	23/05/2021	18:28	NA	24.1448	52.58697	Gerbil burrow		
WPT 54	Camera trap	23/05/2021	18:34	12hrs	24.14478	52.58698	Camera Trap 4		
WPT 55	Camera trap	23/05/2021	18:43	12hrs	24.14917	52.58848	Camera Trap 5		
WPT 56	Handheld GPS	24/05/2021	09:17	NA	24.15687	52.58673	European Roller		
WPT 57	Handheld GPS	24/05/2021	09:39	NA	24.14356	52.56303	Blue-cheeked Bee-eater × 2		
WPT 58	Handheld GPS	24/05/2021	09:41	NA	24.14317	52.56296	Graceful Prinia		
WPT 59	Handheld GPS	24/05/2021	09:53	NA	24.1418	52.56442	Asian Dwarf Honeybee x 100		
WPT 60	Handheld GPS	24/05/2021	09:53	NA	24.14181	52.56445	Blue-spotted Arab Butterfly		
WPT 61	Handheld GPS	24/05/2021	10:00	NA	24.1418	52.56458	Oriental Wasp		
WPT 62	Handheld GPS	24/05/2021	10:07	NA	24.14084	52.56549	Globe Skimmer Dragonfly		
WPT 63	Handheld GPS	24/05/2021	10:13	NA	24.1404	52.56599	Carmine Darter Dragonfly		
WPT 64	Handheld GPS	24/05/2021	10:15	NA	24.13972	52.56645	Striated Heron		
WPT 65	Handheld GPS	24/05/2021	10:16	NA	24.13964	52.56658	Western Reef Heron × 7		
WPT 66	Handheld GPS	24/05/2021	10:34	NA	24.1425	52.57088	Grey Heron × 7		
WPT 67	Handheld GPS	24/05/2021	10:43	NA	24.13843	52.57204	Globe Skimmer Dragonfly × 5		

Table 2: Shuweihat Survey Records								
ID	Unit Type	Date	Time	Duration	Latitude	Longitude	Notes	
WPT 68	Handheld GPS	24/05/2021	11:01	NA	24.174	52.5776	Hooded Malpolon	
Table Key:	Table Key:							
NA = Not A	NA = Not Applicable							
CT = Came	era Trap							
CP = Cardi	nal Point							
ID = Site ID	D / min = Minute(s)							
Lat + Long	in Decimal Degrees							
WRF = We	stern Reef Heron							
GH = Grey	Heron							

2.0 Methodology

2.1 Baseline Noise Measurements

Baseline noise measurements were carried out at three sites at the Shuweihat location and included both weekday and weekend measurement periods. Measurements at each site were carried out for 15-minutes and repeated for day and night-time (total of four measurements per site). Surveys were undertaken in parallel with ongoing ecological surveys of the location.

Measurements were collected using a bench- and field-calibrated Rion NL-52 integrating Class 1 (IEC 61672-2002) sound level meter with data stored on the device's internal memory as well as on detailed field-sheets (Plate 1). Measurement locations were chosen to minimise reflective phenomena or interruptive weather conditions in accordance with ISO1996-1:2016.

Reported parameters included maximum and average noise levels as well as identification of specific sound events where feasible and were reflective of the characteristics of the ambient noise environment and nature of the project.

- Measurements Overview:
 - 15-minutes each site (day/night/weekday/weekend)
 - o Total 1 hour per site
 - Total 3 hours at location
- Parameters:
 - O LAeq, LAMax, LA10, LA50, LA90

2.2 Soil and Groundwater Inspection and Analysis

A visual survey of the surface for any signs of contamination was conducted in parallel with ecological and noise survey data collections at the location. Where visible contamination was identified, a GPS waypoint was collected. For large areas, a tracked path was walked around the edge, using the GPS tracklog to map the extent of contamination. All identified instances were reported with accompanying georeferenced photographs.

8 soil samples were collected by hand augur along the cable corridor (see Figure 1) and analysed at an ENAS accredited laboratory. Data is provided in Annex B.

One groundwater sample was collected, GW01 in Figure 1, to the north of the Shuweihat power plant.

2.3 Ecology Survey Methodology

Field activities involved day-time drive-over and walkabouts (Plate 2) in selected areas, with one overnight trapping effort involving deployment of Browning camera traps (Plate 4) at selected locations. Figure 1 details trap and photo locations.

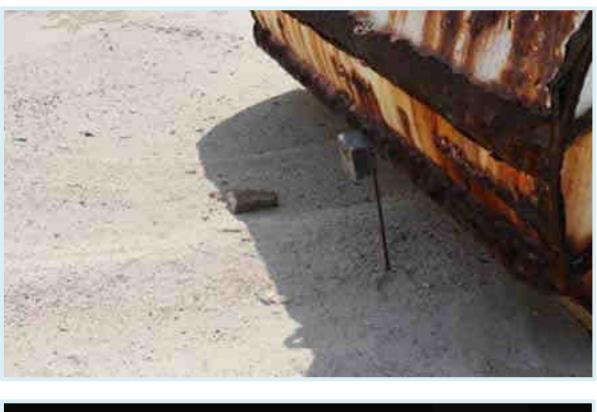
Browning camera traps were deployed at locations considered potentially suitable for mammal and/or reptile activity, such as near burrows or in areas of particularly dense vegetation and/or visible track activity. Plate 5 shows the result from one of the traps deployed.

Binoculars (Plate 3) were also used to help find and identify bird species within the area and where possible, high-definition pictures were taken and have been used in this report were deemed appropriate.

All photos displayed in this report were taken on location unless otherwise stated (NEA File Photo).

Plate 1: Noise meter deployment on location

Approved Training Centre Literated by The Alta Dhalo Center 1 Technical and Vocational Usbacthor and Training (ACTVET) Ethense Mit (DEM/2020)


Plates 2 & 3: Mangrove evaluations on location (top); Bird observations using monocular on location (bottom)

Literated by The Alls Disbit Center Techniquel and Viscottmal Uducate and Training (SCTVET) Literate No: 0890/3020

Plates 4 & 5: Camera Trap deployed on location close to fox tracks (top); Fox recorded on location (bottom)

Approved Training Centre Literated by The Alta Disbit Center for Technical and Vocational Solucition and Training CottexT1 Literate Net OREO/2020

3.0 Survey Results

3.1 Noise Measurement Analysis, Locations and Results

3.1.1 Noise Measurement Analysis

A baseline survey was conducted in the area of the proposed landfall, including three separate locations, with four fifteen-minute measurements each. The combined measurement period at each location was 1 hour, representing weekday, week night, weekend day and weekend night time periods.

The aim of the noise measurements is to provide an indication of existing ambient conditions as well as to identify any significant anthropogenic noise sources which may affect any subsequent assessments of noise.

Measurements were collected using a bench- and field-calibrated Rion NL-52 integrating Class 1 (IEC 61672-2002) sound level meter (SLM) with data stored on the device's internal memory as well as on detailed field-sheets. The SLM and microphone were field calibrated before and after each measurement to detect and account for any drift in the measured noise levels.

Measurement locations were chosen to minimise reflective phenomena or interruptive weather conditions in accordance with ISO1996-1:2016.

3.1.2 Noise Measurement Locations

Classification of the Shuweihat landfall area is debatable. While it would typically be classified as 'residential with light traffic' (day and night time noise limits of 50 dBA and 40 dBA respectively), the proximity to the powerplant and lack of any other anthropogenic receptors may be argued to assign a 'Heavy Industrial' classification (day and night time noise limits of 70 dBA and 60 dBA respectively). The completion of the landfall infrastructure would expectedly result in the area being reclassified as 'heavy industry' regardless, and as such all ambient noise levels have been assessed against the heavy industry limits for day and night time periods of 70 dBA and 60 dBA respectively.

Three noise measurement locations were identified for the purposes of capturing the ambient noise climate of the landfall project area. While these were located within the alignment of the cable landfall, the assessment conservatively considers them to be representative of residential noise receptors, such as those to the north of the alignment. The locations of the noise measurement stations (N01-N03) are shown in Figure 1.

3.1.3 Noise Results and Analysis

A breakdown of measured noise metrics for the measurement sites at the Shuweihat landfall is provided in Tables 3, 4 and 5.

It is noted that in each case, the ambient night time noise level would exceed the residential limit of 40 dBA and is higher than the corresponding day time noise level for the same location. While the exact cause is unclear, the otherwise undisturbed surroundings and the proximity of these sites to the neighbouring powerplant points to this as being the most likely cause. Operating practices within the plant are not known, however it is not unlikely that the plant emits a higher noise level during peak demand times (such as in the evenings and early mornings in order to accommodate the higher load.

Given that the area will fall under the less conservative 'heavy industry' classification following the completion of the landfall construction, the elevated night time noise level is not expected to result in any long term impacts to anthropogenic receptors. The same cannot however be said for ecological receptors which may inhabit the nearshore vegetative structures and beach areas. It would be proposed that a longterm noise measurement (minimum 96 hours) be collected from near the mangrove habitat, in order to determine a true baseline noise profile for this ecologically sensitive feature.

10510 5.14	Tuble 5. Holse measurement methos for shaweinat Editatian, site Hol								
	Site \rightarrow		N01						
↓Parameter	$Period \rightarrow$	Week Day	Week Night	Weekend D	Weekend N				
L _{Aeq}	dBA	44.2	45.5	38.2	42.1				
L _{max}	dBA	56.4	54.2	49.9	49.3				
L ₁₀	dBA	45.0	47.6	39.2	43.5				
L ₅₀	dBA	44.1	44.9	38.0	41.8				
L ₉₀	dBA	43.3	43.2	37.1	40.8				
Environmental Condit	ions								
Average Windspeed	m/s	3.61	1.89	1.98	1.34				
Max Windspeed	m/s	4.56	3.42	3.94	2.67				
Average Temp	°C	37.4	33.1	40.3	31.6				
Average Humidity	%	35.0	42.1	17.1	68.2				
Table Kern									

Table 3: Noise measurement metrics for Shuweihat Landfall, site N01

Table Key:

Exceeds the relevant ambient noise limit of 70 dBA (daytime) or 60 dBA (night-time)

D = Day / N = Night / dBA = Decibels / m/s = Metres per Second / °C = Degrees Centigrade / % = Percentage

Table 4: Noise measurement metrics for Shuweihat Landfall, site N02									
Site		N02							
Period		Week Day	Week Night	Weekend D	Weekend N				
L _{Aeq}	dBA	37.9	44.4	39.0	40.5				
L _{max}	dBA	61.2	49.8	50.6	52.3				
L ₁₀	dBA	39.5	45.4	41.3	41.5				
L ₅₀	dBA	37.2	44.4	38.4	40.4				
L ₉₀	dBA	35.6	43.4	36.5	39.4				
Environmental Condition	ons								
Average Windspeed	m/s	3.64	3.92	4.82	2.37				
Max Windspeed	m/s	4.69	5.58	5.81	3.81				
Average Temp	°C	37.5	34.6	41.9	33.3				
Average Humidity	%	34.6	37.0	14.1	57.4				
Table Key:									

Exceeds the relevant ambient noise limit of 70 dBA (daytime) or 60 dBA (night-time)

D = Day / N = Night / dBA = Decibels / m/s = Metres per Second / °C = Degrees Centigrade / % = Percentage

Table 5: Noise measurement metrics for Shuweihat Landfall, site N03									
Site		N03							
Period		Week Day	Week Night	Weekend D	Weekend N				
L _{Aeq}	dBA	41.8	51.4	45.4	47.7				
L _{max}	dBA	50.2	62.8	57.2	59.2				
L ₁₀	dBA	44.0	54.3	48.3	51.0				
L ₅₀	dBA	41.4	50.5	44.2	46.9				
L ₉₀	dBA	39.7	48.1	41.6	42.1				
Environmental Condition	ns								
Average Windspeed	m/s	2.79	4.59	4.57	1.59				
Max Windspeed	m/s	4.14	7.08	6.44	3.08				
Average Temp	°C	39.1	34.1	42.0	33.8				
Average Humidity	%	29.1	44.6	15.8	51.2				

Table Key:

Exceeds the relevant ambient noise limit of 70 dBA (daytime) or 60 dBA (night-time)

D = Day / N = Night / dBA = Decibels / m/s = Metres per Second / °C = Degrees Centigrade / % = Percentage

3.2 Soil and Groundwater Analysis

3.2.1 Soil Analysis

Soil sampling was undertaken during site visits in May, at eight targeted locations within the survey area via a hand auguring tool to a target depth of up to 2m below ground level (bgl) or to the depth where bedrock or groundwater was encountered.

The excavated soil was placed on a clean plastic sheet, free from potential contaminants or cross contaminants. Samples were then packaged, sealed, and marked and stored in a dedicated sample box for transportation to the laboratory.

The coordinates for the monitoring locations are presented in Table 6 and locations are provided in Figure 1.

	Table 6: Soil Sampling Locations							
Site ID	Latitude	Longitude	Depth (m)					
SS01	24.143799	52.563299	1.9					
SS02	24.145000	52.571300	1.5					
SS03	24.147300	52.565100	1.5					
SS04	24.141600	52.571899	1.6					
SS05	24.141200	52.576200	1.7					
SS06	24.144700	52.582999	1.2					
SS07	24.145000	52.567500	1.8					
SS08	24.147200	52.565100	1.6					
Table Notes:								
Latitude / Longi	tude in WGS84 Decimal Deg	rees						
m = Metres								

The full results are presented in Annex C. The results were compared with the Abu Dhabi Quality and Conformity Council (ADQCC) Environmental Specification for Soil Contamination Limits for Industrial and Commercial use (ADS 19/2017). A copy of the standards is provided at Table B2, Annex B.

Results for all locations/depths were in compliance with the standards and there were no visible signs of soil contamination or significant odour recorded from any location or any sample collected.

3.2.2 Groundwater Analysis

Although there were no wells or sources within the direct pipeline footprint, one groundwater sample was collected from a pond to the north of the SPP, GW01, shown in Figure 1. Table 7, below, provides location details and Annex B, Figure B3, provides the laboratory results.

Table 7: Groundwater Sampling Locations								
Site ID	Latitude	Longitude	Depth (m)					
GW01	24.175599	52.572899	Surface (pond)					
Tab	Table Notes: Latitude & Longitude in WGS84 Decimal Degrees / m = Metres							

Results exceeding LOD are shown in Table 8, together with standard limits. Despite exceedances for salinity, other parameters were in general compliance with the standards, with no significant odour recorded. The location is also adjacent to two accommodation camps, NCC and Hans Esser Camp and is considered more likely to be influenced by their activities and possible impacts.

Table 8: Groundwater Results above Limits of Detection						
Parameter	Unit	Value	Standard Limit			
Fluoride	mg/L	1.7	Not specified			
Chemical Oxygen Demand	mg/L	50	Not specified			
Arsenic (As)	mg/L	0.0093	0.06			
Cadmium (Cd)	mg/L	0.0009	0.006			
Lead (Pb)	mg/L	0.0021	0.075			
Copper (Cu)	mg/L	0.0017	0.075			
Manganese (Mn)	mg/L	0.028	Not specified			
Antimony (Sb)	mg/L	0.0023	0.02			
Barium (Ba)	mg/L	0.0087	0.625			
Cobalt (Co)	mg/L	0.0042	0.1			
Chromium (Cr)	μg /L	1.7	30			
Nickel (Ni)	μg/L	6.3	75			

Table Notes: mg/L = Milligrams per Litre / μ g/L = Micrograms per Litre

3.3 Ecological Survey

3.3.1 Habitats

The habitat classifications described in this report are defined based on a **priori schema** classification system devised by Brown and Boer in 'Interpretation Manual of the Major Terrestrial Natural and Semi-natural Habitat Types of Abu Dhabi Emirates'. These categories have been expanded by the EAD to include elements of land use and land cover.

NEA was part of a consortium that produced a habitat map for the whole of the emirate of Abu Dhabi, under contract from EAD. The main tool used in mapping was satellite imagery, but with a lot of ground-truthing by NEA. A computer was "trained" to recognise spectral signatures of habitats, and these were then mapped automatically. The accuracy of the map was confirmed by visiting a very large number of pre- selected random points. The distribution of the habitats discussed in this report are shown in Figure 2, which has been taken from the final habitat map for the emirate (which is available on the EAD website).

The latest revision of the Environment Agency Abu Dhabi (EAD) Habitat Map was referred to and was found to depict fairly accurately what is on-ground, therefore, no significant habitat revalidations are required for the site at the time of writing. However, a couple of habitats identified on-site cover small areas, that are often interspersed within major habitat-types (such as beach rock within mangroves and cyanobacterial mats covering sections of intertidal flats) and are therefore absent from the map (too small for the Minimum Mapping Units [MMU] used). Clear limitations inhibit habitat classification using satellite imagery only, particularly at small sites, highlighting the benefits of having an ecologist on-ground that can identify the habitats with greater accuracy.

Investigations conducted by NEA ecologists on-ground at the site, concluded that the strip of intertidal flats to the west of the sheltered embayment was covered almost entirely with mats of cyanobacteria (Plate 20) and thus warranted reclassification. Figure 2 shows an updated habitat distribution map that reflects changes made by NEA to the pre-existing habitat map produced by EAD.

The proposed landfall pipeline will be situated within several coastal habitats. Starting from the coast the pipeline will make landfall over an extensive area of intertidal mudflats before travelling over supratidal zones where mangrove forest, saltmarsh and cyanobacterial mats occur. The proposed route will then pass over a thin storm beach ridge which marks the high tide line and the end of the intertidal habitats. Beyond the intertidal zones, after traversing over coastal plains and sabkha, the route

eventually reaches higher, rocky plains upon which the power complex's western limits and entrance sits.

The greater survey area (within 500m of pipeline footprint) encompasses a total of 11 terrestrial habitats. Of these, Other Industry (EAD Habitat Code (EAD HC) 9240), Low Density Urban (EAD HC 9120), Paved Roads (EAD HC 9400) and Disturbed Ground (EAD HC 9600) constitute the unnatural habitats within the greater survey area.

Natural habitats present within the greater site comprise of Mudflats and Sand Exposed at Low Tide (EAD HC 1010), Coastal Plains on Well-drained Rocky or Gravelly Terrain (EAD HC 2012), Coastal Sabkha (EAD HC 3100), Mangroves (EAD HC 1040), Coastal Plains on Well-drained Sandy Ground (EAD HC 2011), Storm Beach Ridges (EAD HC 1050), Saltmarsh (EAD HC 1030) and Sheltered Tidal Flats with Cyanobacterial Mats (EAD HC 1020).

The proposed pipeline will be directly situated in seven of the abovementioned natural habitats. The threat status, area in km², description and percentage cover of the seven habitats directly situated within the proposed route are presented in Table 9 overleaf.

Three habitats that are classified as 'Critical Habitats' by EAD, occur within the site footprint. These are Mangroves (EAD HC 1040), Saltmarsh (EAD HC 1030) and Intertidal Mudflats and Sand Exposed at Low Tide (EAD HC 1010).

'Critical' habitats are a highly threatened and/or unique ecosystem. They provide areas that play a key role in supporting the various life stages of local species. On a global scale these habitats support significant concentrations of migratory species. Further loss of these threatened habitat types could result in a severe loss of endemic or threatened species and ecosystem function.

The Shuweihat pipeline landfall project is bordered by a range of important terrestrial, intertidal and subtidal habitats worthy of mitigation and preservation. These include the following:

- Mudflats and sand exposed at low tide;
- Coastal plains on well-drained sandy ground;
- Mangroves, saltmarsh and coastal sabkha;
- Subtidal seagrass beds and unconsolidated bottom;
- Fringing macroalgal dominated reef (marine habitat);

Terrestrial habitats classified as critical and environmentally sensitive are discussed in greater detail in the following sections, with marine habitats/species not forming a part of this scope.

Table 9: Habitat Description & % cover (Pipeline Footprint)						
H/T	Description	Threat Status (EAD)	Area (km²)	% Cover (PF)		
1010	Mudflats and sand exposed at low tide	Critical Habitat	0.19920396	21.19		
1030	Saltmarsh	Critical Habitat	0.03771049	4.01		
1040	Mangroves	Critical Habitat	0.00403992	0.43		
2011	Coastal plains on well-drained sandy ground	Not Sensitive or Critical	0.13806982	14.69		
2012	Coastal plains on well-drained rocky or gravelly terrain	Not Sensitive or Critical	0.28663813	30.50		
2020	Coastal sand sheets and low dunes	Environmentally Sensitive Habitat	0.01168455	1.24		
3100	Coastal sabkha, including sabkha matti	Environmentally Sensitive Habitat	0.26082332	27.75		
9400	Paved roads	Not Sensitive or Critical	0.00172188	0.18		
Table Key:						
H/T = Habitat Type (EAD Classification, 2013)						
PF = Pipeline Footprint						
% = Percentage						
Km ² = Square Kilometres						

3.3.1.1 Mangroves

A mature and dense mangrove forest fringes the embayment along the coast of the proposed pipeline landfall site. This habitat consists of inter-tidal areas dominated by the Grey Mangrove, *Avicennia marina*.

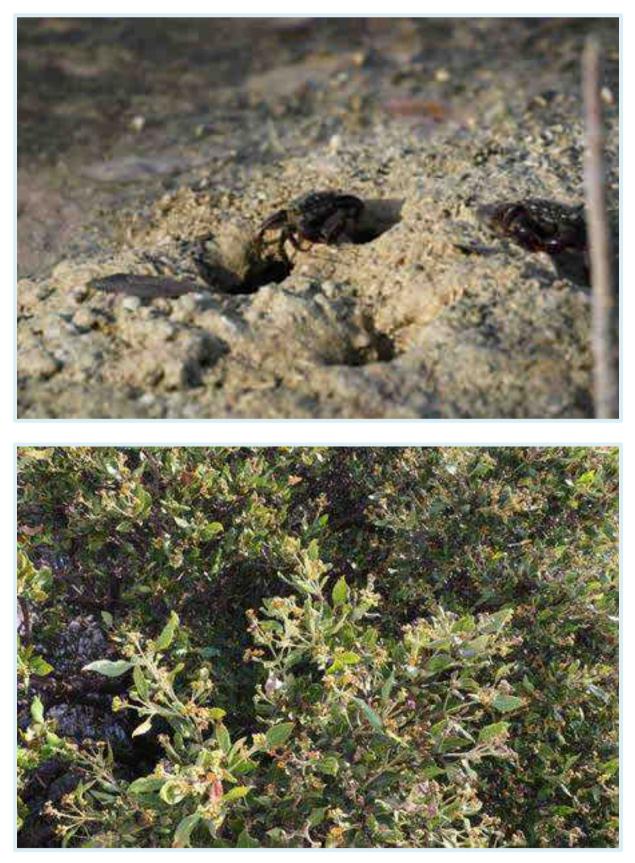
According to the EAD Habitat Map the mangrove habitat type covers approximately 0.43% of the proposed pipeline footprint. It is a critical habitat for many bird and fish species, acting as a nursery for the juvenile fish, as well as providing other ecosystem services such as coastal protection and aesthetic value.

The mangrove root systems stabilise the underlying sediment, which is rich in nutrients from decaying leaves and wood, and home to sponges, worms, crustaceans, molluscs, and algae. The habitat is home to small crabs; fish species; and bird species operating on the periphery of the mangroves.

During the time of the survey (late May) the mangroves were in flower which attracted an abundance of pollinators, including numerous Asian Dwarf Honeybees, *Apis florea*, several wasps including an Oriental Wasp, *Campsomeriella thoracica*, and the butterflies: Blue-spotted Arab, *Colotis phisadia phisadia* and Small Salmon Arab, *Colotis amata*. The insects found in the mangroves will be discussed in greater detail below in section 3.2.4. Though in flower during the survey period, the mangroves were not yet in fruit.

The mangroves in the study area appeared to be in good health with healthy leaves and branches and no apparent diseases or dead trees were observed. Fish fry and the Mottled Crab, *Metopograpsus messor*, a grapsid crab that inhabits mangroves, were found in abundance between the mangrove pneumatophores. Plate 8 shows the latter photographed during the survey.

In areas where surface water remained the longest between tidal cycles, macroalgal species, dominated by *Chaetomorpha* sp. was recorded covering pneumatophores (Plate 10). The mangrove stands were largely devoid of any anthropogenic debris. However, a couple of discarded fishing nets were recorded entangled with the pneumatophores (Plate 11).



Plates 6 and 7: Grey Mangrove, Avicennia marina (top and bottom)

Plates 8 and 9: Mottled Crab, Metopograpsus messor (top), Grey Mangrove, Avicennia marina (bottom)

and Training (ACTVET) Siteme Net (REN/3020

Plates 10 and 11: Mangrove pneumatophores covered with some algae (top), fishing rope and nets entangled with mangrove pneumatophores (bottom)

ed by The Abu Dhabi Cer scal and Viscetonal tube and Training (ACTVET) Ensence Net (SER)/3030

3.3.1.2 Saltmarsh

The saltmarsh habitat consists of intertidal areas dominated by emergent halophytic herbaceous vegetation and shrubs. Saltmarsh vegetation types coexist with mangroves and are generally found in slightly higher elevations than mangroves.

Within the saltmarsh habitat of the study area, *Arthrocnemum macrostachyum*, is the dominant component of low-level saltmarsh that tolerates frequent inundation on the coast of the survey area. A striking feature of halophytic vegetation is that the individual stands tend to be species-poor or even monospecific where one species occupies large patches. This was found to be the case in the survey area where *A. macrostachyum* was predominant and often occurred in large swathes as the sole saltmarsh plant species representative of the habitat.

According to the EAD Habitat Map this habitat type covers an area of approximately 0.050km² of the greater survey area, seen in Plates 12 to 14.

Organisms found in saltmarsh habitats include crabs; gastropods; and polychaetes. Saltmarsh is considered a "Blue Carbon" habitat type because it is a coastal and marine habitat that is able to sequester and store carbon.

These habitats are currently facing pressures from dredging, excavation and infilling activities associated with coastal developments.

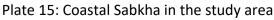
Plate 12: Saltmarsh in the study area

Approved Training Centre arrued by The Altu Dinate Center extractal and Viscational Education and Training (#CTVET) isoance Net (DER)/3020

Plates 13 and 14: Saltmarsh adjacent to a tidal creek (top), NEA ecologist surveying saltmarsh habitat (bottom)

and Training (ACTVET) Linense No: CEN(J3030

3.3.1.3 Coastal Sabkha


Coastal sabkha is salt-encrusted desert close to the coast covering wide expanses. It is devoid of vegetation due to the high salinity of the substrate. Halophytes, however, may occur where there is a thin carpeting of sand on the surface. Abu Dhabi's coastal sabkha are some of the best documented in the world.

The sabkha plains at the overall survey location cover approximately 27% of the pipeline footprint survey area. While not a traditional Blue Carbon ecosystem, historic soil carbon stocks in Coastal sabkha are likely to have a Blue Carbon origin. When these ecosystems are destroyed, buried carbon can be released into the atmosphere, which subsequently contributes to global warming. Coast is pro-grading and the elevation of the intertidal flats and sabkha has been gradually rising with accumulation of marine carbonate and other, mostly windblown, material. (Note that global sea-level rise caused by anthropogenic factors may affect this long-term trend).

The line between intertidal flats and coastal sabkha is not clearly defined, because it is determined by how far into the sabkha the seawater extends on the highest tides, and this is affected in turn by wind and wave energy. The upper limit of the intertidal flats roughly coincides with the upper limit of the area that is used as a feeding ground by waders. Similarly, the dividing line between sabkha and coastal plain can be very indistinct and may even vary throughout the course of the year.

Although coastal sabkha is an environmentally sensitive habitat, ecologically speaking, it is an especially species-poor habitat with very few, if any, species being wholly dependent on the habitat for their survival.

Plates 16 and 17: Coastal Sabkha (top), close-up of Coastal Sabkha (bottom)

3.3.1.4 Beach Ridges (1050)

This environmentally sensitive habitat type is characterised by sandy vegetated areas dotted with knolls rising above ground. Formerly present along the majority of the mainland west coast of Abu Dhabi, they usually lie parallel to the high-water mark rising a few decimetres to centimetres above the ground (Plate 18). They consist of shelly sand blown inland from the intertidal zone during storms and are subject to occasional inundation. The ridges or knolls may develop parallel to one another with the older ridges on the landward side vegetated by dense covers of halophytic chenopods.

Depending on the locality and precise environmental conditions, common floral species associated with this habitat type are *Salosa drummondii, Salsola imbricata, Halopeplis perfoliata, Tetraena qatarensis, Anabasis setifera, Cornulaca aucheri* and *Sesuvium verrucosum*. However, the most characteristic species of this habitat is *Sueda vermiculata*.

Kentish Plover, *Charadrius alexandrinus*, and Saunder's Tern, *Sternula saundersi*, locally breed in storm beach ridges, and Hawksbill Turtles, *Eretmochelys imbricata*, use them for nesting. This habitat faces threats from climate change as well as coastal development and its associated pressures such as dredging and land filling.

Plate 18: Storm Beach Ridge at the location

3.3.1.5 Mudflats and Sand Exposed at Low Tide

The intertidal flats at the eastern end of the development site are classified as mudflats and sand exposed at low tide, by EAD (Figure 2). These habitats are coastal wetlands that form when mud is deposited by tides and are classified as a critical habitat due to the number of species that they support.

Mudflats are often devoid of vegetation but can also be found with less than 10% vegetation cover. No plants are generally found in these habitats, with the exception of one species of seagrass, *Halodule uninervis*, which can be exposed at low tide (usually sparse).

Plate 19: Mudflats and Sand Exposed at Low Tide

According to the EAD Habitat Map this habitat type at the project location covers an area of approximately 0.86km² within the greater survey area, and 21.19% of the Proposed Pipeline Footprint. This is an important habitat for wading birds feeding on benthic invertebrates during low tides.

Migratory species in the plover and sandpiper families as well as herons frequent these habitats and feed on tidal flats at low tide. These habitats are currently facing pressures from dredging, excavation and infilling activities associated with coastal developments.

3.3.1.6 Sheltered Tidal Flats with Cyanobacterial Mats

This habitat consists of mats of cyanobacteria overlying saline sand in sheltered, lowlying locations that are adjacent to, or are on, the upper margin of intertidal flats. During unusually high tidal cycles these sheltered flats become inundated by rising seawater. This habitat is usually devoid of higher plants, although some halophytes may occur where there is a thin layer of surface sand. These flats are usually black or dark green in colour and are often entirely covered by cyanobacterial mats. Classified as an environmentally sensitive habitat, they hold immense value as a blue carbon storage habitat.

Marine mammal and reptile skeletal remains are often washed up on these flats, though none were found at the time of survey.

Covering a relatively minor area (0.088km²) at the site of study, this habitat was absent from EAD's habitat map. Investigations conducted by NEA ecologists on-ground at the site, concluded that the strip of intertidal flats to the west of the sheltered embayment are covered almost entirely with mats of cyanobacteria (Plate 20) and thus warrant reclassification. Figure 2 shows an updated habitat distribution map that reflects alterations made by NEA to the pre-existing habitat map produced by EAD.

Plate 20: Sheltered Tidal Flats with Cyanobacterial Mats

of the second

3.3.2 Flora

With the exception of planted species along the roadside at the easternmost perimeter of the site, thirteen naturally occurring species of vascular plant were recorded across each habitat in the survey area, as follows:

- Cornulaca aucheri;
- Salsola imbricata;
- Haloxylon salicornicum;
- Avicennia marina (Grey Mangrove);
- Anabasis setifera;
- Stipagrostis plumosa;
- Arthrocnemum macrostachyum (Glasswort);
- Halopeplis perfoliata;
- Heliotropium kotschyi;
- Suaeda vermiculata;
- Cistanche Tubulosa (Desert Hyacinth);
- Tetraena qatarensis;
- Tetraena simplex;

All these species are halophytes except *Stipagrostis plumosa, Heliotropium kotschyi* and *Haloxylon salicornicum*, all of which were present further away from the coast at higher elevations within coastal plains on well-drained rocky ground. Grey Mangrove (*Avicenna marina*) Is present in high densities within the sheltered embayment to the east of the survey area. Mature, healthy trees, range in height from 2m up to 5m.

Little rainfall has occurred in the months preceding the survey so it is likely that the thirteen plants recorded in the survey will be supplemented by additional annuals following periods of rain in cooler months.

Arthrocnemum macrostachyum, is a typical component of low-level saltmarsh that tolerates frequent inundation on the coast of Abu Dhabi. A striking feature of halophytic vegetation is that the individual stands tend to be species-poor or even monospecific where one species occupies large patches. This was found to be the case in the survey area where *A. macrostachyum* was the dominant and often sole saltmarsh plant. *A. macrostachyum* is described as a much-branched growing in clumps up to a metre high (3 ft). It is a common and widespread in the UAE that occurs along the entire coast.

Within the survey area, *A. macrostachyum*, a species of very high salinity tolerance, is the commonest plant at, or just above the high tide and within the supralittoral zone. It is then replaced by *Halopeplis perfoliata* slightly further inland. Still further inland, *H.perfoliata* is replaced by the bean caper *Tetraena qatarensis*, one of the commonest plants in the UAE. Plate 29 shows a floral dominance transitional zone between *A. macrostachyum* and *H. perfoliata* where the latter species of lower salt-tolerance starts to replace the former relative to the distance from the shoreline.

Another common plant species in areas of higher elevation to the east of the site is *Tetraena simplex* (formally *Zygophyllum simplex*). It is common along both coasts in the UAE, as well as on offshore islands. It is the dominant annual west of Jebel Dhana and flowers between December and June with prominent yellow flowers. Plate 21 shows a specimen in late flower.

Stipagrostis plumosa (Plate 26), the only graminoid found in the survey, was noticed at a few locations in higher rockier ground to the west of the survey site. Coastal habitats of lower elevation are too saline for this species; hence, it was one of the rarest plants in the survey area. However, in the UAE as a whole is common and widespread.

Being a species of lower saline tolerance, the distribution of *Haloxylon salicornicum* in the survey area was limited to the coastal rocky plains of higher elevation to the east. Very common and widespread in the UAE, it is mostly found in gravel and sand plains, such as the gravelly expanses in the east of the survey area. This perennial dwarf shrub grows out horizontally, extending its base and stems to attain large ground coverage, up to two metres. The leaves are dark green, thin, long and cylindric. Flowering from September to December, the clusters of yellowish flowers can grow up to 8cm long.

Cornulaca aucheri (Plate 24) was found frequently during the survey within the coastal plain's habitat. Common and widespread in the emirate of Abu Dhabi, this shrub can be found in coastal saline sand and interior sandy desert. The woody branches can erect up to 50cm. Leaves are 0.1cm triangular shaped and spiny. Flowering between August and September, the green flowers are in clusters of eight, surrounded by tufts of short white hair.

Stands of *Heliotropium kotschyi* were noted on a few occasions at the site. *H. kotschyi* is described as a perennial and woody shrub with stems that are up to 60cm long, containing small, white flowers. *H. kotschyi* flowers all year round making it an important plant for pollinating insects.

Halopeplis perfoliata (Plate 29) was recorded several times during the survey. Common along the Arabian Gulf coast and inland, this shrub can be found growing next to salt marshes and Sabkhas. A perennial and woody shrub, the stems are covered

with flowers which are green and clustered, forming strings of beads. Flowering occurs from September to December.

Salsola imbricata was found occasionally during the survey. Common on both coasts of the UAE, this herb is found in saline sand and on disturbed ground. This plant was one of the first plants to colonise coastal landfills. The annual herb has a total length of between 30-80cm.

Plate 21: Tetraena qatarensis

Plates 22 & 23: Tetraena simplex (top), Arthrocnemum macrostachyum (bottom)

Approved Training Centre arrand by The Alta Divato Center for echangel and Viscational Objection and Training (SCTVET) Estantic Nat (SEG/3020

Plate 24: Cistanche Tubulosa (dead)

Plates 25 & 26: Cornulaca aucheri (top), Anabasis setifera (bottom)

Plates 27 & 28: Stipagrostis plumosa (top) Haloxylon salicornicum (bottom)

Plates 29 & 30: Suaeda vermiculata (top), Arthrocnemum macrostachyum (bottom-right, bottom photo), Halopeplis perfoliata (bottom)

e Can

neual and Viscational Educ and Training (ACEVET) Essance Net (2010/3020

Table 10: Plant species recorded during the survey					
Family name	Scientific Name	Status During Survey	Status in UAE/IUCN		
Acanthaceae	Avicennia marina	Present at a high density within the sheltered embayment and fringes	UAE: Common and widespread on the coastline of the UAE IUCN: LC		
Amaranthaceae	Arthrocnemum macrostachyum	Very common. Dominant saltmarsh plant in survey	UAE: Common and widespread on both coasts IUCN: NE		
Amaranthaceae	Anabasis setifera	Fairly common on the coastal plains at the site	UAE: Common in coastal areas, also on offshore islands IUCN: NE		
Amaranthaceae	Cornulaca aucheri	Widespread within the survey area	UAE: Common and widespread in Abu Dhabi Emirate IUCN: NE		
Amaranthaceae	Halopeplis perfoliata	Common along storm beach ridge	UAE: Common along the Arabian Gulf coast IUCN: NE		
Amaranthaceae	Haloxylon salicornicum	Most common at higher ground to the east of the site	UAE: Common and widespread, except at higher elevations in mountains IUCN: NE		
Amaranthaceae	Salsola imbricata	Occasionally noted in the storm beach ridge habitat	UAE: Common and widespread on both coasts IUCN: NE		

Table 10: Plant species recorded during the survey					
Family name	Scientific Name	Status During Survey	Status in UAE/IUCN		
Amaranthaceae	Suaeda vermiculata	Infrequently noted in the storm beach ridge habitat	UAE: Common on the coastline and offshore Islands IUCN: NE		
Boraginaceae	Heliotropium kotschyi	Uncommonly noted on the coastal plains	UAE: Common and widespread in coastal areas IUCN: NE		
Orobanchaceae	Cistanche Tubulosa	A couple of dead specimens encountered	UAE: Common along coast and inland saline sand plains IUCN: NE		
Poaceae	Stipagrostis plumosa	Occasionally present on coastal plains of higher elevation and lower salinity	UAE: Common and widespread. Very common along roadsides IUCN: NE		
Zygophyllaceae	Tetraena qatarensis	Most abundant species away from saltmarsh and mangroves	UAE: Common on the coast of Abu Dhabi and in northern Emirates. IUCN: NE		
Zygophyllaceae	Tetraena simplex	Frequently noted on coastal plains	UAE: Common and widespread along UAE coastline and on offshore islands IUCN: NE		
Table Key:					

C-Name = Common Name / IUCN = International Union for the Conservation of Nature / NE = Not Evaluated

3.3.3 Mammals and Reptiles

An extensive diurnal walk/drive-over was conducted to search for the presence of mammals and reptiles within the site boundary. Five camera traps were also set overnight to record any nocturnal specimens. The traps were set at locations deemed to be support the highest density of fauna indicated by the presence of ecological markers such as tracks, scats, and burrows. Arabian Red Fox, *Vulpes vulpes arabica* and feral dog, *Canis familiaris*, were the only mammals recorded in the survey. Three reptile species were identified during the survey, these were: Hadramaut Sand Lizard, *Mesalina adramitana*, White-spotted Lizard, *Acanthodactylus schmidti*, and Hooded Malpolon, *Malpolon moilensis*. All Mammal and Reptile species recorded during the survey are listed in Table 11.

The presence of foxes was initially indicated to NEA ecologists following the discovery of numerous tracks throughout the entire survey area, particularly along the storm beach ridge. The tracks were clearly fox-like with distinctive claw marks evident on each print. Data captured on camera traps later proved that the site is frequented by at least two Arabian Red Foxes (Plate 32). The Arabian Red Fox is generally a solitary hunter, foraging alone out of the breeding season (late winter in the UAE), however, they are known to group together very occasionally in a pack. It is most probable that the two foxes captured on the camera trap were a late breeding pair, or an adult and a fully grown juvenile that is currently unable to fend for itself. Common and widespread throughout the UAE, the Arabian Red Fox is highly adaptive and can be found in virtually every natural and man-made environment.

Red Foxes are known to walk very long distances, particularly at night in search of food. The foxes clearly forage along the vegetated storm beach ridge from time to time in search of anything edible that may have drifted in with the tide, such as dead fish, birds, or waste human food.

No fox burrows/dens were found in the survey area despite tracks and scats being found in abundance. It is likely that the foxes' den and spend the majority of their time beyond the east of the survey area within coastal cliffs, headlands, and rocky slopes environs in the centre of Jebel Dhana that provide ample rocky crevices that enable the foxes to easily excavate burrows of greater permanence.

Hadramaut Sand Lizard, *Mesalina adramitana* (Plate 30) was recorded on one occasion during the survey. Widespread, particularly throughout the north half of the UAE, these lizards are chiefly found in sand and gravel plain habitats which contains sparse vegetation cover. Lightly built, the Hadramaut Sand Lizard is fast-moving and has the ability to climb branches of desert shrubs and travel long distances in order to catch its prey. It is a diurnal and mainly feeds on small insects including ants.

A single, White-spotted Lizard, *Acanthodactylus schmidti*, was seen amongst washed up debris on the storm beach ridge, where it quickly fled and concealed itself under a bush when approached. As the common name suggests, the white spots covering the body of the lizard are a unique characteristic of this species. These white spots are boldest when the lizard is young, slowly fading away as they reach maturity. Widespread and common, they can be seen in almost all sandy areas of the UAE and mainly prey on insects, particularly beetles, ants, and flies. Well known to be very aggressive, they regularly get into skirmishes with other members of the same species when defending their territories.

A Hooded Malpolon, *malpolon moilensis*, was observed crossing the road that leads to Hans Esser Camp to the north of the power plant. NEA ecologists stopped their vehicle to allow the snake to safely cross the road and were able to take a few photographs (Plate 31) before it slithered into a patch of vegetation at the side of the road. Although the sighting was a moderate distance away from the proposed pipeline route (2.1km), it is likely that these snakes are occasionally present within one of their preferred habitats: vegetated coastal plains on well-drained rocky ground, which constitute a large proportion of habitat cover to the east of the survey area.

A fast-moving diurnal snake with a chequered pattern and large, reddish coloured eyes. *M. moilensis* have large dark spots at the side of the head between the eye and neck (as seen on the individual in Plate 31), which are almost always distinctive. This species is capable of moving large amounts of sand aside with sideways movements with the head bent downwards and can thus make shelters under stones and logs (Gardner, 2013).

The IUCN status, national status, and notes relative to the presence of every mammal and reptile identified in the survey area are presented in Table 11 on page 52 below.

Plate 31: Mesalina adramitana

Approved Training Centre sensed by The Alla Dhalo Comer to behindpal and Vocational Soluciture and Training (ACTUET) situense Net 0890/2020

Plates 32 & 33: Hooded Malpolon, *Malpolon moilensis* (top), A pair of Arabian Red Foxes, *Vulpes vulpes arabica*

Plates 34 & 35: Feral Dog tracks (top), Red Fox scats (bottom)

Approved Training Centre lannaed by The Alls, Diskie Center Technical and Viscottonal Uducate and Training (ACTVET) Linense No: 0890/3020

Table 11: Mammal and Reptile species recorded during the survey					
Common Name	Scientific Name	Status During Survey	Status in UAE & IUCN		
Arabian Red fox	Vulpes vulpes arabica	Very Common. Numerous tracks were found, and at least two individuals were captured several times on camera trap.	UAE: Common and widespread IUCN: LC		
Feral Dog	Canis lupus familiaris	Tracks were observed, but no actual sightings.	UAE: Common and widespread IUCN: LC		
Hadramaut Sand Lizard	Mesalina adramitana	Found on a few occasions.	UAE: Poorly known species IUCN: LC		
White-spotted Lizard	Acanthodactylus schmidti	Found on one occasion.	UAE: Common and widespread IUCN: LC		
Hooded Malpolon	Malpolon moilensis	Seen on a single occasion crossing a road to the north of the power plant.	UAE: Fairly common within gravelly habitats IUCN: LC		
Table Key: IUCN = International Union for the Conservation of Nature / LC = Least Concern					

3.3.4 Birds

Avian abundancy and diversity were assessed at the site through incidental, diurnal sightings that were conducted at high and low tides across the intertidal zone, at the shoreline and in-land within the proposed pipeline footprint area and surrounding habitats. Additionally, on the morning of 23.05.21 a dedicated avian survey was conducted, where a telescope was set-up just landward of the intertidal mudflats (Plate 36) in order to identify and count shorebirds foraging a further distance away.

In all, 15 species of birds, totalling 109 individuals were recorded during the site visits. Counts of all the birds seen on the three days are given in Table 13, scientific names for all taxa, as well as IUCN status are presented therein.

Plate 36: NEA ecologists using a telescope to count shorebirds

Eight waders, totalling 48 individuals were counted at the site, most of these records consisted of birds foraging on intertidal flats and at the edge of tidal creeks fringed by mangroves. The relatively low diversity and abundancy of waders noted during the survey is to be expected in early summer, as shorebird numbers using the site will naturally decline from April onwards as birds depart northwards to breeding grounds. Reduced (though still significant) numbers of non-breeders are likely to remain all summer, as they do in intertidal areas all around Abu Dhabi Island and its environs. Numbers will then start to increase again from late August onwards, as wintering birds arrive, and south-bound migrants pause to refuel.

One of only a few waders that breed in the UAE, an indication that Kentish Plover, *Charadrius alexandrinus*, were breeding at the site was observed when an adult was seen displaying distraction behaviour on the morning of 22.05.20. Some birds have developed modalities of parental defence based on performing displays with the aim to divert predator attention from offspring or nests. This can be achieved through the display of dishonest signals concerning their physical condition or by mimicking a reduced ability to escape. In this case, the adult plover imitated a broken wing. This behaviour, coupled with the time of year, made NEA ecologists suspect that a nest or fledglings could be present in the immediate vicinity of the plover sighting.

The suspicion was confirmed when the plover approached a bare patch of ground and sat over an inconspicuous scrape, which on closer inspection was found to contain three eggs. The survey team took coordinates of the nest site before promptly leaving the area to avoid disturbing the nesting plover.

Following the discovery that Kentish Plover were currently breeding within the survey area, further investigations were conducted in suitable habitat nearby. These investigations uncovered two further Kentish Plover nests, one contained another three eggs, while the other housed a solitary egg. Table 12 below contains the coordinates of, and information on, the Kentish Plover nest sites.

Table 12: Kentish Plover Nest Information and Coordinates					
WPT №	Nº Eggs	Latitude (N)	Longitude (E)	Date Discovered	
4	3	24.1456	52.56583	22.05.21	
6	1	24.14372	52.56316	22.05.21	
10	3	24.14864	52.56774	23.05.21	

Table Key: WPT = Waypoint / Northing + Easting = WGS84 Decimal Degrees

The nests are located within the immediate vicinity of the proposed pipeline route and would be subject to disturbance and possible direct impacts from construction activities. The proposed work should be postponed until the end of the breeding season (late June/early July), this will ensure that eggs have hatched, and nestlings fledged, which will enable the birds to move into to suitable habitat nearby away from potential sources of harm. Plate 38 shows an adult Kentish Plover at a nest location.

Kentish Plovers are considered to be a 'Priority Bird Species' in the UAE. This is due to the percentage of the world population that breed in the country. An estimated 1000-3000 pairs breed in the UAE, both at coastal and in-land locations.

Plates 37 & 38: House Sparrow, **Passer domesticus** (NEA File Photo) (top), Kentish Plover nest, **Charadrius alexandrinus** (bottom)

Western Reef Heron, *Egretta gularis*, were seen at the mangrove habitat in and on the mudflats to the east of the power plant. Western Reef Herons are strongly associated with coastal sites and are almost entirely restricted to coastal sites with mangroves in the breeding season. They more rarely have been known to nest in low shrubby halophytes on some islands in the absence of any mangroves.

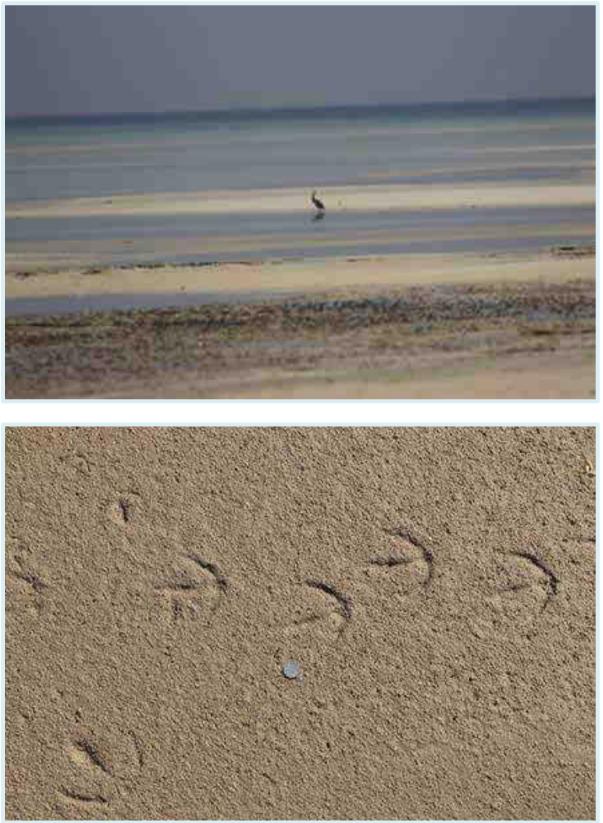
E. gularis have an estimated breeding population in the UAE of 500-1000 pairs (Aspinall, 2010). The population is imprecisely known due to the impenetrability or inaccessibility of most breeding sites. An attempt was made to search for nests belonging to *E. gularis* within mangroves closest to the planned development, however, non were found, allowing an assumption that they choose to nest only in the densest, mature mangroves at the site to be made.

A small heron was flushed from a dense stand of mangroves while the survey team were investigating the mangrove habitats. Although only a fleeting glimpse was made of the bird as it took flight, species identification was determined acoustically by the loud and distinctive call synonymous with Striated Heron, *Buorides striatus*.

In the UAE, Striated Herons breed almost exclusively in mangroves, therefore, their distribution along the coast is patchy and is determined by coastal habitats that are suitable for breeding and foraging. Away from mangrove breeding grounds, these herons also frequent coral reefs, rocky islets, and breakwaters where they feed primarily on small fish in shallow waters.

A third heron from the Ardeidae family was recorded at the time of the survey. Namely, these were Grey Heron, *Ardea cinerea*. The Grey Herons at the site were primarily present at the waterline, fishing in the shallower water, but were also seen in small flocks of up seven flying over the embayment and mangroves.

The Grey Heron is a large predatory bird that feeds mostly on aquatic animals, which it catches after standing stationary beside water waiting to ambush, or by stalking prey through the shallows. It is a common winter visitor and passage migrant in the UAE, and can often be seen by freshwater lakes, or in mangrove areas.


A pair of Greater Hoopoe-larks were seen foraging within the vegetated strip along the storm beach ridge on three consecutive days. They have a distinctive long bill, well designed for probing and digging for invertebrates. These birds frequently nest at the base of vegetation or in low bushes, therefore, an additional effort was made to search for a nest site. However, despite a thorough search, none were located.

The Greater Hoopoe-lark is a resident of arid, desert, and semi-desert regions, across much of northern Africa and the Arabian Peninsula. They are resident breeders in the UAE, being commonly encountered throughout the year in habitats with sand sheets and dunes with dwarf shrub cover.

Plates 39 & 40: Western Reef Heron, *Egretta gularis*, on intertidal mudflats and sand (top), large tracks probably made by Grey Heron, *Ardea cinerea* (bottom)

A couple of Blue-cheeked Bee-eaters, *Merops persicus*, were seen in-flight passing over an area of mature mangroves. They were also heard on a couple of occasions while the survey team were taking noise measurements adjacent to the power lines to the east of the survey area. It is likely that the bee-eaters were perched out of view on the pylon structures which act as a vantage point, allowing them to easily spot flying insects, their preferred prey. *M. persicus* is a late migrant, one of a small number of passage migrants that can still be seen in the UAE in late May. During migration, flocks may turn up virtually anywhere in the country, though more frequently in farmlands and parks. Some over-summer in the northern emirates and records of a small number breeding there do exist. For this reason, they are considered as a priority bird species in the UAE.

Another late migrant seen one a single occasion was European Roller, *Coracias garrulus*. The roller was perched on one of the large electricity pylons towards the entrance of the power complex. Upon seeing the survey vehicle, the roller took flight over the road towards Jebel Dhana. Due to the brief sighting no photograph was taken but clear diagnostic features were visible, such as the blue crown, which distinguishes it from Indian Roller that has brown coloured plumage on the face and crown. From breeding grounds in Europe and Asia, *C. garrulus* flies more than 5,000km to sub-Saharan Africa.

The most numerous avian species recorded was the House Sparrow (Plate 37). House Sparrows are the most widely distributed wild bird and are a very common resident breeder in the UAE. They are often seen near human habitation and frequently roost and nest in buildings. They were observed throughout much of survey area, though in a higher concentration along mangrove fringes and saltmarsh habitat.

Within the mangrove area at the site, Indian (previously Clamorous) Reed Warblers, *Acrocephalus stentoreus*, were identified by their loud and distinctive call. They are seldom seen, preferring to remain hidden in dense vegetation such as reeds or mangroves, thus identification of this species is principally ascertained by acoustics alone, as was the case in the survey.

Two waders that were recorded in the survey are listed as 'Near Threatened', with a declining population. These are Eurasian Curlew, *Numenius arquata* and Bar-tailed Godwit, *Limosa <u>lapponica</u>*. These species are predominantly winter visitors and passage migrants in the region and do not breed in the UAE. However, juveniles do not migrate to northerly breeding grounds in Spring, therefore, a small number oversummer in the UAE, which explains their presence in low numbers noted in the survey. Threats to the above-mentioned threatened species include loss and disturbance of mudflats from construction works, development of high-tide roosting sites, and pollution.

All other avian species recorded in the survey are listed as 'Least Concern' on the IUCN Red List of threatened species. Every bird species recorded during the survey is listed in Table 13, with threatened species highlighted in red.

Plates 41 & 42: Greater Hoopoe-lark, *Alaemon alaudipes* (top), White-eared Bulbul, *Pycnonotus leucotis* (bottom)

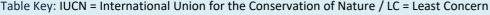

Table 13: Bird species recorded during the survey				
Common Name	Scientific Name	Count(s)	Status On-site	Status in UAE / IUCN
Western Reef Heron	Egretta gularis	9	9 seen in total, within the mangroves and on the intertidal mudflats	UAE: Common resident breeder IUCN: LC
Grey Heron	Ardea cinera	12	Commonly present on the intertidal mudflats. Also seen in-flight over the mangroves	UAE: Visitor, mostly winter IUCN: LC
Striated Heron	Butorides striata	1	One flushed from mangroves at the edge of a tidal creek	UAE: Common resident breeder IUCN: LC
Kentish Plover	Charadrius alexandrinus	14	Primarily seen foraging on intertidal mudflats. 3 nests containing eggs also found	UAE: Common resident breeder IUCN: LC
Lesser Sand Plover	Charadrius mongolus	5	Foraging on intertidal mudflats at low tide	UAE: Migrant/visitor primarily in winter IUCN: LC
Eurasian Curlew	Numenius arquata	3	Three seen foraging on intertidal mudflats at low tide	UAE: Migrant/visitor primarily in winter IUCN: NT
Common Redshank	Tringa totanus	1	One present within mangrove fringes	UAE: Migrant/visitor primarily in winter IUCN: LC
Bar-tailed Godwit	Limosa lapponica	3	A flock of 3 seen foraging on intertidal mudflats at low tide	UAE: Migrant/visitor primarily in winter IUCN: NT

Table 13: Bird species recorded during the survey				
Common Name	Scientific Name	Count(s)	Status On-site	Status in UAE / IUCN
Eurasian Collared Dove	Streptopelia decaocto	8	Heard and seen on the electricity pylons to the east of the site	UAE: Very common resident breeder IUCN: LC
Greater Hoopoe-lark	Alaemon alaudipes	2	A pair seen on 3 consecutive days at the storm beach ridge	UAE: Common resident breeder IUCN: LC
Graceful Prinia	Prinia gracilis	2	Both seen within the saltmarsh habitat	UAE: Common resident breeder IUCN: LC
Blue-cheeked Bee-eater	Merops persicus	4	Heard on the electricity pylons at the site. Later observed in-flight over mangroves	UAE: Migrant/migrant breeder IUCN: LC
Clamorous Reed Warbler	Acrocephalus stentoreus	1	One heard singing from within mangroves	UAE: Moderately common resident breeder IUCN: LC
White-eared Bulbul	Pycnonotus leucotis	20	Commonly seen within the mangroves	UAE: Very common resident breeder IUCN: LC
House Sparrow	Passer domesticus	24	Commonly seen within the mangroves	UAE: Very common resident breeder IUCN: LC
Table Key: IUCN = International Union for the Conservation of Nature / LC = Least Concern				

3.3.5 Arthropods

Arthropods were assessed in the area of study by means of diurnal walkover investigations. Anthropogenic debris was also moved to look for insects hiding beneath. Any arthropod species observed were recorded, photographed and where possible were identified to species level. Most insects are difficult to survey because of their small size, complex taxonomy, and cryptic habits. Flight seasons of particular insects may last for only a few days or weeks. Immature stages of most insects are very difficult to identify to species level. The full list of insect species and numbers recorded from walkover surveys is shown in Table 14.

Globe Skimmer, **Pantala flavescens**, was recorded on several occasions during the survey. Observed throughout the UAE, they are commonly found in areas with stagnant water and adults in areas with abundant vegetation. This dragonfly can migrate long distances, recordings indicate Globe Skimmers are capable of traveling from India to Africa, passing through the Arabian Gulf during their migration. Their diet consists primarily of mosquitos and fly's.

Carmine Darter, *Crocothemis erythrea*, was recorded on one single occasion perched on mangrove pneumatophore. Widespread in the UAE, this dragonfly can mostly be found in rocky wadis and desert pools. The males are bright red, while females are yellowish brown. In its nymph stages they are wholly aquatic, once fully adult and outside of water they live no more than two months. Adults are seen in dry areas around desert shrubs and grasses, and not often around water.

Blue-spotted Arab, *Colotis phisadia phisadia*, was often recorded in large groups around the Jebels and vegetation. The most common butterfly found in the UAE, this insect breeds during the warmest part of the year. Growing up to 30mm, the butterfly is salmon-pink ground coloured with a characteristic black spot on the top of the wings.

Small Salmon Arab, *Colotis fausta*, were recorded on several occasions perched on mangrove flowers and leaves. Easily confused with the Blue-spotted Arab Butterfly, Small Salmon Arabs are twice smaller, measuring between 10-15mm. Common throughout UAE, adults feed on nectar and larvae feed on vegetation, primarily on *Salvadora persica*.

Regal Blowfly, *Chrysomya marginalis*, was recorded on a single occasion perched on a mangrove leaf. A medium sized fly, around 16mm, they have distinct orange heads and metallic blue green bodies. Commonly found in UAE's desert, these flies are highly vital for the eco-system, breaking down carcases of dead animals.

Numerous Asian Dwarf Honeybees, *Apis florea*, were present in the mangroves, pollinating the Grey Mangroves that were in flower at the time of the survey.

Commonly found in abundant vegetated areas and urban gardens, combs are exposed and built on single branches. Hives compromises of one queen bee that lay eggs, while other bees of the colony tend to the larvae, maintain and protect the hive, and gather pollen from flowers in close proximity.

Streakywing Antlion, *Lopezus fedtschenkoi*, was recorded once, seen on a *Halopeplis perfoliata* shrub. Widespread through-out the UAE, they are mostly found in the hottest periods of the year, July, and August. Females lay eggs in the sand, which afterwards larvae create sand traps in order to capture smaller insects. Nocturnal, adult antlions rest on leaves and branches during the day and feed at night. Throughout the larvae stage their diets primarily consists of ants and in the adult stage pollen and nectar.

An Arabian Darkling Beetle, *Pimelia arabica*, was found on a single occasion. This species of darkling beetle can be found throughout the UAE in large numbers. Mainly nocturnal, they primarily feed on seeds and leaves. The females lay eggs in rotten plants. Once the eggs hatches, the larvae feed on the decaying plant until they become adults. To protect itself the beetle will bury its head in the sand while keeping its body, covered by hard shell, exposed.

A Sulphurous Jewel Beetle, *Julodis euphratica castelnau* were seen on a single occasion hovering over mangroves. The larvae of these beetles are wood borers and have one of the longest lifespans of any beetle, taking up to 35 years to develop into an adult and emerge from their host tree. On the outside the adults then feed, mate and die within a relatively short time period, 2 days to 2 weeks.

Tiger Beetle, *Cicindelidae sp.*, was recorded on several occasions within intertidal zones. Commonly found on sandy and clay soil near water, they create burrows in order to lay eggs. In the larval stage, tiger beetles ambush prey by hiding in burrows. Unlike other species of beetles, they are fast and aggrieve, preying on other insects and spiders as adults and larvae. Mainly diurnal, tiger beetles can be found hunting during the hottest times of the day.

An Oriental Wasp, *Campsomeriella thoracica*, was recorded once while pollinating a mangrove flower. Widespread in the UAE, these wasps are primarily found in areas which have readily available water. Fully black with golden yellow heads and orange at the base of wings, they measure between 12-17mm. Females burrow into the ground and softer part of trees in search of beetle larvae. Once found, they paralyze and lay eggs next to the beetle larvae which is then consumed by the hatched oriental wasps. Adults mainly feed on pollen and nectar, mainly seen around large areas of vegetation with exposed sources of water.

Plates 43 & 44: Asian Dwarf Honey Bee, *Apis florea* (top), Blue-spotted Arab Butterfly, *Colotis phisadia* (bottom)

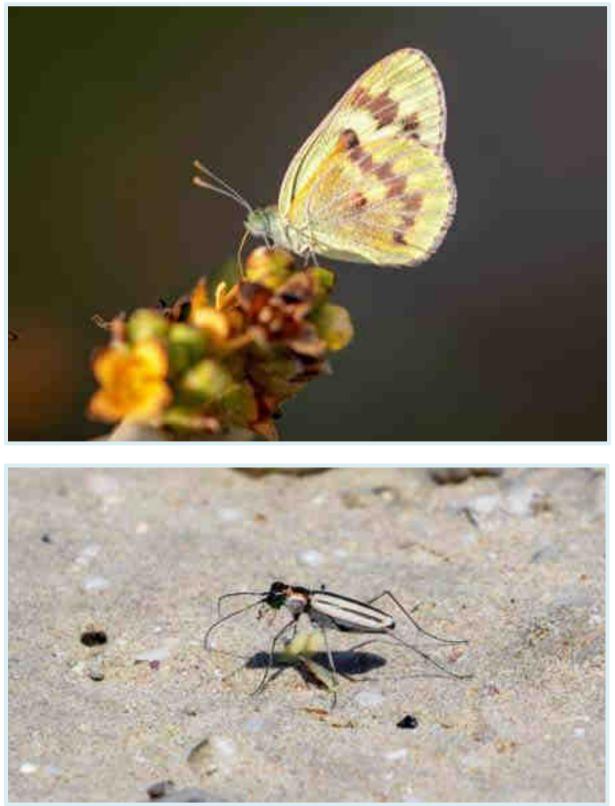
Approved training campe lamand by The Allu Ditable Cemen bitmigal and Viscational Education and Training (SCTVET) Linense Net (2010/2020)

Plates 45 & 46: Oriental Wasp, *Campsomeriella thoracica* (top), Globe Skimmer, *Pantala flavescens* (bottom)

Isomed by The Alls Dirac Center to Technical and Vectorial Education and Training (ACTVET) Ensence No. 0990/3020

Plates 47 & 48: Carmine Darter, *Crocothemis erythraea* (top), Sulphurous Jewel Beetle, *Julodis euphratica castelnau* (bottom) (NEA File Photo)

Plates 49 & 50: Streaky-wing Antlion, *Lopezus fedtschenkoi* (top), Regal Blowfly, *Chrysomya* marginalis (bottom)



nacal-i

Plates 51 & 52: Small Salmon Arab Butterfly, *Colotis amata* (top), Tiger Beetle, *Cicindelidae* sp. (bottom) (NEA File Photo)

Table 14: Arthropod species recorded during the survey					
Common Name	Scientific Name	Status On-site	Status in UAE / IUCN		
Globe Skimmer	Pantala flavescens	Observed on a few occasions, perched on mangroves	UAE: Common to Abu Dhabi Emirate IUCN: NE		
Carmine Darter	Crocothemis erythraea	One seen perched on a mangrove pneumatophore	UAE: Common to Abu Dhabi Emirate IUCN: NE		
Blue-spotted Arab Butterfly	Colotis phisadia	Approximately 10 seen pollinating mangrove flowers	UAE: Very common to Abu Dhabi Emirate IUCN: NE		
Small Salmon Arab Butterfly	Colotis amata	Approximately 5 seen pollinating mangrove flowers	UAE: Common to Abu Dhabi Emirate IUCN: NE		
Regal Blowfly	Chrysomya marginalis	One seen on a mangrove leaf	UAE: Common to Abu Dhabi Emirate IUCN: NE		
Oriental Wasp	Campsomeriella thoracica	One seen pollinating a mangrove flower	UAE: Common to Abu Dhabi Emirate IUCN: NE		
Asian Dwarf Honeybee	Apis florea	>100 pollinating mangrove flowers	UAE: Common to Abu Dhabi Emirate IUCN: NE		
Streaky-wing Antlion	Lopezus fedtschenkoi	One seen on a Halopeplis perfoliata shrub	UAE: Moderately common to Abu Dhabi Emirate IUCN: NE		

Table 14: Arthropod species recorded during the survey					
Common Name	Scientific Name	Status On-site	Status in UAE / IUCN		
Arabian Darkling Beetle	Pimelia arabica	Seen on one occasion burying itself in sand	UAE: Common to Abu Dhabi Emirate IUCN: NE		
Sulphurous Jewel Beetle	Julodis euphratica castelnau	Observed on one occasion flying	UAE: Common to Abu Dhabi Emirate IUCN: NE		
Tiger Beetle	<i>Cicindelidae</i> sp.	One seen on the intertidal mudflats	UAE: Uncommon to Abu Dhabi Emirate IUCN: NE		
Table Key: IUCN = International Union for the Conservation of Nature / NE = Not Evaluated / LC = Least Concern					

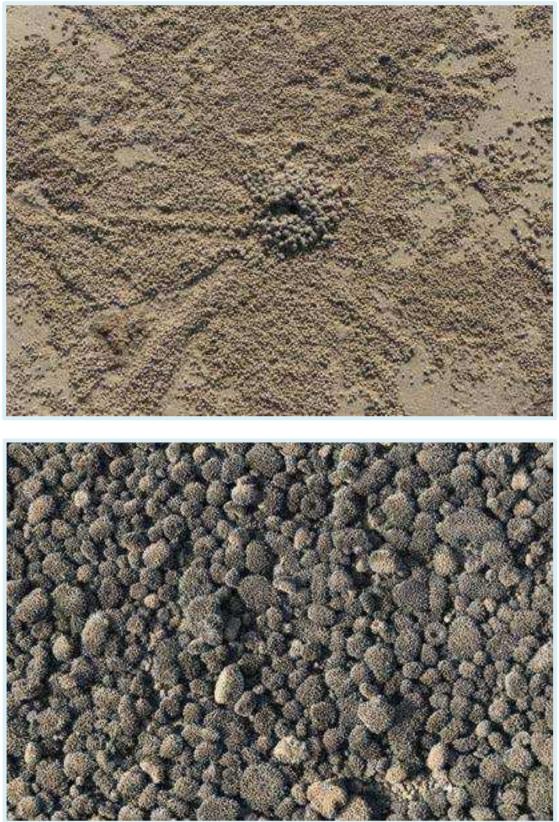
3.3.6 Geomorphology

The proposed pipeline landfall location site is situated to the southwest of Jebel Dhana Peninsula. Jebel Dhana is a small rocky abrupt hill formed over an active salt dome on the western shore of Khor al Bazam. Salt domes and plugs are distributed irregularly throughout the southern Arabian Gulf. The Jebel Dhana salt diapirs are narrow, emergent plugs underlying small islands on which rocks of the Precambrian Hormuz series outcrop.

Within the intertidal zone to the southwest of Jebel Dhana Peninsula and the SPC, the pipeline route is planned to traverse through the northern limits of an embayment enclosed by spits. Intertidal spits are one of the most common features associated with the shoreline to the west of Khor Al Bazam. They delineate the upper limit of the intertidal flats and trend from east to west, formed by longshore drift. The seaward side of each spit has a beach face slope that is usually marked at the base by brown alga. The spits increase in width seaward unless another spit develops seaward of them.

The extensive coastal spit that encloses the embayment from a northeasterly direction protects the coast from turbulent wave action, which has allowed the Grey Mangrove, *Avicennia marina*, to develop and thrive between the tidal creeks and cyanobacterial mats (Plates 53 and 54).

The coastline that fringes the landward side of the embayment is lined with similar compound forms of spits that are now stranded inland by coastal accretion, in the form of a series of storm beach ridges. *Halopeplis perfoliata* is the dominant flora along these ridges and is a vital component to the habitat as it traps sediments and stabilises low dunes.


Oolitic grains are accumulating on coastal terraces to the to the west of the Jebel Dhana peninsula. Closer to the shoreline, the terraces may be divided, based on species composition, into Cerithid shell (medium-sized marine gastropod mollusks) dominated lower-lying flats, into *Scopimera crabricauda* (Sand Bubbler Crab) dominated upper flats. The characteristic crab of the latter zone inhabits sandy beaches and produces numerous radial pseudofaecal balls comprised of sand. Bubbler crabs feed by filtering sand through their mouthparts, which leaves behind characteristic ball shapes (Plate 53).

Small areas of beach rock and indurated cemented crust surfaces are periodically interspersed in the middle tidal flats situated seaward of the beach ridges. Most of these indurated cemented crust facies are not coated with carbonate cement crusts.

Plates 53 & 54: Pseudofaecal balls made by *Scopimera crabricauda* (top) and unidentified biota in the intertidal zone (bottom)

Approved Training Centre Januard by The Alla Ditable Center fu Technical and Vacational Subaction and Training (ACTURT) Linense No. CERN/2020

Eastwards, further inland, halite encrusted coastal sabkha covers the low-lying ground and extends for 1.3km until the slightly higher ground marks a transition into rockier strata. The line between intertidal flats and coastal sabkha is not very clearly defined, because it is determined by how far into the sabkha seawater extends on the highest tides, and this is affected in turn by wind and wave energy.

The upper limit of the intertidal flats roughly coincides with the upper limit of the area that is used as a feeding ground by waders. Similarly, the dividing line between sabkha and coastal plain can be very indistinct and may even vary throughout the course of a year.

3.3.7 Anthropogenic Use

Anthropogenic activity at the site is currently relatively minimal. Occasional vehicle tyre track marks were the only indicators that people drive through the site on an infrequent basis. No other evidence was found that would suggest that any other recreational activity, such as camping and fishing, takes place at the landfall location.

Over much of the site little litter was found. However, along beach ridges some debris has been washed up. These included a couple of 'ghost' fishing nets, brought in by the tide, found entangled in mangrove pneumatophores and a large metal floating buoy, washed ashore (Plate 55).

Plate 55: Large metal buoy washed ashore in the landfall area

4.0 Conclusions, Recommendations & Mitigation Measures

4.1 Ambient Noise

The ambient noise climate of the site is affected by anthropogenic activity in the neighbouring powerplant. As a result of this activity, night time noise levels are consistently higher than those recorded during the day. The classification of the site is debatable, however the assessment considers the 'heavy industrial' classification as being more appropriate, given the lack of residential sensitive receptors in the vicinity.

As such, no exceedances of the 70 dBA (day time) or 60 dBA (night time) limits were reported for the site and it is considered unlikely, given the nature of the development, that the addition of the Project infrastructure will result in any exceedances of these limits.

4.2 Soil and Groundwater

Although there were no wells or sources within the direct pipeline footprint, one groundwater sample was collected from a pond to the north of the SPP. Despite an exceedance for salinity, which is likely due to the site's proximity to the coast and low elevation, all other parameters were in compliance with the standards outlined in 'Circular for Soil Remediation Target and Intervention Values', Dutch standards. No significant odour from the water source was noted.

The collection of soil samples was completed using a hand-augur and pre-prepared sample containers. Analysis of the eight collected samples was undertaken by a ESMA approved third-party laboratory (Element LLC). The vast majority of analytes were below the detection limits and were not registered in the analysis at all. Of those parameters which could be measured, all were recorded below screening or clean-up thresholds as outlined by the ADQCC soil standards.

4.3 Terrestrial Ecology

The overall site, despite its proximity to the highly developed SPC, is currently in a largely natural, untouched state. Several coastal habitats are considered critical habitats, the largest of which are the expansive mudflats at the landfall location, to the south of the SPC. Three critical habitats will be directly impacted by the development, these are mangroves, saltmarsh and intertidal mudflats and sand exposed at low tide. 54.62% of the proposed landfall footprint will be directly situated in threatened habitats, 25.63% within critical habitats and 28.99% in environmentally sensitive habitats, respectively. It is, therefore, vital that any loss of these threatened habitats is mitigated against.

The footprint of the proposed pipeline landfall route traverses directly over an area of intermittent mangrove cover (see datasheets CP4 & CP5 in Annex B). The sparsity of

Approved thatting came canadity The Alls Direct Center for behingst and Viscational Subscitus and Training (ACTVET) Listense No. 0890/3000

mangroves within the landfall footprint explains why the minor area is absent from the habitat map. Due to the sporadic mangrove cover in this area, it is difficult to give an accurate estimate as to how many mangroves could be directly lost as a result of the planned construction. However, an effort on-ground was made by the NEA survey team to evaluate the landfall area and from those investigations, we estimate that number of mangroves directly lost would stand approximately at >20 mangrove shrubs and >40 saplings.

Although this is a relatively small number at risk of being directly impacted by the development, any direct loss of mangrove trees should be mitigated for. Replanting (or afforestation) of a greater quantity of mangroves (twice the area of mangrove disturbed or twice the number of mature trees lost) is the standard strategy against loss of this critical habitat. However, such plans are lengthy in terms of stakeholder commitment (>5 years), expensive to undertake and difficult to manage and monitor success rates effectively. As such, we would recommend that the proposed route is altered slightly to avoid any direct loss of mangroves.

Another critical habitat that will be subject to some level of alteration/degradation through the development is intertidal mudflats and sand exposed at low tide. The proposed route passes over approximately 900 metres of this habitat when fully exposed on the lowest tides. Although low numbers of birds were foraging here at the time of the survey, this is largely related to the time of year. Much greater numbers of shorebirds will undoubtedly use the site from autumn to spring, therefore, we recommend that the development takes place from July to September when disturbance to migrants and over-wintering birds from the construction of the pipeline on intertidal flats will be negligible.

The proposed pipeline route is planned to traverse through an area of ornithological importance. The dense and mature mangroves, in close proximity to expansive intertidal mudflats, support a diverse avifaunal community comprising primarily of shorebirds (also passerines to a lesser but still significant extent) that depend on such areas to forage, roost and breed.

The lands in the immediate to medium vicinity of the proposed pipeline footprint are a proven breeding locale for Kentish Plover, and a very probable breeding area for Western Reef Heron, Clamorous Reed Warbler, Greater Hoopoe-lark and Graceful Prinia. Commencement of any construction activities should be postponed until mid-July at a minimum, this will ensure that the plovers (and other birds potentially breeding nearby) have left the area before the start of the development.

If the pipeline is planned to be situated above ground, habitat fragmentation associated with such a structure that will extend for several kilometres in this instance, is an impact to consider. This impact would principally be restricted to smaller fauna

of lower mobility. The highest concentration of fauna that fit the aforementioned criteria, ie. lizards, rodents, and non-flying insects, are present within the storm beach ridge habitat. Therefore, if subsurface installation is not planned for the pipeline, a crossing point should be added here and ideally, periodically along the entire route to allow animals to cross.

Anthropogenic activity at the site was found to be quite low. Occasional vehicle tyre track marks were really the only indicators that people drive through the site on an infrequent basis. No other evidence was found that would suggest recreational activities, such as camping and fishing, take place at the site. Over much of the site little litter was found. However, along beach ridges some debris has been washed up. In addition, a couple of 'ghost' fishing nets, brought in by the tide, were found entangling mangrove pneumatophores and a large floating buoy had washed ashore in the landfall area.

Additional terrestrial ecology mitigation measures towards minimising impacts associated with the proposed construction not mentioned above are listed in brief below;

- Efficient transportation plan to minimise unnecessary vehicle movements across critical and sensitive habitats;
- Avoid unnecessary noise levels that may lead to leading to behavioural changes to wildlife in the area;
- Raise awareness to workers in the area to the habitats/species sensitivity (posters in accommodation).

ADNOC Lightning Project Shuweihat Landfall Terrestrial Ecology Survey Report

NEA Reference: N684-0621-SHU-1.1 dated September 2021

ANNEX A References

Annex A – References

The following references were available and/or used on the current survey:

- Al Dhaheri, S., Javed, S., Alzahlawi, N., Binkulaib, R., Cowie,W., Grandcourt, E. and Kabshawi, M. (2017). Abu Dhabi Emirate Habitat Classification and Protection Guideline. Environment Agency Abu-Dhabi.
- Aspinall S.J. (2005). *Birds [of the UAE]. In:* Hellyer and Aspinall (eds.). The Emirates: A Natural History. Trident Press, UK.
- Aspinall S.J. (2010). *Breeding Birds of the United Arab Emirates*. Environment Agency Abu Dhabi, UAE.
- Brown G. and Boer B. (2004). *Interpretation Manual of the Major Terrestrial Natural and Semi-natural Habitat Types of Abu Dhabi Emirate*. ERWDA, Abu Dhabi.
- M.V.D. Jongbloed, G.R. Feulner, B.Boer, A.R Western (2003). *The comprehensive guide to the Wild Flowers of the United Arab Emirates*. ERWDA, Abu Dhabi.
- Environment Agency Abu Dhabi (2015). *Terrestrial Habitat Classification*. EAD Enviro-portal Viewer. https://enviroportal.ead.ae/geoportal.
- Hellyer, P. and Aspinall, S.J. (Eds.) (2005). *The Emirates—A Natural History*. Trident Press, London, and the Environment Agency, Abu Dhabi.
- Gardner, A. (2013). *The amphibians and reptiles of Oman and the UAE*. Frankfurt am Main: Edition Chimaira.
- IUCN (2017). *Red List of Threatened Species*. http://www.iucnredlist.org.
- Javed S. (2008). Birds. In Perry R. *Terrestrial Habitats of Abu Dhabi Emirate*. Environment Agency Abu Dhabi.
- Jennings M. (2010). *Atlas of the Breeding Birds of Arabia*. Fauna of Arabia Vol. 25. KACST, Riyadh and Senckenburg, Germany.
- Ornithological Society of the Middle East, the Caucasus and Central Asia (OSME). (2012). Simplified OSME list of bird taxa.
- Gardner A. and Aspinall S.J. *Journal Of The Emirates Natural History Group, Tribulus no.17.*
- Perry R. (ed.) (2008). *Terrestrial Environment of Abu Dhabi Emirate*. Environment Agency, Abu Dhabi, UAE.
- Porter R. and Aspinall S.J. (2010). *Birds of the Middle East*. Second Edition. Christopher Helm, London

ADNOC Lightning Project Shuweihat Landfall Terrestrial Ecology Survey Report

NEA Reference: N684-0621-SHU-1.1 dated September 2021

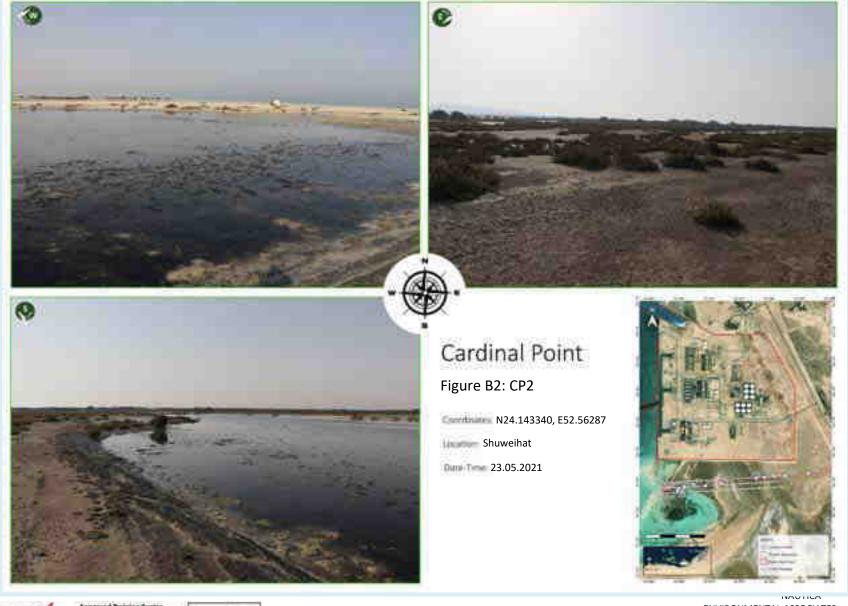
ANNEX B Photographic Documentation and Data Sheets 10

Cardinal Point

Figure B1: CP1

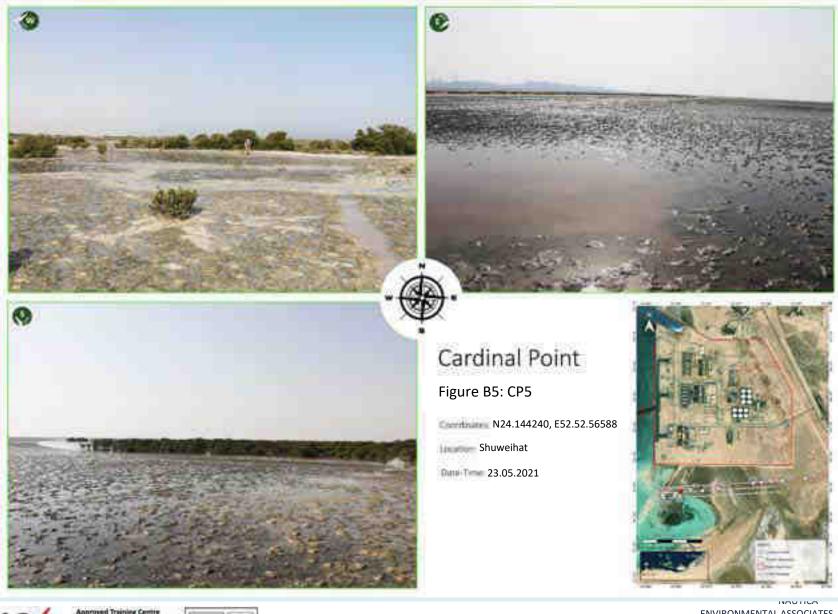
e

N24.143340, E52.56285 Shuweihat Clehe Time 23.05.2021



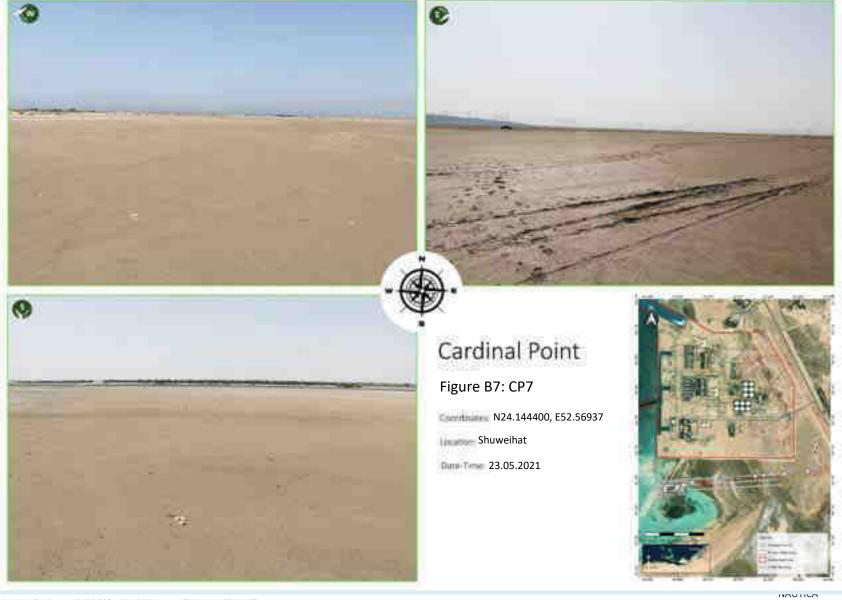
ENVIRONMENTAL ASSOCIATES LLC N684-0621-SHU-1.1 dated September 2021

ENVIRONMENTAL ASSOCIATES LLC N684-0621-SHU-1.1 dated September 2021 3

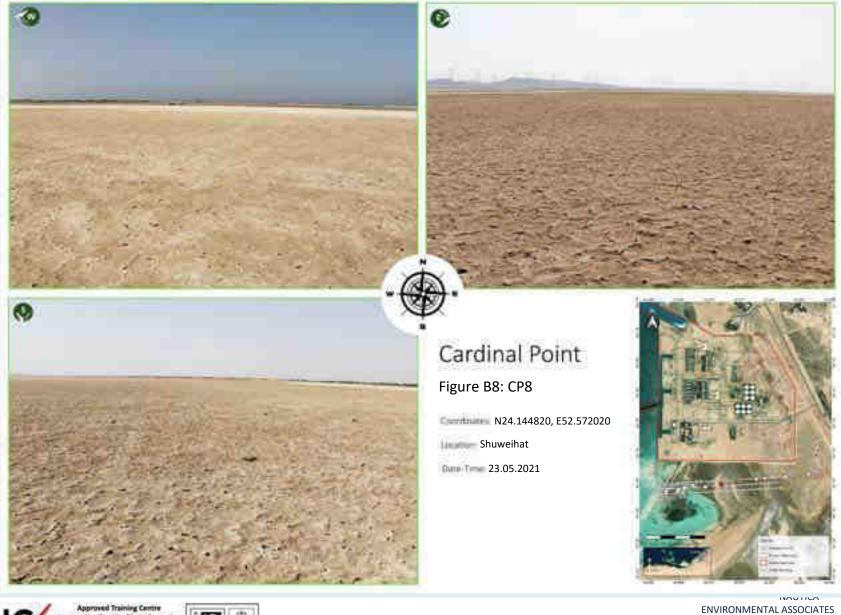


LLC N684-0621-SHU-1.1 dated September 2021 4

ENVIRONMENTAL ASSOCIATES LLC N684-0621-SHU-1.1 dated September 2021



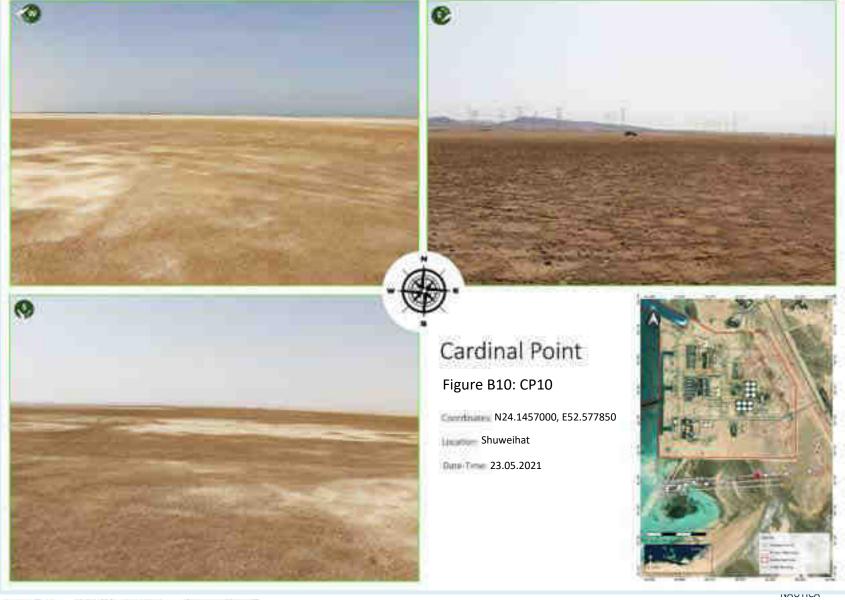
ENVIRONMENTAL ASSOCIATES LLC N684-0621-SHU-1.1 dated September 2021 6

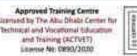




LLC N684-0621-SHU-1.1 dated September 2021

В




ENVIRONMENTAL ASSOCIATES LLC N684-0621-SHU-1.1 dated September 2021 9

В

В ENVIRONMENTAL ASSOCIATES LLC N684-0621-SHU-1.1 dated September 2021

ENVIRONMENTAL ASSOCIATES LLC N684-0621-SHU-1.1 dated September 2021

			Table B1:	Soil Analyse	es				
Method	Parameter Name	Unit	Detection Limit	SS01	SS02	SS03	SS04	SS05	ę
pH [BS 1377-3: 2018] Soil-DXB	рН	pH units	0.1	9	9.6	9.7	9.6	8.7	8
Oil & Grease [APHA 5520 E]-DXB	Oil and Grease	%	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	•
Nitrogen (Ammonia) [HACH 8155] Solids-DXB	Nitrogen (Ammonia)	mg/kg	0.25	1.45	1.8	2.15	1.55	2.3	2
Nitrogen (Ammonia) [HACH 8155] Solids-DXB	Ammonium	mg/kg	0.32	1.86	2.31	2.76	1.99	2.96	:
Nitrogen (Ammonia) [HACH 8155] Solids-DXB	Ammonia	mg/kg	0.3	1.76	2.19	2.61	1.88	2.79	1
Salinity [APHA 2520 B]-DXB	Salinity	ppt	1	2.1	4.7	7.2	5.5	8.5	
Sulphide [HACH 8131/DIN 38405-D27]-DXB	Sulphide (S ²⁻)	mg/kg	5	<5	<5	<5	<5	<5	<
Fluoride [HACH 8029]-DXB	Fluoride	mg/kg	0.5	3.4	4	4.2	4.8	2.7	ŗ
Nitrate [HACH 8039]-DXB	Nitrate	mg/kg	0.22	0.89	8.63	1.33	2.88	25.5	-
Metals ICP OES [APHA 3120 B] SSS-DXB	Cadmium (Cd)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<
Metals ICP OES [APHA 3120 B] SSS-DXB	Aluminium (Al)	mg/kg	130	1580	1890	2520	1770	3500	1.
Metals ICP OES [APHA 3120 B] SSS-DXB	Arsenic (As)	mg/kg	1	3	1.8	2.1	3	2.4	
Metals ICP OES [APHA 3120 B] SSS-DXB	Barium (Ba)	mg/kg	3	13.6	9.2	11.7	10.6	7.9	:
Metals ICP OES [APHA 3120 B] SSS-DXB	Chromium (Cr)	mg/kg	1	5.3	7.7	8.5	6.1	12.3	-
Metals ICP OES [APHA 3120 B] SSS-DXB	Cobalt (Co)	mg/kg	1	<1.0	<1.0	1.3	1	2.2	:
Metals ICP OES [APHA 3120 B] SSS-DXB	Copper (Cu)	mg/kg	3	5	3.8	3.8	3.5	5.5	ŗ
Metals ICP OES [APHA 3120 B] SSS-DXB	Lead (Pb)	mg/kg	1	1.8	1.8	1.8	1.9	1.4	
Metals ICP OES [APHA 3120 B] SSS-DXB	Manganese (Mn)	mg/kg	3	35.1	74.1	53	54.5	129	
Metals ICP OES [APHA 3120 B] SSS-DXB	Nickel (Ni)	mg/kg	1	3.2	3.8	5.2	3.7	12.4	
Metals ICP OES [APHA 3120 B] SSS-DXB	Phosphorus (P)	mg/kg	50	131	124	112	136	202	
Metals ICP OES [APHA 3120 B] SSS-DXB	Zinc (Zn)	mg/kg	3	22.3	21.7	14.3	11.4	15.9	2
Chromium (Hexavalent) [HACH 8023] Solids-DXB	Chromium (VI)	mg/kg	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	~
Metals ICP OES [APHA 3120 B] SSS-DXB	Antimony (Sb)	mg/kg	1	<1.0	<1.0	<1.0	<1.0	<1.0	~
Metals ICP OES [APHA 3120 B] SSS-DXB	Beryllium (Be)	mg/kg	1	<1.0	<1.0	<1.0	<1.0	<1.0	•
Mercury by PSA [EPA 245.7] SSS-DXB	Mercury (Hg)	mg/kg	0.01	<0.010	<0.010	<0.010	<0.010	<0.010	•
VPH C5-C10 by GC-FID [EPA 8015B]-SSS-DXB	VPH C5-C10	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	•
EPH C10-C40 by GC-FID [EPA 8015B] SSS-DXB	EPH C10-C40	mg/kg	50	<50	<50	<50	<50	<50	
PAH in Soils [EPA 8270 D]-DXB	Acenaphthene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	•
PAH in Soils [EPA 8270 D]-DXB	Acenaphthylene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	e
PAH in Soils [EPA 8270 D]-DXB	Anthracene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	e
PAH in Soils [EPA 8270 D]-DXB	Benzo(a)anthracene	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	

SS06	SS07	SS08
8.7	9.4	9.3
<0.01	<0.01	<0.01
2.2	1.95	1.9
2.83	2.51	2.44
2.67	2.37	2.31
3	3.6	3.2
<5	<5	<5
5.2	3.3	3.6
10.6	0.66	6.2
<0.5	<0.5	<0.5
3130	1770	1850
1.7	2.2	2.7
30.9	10.9	14.8
12.4	5.6	5.8
2	<1.0	<1.0
5.6	<3.0	3.4
15.8	1.9	2
119	36.1	38.3
10	3.3	3.6
152	96	113
26.1	6.8	7.2
<0.4	<0.4	<0.4
<1.0	<1.0	<1.0
<1.0	<1.0	<1.0
<0.010	<0.010	0.014
<0.05	<0.05	<0.05
<50	<50	<50
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01

Method Parameter Name Unit Detection Limit SS01 SS02 SS03 SS04 SS05 PAH in Solis (EPA 8270 D)-DKB Benzolp/Inforanthene mg/kg 0.01 -0.01 <				Table B1	Soil Analys	es			
PAH in Soils [EPA 8270 D]-DX8 Benzolghilturanthene mg/kg 0.01 <0.01	Method	Parameter Name	Unit	Detection Limit	SS01	SS02	SS03	SS04	SS05
PAH in Soils [EPA 8270 D] DX8 Benzo(k)/Iluoranthene mg/kg 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01<	PAH in Soils [EPA 8270 D]-DXB	Benzo(a)pyrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
PAH in Soils [EPA 8270 D]-DX8 Benzolk/fluoranthene mg/kg 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 </td <td>PAH in Soils [EPA 8270 D]-DXB</td> <td>Benzo(b)fluoranthene</td> <td>mg/kg</td> <td>0.01</td> <td><0.01</td> <td><0.01</td> <td><0.01</td> <td><0.01</td> <td><0.01</td>	PAH in Soils [EPA 8270 D]-DXB	Benzo(b)fluoranthene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
PAH in Soils [EPA 8270 D]-DX8 Chrysene mg/kg 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	PAH in Soils [EPA 8270 D]-DXB	Benzo(g,h,i)perylene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
PAH in Soils [EPA 8270 D]-DX8 Dibenzo(a,h)anthracene mg/kg 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	PAH in Soils [EPA 8270 D]-DXB	Benzo(k)fluoranthene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
PAH in Solis [EPA 8270 D]-DX8 Fluorenthene mg/kg 0.01 <0.01 <0.01 <0.01 <0.01 PAH in Solis [EPA 8270 D]-DX8 Fluorene mg/kg 0.01 <0.01	PAH in Soils [EPA 8270 D]-DXB	Chrysene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
PAH in Soils [EPA 8270 D]-DXB Fluorene mg/kg 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	PAH in Soils [EPA 8270 D]-DXB	Dibenzo(a,h)anthracene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
PAH in Solis [EPA 8270 D]-DX8 Indeno(1,2,3-c,d)pyrene mg/kg 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0	PAH in Soils [EPA 8270 D]-DXB	Fluoranthene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
PAH in Soils [EPA 8270 D]-DX8 Naphthalene mg/kg 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	PAH in Soils [EPA 8270 D]-DXB	Fluorene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
PAH in Soils [EPA 8270 D]-DX8 Phenanthrene mg/kg 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	PAH in Soils [EPA 8270 D]-DXB	Indeno(1,2,3-c,d)pyrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
PAH in Soils [PA 8270 0]-DXB Pyrene mg/kg 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <	PAH in Soils [EPA 8270 D]-DXB	Naphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenols Soil (EPA 8270D)-DX8 2,4,5-Trichlorophenol mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 </td <td>PAH in Soils [EPA 8270 D]-DXB</td> <td>Phenanthrene</td> <td>mg/kg</td> <td>0.01</td> <td><0.01</td> <td><0.01</td> <td><0.01</td> <td><0.01</td> <td><0.01</td>	PAH in Soils [EPA 8270 D]-DXB	Phenanthrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenols Soil [EPA 8270D]-DXB 2,4,6-Trichlorophenol mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 </td <td>PAH in Soils [EPA 8270 D]-DXB</td> <td>Pyrene</td> <td>mg/kg</td> <td>0.01</td> <td><0.01</td> <td><0.01</td> <td><0.01</td> <td><0.01</td> <td><0.01</td>	PAH in Soils [EPA 8270 D]-DXB	Pyrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenols Soil [EPA 82700]-DX8 2,4-Dichlorophenol mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	Phenols Soil [EPA 8270D]-DXB	2,4,5-Trichlorophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Phenols Soil [EPA 8270D]-DXB 2,4-Dimethylphenol mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	Phenols Soil [EPA 8270D]-DXB	2,4,6-Trichlorophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Phenols Soil [EPA 8270D]-DXB 2-Chlorophenol mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	Phenols Soil [EPA 8270D]-DXB	2,4-Dichlorophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Phenols Soil [EPA 8270D]-DXB 2-Methylphenol mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	Phenols Soil [EPA 8270D]-DXB	2,4-Dimethylphenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Phenols Soil [EPA 8270D]-DXB 2-Nitrophenol mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	Phenols Soil [EPA 8270D]-DXB	2-Chlorophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Phenols Soil [EPA 8270D]-DXB 4-Chloro-3-methylphenol mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	Phenols Soil [EPA 8270D]-DXB	2-Methylphenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Phenols Soil [EPA 8270D]-DXB 4-Methylphenol mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	Phenols Soil [EPA 8270D]-DXB	2-Nitrophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Phenols Soil [EPA 8270D]-DXB 4-Nitrophenol mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 Phenols Soil [EPA 8270D]-DXB Pentachlorophenol mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	Phenols Soil [EPA 8270D]-DXB	4-Chloro-3-methylphenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Phenols Soil [EPA 8270D]-DXB Pentachlorophenol mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	Phenols Soil [EPA 8270D]-DXB	4-Methylphenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Phenols Soil [EPA 8270D]-DXB 2,3,4,6-Tetrachlorophenol mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <th< td=""><td>Phenols Soil [EPA 8270D]-DXB</td><td>4-Nitrophenol</td><td>mg/kg</td><td>0.05</td><td><0.05</td><td><0.05</td><td><0.05</td><td><0.05</td><td><0.05</td></th<>	Phenols Soil [EPA 8270D]-DXB	4-Nitrophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Phenols Soil [EPA 8270D]-DXB 2,6-Dichlorophenol mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05<	Phenols Soil [EPA 8270D]-DXB	Pentachlorophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Phenols Soil [EPA 8270D]-DXB 3-Methylphenol mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	Phenols Soil [EPA 8270D]-DXB	2,3,4,6-Tetrachlorophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Phenols Soil [EPA 8270D]-DXB Phenol mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <	Phenols Soil [EPA 8270D]-DXB	2,6-Dichlorophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB Dichlorodifluoromethane mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	Phenols Soil [EPA 8270D]-DXB	3-Methylphenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB Chloromethane mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05	Phenols Soil [EPA 8270D]-DXB	Phenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	VOCs in Soil [EPA 8260 B]-DXB	Dichlorodifluoromethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB Vinyl Chloride mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05	VOCs in Soil [EPA 8260 B]-DXB	Chloromethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	VOCs in Soil [EPA 8260 B]-DXB	Vinyl Chloride	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB Bromomethane mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05	VOCs in Soil [EPA 8260 B]-DXB	Bromomethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

SS06	SS07	SS08
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05

			Table B1:	Soil Analys	es			
Method	Parameter Name	Unit	Detection Limit	SS01	SS02	SS03	SS04	SS05
VOCs in Soil [EPA 8260 B]-DXB	Chloroethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Trichlorofluoromethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,1-Dichloroethene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Methylene Chloride	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,2-Dichloroethene(trans)	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,1-Dichloroethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,2-Dichloroethene(cis)	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	2,2-Dichloropropane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Bromochloromethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Chloroform	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,1,1-Trichloroethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,1-Dichloropropene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Carbon Tetrachloride	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,2-Dichloroethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Benzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Trichloroethene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,2-Dichloropropane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Bromodichloromethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Dibromomethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,3-Dichloropropene(cis)	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Toluene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,3-Dichloropropene(trans)	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,1,2-Trichloroethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,3-Dichloropropane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Tetrachloroethene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Dibromochloromethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,2-Dibromoethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Chlorobenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,1,1,2-Tetrachloroethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Ethyl benzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	m,p-Xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

SS06	SS07	SS08
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.1	<0.1	<0.1

VOCs in Soil [EPA 8260 B]-DXB o.Xylene mg/kg 0.05 <0.05				Table B1:	Soil Analyses				
VOCs in Soll [EPA 8260 8]-DX8 Styrene mg/kg 0.05 <0.05	Method	Parameter Name	Unit	Detection Limit	SS01	SS02	SS03	SS04	SS05
VOCs in Soil [EPA 8260 B]-DXB iso-Propylbenzene mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	VOCs in Soil [EPA 8260 B]-DXB	o-Xylene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DX8 Bromoform mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	VOCs in Soil [EPA 8260 B]-DXB	Styrene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB 1,1,2,2-Tetrachloroethane mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 VOCs in Soil [EPA 8260 B]-DXB 1,2,3-Trichloropropane mg/kg 0.05 <0.05	VOCs in Soil [EPA 8260 B]-DXB	iso-Propylbenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB 1,2,3-Trichloropropane mg/kg 0.05 <0.05	VOCs in Soil [EPA 8260 B]-DXB	Bromoform	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB n-Propylbenzene mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <td>VOCs in Soil [EPA 8260 B]-DXB</td> <td>1,1,2,2-Tetrachloroethane</td> <td>mg/kg</td> <td>0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td>	VOCs in Soil [EPA 8260 B]-DXB	1,1,2,2-Tetrachloroethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB Bromobenzene mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	VOCs in Soil [EPA 8260 B]-DXB	1,2,3-Trichloropropane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB 1,3,5-Trimethylbenzene mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <	VOCs in Soil [EPA 8260 B]-DXB	n-Propylbenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB 2-Chlorotoluene mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <td>VOCs in Soil [EPA 8260 B]-DXB</td> <td>Bromobenzene</td> <td>mg/kg</td> <td>0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td>	VOCs in Soil [EPA 8260 B]-DXB	Bromobenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB 4-Chlorotoluene mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <td>VOCs in Soil [EPA 8260 B]-DXB</td> <td>1,3,5-Trimethylbenzene</td> <td>mg/kg</td> <td>0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td>	VOCs in Soil [EPA 8260 B]-DXB	1,3,5-Trimethylbenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB tert-Butylbenzene mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	VOCs in Soil [EPA 8260 B]-DXB	2-Chlorotoluene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB 1,2,4-Trimethylbenzene mg/kg 0.05 <0.05	VOCs in Soil [EPA 8260 B]-DXB	4-Chlorotoluene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB sec-Butylbenzene mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 </td <td>VOCs in Soil [EPA 8260 B]-DXB</td> <td>tert-Butylbenzene</td> <td>mg/kg</td> <td>0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td>	VOCs in Soil [EPA 8260 B]-DXB	tert-Butylbenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB p-Isopropyltoluene mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	VOCs in Soil [EPA 8260 B]-DXB	1,2,4-Trimethylbenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB 1,3-Dichlorobenzene mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.0	VOCs in Soil [EPA 8260 B]-DXB	sec-Butylbenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB 1,4-Dichlorobenzene mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.0	VOCs in Soil [EPA 8260 B]-DXB	p-Isopropyltoluene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB n-Butylbenzene mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <td>VOCs in Soil [EPA 8260 B]-DXB</td> <td>1,3-Dichlorobenzene</td> <td>mg/kg</td> <td>0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td>	VOCs in Soil [EPA 8260 B]-DXB	1,3-Dichlorobenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB 1,2-Dichlorobenzene mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.0	VOCs in Soil [EPA 8260 B]-DXB	1,4-Dichlorobenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB 1,2-Dibromo-3-Chloropropane mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	VOCs in Soil [EPA 8260 B]-DXB	n-Butylbenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB 1,2,4-Trichlorobenzene mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <	VOCs in Soil [EPA 8260 B]-DXB	1,2-Dichlorobenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB Hexachlorobutadiene mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <td>VOCs in Soil [EPA 8260 B]-DXB</td> <td>1,2-Dibromo-3-Chloropropane</td> <td>mg/kg</td> <td>0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td> <td><0.05</td>	VOCs in Soil [EPA 8260 B]-DXB	1,2-Dibromo-3-Chloropropane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	VOCs in Soil [EPA 8260 B]-DXB	1,2,4-Trichlorobenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB Naphthalene mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05	VOCs in Soil [EPA 8260 B]-DXB	Hexachlorobutadiene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	VOCs in Soil [EPA 8260 B]-DXB	Naphthalene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB 1,2,3-Trichlorobenzene mg/kg 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	VOCs in Soil [EPA 8260 B]-DXB	1,2,3-Trichlorobenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

SS06	SS07	SS08
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05

Table B2: AD	QCC Soil Limits for Ir	ndustrial and Comme	ercial use
Parameter	Unit	Screening level	Clean-up level
Antimony (Sb)	mg/kg (DW)	470	4700
Arsenic (As)	mg/kg (DW)	30	300
Beryllium (Be)	gm/kg (DW)	2.3	23.0
Cadmium (Cd)	mg/kg (DW)	980	9800
Chromium (Cr VI)	mg/kg (DW)	63	630
Cobalt (Co)	mg/kg (DW)	350	3500
Lead (Pb)	gm/kg (DW)	8.0	80
Mercury (Hg)	mg/kg (DW)	46	460
Nickel (Ni)	gm/kg (DW)	22	220
Selenium (Se)	gm/kg (DW)	5.8	58
Asbestos	gm/10 kg (DW)	5.0	5.0
Benzene	mg/kg (DW)	51	510
Toluene	gm/kg (DW)	47	470
Ethylbenzene	mg/kg (DW)	250	2500
Xylene	gm/kg (DW)	2.5	25.0
Benzo (a) pyrene (BaP)	mg/kg (DW)	2.9	29
Polychlorinated Biphenyls	mg/kg (DW)	330	3300

Table Notes:

- Taken from Environmental Specification for Soil Contamination ADS 19/2017 •
- Mg/kg = milligram per kilogram ٠
- Gm/kg = gram per kilogram •
- DW = Dry Weight •

Figure B13: GW01 Groundwater Analytical Report (1 of 3)

Gen	ement		national man lines	Pre-scratterille	
Analytical	Report			Joh Ref. No. 199401 Report No. 130150 Date Reported : 100603001	
Client	Nautra Economital Assailable LLC		F	Sant	-
	P.D Bus: 44700			Solo	
	Atu Ones		1	and the mate	
	ABJ SHABL SHIEL And Environ		1	Approved by: Stat DV. West, Lasconce Intergal-Courses & Manu	
Altre	Veryan G.H. Pepare		dan birmini	array of the later of the second descent for the second se	
Project ID	Overand Watter Data Islands and 2 Literation	CARACTERISTICS AND CONCERNING TO AND	School in the contraction	ent a substitute of the backup facts and provides of a	1.000
Propett Nattor:	Nation Elvinemental Resolution LLC		Pages lines and and and	and the property of the second s	
Project Location	+8/1 (5)2 6731250		The design of the local division of the loca	the subsection of the first of the second with the same within a so These reaches and an entering to the test of the second sec	1
Tel Nor	4011 102 013420			18.00	
Sample Details					
iob Bel, Ne.:	39401	Dan	uple ID	#9461-1	
Sarrpie Suis Matte			e Reneived	25/05/2421	
Garryrinig Location		1.0	ngilling Date:	25052121	
Securited By 7	NAVICE FRE:	Sat	ruling Time :	Raut Gavern	
Sample Description	Ari sauté dati	fiar	spling Method	Naid Davier	
feet Results		The Res	Res. II	Alex of Contract of	
feel Name		Dotta	Result	Method Linii a Detection	£
Purganii Paramet	rte -		255		
off Value @ 2010		Any Passa	7.9	150	
Total Suspended for		wight.	-10		
Tattel Discolver) Suit		7982	186508		
Diserver & Enum	HIC DI	High with hit	+10	10	
Fies-Oil		NUTL3	2.0	0.5	
Tartnilly Americana		impt.	-11 00	0.08	
Striger (Animatia)		mpt	40.05	0.05	
honoistan		mp1	att.064	0.064	
Supplicity		mot.	+0.005	6.505	
Dual in		1947	USB:		
Vitropen Kandhal		mgL -	=1.00		
Antonia					
Pupride		wat.	8.7	0.1	
White		egt.	-0.04	0.54	
Chemical Anwysis		10 A 20		-1340V	
Demail Deger D	arment.	mpt	90	. 6	
Boothermost Chayyer		mpL		2	
Ovteis	trade et la	11177-0			
Chromium (Mil		mpl.	+8.88	0.00	
Anseniis (Aa)		191.	0.0009	0-0005	
Cadmium (CALL		mgi.	0.000%	0.0001	
and (Ph)		201	CO21	0.000	
End SDH		wept.	-drane	0.000	
Cattles (CA)		mys.	0.0017	0.000	
Aliventities (Al)		Turn	-0.005	d detti	
Hariganese (htt)			0.005	0,001	
Addimony (Sto		mark.	6000.0	O DORLP	
Barbare (Hog)		mpt	0.0011	disters giptits	
NeryBlam (Ner)		mgi. mgi.	C-0042	0.0001	
Cashaid \$1246		PBL PBL	-0.0045	0.0001	

(Rep) 1.05.13

Figure B13: GW01 Groundwater Analytical Report (2 of 3)

Analytical	Report		Juli Ref. Regult 1 Date No.	
Client.	Nautox Environmental Associates 1 P.D. Box: 64700 Ray Chiefe	uc.		Sapa
Atte: Project (D) Project Warne: Project Warne: Project Liscation Tel. Hu:	ADU DAADL, United ANU Discular Weyner G.H. Plapper United Water Discharter and 2115 Machine Environmental Association 1 50 4021 (502/0731258)	setions Mainland NO207-21	Average and the second	end for i find the meaning tension Charactery & Marcal Sciences Profession of Sciences to Marc Sciences Profession of Sciences to Marc Sciences Profession of Sciences and Sciences Profession of Sciences and Sciences Profession of Sciences and Sciences Profession of Sciences and
Campile Deliality				
Add Plot. No.: Gampling Cota Matrix Gampling Cotation Gampled Dy 7 Gample Description	Not Ground Nandarin Press	Dat San San	npin (D: 20401-) n Received: 25/5/2021 spling Date: 25/5/2021 spling Three : Not Over spling Mathad: Not Dive	
Inst Pinsuitie		in the state	SUM DEC	
Tast Name		Unita	Himidt	Method Limit all Detection
Metala - Continued	1			
Phosphorus (Ph) Chemisure (Cirl) Noticet (Pe)		angt. angt. angt.	-0.000 172 621	0-03 610 11-10
Hydrocarbona				
EPHICKG-GAE VPHICS-G3C Poetcale		age.	4700.	7
2.4.3. Tri chargeben 2.4.4. Tri chargeben 2.4. Octoor geben 2.4. Octoor geben 2.4. Octoor geben 2.4. Octoor 3 methylet 4. Methyleter 4. Methyleter 4. Methyleter 4. Methyleter 4. Methyleter 4. Methyleter 4. A.4. Tetrachter 2.3.4.6. Tetrachter 2.3.4.6. Tetrachter 2.3.4.6. Tetrachter		中国の市場の市場の市場の市場の市場の市場の市場の市場の市場の市場の市場の市場の市場の	41.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47	
1.6-Dictionphonol 3.8uthyphami		HEL HEL	-c1.0 -57.0	
Therest		201.	-65.8	2.6
Wicesbestagy		1944537424-1	10112-022-021	100
E-Call Tutol Californi Faerce Californi		CPU10HL CPU10HL CPU10HL	Not Detected Not Detected Not Detected	10 10 10

Page 2 at 3

Figure B13: GW01 Groundwater Analytical Report (3 of 3)

Report No: N Site No: N	Ross Pappin N684-0621-SH									
Site No:	N684-0621-SH						Job No:	N684	Project:	MM Lightning
	1004 0021 511	IU-1.0 Su	urvey Date:		See com	ments	Checked:	DT	Date:	-
ention Description (dur	N01	Μ	lic. Height:		155cm		Free Field	\checkmark	Facade:	N/A
Location Description (dra	aw a little pict	ure of the area)):						Noise Source:	
NO1 5501 5502 CT4 Power complex, crickets										
Period		ration		Wind		ime	LAeq	Cars (tally)	Trucks (tally)	Comment
	Start	End	Speed	Direction	On	Off				
Day (Week)	94.2dB 9	94.0dB	1.9m/s	SW(227°)	07:45	08:00	44.2			23.05.2021
Night (Week)	94.2dB 9	94.0dB	1.4m/s	E(68.15°)	21:04	21:19	45.5			23.05.2021
Day (W-end)	94.1dB 9	93.9dB	3.9m/s	N(6°)	17:34	17:49	38.2			22.05.2021
Night (W-end)	94dB 9	93.8dB	1.4m/s	NE(40°)	21:04	21:19	42.1			22.05.2021
General Weather Conditi	ions:									
Noise measurements were collected only during periods of low wind speed										
Specific Conditions:			Calm		Fog		Precipitation	Frost	Tonal	Impulse
3S4142 Compliance:			\checkmark		Х		х	х		
Factory Cal. Date:										
Checked:		Doug T	ïlbury				Date:	16/0	6/2021	

Calm	Fog	Precipitation	Frost	Т
\checkmark	Х	Х	Х	
16.05.2021				
Doug Tilbury		Date:	16	/06/2021
ie / LAeq = Equivalent Continuc	ous Level / SW = Southwest /	NE = Northeast / N = North / E =	= East / m/s = Metre pe	er second / d
	 ✓ 16.05.2021 Doug Tilbury 	✓ x 16.05.2021 Doug Tilbury	✓ x x 16.05.2021 Doug Tilbury Date:	✓ × × × 16.05.2021 ✓ ✓ ✓

Centimetre / min = Minute

					Table B4	: Noise Data S	Sheet N02			
User:	Ross Pappir	า					Job No:	N684	Project:	MM Lightning
Report No:	N684-0621	-SHU-1.0	Survey Date:		See com	ments	Checked:	DT	Date:	-
Site No:	N02		Mic. Height:		155cm		Free Field	\checkmark	Facade:	N/A
Location Description	(draw a little	picture of the a	irea):						Noise Source:	
	NOT	SS08	SS03 SS07	SS02		o ^{NO} C ^{SSI}			Vehicles	
Period	Ca Start	alibration End	Speed	Wind Direction	Ti On	ime Off	LAeq	Cars (tally)	Trucks (tally)	Comment
Day (Week)	94.2dB	94dB	4.2m/s	SE(121°)	09:21	09:36	37.9			23.05.2021
Night (Week)	94.2dB	94dB	3.9m/s	NE(36.38°)	21:03	21:18	44.4			23.05.2021
Day (Weekend)	94.1dB	93.9dB	4.6m/s	NE(50°)	15:47	16:02	39.0			22.05.2021
Night (Weekend)	94.1dB	94.0dB	1.7m/s	N(345°)	20:32	20:47	40.5			22.05.2021
General Weather Co	nditions:									
Noise measurements	s were collect	ted only during	periods of low	wind speed						
Specific Conditions:			Calm		Fog		Precipitation	Frost	Tonal	Impulse
BS4142 Compliance:			\checkmark		х		Х	х		
Factory Cal. Date:		16.0	5.2021							
Checked:		Dou	g Tilbury				Date:	16/06/	2021	
Key to Abbreviatio	Key to Abbreviations: No = Number / Mic = Microphone / LAeq = Equivalent Continuous Level / SE = Southeast / NE = Northeast / N = North / m/s = Metre per second / dB = Decibel / Cal = Calibration / cm = Centimetre / min = Minute									

Specific Conditions:	Calm	Fog	Precipitation	Frost	٦
BS4142 Compliance:	\checkmark	х	х	Х	
Factory Cal. Date:	16.05.2021				
Checked:	Doug Tilbury		Date:	16/	/06/2021
Key to Abbreviations: No = Number / Mic	: = Microphone / LAeq = Equiva	llent Continuous Level / SE = So		North / m/s = Metre p	er second /

					Table B5	: Noise Data	Sheet N03			
User:	Ross Pappin						Job No:	N684	Project:	MM Lightning
Report No:	N684-0621-	SHU-1.0 S	urvey Date:		See co	mments	Checked:	DT	Date:	-
Site No:	SN03	Ν	lic. Height:		155cm	1	Free Field	\checkmark	Facade:	N/A
Location Descriptio	n (draw a little	e picture of the are	ea):						Noise Source:	
				li +	and the second s		CT5	NO3	Vehicles, powerlines	
Period	Ca	libration		Wind		Time	LAeq	Cars (tally)	Trucks (tally)	Comment
i chou	Start	End	Speed	Direction	On	Off	LACY	cars (tany)		comment
Day (Week)	94.3dB	94.1dB	2.6m/s	SE(124°)	09:48	10:02	41.8	++++ ++++	++++ ++++ ++++	23.05.2021
Night (Week)	94.3dB	94.0dB	4.5m/s	NE(29.38°)	20:32	20:47	51.4	++++ ++++	++++ 111	23.05.2021
Day (Weekend)	94.0dB	93.9dB	3.8m/s	N(356°)	15:17	15:32	45.4	++++ ++++ ++++	++++ ++++	22.05.2021
Night (Weekend)	94.0dB	93.8dB	1.6m/s	N(13°)	20:01	20:16	47.7	++++ ++++ ++++	++++ ++++	22.05.2021
General Weather C	onditions:									
Noise measuremer	ts were collec	ted only during pe	riods of low w	ind speed						
Specific Conditions	:		Calm		Fog		Precipitation	Frost	Tonal	Impulse
BS4142 Compliance	2:		\checkmark		х		Х	Х		
Factory Cal. Date:		16.05.2	021							
Checked:		Doug T	ilbury				Date:	16/00	5/2021	
Key to Abbreviati	ons: No = Nun	nber / Mic = Micro	phone / LAeq =	= Equivalent Cor		/ SE = Southea		= North / m/s = Metre per s	econd / dB = Decibel / Cal	= Calibration / cm =

Specific Conditions:	Calm	Fog	Precipitation	Frost	
BS4142 Compliance:	\checkmark	Х	Х	х	
Factory Cal. Date:	16.05.2021				
Checked:	Doug Tilbury		Date:	16/0	06/2021
Key to Abbreviations: No = Number / Mid	c = Microphone / LAeq = Equivaler	nt Continuous Level / SE = South	neast / NE = Northeast / N = No	orth / m/s = Metre per	second / o
	Centimetre / min = Minute				

ADNOC Lightning Project Shuweihat Landfall Terrestrial Ecology Survey Report

NEA Reference: N684-0621-SHU-1.1 dated September 2021

ANNEX C Quaity Control Documentation

Contents:

Part 1: Field Documentation	C1
Part 2: NEA Licences and Accreditations	C4
Part 3: Equipment Specifications and Calibration	C8

Part 1: Field Documentation

Table C1, below, details field logs, provided on subsequent pages.

Table C1: Field Documentation						
Figure №	Description	Usage				
Figure C1	NEA Field Log Day 22.05.2021	Daily log of activities				
Figure C2	NEA Field Log Day 23.05.2021	Daily log of activities				
Figure C3	NEA Field Log Day 24.05.2021	Daily log of activities				

		Figure C1: NEA Activ	ity Log 22.05	5.2021		
Projec	t № & Client	: N684	Date/Day:	22.05.2021 / Saturday		
	Site Team	: RP, AM, PM	PD/PM:	DT/RP		
Vessel(s)/Vehicle(s)	: Pick-up	Visitors:	None		
	Weather	: -	W/Source:	AD MET		
Time	ID	Activities / Notes				
12:20	HEC	Arrived Hans Esser Camp	and checked in			
13:00	HEC	Depart to site				
14:15	SS01	SS01 – Soil sampling				
14:30	SS07	SS07 – Soil sampling				
14:45	SS02	SS02 – Soil sampling	SS02 – Soil sampling			
15:17	SN03	SN03 – Noise monitoring (Day – Weekend)				
15:47	SN02	SN02 – Noise monitoring (Day – Weekend)				
16:15	SS06	SS06 – Soil sampling	SS06 – Soil sampling			
16:25	SS05	SS05 – Soil sampling				
16:40	SS04	SS04 – Soil sampling				
17:00	SS03	SS03 – Soil sampling				
17:15	SS08	SS08 – Soil sampling				
17:30	SN01	SN01 – Noise monitoring	(Day – Weekend)		
19:55	SN03	SN03 – Noise monitoring	(Night – Weeker	nd)		
20:30	SN02	SN02 – Noise monitoring	(Night – Weeker	nd)		
21:00	SN01	SN01 – Noise monitoring	(Night – Weeker	nd)		
21:30	HEC	Arrived back at Hans Esse	r and debrief			
Chang	e of Plans:	None				
EQ	/PE issues:	None				
Incider	nts/PIR №:	None				
		= Nautica Environmental Associate ment Report / PM = Paulo Mendoza		EQ = Equipment / PE = Personnel thew / RP = Ross Pappin / DT = Doug		

PM Name:

Ross Pappin

PM Signature and Stamp:

Approved Training Centre Literated by The Alta Dirich Center for Technical and Vacational Education and Training (ACTVET) Literate Nat (DES)/2020

a Environme port / PM = Paulo Ivie. Tilbury / HEC = Hand Pappin Add A. Based of ATES LLC Based Of ATES LLC Based Of ATES LLC Based Of ATES LLC Based Of ATES LLC

		Figure C2: NEA Activ	ity Log 23.05	5.2021		
Projec	t № & Clien	t: N684	Date/Day:	23.05.2021 / Sunday		
	Site Tean	n: RP, AM, PM	PD/PM:	DT/RP		
Vessel(s)/Vehicle(s): Pick-up	Visitors:	None		
	Weathe	r: -	W/Source:	AD MET		
Time	ID	Activities / Notes				
07:15	HEC	Depart to site				
07:35	SN01	SN01 – Noise monitoring ((Day – Weekday)		
08:05	Site	Mangrove ecology walkov	er survey			
09:21	SN02	SN02 – Noise monitoring ((Day – Weekday)		
09:50	SN03	SN03 – Noise monitoring ((Day – Weekday)		
10:25	HEC	Arrived back at Hans Esser	r			
15:15	Site Ecology walkover survey					
15:45	CT01	Deployed CT – 01				
15:55	СТ02	Deployed CT – 02				
16:05	СТ03	Deployed CT – 03				
16:40	СТ04	Deployed CT – 04	oyed CT – 04			
16:47	СТ05	Deployed CT – 05				
20:26	SN03	SN03 – Noise monitoring (Night – Weekda	ау)		
20:57	SN02	SN02 – Noise monitoring (Night – Weekda	ay)		
21:25	SN01	SN01 – Noise monitoring (Night – Weekda	ay)		
22:10	HEC	Arrived back at Hans Esser	r and debrief			
Chang	e of Plans:	None				
EQ,	/PE issues:	None				
Incider	nts/PIR №:	None				
	Abbreviations: NEA = Nautica Environmental Associates LLC / ID = Site ID / EQ = Equipment / PE = Personnel PIR = Process Improvement Report / CT = Camera Trap / PM = Paulo Mendoza / AM = Aneeta Mathew / RP = Ross Pappin / DT = Doug Tilbury / HEC = Hans Esser Camp					
F	PM Name:	Ross Pappin	CALENVIA	0		
PM Sign	ature and Stamp:	Roys Li	RSS CLATES LLC	MENTA		
		ې مې	STOCIATES LLC			

		Figure C3: NEA Activ	ity Log 24.05	5.2021		
Projec	t № & Client	: N684	Date/Day:	24.05.2021 / Monday		
	Site Team	: RP, AM	PD/PM:	DT/RP		
Vessel(s)/Vehicle(s)	: Pick-up	Visitors:	None		
	Weather	-	W/Source:	AD MET		
Time	ID	Activities / Notes				
07:15	HEC	Depart to site				
07:30	Site	Ecology walkover survey	Ecology walkover survey			
08:25	CT01	Retrieved CT – 01	Retrieved CT – 01			
08:39	CT02	Retrieved CT – 02				
08:51	CT03	Retrieved CT – 03				
08:55	CT04	Retrieved CT – 04				
08:59	CT05	Retrieved CT – 05				
09:20	GW03	GW03 – Groundwater san	npling			
16:00	HEC	Depart Hans Esser to Mirfa	а			
Chang	e of Plans:	None				
EQ,	/PE issues:	None				
Incider	nts/PIR №:	None				

Key to Abbreviations: NEA = Nautica Environmental Associates LLC / ID = Site ID / EQ = Equipment / PE = Personnel PIR = Process Improvement Report / CT = Camera Trap / AM = Aneeta Mathew / RP = Ross Pappin / DT = Doug Tilbury

PTL Name: **Ross Pappin**

PM Signature and Stamp:

Part 2: NEA Licenses and Accreditations

Table C2, below, provides a list of NEA licenses and accreditations, provided on subsequent pages.

Table C2: NEA Licenses and Accreditations						
Figure №	Description	Usage				
Figure C4	NEA Trade License	-				
Figure C5	NEA EAD Registration	-				
Figure C6	NEA Quality Assurance Accreditation	-				

Figure C4: NEA Trade License

In the second se

Professional License

Litanse No	.편	CN-1006373	H.	الد الرياضية
ADCCI Nel		228824	1	ملوية لقرقة
Establishment Cent WOHRE	11		18	رزارة لموارد فيشرية وتترطن يحادة تبنشاد
Extabilishment Cant ODRFA	14 14		14	وادر 1 حمداً تظماً وكوري لا يقت حفظة استثناً
Legal Furm	Livited Liability Comp	any	يالوكة التدسورتية مغيرته	لشكل لغانياني
			وترتيكا للرسانة البيشاء مم	4.747
Trade Name		WENTAL ASSOCIATES - LLC		
Establishment Date	(account of the second of the	09/05/2007	00	فيغ البين ابتذاد
Innue Date	a -	16/05/0021	(i)	للريح الاصناب
Explicy Date	10	09/02/2022		*1617 (SUR

100	and the second second			
- 4,4 Pathar	الإمارات تعريبه الشعنا United Arab Emission	بن الرابي PETER ARTHUR HELLYER	41208251	
A.F. Patter	United Kingdom	ریشارد میں جرابی RICHARD JOHN HORNBY	20029757	
Augu Partner	United Kingdom	الورش موادر المرد المدر VERYAN OLIV HENRY PAPPIN	20029756	
Feel Airs Tive Wattle Potest Sarvons Of Te Ol and Gas Fa Barrey Planas Consultancy Environment IV Orohum And C Chemical and I Nitty Device de Approved for	Index deg And Maxwerg CF Environm office Consultancy g. Ar Photography and Information underton Training Mahom OJ And Gas Feeds And T Rological Analysis Lab Schoolfficht on given Lab Schoolfficht on given Lab	ارتبا عرب في عرب في الماني الماني الماني الماني الماني الماني فراو بر هم مر در 1 السيا الاستيا - برامي الماني مر مده الرسيد اور 14 في برام الماني الماني والو بر هم مر در 1 السيا الاستيا - برامي الماني مر مده الرسيد اور 14 في برام الماني الماني والو برامي مراحي السيا الاستيا - برامي الماني الماني والو الماني الماني الاستيا من مراحية المي المراحية المي الم	energia Desertazionen - Alta Diata, Ta sorta tina Malilian	
Official Ernall	4	management@inve.se	يه اللادغ قرسمي	
White Multile	а;	107150613404B	والوفير ترمين	
			-	

The strategic is

31

غيقتية البوطيحي

	Figu	ure C5: NEA E	AD Registration	
			5 Smironment Agend	y Munua
EC-	99/06	رد معت		
ECR-	778/21	. رقم الترمنية		
Date of insue	25/5/2021	المريح الإصدار		
Date of Expiry	14/5/2022	144271 2010		
	2.3	ي في مجـال البي	إعتماد مكتب استشاره	
		()	• فنة	
	Registra	ition of Enviro	nmental Consultancy	
		* Cla	ass A	
Office Name:	Nautica Environe	nental Associates	الوتيكا للزمانة البينية لأمرم	ايم (مكتير
Type of Office:	Local (100 %)		محلي (100%)	رەلىكىن
Address:	Office M3, East Sheikha Zayed / Bidg Al Meena Street, Abu Dhabi	shmad and Others	هزيرد لوطبي - غرق 14 - غارع البياء - بناية البياد تيمه سعيد المد وتغرين - المزانين سائب رام 3	احبوال:
Environment Age Electronically ge	ency – Abu Dhabi nerated cermit - N	la timostura moudra	رمليس الكثرونية - لايتعلقب أي توقيع	مينة هيشة . اي ال

Part 3: Support Equipment Specifications

Table C3, below, provides a list of key equipment either used or on hand for the survey programme, with specifications provided on subsequent pages.

Table C3: Survey equipment available					
Figure №	Description	Usage			
Figure C7	Beacon on a Belt (BOB)	DGPS locational system			
Figure C8	Trimble GoXT handheld unit	DGPS locational system			
Figure C9	Nikon Forestry Pro Laser Rangefinder	Tree height measurements (NU)			
Figure C10	Bushnell Camera Traps	Small mammal/reptile activity			
Figure C11	Sherman Traps	Small mammal activity			
Figure C12	Anabat Detector	Bat Detection			
Figure C13	Malaise Traps	Insect trapping			
Figure C14	RIDGID Micro-inspection unit	Den/Borrow/Hole investigation (NU)			
Figure C15	Pitfall Trap	Insect / small reptile trapping			
Figure C16	Mavik Pro 2 UAV (Drone)	Aerial photography/videography			

Beacon-on-a-Belt (BoB)

Cable-free Differential Correction Receiver

and Samethin

- Provides real-time OGPS accuracy to magging receivers
- Cattle-free
 conversarie at key with
 framatic Good spheror 3
- Bugged, orgonoesic stratup
- Notice rejecting beacon receiver

for Boll"3 receiver lets you add. the extra precision of real-time differential GPS to your GIS projects- without adding the encombranes of a bulky radio pack. The system incorporates a beacon receiver, an antenna and battery in time compact rable line" package that you wear on your helt. The Boll reprinter decodes GPS differential correction information from Incal MSK hearing and then transmits that information to any GPS receives that accepts. standard RTCM SC-104 data. eliminating the need to postproceus your data. Rest of all, this is completely rable-first when used with Trimble's Geol/aplane* 2.

Thinkle's Beacon on a Belt

Real Arrive DGPS Accuracy

The accuracy of differential GPS not softy means that your databases have better data. It also makes locating previously mapped smets in the field quicket and tours accurate tuo. With differential GPS. distinguishing between thirdy queed assets in fast and unamhighour. Back in the office you'll alver three new. Silver the data years suffected was convected as your gethered it, you can trainife that data directly into your GUS without the delay of a separate postprocycsing step

Remote an a Dell (Bell) Income.

Cable From Compositioner

To complement the convenience of Tituble's handbold GeoExplorer* 3 system, the Bolt differential overtwe communicates with that system automatically — with no cabling or accessories whatnever. There's nothing to connect, andbing to forget, and instituting to carry on your back. Your crews will succe fastes and incur less descoting due to magged or broken cables.

Rupped and Easy to Operate

No matter where your data collection and update projects take you, the Boll receiver is ready to follow. Shockpool and water resistant, it will withstand all the rigors of fieldwork, in any weather. Right out of the forthe Boll receiver is ready to start working with your Trimble GPS/GIS data collection system. Within seconds of powering on, it automatically wheth the best beacon and starts manuniting corrections. If you want to reconfigure the maxime in the field an easy to use two button interface simplifies the process.

Powerful Software

For more extensive configurations the versatile PC-BoB office software makes it easy to exclude beacon stations, define custom display names for stations, and coordigate the initial tracking made. All in all, the BoB member is the roost correnient and service ever shoringed

in branch to the set of the base bases in branch the bott provide and bott and another the LS time the same in provide bases and next to next with a

Figure C7: Beacon-on-a-Belt (BOB)

Beacon-on-a-Belt (BoB)

Cable-free Differential Correction Receiver

FRAMINES STAROARD ACT · Hell and Indexe · Dial channel Meannam Beth Keying (MSR) IMDrennial CPS · Chargeng cable for mineral furthers (DG25) bewon receive · PC 808 without its configuration and diagnostics . Calife Dee real time link to the Trimble Gaultayhour 3 mapping + Printed manual and Quick Reference Card system in the Linited States · Ciarly seell modom cable + Assumationally, marks the annuagest or closest bearer signal, or care be lists to track a specified beavier station OFTIGANL ADDRESONER · Ruged, don, and wave rectant beaming initiates carrierite hatting, which and carrierite Entered planet pld · Compact, registance helt maturiset disage adapters, tobally splitter calify and and absolder · Demulty to note and pressing signals pai. All slav teternal techniquable hattery Simple two bettan/new LEDI interface - Full DGPS status in the field via Geoffaginere 3 in a belt theft Heat the 280.00 00 ENG! - Advanced configuration when the PC-Boll with any **Bdf with Centrolouer 3** DEEDO NO ENCO - Advanted diagramities via PC Sold software Bull with Geologiani 3: 20100/10/15/01 HARIVALUE ENCOUCATIONS 10013-00 Entertial geneer kit 20.4 cm (#17) H + 30.7 cm (817)W + 10.7 cm these part reserved, and has not it into 115 only. Therease the U.S. control true how The Back of the local interest, and control to the State of th 14.773 D fat annual \$ 18 kg (7.56 Hed Sec. 1 1.1 W. President States Operating - 10 C to +10 C +-14 F to +122 F) **Interim** Sonage: -20 C to +70 C [-4 F to +158 F] Ep to 98% non-confirming 325 232 at 2409 hand # data hm, it mp htt. **WORK** to party PERMITANDA SPECIFICATIONS Call Hart Stee -25 serveds operations Non-weighted street and the state of the sta +57 seconds topical Slew cast for 200 Karge: 245.5.325 kill: freeman. Spaine 300.Hz 10, 100 to 200 h/s surrenine turn MX mail Salard prime if X7CM 30.104 fraint picture N545A-0182 Barberg Bli. **Up to 10 hours** 前日日 **Trimble** en barriaer -2010 a and a final state. the fact that have THE LOCK PROBLE (FILL IN APPECIATION IN

Figure C8: Trimble GeoXT 2005 Series

KEY FEATURES

High-performance submeter GPS with integrated SBAS and EVEREST multipath technology

Microsoft Windows Mobile version. 5.0 software, allowing maximum fleability in software choice

512 MB onboard memory plus removable SD memory

Bluetooth and wireless LAN connectivity options

Rugged handheld with all-day battery

TrinsPia technology for wireless camera support

THE TOTAL GPS PLATFORM FOR ALL YOUR GIS FIELD REQUIREMENTS

The GeoXT[®] handheid, from Trimble's GeoExplorar® series, is the essential tool for maintaining your GD. A high performance, submeter GPS inceiver combined with a rugged handheid computer, the GeoXT hundheid is ideal for use by utility companies, local government organizations, federal agencies, or anyone managing states or mapping critical infrastructure who needs accurate data to do the jub right—the first time.

Delivering consistent submeter accuracy both real-time and postprocessed, the GreAT handheid is the most dependable submeter solution available. And it's specifically designed with your GIS in mind.

Real-world submeter performance

The GeoXT hundheid is optimized to provide the reliable, high accuracy location data when and where you need it. With advanced features like EVERET multipath rejection technology, the GeoXT handheid outputs quality GPS positions even under canopy, in urbain canyons, and in all the everyday environments you work in

If you need submeter accuracy in real time, you can use corrections from a satellite-based sugmentation system (SBAS) like WAAS or EGNOS, or use the integrated Bluetoeth® radie to connect to a Trimble® Gno8escon® receiver. And if you need that extra edge in precision, you can collect data with Trimble TerraSync software or the GPScorrect® extension for ESR ArcPad softwarg, and then postprocess back in the office.

Software to fit your workflow

The GeoXT handheld comes with a powerful 416 Milz processor running the most advanced operating system available—Microsoft® Windows Mobile* version 5.0 software. Windows Mobile is the industry standard spen platform for mobile devices, so you can choose a software solution to match your verkflow, whether off-the-shell or purpose built.

Windowe Mobile version 5.0 features familiar Microsoft software, including Word Mobile, Event Mobile, and Dutlock[®] Mobile, giving you all the tools you need for a semifere exhange of data between the field and the office.

Built for the field

The GeoXT handheld has an integrated battery, good for a full day's work: simply charge the battery overright and you're ready to go again. The GeoXT handheld will last the distance, and its rugged design can take a lot of pumitment. Sain, hall, or shine, it's built to keep working, whatever the weather throws at you.

Convenient connectivity

With the GeoXT handheld you have the fexibility to work exactly the way you work to. Do you need to access the internet or your organization's secure ontwork so get the most up to date data? No problem—with the GeoXT handheld you have built in wireless LAN and Bluetooth technology to ensure you may connected.

Using the built in wireless LAN and TrimPix" technology, the GesXT bandheid can invnect to a range of WFI-capable Nikon digital cameras for automated capture of digital images. Download the TrimPix software and you have in ideal solution for easily collecting high resolution digital photos to link to your GPS positions.

All the memory you need

There's plenty of storage space in the GeoXT handheid for all your GIS data, and with its fast processor even big graphics files load quickly. Because the GeoXT handheid rum Windows Mobile version 5.0 software, all your data and applications are stored in persistent memory, to your data it completely safe. And with a Secure Digital (SD) memory card slat, you can add gigabytes of memory for all your map data.

Accuracy you can rety on

Accurate information is crucial to making informed decisions and improving the way you do business. The GeoXT delivers consistent autometer accuracy both real-time and postprocessed, so you know your GB has the information that others can depend on to do the job right—this time, next time and every time.

Approved Training Centre lannad by The Alas Dhala Center for behaqui and Vocational Education and Training (ACTVET) Linense Net 0890/2020

Figure C8: Trimble GeoXT 2005 Series

GeoXT handheld

STANDARD FLATORES

- Numerous Marcowski Winstews Meladia sensitin Lif softwares STS Mills Wald S. Sock principal STS Mills wald S. Sock principal Statistic Units and an example Sachard Units and an example Sachard Units and an example Social and example Social and example Social and example Social and example Social Statistics and an example Social and example Social Statistics Social

- PH
 Subtractor security in real time
 Subtractor security in real time
 Single and time constitute support
 SING and TOP posterior support
 SING and TOP posterior support
 SING and TOP posterior support

- You Table State of the second of the

- Accession and a series supply and US data using a Cartrag Nathad Carts. Cartrag Nathad Carts.

- · Hand street
- · Data Int
- OFTEMAL PLATINES

- Incomingence conference
 Incomingence conference
 Incoming Collectment instances in the USK Archiel antimases
 COL Prophysical Instances in the USK Archiel antimases
 COL Prophysical Collectment
 Collectments
 Income USK Archiel
 Income USK
 I

TEORECAL EPECIFICATIONS

HURLI	
and the second sec	It is not a first on a 13 per di Louis a 18 per 2 di tetto Si Fili agli 75 fili entit duttere
Statement .	AND MALE THAT THAT IT IN A SHARE SHEET
Martine	LEMY MAY and LTJ MI stands that doe
NAME OF TAXABLE PARTY.	
Jon in 195 mileting	NI
Romai faith DR and I	nakigni
	to, Horson, and annuta LAN
Ballary	and DEF out Structure, subgradie is one
141	
Approximately.	
and the second s	CONCESSION OF MARKED AND ADDRESS OF ADDRESS
2000	二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、
Carrie Mind	Brown spe and days sendare par P 14 standard
	Discounters are, dont and observe matters.
Barrissian .	
Commentations	111
1 March 1997	128 -them yild compliant? we suggest module
	Securit site represent DUS securit City adhesizer
SPM	mail E2752 Assa? Compartille one poppert trackate
Cast and host same	Tank Pers, Open Pue
Charter suggest and	Zibel Life National Providence
Bet support may	Tile Transfer batter (2006)
Onating	Advanced Automa TTL 281 v 201 plant
220 State 100 St	IX.S.E-cope, with backlight
Auto	shows and sensited, rectrict and playment stations
interface In	eith a treame, Tellt Trans Parael (SATs on South Arginism II
Contra Sa	elfs orones, fullt track Panel (SPS onload Aryteos it e cantini langt, fundwriting romgintlan onfferers
Contraction (1) Provident	eith a treame, Tellt Trans Parael (SATs on South Arginism II
In the second second	of course, but tups Papel 120 online keymonts a cartisl key, bandwring remarking pitters Ralls grant asses, warring, and water store
In the second se	elfs orones, fullt track Panel (SPS onload Aryteos it e cantini langt, fundwriting romgintlan onfferers
And	of course, but tups Papel 120 online keymonts a cartisl key, bandwring remarking pitters Ralls grant asses, warring, and water store
Variation rates	Alt seams, Mit Tauci Piper (201 milait Arytown) and the seams with a serie of the second second 11111 costs and consec MAP I would be seen to be I here
Variation rates	An array, Kith Tayai Paper (197) enhant Argement Santing Levis, Santing Vanishing, Santing Sing Articles (1973) costs and carrier (1987) 1980 1980
Long to Long to	Alt constant, NIT field Paper (187 milest August 1 Latting and construction of the second sec
Annual Contraction	A STATE AND A STAT
Annual Control of Cont	An analysis of the Proof (20) only a Appendix Sector (1997) and the proof (20) only and the Hold of th
Annual and a second second	An analysis of the Proof (201 miles Appendix 1973) and and analysis of the Appendix 1973 and and analysis 1973 Analysis of the Appendix Appendix of the Appendix Appendix of the Appendix Appendix of the Appendix Appendix
Verfan star Name Di Kar Na Annanan Karanan Carlo perfanensi Karanan Mata Di senatar mata	An analysis of the Proof (20) which a Appendix 1711 cost of the Proof (20) which are a set of the 1711 cost of the Proof (20) of the 1712 cost of the Proof 1712 cost of the Proof 1713 cost of the Proof 1714
Version that Property that is Automatic Automatic Code participations Code participations Code participations Code participations Code participations Code participations Mark L Annual That Mark L Annual That	
Verfan sta Son U Kar In Assault Assault Sold professional Company sold states Mitt Company Mitt Company Mitt Company	
Victor the second secon	
Victor the second secon	
Victor the second secon	
Version star New Yorks Annual Annual Sty Statistics of the Color production of Meth L deviation star Meth L deviation star Methods and Annual Star Star Start stars Star Start start star	
Version star New Yorks Annual Annual Sty Statistics of the Color production of Meth L deviation star Meth L deviation star Methods and Annual Star Star Start stars Star Start start star	
Version star New Yorks Annual Annual Sty Statistics of the Color production of Meth L deviation star Meth L deviation star Methods and Annual Star Star Start stars Star Start start star	
Victor the New York of Statistics of the Code and Statistics of the Code and Statistics of the Code and Statistics of the Mark 1 of the Statistics of the Mark 1 of the Statistics of the Mark 1 of the Statistics of the Mark 2 of the Statistics of the Statistics of the Statistics of the Mark 2 of the Mark 2 of the Mark	

- Erice Universitätingenden ander

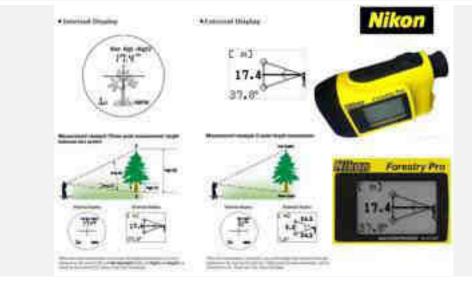


Figure C9: Nikon Forestry Pro Laser Rangefinder Specifications

I Ini+	Spacifications
Unit	Specifications:

	•		
•	Magnification:	6.0x	
•	Objective Lens Diameter:	21mm	
•	Angle of View:	6°	And Ballin
•	Laser Type:	Class 1M	
•	Range:	11-550 yd / 10-500 m	
•	Exit Pupil Diameter:	3.5 mm	
•	Eye Relief:	18.2 mm	
•	Distance Display Increments:	[Internal Display]	
•	Actual Distance:	Every 0.5m/yd. or 1.0' ou 1.0 m/yd or 1.0' beyond 1	
•	Horizontal distance and height:	0.2 m/yd or 0.5' up to 10 1.0 m/yd or 1.0' up to 10	
•	Angle:	0.1° up to 10° / 1° beyond	d 10°
Ext	ernal Display:		
•	Actual Distance: Horizontal distance and height:	0.5 m/yd or 1.0' 0.2 m/yd or 0.5'	
•	Angle:	0.1°	
•	Weatherproofing:	3.3' (1.0 m) to 10 minute	S
•	Environment:	RoHS/WEEE compliant	
•	Power Source:	(1) CR2 battery	
•	Dimensions:	5.0 x 2.8 x 1.8" (12.7 x 7.	1 x 4.5 cm)
•	Weight (Without Batteries):	7.4 oz (209.8 g)	

Figure C10: Bushnell Camera Trap Specifications				
Model:	119876			
Sensor Resolution	2, 8, 20MP			
Images Resolution:	3MP sensor with	2MP compression and	20MP interpolation	
Flash:	48 LEDs No-Glow	V		
Flash Range (ft/m):	100ft/30m			
Backlit LCD Display:	B&W text LCD			
Colour:	Brown			
Battery Type:	AA (8)			
Battery Life:	up to 12 mo.			
Video Resolution:	1920x1080p			
Infrared Sensor Range:	80ft / 25m		1 October	
Multi Flash Mode:	Yes			
Hyper Night Vision:	Yes			
Field Scan 2x:	Yes	- Stand		

Figure C11: Sherman Trap Specifications

Sherman traps are an environmentally friendly way to research small mammal populations and can be used for mammal collection, teaching and environmental impact studies.

Sherman folding traps have the advantage of folding down to a size and shape which is easy to transport. The trap works by use of a trigger platform which causes the door to shut when the animal runs into the trap.

This is a 'live catch' trap and should be checked regularly. Where appropriate traps should be provided with water and food.

The Small Folding Aluminum Trap is suitable for trapping small animals such as mice and shrews. The Sherman Trap is available in a range of sizes to suit specific needs as shown below.

Figure C12: Anabat Express Bat Detector Unit Specifications

The Anabat Express is a compact and weatherproof recorder that is designed to be deployed in the field for several weeks. It will record bat calls which can then be used for species identification or activity monitoring.

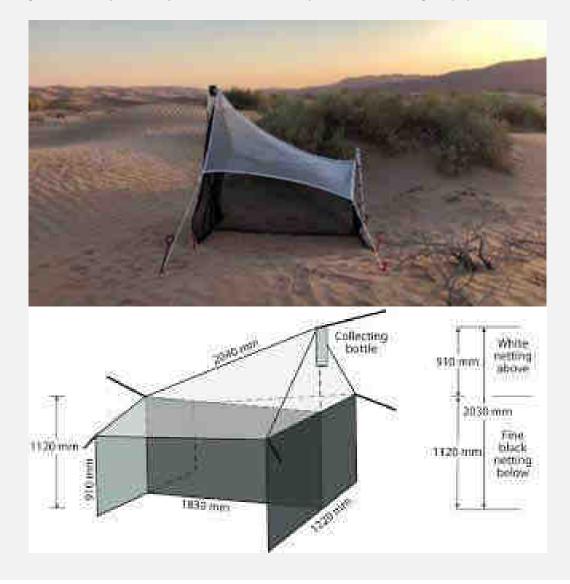
Camouflaged and compact, the unit has a weatherproof casing and omni-directional weatherproof microphone with a 1.5m extension cable. An optional five-metre microphone extension cable allows you to position the microphone away from the unit, which makes it easier to site the recorder in an inconspicuous location, or to raise your microphone up to an elevated position when needed.

The Express is powered by 4 x AA batteries. The unit should record for around 14 nights on one set of batteries and up to 30 nights with high quality lithium batteries. Supplied with a padded case, wrist strap, 1.5m microphone extension, a magnet for status checking and USB cable.

Features:

- New, easy-to-use interface for setup & download;
- Weatherproof, camouflaged plastic case (IP67);
- Weatherproof, compact microphone;
- Records temperature and battery voltage;

- Specifications:
- Dimensions: (H) 182 x (W) 119 x (D) 43mm;
- Weight: 385g (without batteries)
- Built-in GPS for location, transect tracking, setting the clock and calculating sunset/rise;
- Runs for 14 nights on 4 AA batteries and up to 30 nights with lithium-ion batteries;
- One-touch for continuous, scheduled or night-only recording modes. SD card memory and easy downloading.


Figure C13: Malaise Trap Specifications

A malaise trap is a large, tent-like structure used for trapping flying insects, particularly Hymenoptera and Diptera.

The trap is generally made of a material such as terylene netting and can vary in colour. Insects fly into the tent wall and are funnelled into a collecting vessel attached to highest point (see diagram below).

Typical Dimensions; Tall end height = 1.7m; Short end height = 0.9m; Width = 1.15m and Length = 1.88m. The opening is around 12–15 mm (0.47–0.59 in), and can vary according to the size of insect desired.

If using a dry agent, a smaller hole results in a faster death, limiting the amount of damage a newly caught insect can inflict on older, fragile specimens. In ethanol, this is less of a concern. Larger holes can potentially allow in more butterfly, moth and/or dragonfly species.

Figure C14: RIDGID Micro-inspection Camera (Hole/Burrow Investigations)

The Ridgid 37888 micro CA-300 inspection camera is the next evolution of the SeeSnake micro inspection camera, it allows you to perform more detailed visual inspections in even harder-to-reach areas (see Plate below of an NEA scientist's use in a burrow investigation).

Comfortable pistol-grip design, one-hand controls, and large screen make it easy to detect and diagnose the unreachable. It comes standard with a rugged anodized aluminum camera head with 4 super bright LEDs.

Easily rotate the active image counter-clockwise to see in any situation. This micro CA300 inspection camera provides solutions whenever and wherever you need them. Easily record still images and videos of problems in hard-to-reach areas.

Specifications:

- Item Name: Inspection Camera
- Model: 37888
- SV Code: 291302AAKY3
- Brand: Ridgid
- Resolution: 320 x 240
- Video Output: 3 Feet (90 cm) RCA cable included (640 x 480 resolution)
- Power Supply: 3.7V Li-Ion battery 5VAC adapter
- Cable Length: 3 Feet (90cm) expandable to 30 Feet (9m) w-optional extensions

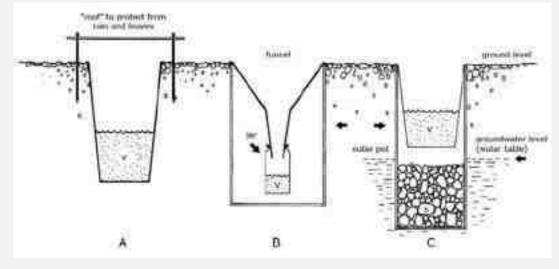


Figure C15: Pitfall Trap Specifications

A pitfall trap is a device used to trap insects that are active on the ground surface. Pitfall traps usually consist of a beaker that is buried so that the lip of the beaker is level with the ground surface. The trap is then left and returned to, at a later date, to inspect 'the catch'.

The diagram below the photograph of an NEA deployment, depicts the several variations of pitfall trap layout, with a recurring theme. Insects reaching the lip of the beaker slip and fall in and are then unable to climb back out. Sometimes alcohol or another substance is poured into the trap so that any insects falling in are killed. The rationale behind this is that predatory insects falling in to the trap will eat the rest of the catch.

Figure C16: Mavic Pro 2 (Aerial photography/videography)

The Mavic 2 Pro from DJI is a drone that balances power, portability, and professional-quality visuals with the inclusion of a 20MP Hasselblad L1D-20c gimbal camera. The camera delivers a 1" CMOS sensor with an adjustable f/2.8 to f/11 aperture, support for a 10-bit Dlog-M color profile, and 4K 10-bit HDR video capture. The Mavic 2 Pro utilizes a low-drag aerodynamic body design for achieving speeds up to 47.7 mph, a four-cell LiPo battery for up to 31 minutes of flight time, and low-noise propellers for filming without being distracting. This power and performance are coupled with a variety of dynamic shooting modes and other capabilities that help you achieve cinematic results.

- Item Name: Mavic Pro 2
- Model: 37888
- SV Code: 291302AAKY3
- Brand: DJI
- Camera: Hassleblad 20MP, 1" CMOS, 77° FOV, f/2.8 to f/11
- Max Video Output: 4k 10 bit HDR (.MP4, .MOV), 5472 × 3648 Stills (.JPG or .DNG)
- Power Supply: 15.4V, 3850 mAh, LiPo 4S
- Transmission Length: 8 km (line of sight)

Appendix 2.2.3 – Das Island Landfall Terrestrial Ecology Survey Report

ADNOC Lightning Project Das Island Landfall Terrestrial Ecology Survey Report

Μ

MOTT

MACDONALD

NEA Reference: N684-0821-DAS-1.1 dated September 2021

Table	of Contents	Page
1.0	Background and Survey Conduct	1
	1.1 Background	1
	1.2 Survey Conduct	1
2.0	Methodology	11
	2.1 Baseline Noise Measurements	11
	2.2 Soil and Groundwater Inspection and Analysis	11
	2.3 Ecology Survey Methodology	12
3.0	Survey Results	15
	3.1 Noise Measurement Analysis, Locations and Results	15
	3.2 Soil and Groundwater Analysis	18
	3.3 Ecological Survey	19
4.0	Conclusions and Recommendations	39

Annexes

А	References
В	Data Sheets
С	Quality Control Documentation
Cover	Front cover – Osprey, Pandion haliaetus
Credits	Photos ©NEA on-site 2021, unless otherwise annotated.

Document Issue and Revision					
Issue Date	Author(s)	Checked	Approved	Issue №	Comment
20.08.2021	RP/BC/VP/DT	RP	VP	1.0	1 st Issue
12.09.2021	RP/BC/VP/DT	RP	VP	1.1	2 nd Issue

©2021 Nautica Environmental Associates LLC (NEA). This document has been prepared for the above titled project and should not be relied upon or used for any other project without first obtaining the written consent of NEA. NEA will accept no responsibility or liability for this document to any party other than the client for whom it was commissioned.

Approved Training Centre Literated by The Alta Dirich Center for Technical and Vacational Education and Training (ACTVET) Literate Net (0855/2020)

Figures used in Report

Nº	Description	Page
1	Shuweihat Landfall Location, showing Traps and Sampling locations	3
2	Track map of Ecologists' Movements	4
3	Points of Interest	5
4	Cardinal Points	6
5	Habitat Map	7

Tables used in Report

Nº	Description	Page
1	Das Island Field Visit Overview	2
2	Das Island Survey Records	3
3	Noise measurement metrics for Das Island Landfall, site DN01	16
4	Noise measurement metrics for Das Island Landfall, site DN02	17
5	Noise measurement metrics for Das Island Landfall, site DN03	17
6	Soil Sampling Locations and Depths	18
7	Habitat Description & % cover (Landfall Footprint)	20
8	Plant species recorded during the survey	26
9	Mammal and Reptile species recorded during the survey	28
10	Bird species recorded during the survey	36

Plates used in Report

Nº	Description	Page
1	Noise meter deployment on location	12
2	Weather meter deployed on location	13
3	Camera trap deployed on location	13
4	Using a soil auger to reach deeper soils for analysis	14
5	Disturbed ground/reclaimed land with Salsola imbricata dominant	21
6	Disturbed ground/reclaimed land with Salsola imbricata dominant	22
7	Rock armouring revetments	24
8	Rock armouring revetments	24
9	Sporobolus spicata	26
10	Salsola imbricata	26

Approved Training Centre Literated by The Alta Driate Center for Technical and Vocational Education and Training (ACCVET) Educate No: 0895/2000

Plates used in Report

Nº	Description	Page
11	Stray Cat tracks	28
12	Socotra Cormorant	30
13	Socotra Cormorant Track	30
14	A pair of Osprey in-flight over the site	31
15	Two Indian House Crows captured by camera trap	32
16	A juvenile Sooty Gull resting on a rock armouring boulder	33
17	An adult White-cheeked Tern	34
18	An adult and juvenile White-cheeked Tern	35
19	Construction materials at the northern end of the site	38

1.0 Background, Scope and Conduct

1.1 Background

Mott MacDonald (MM), on behalf of the Abu Dhabi National Oil Company (ADNOC), commissioned Nautica Environmental Associates LLC (NEA), an Abu Dhabi based environmental consultancy, to conduct environmental surveys at three landfall locations, for the ADNOC Lightning Project. These are located at Mirfa, Shuweihat and Das Island.

This document relates to the survey conducted at Das Island between 03-06.08.2021 (Table 1) and provides a report on the results from the surveys undertaken.

Figure 1 shows the Das island landfall location and on-land routing.

1.2 Scope and Conduct

1.2.1 Scope

The scope included evaluations of the following, along landfall pipeline footprints as shown in Figure 1:

- Evaluation of habitats and associated species.
- Ambient noise measurements, over weekend and week-day periods.
- Soil and groundwater sampling and analysis to evaluate possible contamination.

1.2.2 Conduct

One NEA ecological specialist conducted the surveys using a combination of walkover and vehicle drive through of the site location, deploying camera traps and noise meters and undertaking soil sampling at selected locations. The 4-day survey period was pre-ceded by a 16-day COVID quarantine period, 12 of which was in Abu Dhabi and the remainder on Das Island itself.

Additionally, at certain locations within the survey area and in order to provide additional photographic records of habitat and general conditions, cardinal point photographs were taken from South, East and West (North was excluded on security grounds).

Table 2 provides an overview of site visits and activities undertaken during the ecological survey. Figure 2 shows a habitat map of the plot location, together with sampling locations and camera traps. Camera traps were deployed at for one overnight period (\geq 12 hours) at these locations.

Cardinal point locations are shown in Figure 3 (see Annex B for records). Figure 4 shows points of interest and Figure 5 shows a track map or NEA staff movements across the location. These are detailed in Table 2 and discussed in subsequent sections.

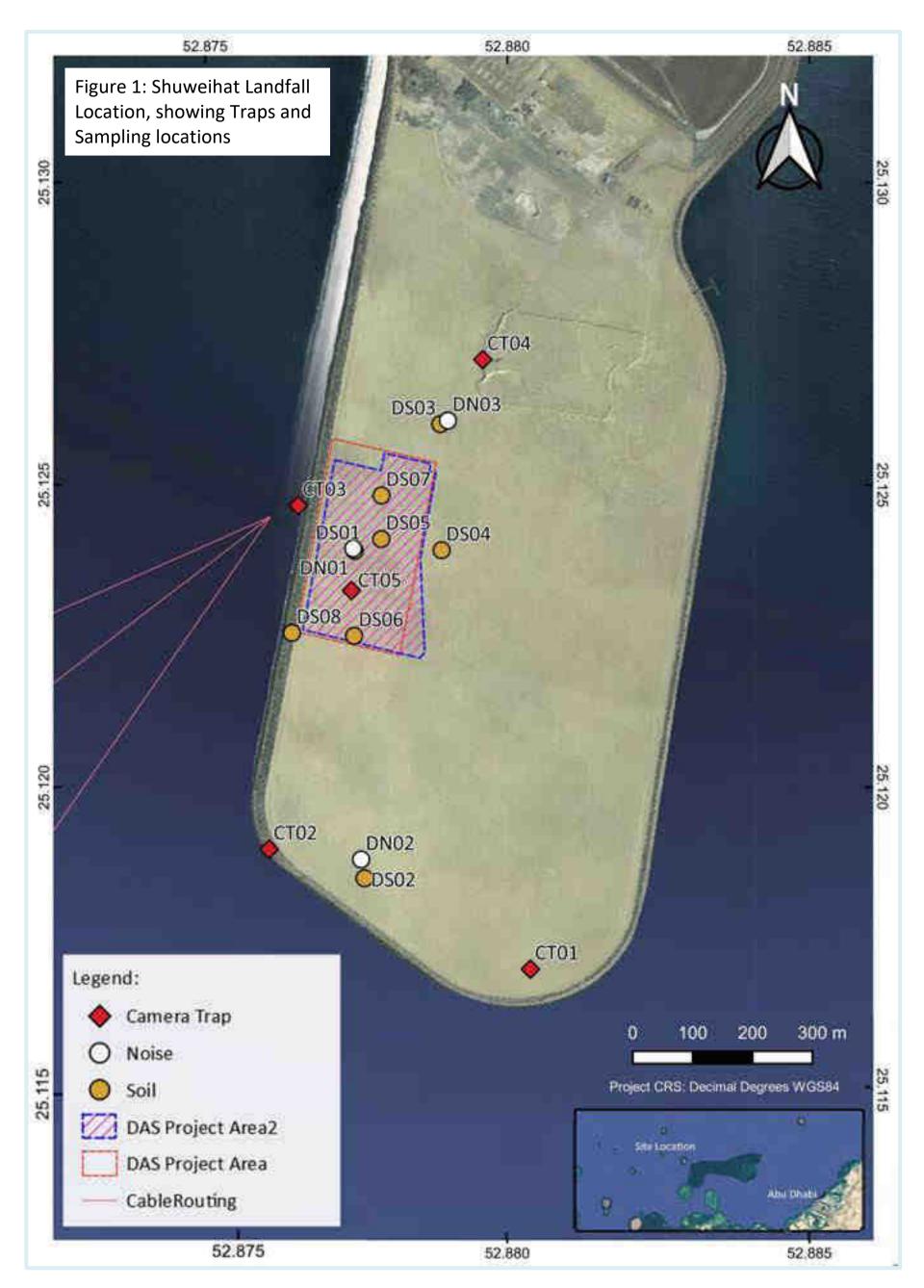
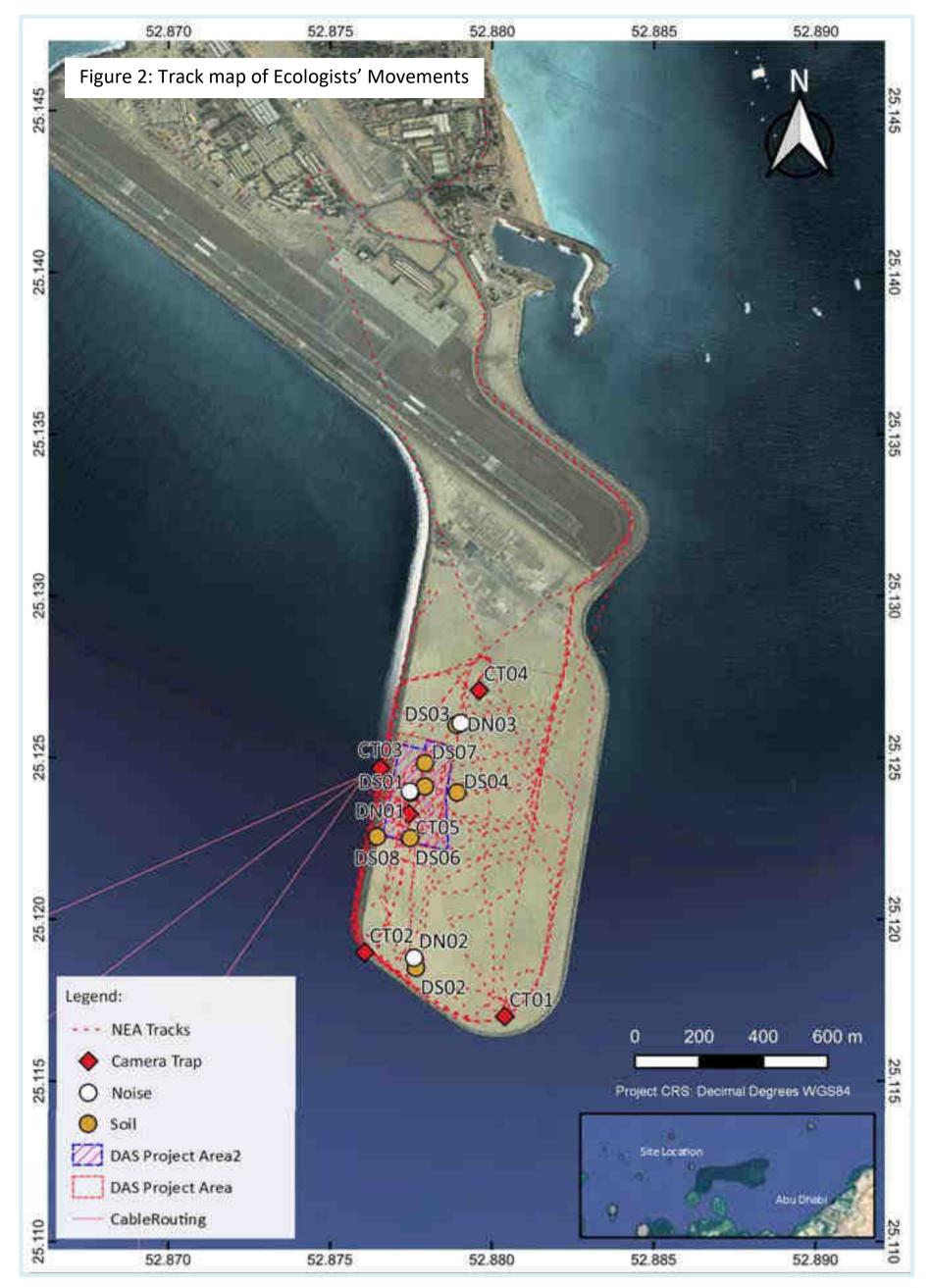
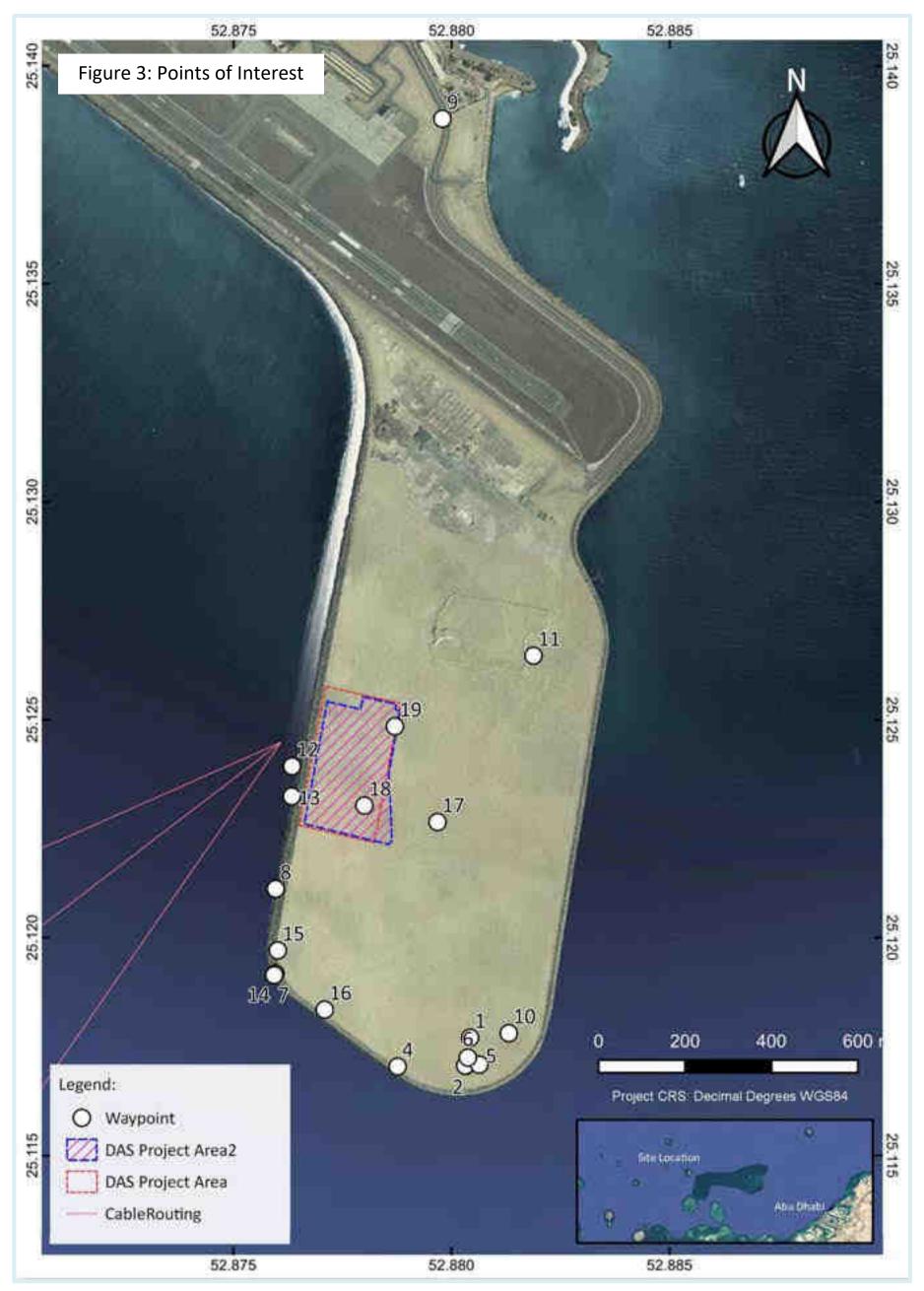
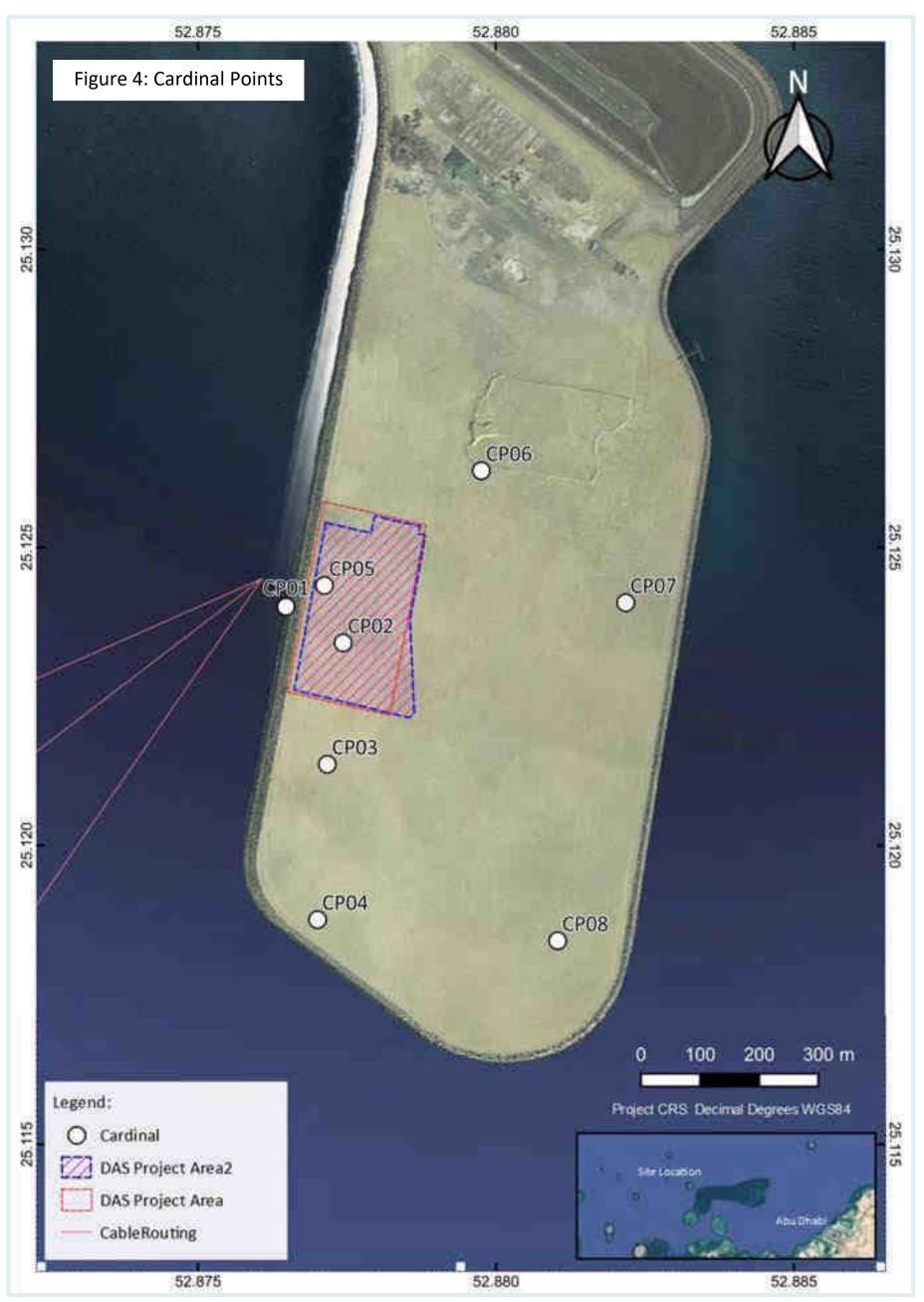

In the current circumstances, COVID-19 mitigation involved the NEA ecologist wore full eye and nose/mouth masks, with gloves, when on-site and travelling to and from the location.

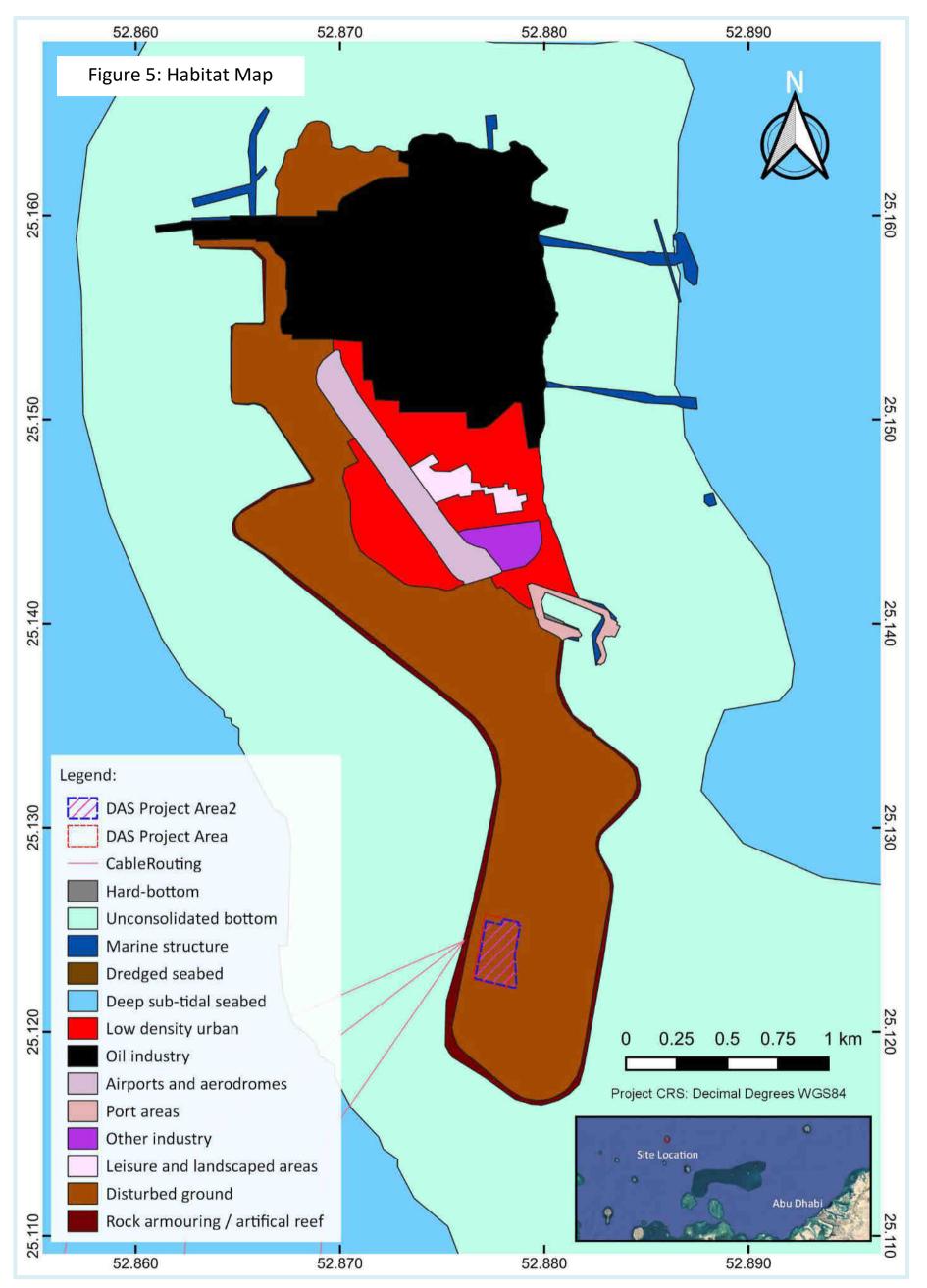
Table 1: Das Island Field Visit Overview				
Day	Date	Survey Activity	NEA Site Staff	
1	18.07 to 02.08.2021	Quarantine period	RP	
2	03.08.2021	Site walkover & CT/NM dep/ret	RP	
3	04.08.2021	Site walkover & CT/NM dep/ret	RP	
4	05.08.2021	Site walkover & CT/NM dep/ret	RP	
5	06.08.2021	Site walkover & CT/NM dep/ret	RP	
Table Key: CT = Camera Trap				
NM = Noise Meter				
NEA St	NEA Staff: RP = Ross Pappin			



NAUTICA ENVIRONMENTAL ASSOCIATES LLC N684-0821-DAS-1.1 dated September 2021




NAUTICA ENVIRONMENTAL ASSOCIATES LLC N684-0821-DAS-1.1 dated September 2021



NAUTICA ENVIRONMENTAL ASSOCIATES LLC N684-0821-DAS-1.1 dated September 2021 6

NAUTICA ENVIRONMENTAL ASSOCIATES LLC N684-0821-DAS-1.1 dated September 2021

Table 2: Das Island Survey Records							
ID	Unit Type	Date	Time	Duration	Latitude	Longitude	Notes
DN01	Noise Sampling	03-06.08.21	Various	15 minutes x 4	25.12395	52.87745	-
DN02	Noise Sampling	03-06.08.21	Various	15 minutes x 4	25.11881	52.87758	-
DN03	Noise Sampling	03-06.08.21	Various	15 minutes x 4	25.12607	52.87901	-
DS01	Sediment Sampling	06.08.21	08:02	NA	25.12391	52.87748	-
DS02	Sediment Sampling	06.08.21	08:24	NA	25.1185	52.87764	-
DS03	Sediment Sampling	06.08.21	08:55	NA	25.12601	52.87889	-
DS04	Sediment Sampling	06.08.21	09:19	NA	25.12392	52.87891	-
DS05	Sediment Sampling	06.08.21	09:33	NA	25.12411	52.87791	-
DS06	Sediment Sampling	06.08.21	09:52	NA	25.12251	52.87746	-
DS07	Sediment Sampling	06.08.21	10:13	NA	25.12483	52.87792	-
DS08	Sediment Sampling	06.08.21	10:27	NA	25.12256	52.87644	-
CP1	Cardinal Point	03.08.21	09:52	NA	25.124	52.87648	-
CP2	Cardinal Point	03.08.21	09:54	NA	25.1234	52.87744	-
CP3	Cardinal Point	03.08.21	10:00	NA	25.12136	52.87717	-
CP4	Cardinal Point	03.08.21	10:04	NA	25.11875	52.87701	-
CP5	Cardinal Point	03.08.21	10:10	NA	25.12436	52.87712	-

Table 2: Das Island Survey Records							
ID	Unit Type	Date	Time	Duration	Latitude	Longitude	Notes
CP6	Cardinal Point	03.08.21	10:17	NA	25.12628	52.87976	-
CP7	Cardinal Point	03.08.21	10:24	NA	25.12407	52.88218	-
CP8	Cardinal Point	03.08.21	10:30	NA	25.1184	52.88104	-
CT1	Camera trap	03.08.21	10:50	22hrs	25.11699	52.88038	-
CT2	Camera trap	03.08.21	11:01	22hrs	25.11898	52.87606	House Crow x 3
CT3	Camera trap	03.08.21	11:08	22hrs	25.12466	52.87654	House Crow x 3
CT4	Camera trap	03.08.21	11:17	23hrs	25.12707	52.87959	-
CT5	Camera trap	03.08.21	11:25	23hrs	25.12325	52.87742	-
WPT1	Handheld GPS	03.08.21	09:27	NA	25.1177	52.88042	White-cheeked Tern x 2
WPT2	Handheld GPS	03.08.21	09:30	NA	25.11705	52.88032	White-cheeked Tern x 10
WPT3	Handheld GPS	03.08.21	09:31	NA	25.11706	52.88031	Sooty Gull
WPT4	Handheld GPS	03.08.21	09:35	NA	25.11704	52.87876	White-cheeked Tern x 5
WPT5	Handheld GPS	03.08.21	10:37	NA	25.11708	52.88063	Socotra Cormorant tracks
WPT6	Handheld GPS	03.08.21	10:41	NA	25.11725	52.88037	Socotra Cormorant x 3
WPT7	Handheld GPS	03.08.21	17:14	NA	25.11918	52.87596	Sooty Gull x 3
WPT8	Handheld GPS	03.08.21	17:19	NA	25.12112	52.87596	Dead Cormorant (Nat.)

Table 2: Das Island Survey Records							
ID	Unit Type	Date	Time	Duration	Latitude	Longitude	Notes
WPT9	Handheld GPS	03.08.21	18:25	NA	25.13879	52.87979	Grey Heron
WPT10	Handheld GPS	04.08.21	08:23	NA	25.11781	52.88131	White-cheeked Tern x 32
WPT11	Handheld GPS	05.08.21	07:23	NA	25.12647	52.88188	House Crow x 3
WPT12	Handheld GPS	05.08.21	07:38	NA	25.12393	52.87634	Cat tracks
WPT13	Handheld GPS	05.08.21	07:50	NA	25.12324	52.87633	Osprey x 2
WPT14	Handheld GPS	05.08.21	07:55	NA	25.11914	52.87593	Socotra Cormorant x 2
WPT15	Handheld GPS	05.08.21	08:01	NA	25.1197	52.87601	Sooty Gull
WPT16	Handheld GPS	05.08.21	08:14	NA	25.11835	52.87709	White-cheeked Tern x 70
WPT17	Handheld GPS	06.08.21	06:30	NA	25.12265	52.87968	Isabelline Wheatear
WPT18	Handheld GPS	06.08.21	06:33	NA	25.12303	52.878	Rock Dove x 85
WPT19	Handheld GPS	06.08.21	06:41	NA	25.12484	52.8787	Kentish Plover

Table Key:

NA = Not Applicable / CT = Camera Trap / CP = Cardinal Point

ID = Site ID / min = Minute(s) / Lat + Long in Decimal Degrees

Nat = Natural (death)

2.0 Methodology

2.1 Baseline Noise Measurements

Baseline noise measurements were carried out at three sites at the Das Island location and included both weekday and weekend measurement periods. Measurements at each site were carried out for 15-minutes and repeated for day and night-time (total of four measurements per site). Surveys were undertaken in parallel with ongoing ecological surveys of the location.

Measurements were collected using a bench- and field-calibrated Rion NL-52 integrating Class 1 (IEC 61672-2002) sound level meter with data stored on the device's internal memory as well as on detailed field-sheets (Plate 1). Measurement locations were chosen to minimise reflective phenomena or interruptive weather conditions in accordance with ISO1996-1:2016. A weather meter was deployed at the location for this purpose (Plate 2).

Reported parameters included maximum and average noise levels as well as identification of specific sound events where feasible and were reflective of the characteristics of the ambient noise environment and nature of the project.

- Measurements Overview:
 - 15-minutes each site (day/night/weekday/weekend)
 - Total 1 hour per site
 - Total 3 hours at location
- Parameters:
 - O LAeq, LAMax, LA10, LA50, LA90

2.2 Soil and Groundwater Inspection and Analysis

A visual survey of the surface for any signs of contamination was conducted in parallel with ecological and noise survey data collections at the location. Where visible contamination was identified, a GPS waypoint was collected. For large areas, a tracked path was walked around the edge, using the GPS tracklog to map the extent of contamination. All identified instances were reported with accompanying georeferenced photographs.

Eight soil samples were collected by hand augur along the cable corridor (see Figure 1 for locations and Plate 4) and analysed at an ENAS accredited laboratory. Data is provided in Annex B.

No groundwater samples were collected, as there were no nearby sources available.

2.3 Ecology Survey Methodology

Field activities involved day-time drive-over and walkabouts (Plate 2) in selected areas, with one overnight trapping effort involving deployment of Browning camera traps (Plate 4) at selected locations. Figure 1 details trap and photo locations.

Browning camera traps were deployed at locations considered potentially suitable for mammal and/or reptile activity, such as near burrows or in areas of particularly dense vegetation and/or visible track activity. Plate 5 shows the result from one of the traps deployed.

Binoculars (Plate 3) were also used to help find and identify bird species within the area and where possible, high-definition pictures were taken and have been used in this report were deemed appropriate.

All photos displayed in this report were taken on location unless otherwise stated (NEA File Photo).

Plate 1: Noise meter deployment on location

Plates 2 & 3: Weather meter deployed on location (top); Camera trap deployed on location (bottom)

Plate 4: Using a soil auger to reach deeper soils for analysis

3.0 Survey Results

3.1 Noise Measurement Analysis, Locations and Results

3.1.1 Noise Measurement Analysis

A baseline survey was conducted in the area of the proposed landfall, including three separate locations, with four fifteen-minute measurements each. The combined measurement period at each location was 1 hour, representing weekday, week night, weekend day and weekend night time periods.

The aim of the noise measurements is to provide an indication of existing ambient conditions as well as to identify any significant anthropogenic noise sources which may affect any subsequent assessments of noise.

Measurements were collected using a bench- and field-calibrated Rion NL-52 integrating Class 1 (IEC 61672-2002) sound level meter (SLM) with data stored on the device's internal memory as well as on detailed field-sheets. The SLM and microphone were field calibrated before and after each measurement to detect and account for any drift in the measured noise levels.

Measurement locations were chosen to minimise reflective phenomena or interruptive weather conditions in accordance with ISO1996-1:2016.

3.1.2 Noise Measurement Locations

Classification of the Das Island landfall area is considered to be 'heavy industry', due to the far proximity to residential receptors, as well as the overall classification of the island as an Oil and Gas facility.

The 'Heavy Industrial' classification (day and night-time noise limits of 70 dBA and 60 dBA respectively), means that the undeveloped site is unlikely to exhibit exceedances of the noise limits, however the development will likely result in significant changes to the noise climate.

Three noise measurement locations were identified for the purposes of capturing the ambient noise climate of the undeveloped landfall project area. While these were located within the alignment of the cable landfall, the impact of installation and development will ultimately be experienced by receptors located (mostly) to the north of the site itself.

The locations of the noise measurement stations (N01-N03) are shown in Figure 1.

3.1.3 Noise Results and Analysis

A breakdown of measured noise metrics for the measurement sites at the Das landfall is provided in Tables 3, 4 and 5.

As expected, the ambient noise climate of the landfall area falls well below the thresholds of the applied day and night time noise limits. All measured LAeq noise metrics fall well below 50 dBA and as such meet the limits by more than 10dBA for all periods. It is expected however that following development of the southern end of Das island, the ambient noise climate of the area will show a more significant change.

Table 3: Noise measurement metrics for Das Island Landfall, site DN01								
	Site \rightarrow	DN01						
↓Parameter	$Period \!$	Week Day	Week Night	Weekend D	Weekend N			
L _{Aeq}	dBA	31.4	39.9	30.9	37.2			
L _{max}	dBA	47.8	50.7	45.1	48.7			
L ₁₀	dBA	33.4	41.3	32.0	38.3			
L ₅₀	dBA	30.8	39.7	30.7	37.0			
L ₉₀	dBA	29.4	38.5	29.9	36.1			
Environmental Condition	ons							
Average Windspeed	m/s	2.99	1.20	1.63	1.25			
Max Windspeed	m/s	3.67	1.78	2.42	1.86			
Average Temp	°C	37.7	34.7	34.6	34.6			
Average Humidity	%	60.8	75.3	77.2	69.2			
Table Key:								

Exceeds the relevant ambient noise limit of 70 dBA (daytime) or 60 dBA (night-time)

D = Day / N = Night

dBA = Decibels / m/s = Metres per Second

°C = Degrees Centigrade / % = Percentage

Table 4: Noise measurement metrics for Das Island Landfall, site DN02							
Site		DN02					
Period		Week Day	Week Night	Weekend D	Weekend N		
L _{Aeq}	dBA	36.2	42.6	32.0	35.1		
L _{max}	dBA	48.5	62.2	49.2	47.5		
L ₁₀	dBA	38.1	44.4	33.7	36.0		
L ₅₀	dBA	35.8	42.2	31.5	35.0		
L ₉₀	dBA	34.2	40.5	30.5	34.3		
Environmental Condition	ons						
Average Windspeed	m/s	2.33	0.12	1.66	0.72		
Max Windspeed	m/s	3.00	0.56	3.11	0.94		
Average Temp	°C	37.8	33.5	36.0	34.2		
Average Humidity	%	62.0	77.3	68.1	69.7		
Table Key:							

Exceeds the relevant ambient noise limit of 70 dBA (daytime) or 60 dBA (night-time)

D = Day / N = Night / dBA = Decibels / m/s = Metres per Second / °C = Degrees Centigrade / % = Percentage

Table 5: Noise measurement metrics for Das Island Landfall, site DN03								
Site		DN03						
Period		Week Day	Week Night	Weekend D	Weekend N			
L _{Aeq}	dBA	37.2	44.2	33.7	39.1			
L _{max}	dBA	47.9	53.6	50.3	52.9			
L ₁₀	dBA	39.0	46.2	35.1	40.5			
L ₅₀	dBA	36.8	43.7	33.2	38.9			
L ₉₀	dBA	35.3	42.6	32.0	37.7			
Environmental Conditio	ns							
Average Windspeed	m/s	2.35	1.33	1.57	0.02			
Max Windspeed	m/s	2.94	2.44	2.19	0.47			
Average Temp	°C	36.7	34.1	37.1	32.7			
Average Humidity	%	65.7	75.5	63.4	76.2			

Table Key:

Exceeds the relevant ambient noise limit of 70 dBA (daytime) or 60 dBA (night-time)

D = Day / N = Night / dBA = Decibels / m/s = Metres per Second / °C = Degrees Centigrade / % = Percentage

3.2 Soil and Groundwater Analysis

3.2.1 Soil Analysis

Soil sampling was undertaken during site visits in August, at eight targeted locations within the survey area via a hand auguring tool to a target depth of up to 0.5m below ground level (bgl) or to the depth where bedrock or groundwater was encountered.

The excavated soil was placed on a clean plastic sheet, free from potential contaminants or cross contaminants. Samples were then packaged, sealed, and marked and stored in a dedicated sample box for transportation to the laboratory.

The coordinates for the monitoring locations are presented in Table 6 and locations are provided in Figure 1.

Table 6: Soil Sampling Locations and Depths							
Site ID	Latitude	Longitude	Depth (m)				
DS01	25.12391	52.87748	0.5				
DS02	25.11850	52.87764	0.5				
DS03	25.12601	52.87889	0.5				
DS04	25.12392	52.87891	0.4				
DS05	25.12411	52.87791	0.5				
DS06	25.12251	52.87746	0.4				
DS07	25.12483	52.87791	0.5				
DS08	25.12255	52.87643	0.5				
Table Notes: Latitude / Longitude in WGS84 Decimal Degrees / m = Metres							

The full results are presented in Annex C. The results were compared with the Abu Dhabi Quality and Conformity Council (ADQCC) Environmental Specification for Soil Contamination Limits for Industrial and Commercial use (ADS 19/2017). A copy of the standards is provided at Table B2, Annex B.

Results for all locations/depths were in compliance with the standards and there were no visible signs of soil contamination or significant odour recorded from any location or any sample collected.

No groundwater sampling was undertaken, given the lack of natural source from which to sample from.

3.3 Ecological Survey

3.3.1 Geology and Geomorphology

Das Island is located in UAE waters towards the southern end of the Arabian Gulf, about 165km northwest of Abu Dhabi City and some 25km west of Umm Shaif oil field. Geologically it was formed from a salt plug and is rocky at the north end. The island is one of eight diapiric islands in UAE waters that owe their existence to 500 million-year-old Infracambrian to Cambrian Hormuz rock structures. Diapiric rocks refer to an anticlinal fold in which a mobile core breaks through more brittle overlying rocks. In the case of Das, these rocks are named after Hormuz Island, situated at the entrance to the Gulf, and describe exotic salt plug material.

The prevailing northwest (shamal) winds have deposited coral sand and eroded detritus in the lee of the low rocky hills, creating the natural part of the island, which is about 3 km long by 1 km wide, flat in the south with sandy beaches, higher in the north with exposed rocks that are among the oldest visible in the whole of the UAE. The island's original form has been severely modified by heavy industrialisation, leaving little natural vegetation. However, amenity trees and shrubs along with some small gardens have been introduced mainly into the flat southern half. There is no natural freshwater, but plenty is now available due to human activity.

3.3.2 Habitats

The habitat classifications described in this report are defined based on a **priori schema** classification system devised by Brown and Boer in 'Interpretation Manual of the Major Terrestrial Natural and Semi-natural Habitat Types of Abu Dhabi Emirate.' These categories have been expanded by the EAD to include elements of land use and land cover.

NEA was part of a consortium that produced a habitat map for the whole of the emirate of Abu Dhabi, under contract from EAD. The main tool used in mapping was satellite imagery, but with a lot of ground-truthing by NEA. A computer was "trained" to recognise spectral signatures of habitats, and these were then mapped automatically. The accuracy of the map was confirmed by visiting a very large number of pre- selected random points. The distribution of the habitats discussed in this report are shown in Figure 5, which has been taken from the final habitat map for the emirate (which is available on the EAD website).

The latest revision of the Environment Agency Abu Dhabi (EAD) Habitat Map was referred to and was found to accurately depict the overall site, which is was correctly classified as Disturbed Ground. However, investigations on-ground revealed that the thin strip of land comprising the supralittoral zone, currently classified as Hard

Bottom, is actually made up of rock armouring. Therefore, a reclassification to the latter habitat is warranted. Clear limitations inhibit habitat classification using satellite imagery only, particularly at small sites, highlighting the benefits of having an ecologist on-ground to identify the habitats with greater accuracy. Figure 5 reflects the changes made by NEA to EAD's existing habitat map following investigations conducted on-ground during the survey.

The proposed pipeline will be directly situated within just two unnatural habitats. The threat status, area in km² and description of both habitats identified within the cable landfall location footprint, are presented in Table 7 below.

Table 7: Habitat Description & % cover (Landfall Footprint)								
H/T	Description	Area (ha)	% Cover (PF)					
15100	Rock Armouring	Not Sensitive or Critical	0.10	98.6				
9600 Disturbed Ground Not Sensitive or Critical 7.04 1.4								
	Table Key:							
H/T = Ha	bitat Type (EAD Classifica	ation, 2013)						
PF = Pipe	PF = Pipeline Footprint							
% = Percentage								
Km ² = Square Kilometres								

3.3.2.1 Disturbed Ground / Reclaimed Land

With the exception of the thin strip of rock armouring, the site is exclusively situated within the island extension that has been reclaimed in preparation for the residential development, which will eventually house staff accommodation facilities, related amenity buildings and external and infrastructure works. As this land is disturbed and unnatural, it is classified as Disturbed Ground (EAD Habitat Code 9600). This habitat constitutes 98.6% of the total terrestrial habitat cover within the proposed site footprint.

Land reclamation is the process of creating new land from the sea. The simplest method of land reclamation involves simply filling the area with large amounts of heavy rock and/or cement, then filling with clay and soil until the desired height is reached.

Although the site is classified as disturbed ground, this is a rather broad categorisation that typically refers to longstanding natural habitats that have been subject to excavation and levelling/grading in preparation for development. In contrast, in the case of the survey site, the land consists of reclaimed ground that is just a few years old. Natural forces have been left to prevail for the last four to five years since the reclamation works were completed, which has allowed some halophytic vegetation to colonise the site. If left in a natural state for enough time, the site will become something reminiscent of the habitat: coastal plain on well-drained sandy ground, which the site's current state bears much resemblance to.

Salsola imbricata is the dominant shrub within the disturbed ground habitat and is abundant at the survey site, particularly at the southern end.

Plate 5: Disturbed ground/reclaimed land with Salsola imbricata dominant

Approved Training Centre Diamand by The Alia Dirado Center fu Technique and Training (ACTVET) and Training (ACTVET) Samoo Net (DEPO/JOD)

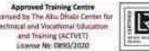


Plate 6: Disturbed ground/reclaimed land with *Salsola imbricata* dominant

3.3.2.2 Rock Armouring / Artificial Breakwater

Upon reaching land, the proposed cable landfall route will traverse over a rock armouring revetment that is classified through EAD's habitat classification system as Rock Armouring/Artificial Reef (EAD habitat code 15100). This mand-made habitat consists of large limestone boulders that are moved into place by heavy machinery. The boulders are designed in such a way that their complex shapes dissipate wave energy, and their sheer mass absorbs wave energy, thereby protecting land from coastal erosion.

The revetment face is made up of sizeable modular limestone boulders (Plate 7). The top of the revetment stands at approximately six metres above sea level. Two metres are permanently submerged underwater from the seabed, three metres are situated within the supralittoral zone (splash zone), and three metres lie above the highest tides. Between the concrete supporting wall on the landward side and the boulders on the seaward edge, irregularly shaped smaller rocks infill the flat raised midsection (Plate 8).


The submerged blocks act as complex structures that facilitate colonisation of a plethora of marine life. Sessile organisms including filter-feeding bivalves, corals (if sheltered enough from wave-action) and algae are able attach themselves to the solid structures. Mobile fauna, particularly juvenile fish, are susceptible to predation in open water; therefore, rocky structures improve the survivability of certain species and are often selected as nursery sites.

Avian activity at the site was found to be concentrated along the rock armouring habitat. Birds are able to perch comfortably on the boulders, and the elevated structures proximate to the coast, act as a vantage point to scan for fish in the shallows below. When the wind blows perpendicular to the revetment slope, up-drafts are formed, creating a steady stream of lift that allows birds to slope-soar with minimal effort while scanning the sea surface for prey.

Plates 7 & 8: Rock armouring revetments

Approved Training Camtre senared by The Alta Dhabi Center actinized and Viscetonal Uducation and Training (ACTVET) Libertse No: 0890/2020

3.3.3 Flora

With the exception of the two planted Date Palms, **Phoenix dactylifera**, and Bougainvillea to the south of the reclaimed island extension, just two other naturally occurring vascular plant species were recorded across the entire survey area. Namely, these were **Salsola imbricata** and **Sporobolus spicata**. Several circumstances can be attributed to an extremely limited botanical diversity at the survey site on the island, as follows:

- A lack of rain in the months preceding the survey will have limited the germination of ephemeral plants
- The survey site is located entirely on unnatural reclaimed land which is just a few years old, resulting in a very limited soil seed bank and hyper saline soils consisting of former marine sediments which inhibits the growth of any glycophytic, and indeed many halophytic plants
- Islands often contain a lower diversity of plants due to their isolation, though this is mainly dependent on the age of the island

Salsola imbricata (Plate 10) is the dominant plant in the survey area, where it occupies large swathes of the island extension, particularly within the southern portion. Common on both coasts of the UAE, *S. imbricata* is frequently found in saline sands and disturbed ground and is, therefore, one of the first plants to colonise coastal landfills and reclaimed land, as has been the case at the survey site.

Known as "harm" in Arabic this is a grey-green coloured shrub up to half a metre tall and around a metre in diameter. The word 'salsola' comes from the latin for 'salt' as *S. imbrictata* is only found in saline conditions. It is often a favoured plant of tiny migrant warblers as it provides food, shade, and protection in often otherwise barren locations where plants of lower salt tolerance are often unable to grow.

Sporobolus spicata (Plate 9) was the only other plant that was occasionally noted within the survey site. **S spicata** is a common and widespread graminoid in the UAE. It is absent from mountainous areas but abundant in open desert conditions on the mainland and is also known from several offshore islands, including Das.

Table 8: Plant species recorded during the survey							
Family name	Scientific Name	Status During Survey	Status in UAE/IUCN				
Chenopodiaceae	Salsola imbricata	Present at a high density within the sheltered embayment and fringes	UAE: Common and widespread on the coastline of the UAE IUCN: LC				
Poaceae	Sporobolus spicata	Very common. Dominant saltmarsh plant in survey	UAE: Common and widespread on both coasts IUCN: NE				

Table Key: C-Name = Common Name / IUCN = International Union for the Conservation of Nature / NE = Not Evaluated

Plates 9 & 10: Sporobolus spicata (above left); Salsola imbricata (above right)

3.3.4 Mammals and Reptiles

An extensive diurnal walk/drive-over was conducted to search for the presence of mammals and reptiles within the site boundary. Five camera traps were also set overnight to record any nocturnal specimens. The traps were set at locations deemed to support the highest density of fauna indicated by the presence of ecological markers such as tracks, scats, and burrows. A stray cat, *Felis catus*, was the only mammal noted at the survey site. Its presence was determined by the identification of a set of tracks running parallel to the revetment supporting wall that were clearly made by a cat (Plate 11).

Another mammal introduced to the island: three Indian Palm squirrels, *Funambulus palmarum*, were sighted in Zayed Park Garden in the residential part of the island. Though an interesting discovery, the squirrels are 2.4 km away from the new island extension and will not inhabit the tree-less survey site but could move there following the development when some trees are likely to be planted.

No reptiles were recorded during the survey despite a concerted effort to search for any sign of them. Their absence in the study area was unsurprising as the island's isolation prevents colonisation by small fauna of low mobility. Further, the speciespoor survey site would currently not sustain a population of lizards, primarily due to the low abundancy of arthropods.

Mesalina brevirostris is known from several offshore islands nearby in a much more natural state than Das Island, although these islands are located closer to the mainland. A couple of species of gecko probably inhabit the northern rocky parts of the island, though those habitats of the island are unrelated to the development discussed in this report.

The IUCN status, national status, and notes relative to the presence of every mammal identified in the survey area are presented in Table 9 overleaf.

Table 9: Mammal and Reptile species recorded during the survey							
Common Name	Scientific Name	Status During Survey	Status in UAE & IUCN				
Stray Cat	Felis catus	Very Common. Numerous tracks were found, and at least two individuals were captured several times on camera trap.	UAE: Common and widespread IUCN: LC				
Indian Palm Squirrel	Funambulus palmarum	Three seen in a date palm tree in Zayed Garden	UAE: Introduced IUCN: LC				
Table Key: IUCN = International Union for the Conservation of Nature / LC = Least Concern							

3.3.5 Birds

Avian abundancy and diversity were assessed at the site through incidental sightings conducted at the cable landfall location and across the reclaimed new island site. In all, nine species of birds, totalling 137 individuals, were recorded during the site visits. Counts of all the birds seen on the three days are given in Table 10; scientific names for all taxa and IUCN status are presented therein.

The main ornithological importance of Das Island is as a resting area for migratory birds, particularly passerines, and as a roosting and foraging area for terns and gulls. It is also possible that White-cheeked Terns still breed at the northern end of the island, though this was unsubstantiated during the survey, as access to that part of the island is strictly controlled.

Migrating waders can rest on the island, but the absence of intertidal flats or other suitable foraging grounds proximate to the site cannot encourage waders to remain on the island for long, even during peak migration periods. The small beach to the north of the harbour is a suitable location for waders to feed, but due to its size, it could only sustain a small population for a limited time.

The only wader recorded during the survey was a Kentish Plover, *Charadrius alexandrinus*, as it was perched on the breakwater close to the waterline. The low diversity and abundancy of waders noted during the survey is to be expected in mid-summer, as shorebird numbers using the site will naturally decline from April onwards as birds depart northwards to breeding grounds. Reduced numbers of non-breeding waders remain in the region through the summer, numbers will then start to increase again from late August onwards, as wintering birds arrive and south-bound migrants pause to refuel.

Kentish Plovers are considered to be a 'Priority Bird Species' in the UAE. This is due to the percentage of the world population that breeds in the country. An estimated 1000-3000 pairs breed in the UAE, both at coastal and inland locations. The survey site is a suitable location for this species to breed, but a visit earlier in the year (late spring to early summer) would be needed to confirm whether they indeed nest at the site.

Six Socotra Cormorants, *Phalacrocorax nigrogularis* (Plate 12), were recorded during the survey. A recently deceased individual who appeared to have succumbed to natural causes was also found next to a track. Numerous cormorant tracks (Plate 13) intersect the site closer to the concrete supporting wall containing the rock armouring boulders.

This colonial-breeding fish-eating seabird has a limited global breeding range in eastern Arabia. Over recent decades the species has suffered a significant population decline, although there seems to have been some local recovery in Abu Dhabi in recent

years. The overall decline is mostly because of the total loss of several islands as breeding sites. The species is classified as Vulnerable in the IUCN Red List and is one of the most endangered species to be found in UAE. Breeding may have taken place on Das island before pre-industrialisation in the mid-1950s, but the species has certainly not bred on the island ever since.

Plate 12: Socotra Cormorant

Plate 13: Socotra Cormorant Track

Two Osprey, **Pandion haliaetus**, were recorded at the survey site on the morning of 05.08.21 (Plate 14). The pair were hunting for fish, using updrafts of wind above the rock armouring revetment to enable them to soar back and forth with minimal effort while scouring the shallow waters for prey. Western Osprey has a very large global range being absent only from Antarctica, at both coastal and freshwater environments. The resident population on the coasts and islands of the Abu Dhabi emirate is one of the densest anywhere in the world.

The Arabian Gulf population is thought to be genetically isolated from those in the Red Sea, which also has a large population. Osprey eyries are large and conspicuous and can grow to a very large size, as nesting materials are added every breeding season. Therefore, it is clear that Osprey seen during the survey are not breeding at the site or in adjacent land, as no eyries were visible. Instead, Osprey are likely to use the coastal site to catch fish or merely pass through the area searching for more plentiful fishing waters.

The UAE Osprey population is thought to number 75 to 100 pairs but is declining, most likely due to development on islands and increased human disturbance. *P. haliaetus* has one of the largest worldwide ranges of any bird and has an increasing population globally. Therefore, the species is considered as 'Least Concern' on the IUCN Red List of threatened species.

Plate 14: A pair of Osprey in-flight over the site

Three Indian House Crows, *Corvus splendens*, were captured by two camera traps (CT02 & CT04 – Plate 15). These birds are prevalent around the residential areas of the island but are much rarer at the site of study, which they infrequently visit as an expansion of their usual foraging grounds closer to the areas of human habitation. A relatively recent arrival in Arabia, these birds are notorious stowaways (having even reached Europe by boat). They are found mainly at urban coastal sites, including fishing villages, rubbish dumps, and date palm plantations.

The first confirmed breeding record for the species on Das Island came from 1998, when there were mixed feelings about removing the nest or not, for fear of the species eventually becoming established in force and plundering the nearby island tern colonies (Aspinall 2010). The fears were justified as the population has increased exponentially in recent years, with an estimated 300 to 400 pairs now breeding and residing on Das Island. However, confirmation and the extent of their predation of nesting terns in the area is currently unknown. Indian House Crow is considered a pest in many areas. Control is advocated on islands as they are certainly not part of the indigenous island fauna, nor could they be without man's presence.

Plate 15: Two Indian House Crows captured by camera trap

Eight Sooty Gulls, *Ichthyaetus hemprichii* (Plate 16), were recorded at the site, with numbers concentrated along the rock armoured revetment. On a couple of occasions during the survey, these birds were observed chasing White-cheeked Terns to steal their food, a form of feeding known as kleptoparasitism.

Although there is a regular migratory passage of Sooty Gulls northwards along the east coast of the UAE in spring, Sooty Gulls often remain on or around Arabian Gulf islands, including Das, year-round. Das's closest neighbouring island is Qarnein, which is situated approximately 20km to the south. Up to 4% of the estimated world breeding population of Sooty Gull is housed on Qarnein.

Gulls will roost on the sea in large flocks when conditions are calm, but they must seek the shelter of islands during rough weather. Das island is therefore important to Sooty Gulls as an essential element of their annual movements and feeding strategies. Other gull species (generally non-breeding winter visitors to the region) are more opportunistic feeders and are more dependent on land areas, particularly the mainland, where they take advantage of anthropogenic waste.

Plate 16: A juvenile Sooty Gull resting on a rock armouring boulder

White-cheeked Terns, *Stema repressa*, were commonly encountered during the survey. Recently fledged juveniles were still largely dependent on the adults, as they were frequently observed calling to for food while perched on the breakwater and ground (Plate 17). In adult breeding plumage (Plate 17 background), a blackcap extends over the eyes, nape, and hindneck, while the forehead is pale grey. the upperparts and wings are greyer than the very similar-looking Common Tern. A

juvenile in Plate 17 (foreground) can be seen displaying immature plumage with a brown forehead, brown wings, and a blacker bill.

White-cheeked Terns are a common summer breeding visitor to the UAE, arriving in April, breeding from May to July, and remaining until October when they migrate eastwards to coastal regions of Pakistan, Iran, and Western India to over-winter. White-cheeked Terns are known to have bred at a colony to the north of Das island where tanker berths and emergency flare pits were tenanted. It was impossible to confirm whether the breeding colony is still used during the survey as access to that part of the island is strictly controlled.

It is possible that a colony could become established at the reclaimed island extension due to the site's relative seclusion and occurrence of some low shrubby vegetation, but the presence of cats and increased anthropogenic disturbance will probably prohibit the terns from breeding at the site. Although the survey was conducted after the tern breeding season in the region (May to July), the site was thoroughly searched for signs that would confirm whether terns had recently bred (i.e. egg casings, deceased fledglings, and small, round depressions in the ground where an inconspicuous scrape-type nest may have been tenanted). Despite an extensive search, no signs of terns breeding were found over the entire survey area.

Das Island is valuable as a stop-over site for tired migrant birds crossing the Arabian Gulf. As of August 2021, 145 bird species have been recorded on the island, most of these are passerines visiting the island while on migration. A full avian species list for the island is available on the following website: https://ebird.org/hotspot/L1142987. A couple of early autumn migrants were seen during the survey in early August, but the visit was well before the peak of autumn migration.

Plate 17: An adult White-cheeked Tern

Plate 18: An adult White-cheeked Tern (background) with a juvenile White-cheeked Tern (foreground)

A single Isabelline Wheatear, *Oenanthe isabelline*, was the only migrant seen at the survey area. A Barn Swallow, *Hirundo rustica*, was also sighted on the island near to the residential buildings.

A single Grey Heron, *Ardea* cinerea, was another possible migrant, although some do over-summer in the UAE. The heron was sighted in-flight during the survey as it passed south of the new runway. The Grey Heron is a large predatory bird that feeds mostly on aquatic animals, which it catches after standing stationary beside water waiting to ambush, or by stalking prey through the shallows. It is a common winter visitor and passage migrant in the UAE, and can often be seen by freshwater lakes, or in mangrove areas.

A large flock (approximately 75 birds) of Rock Dove/Feral Pigeon, *Columba livia*, were seen at the survey site during the early morning of 06.08.21. Numerous tracks made by these birds are visible across the survey site, indicating that the area is used for foraging and roosting by the species. Rock Doves breed widely on many islands and in mountains and foothills. Only in the latter is there any chance of a pure population existing. In Arabia, as is the case in much of the world, these birds are represented mainly by Feral Pigeons or impure strains resulting from 'crossing' with pure Rock Doves. Numbers of Feral Pigeons on islands often reach pest proportions, where control is certainly necessary due in part to them outcompeting tern nesting sites.

The IUCN status, national status, and notes relative to the presence of every bird identified in the survey area are presented in Table 10 overleaf.

Table 10: Bird species recorded during the survey							
Common Name	Scientific Name	Count(s)	Status On-site	Status in UAE / IUCN			
Socotra Cormorant	Phalacrocorax nigrogularis	6	Resting on the rock armouring and in- flight over the site	UAE: Visitor, mostly winter IUCN: VU			
Grey Heron	Ardea cinera	1	One sighted in-flight to the south of the runway	UAE: Visitor, mostly winter IUCN: LC			
Osprey	Pandion haliaetus	2	Two fishing along the rock armoring breakwater	UAE: Resident breeder IUCN: LC			
Kentish Plover	Charadrius alexandrinus	1	One seen perched on a low rock armoring boulder close to the waters edge	UAE: Common resident breeder IUCN: LC			
Sooty Gull	Ichthyaetus hemprichii	8	Seen in-flight chasing White-cheeked Terns and resting on the rock armouring	UAE: Resident breeder IUCN: LC			
White-cheeked Tern	Sterna repressa	45	Flocks of adults and juveniles resting on the island in the mornings and evenings and fishing in the shallows during the day	UAE: Common resident breeder IUCN: LC			
Rock Dove/Feral Pigeon	Columba livia	70	A large flock sighted at the survey site early one morning	UAE: Very common resident breeder IUCN: LC			
Isabelline Wheatear	Oenanthe isabellina	1	The only migrant seen at the survey site foraging on the ground	UAE: Common passage migrant and winter visitor IUCN: LC			

Table 10: Bird species recorded during the survey								
Common Name	on Name Scientific Name Count(s) Status On-site Status in UAE / IUCN							
House Crow	Corvus splendens	3	Three captured on camera trap	UAE: Very common at coastal sites IUCN: LC				
Table Key: IUCN = International Union for the Conservation of Nature / LC = Least Concern								

3.3.7 Anthropogenic Use

Anthropogenic activity at the site is currently relatively minimal. Occasional vehicle tyre track marks were the only indicators that people drive through the site on an infrequent basis. During the evenings, people exercise by walking/running a looped circuit around the perimeter of the island extension. No other evidence was found that would suggest that any other recreational activity, such as camping and fishing takes place at the landfall location.

Parts of the island extension are currently being used to store construction equipment, but overall, the site is clear of anthropogenic materials and litter. Plate 19 shows some construction materials at the northern end of the site.

Plate 19: Construction materials at the northern end of the site

4.0 Conclusions and Recommendations

4.1 Ambient Noise

The ambient noise climate of the site is relatively undisturbed by the nearby anthropogenic noise sources, with all measurements falling considerably below the limits applied to the area.

No exceedances of the 70 dBA (day time) or 60 dBA (night time) limits were reported for the site and it is considered unlikely, given the nature of the development, that the addition of the Project-specific infrastructure will result in any exceedances of these limits. The long term development plan for the southern end of Das Island is not known and as such may result in a more significant change to the noise climate of the wider project area.

4.2 Soil and Groundwater

Given the lack of bearby sources, there were no groundwater samples collected at the location.

The collection of soil samples was completed using a hand-augur and pre-prepared sample containers. Analysis of the eight collected samples was undertaken by a ESMA approved third-party laboratory (Element LLC). The vast majority of analytes were below the detection limits and were not registered in the analysis at all. Of those parameters which could be measured, all were recorded below screening or clean-up thresholds as outlined by the ADQCC soil standards.

4.3 Terrestrial Ecology

The overall site footprint consists of reclaimed land, which is just a few years old. The island's isolation and hypersaline soils have further hindered colonisation by all but a handful of species. Patches of low shrubs and grass in the island's interior, comprising two common and adaptable plants, are likely the only species that will be directly impacted by the development.

Small passerine migrants can rest and find shelter at the site, but, because of the very limited botanical diversity, the cable landfall location site's current state cannot be considered as a good "refueling stop" for hungry migrants. After completion of the island residential development, migrant passerines will undoubtedly benefit from the habitat creation of some planted trees and lawns. However, without control of pest species, these areas are likely to be taken over by crows and pigeons (as has been the case with the other developed parts of the island), which outcompete and displace native birds of greater concern.

Low numbers of resident breeding shorebirds, including cormorants, terns and gulls, frequent the site to rest and feed in surrounding shallow waters. However, none were found to be breeding at the site, despite the survey occurring towards the end of the breeding season when evidence of breeding would be expected to remain.

Socotra Cormorant is the species of greatest conservation concern recorded in the survey (see Section 3.3.5) and has Vulnerable status in the IUCN Red List on account of range contraction and the observed rate of decline. Fourteen of the 17 known breeding colonies are in the Arabian Gulf. Despite the species' threatened status, breeding does not take place on Das Island and the survey site serves primarily as a resting/feeding area for small population. Therefore, impacts to the species associated with the development are considered to be insignificant. All other avian species recorded in the survey are listed as 'Least Concern' on the IUCN Red List of threatened species.

The prospect of encouraging ospreys to nest successfully on Das Island is very real. Given the size of the island and new island extension, at least two pairs could be accommodated. Abu Dhabi's islands hold over 90% of the osprey breeding population of the western Arabian Gulf and are thus extremely important. Several islands have lost their breeding pairs following disturbance and development. With little effort, it would be possible to construct two artificial nest structures, preferably on the flat area of the rock armouring revetment at the most secluded locations of the island. Breeding would unlikely occur while construction is ongoing, but following the development, after the Osprey have become accustomed to the artificial nests, it is likely that the platforms would be successfully used.

Indian House Crows are considered as pests in many areas. Control is advocated on islands as they are certainly not part of the indigenous island fauna, and nor could they be without the presence of man. In addition, numbers of Feral Pigeons on islands (numbering in the hundreds on Das) often reach pest proportions, where control is certainly necessary due in part to them outcompeting tern nesting sites.

ADNOC Lightning Project Das Island Landfall Terrestrial Ecology Survey Report

NEA Reference: N684-0821-DAS-1.1 dated September 2021

ANNEX A References

Annex A – References

The following references were available and/or used on the current survey:

- Al Dhaheri, S., Javed, S., Alzahlawi, N., Binkulaib, R., Cowie,W., Grandcourt, E. and Kabshawi, M. (2017). Abu Dhabi Emirate Habitat Classification and Protection Guideline. Environment Agency Abu-Dhabi.
- Aspinall S.J. (2005). *Birds [of the UAE]. In:* Hellyer and Aspinall (eds.). The Emirates: A Natural History. Trident Press, UK.
- Aspinall S.J. (2010). *Breeding Birds of the United Arab Emirates*. Environment Agency Abu Dhabi, UAE.
- Brown G. and Boer B. (2004). *Interpretation Manual of the Major Terrestrial Natural and Semi-natural Habitat Types of Abu Dhabi Emirate*. ERWDA, Abu Dhabi.
- M.V.D. Jongbloed, G.R. Feulner, B.Boer, A.R Western (2003). *The comprehensive guide to the Wild Flowers of the United Arab Emirates*. ERWDA, Abu Dhabi.
- Environment Agency Abu Dhabi (2015). *Terrestrial Habitat Classification*. EAD Enviro-portal Viewer. https://enviroportal.ead.ae/geoportal.
- Hellyer, P. and Aspinall, S.J. (Eds.) (2005). *The Emirates—A Natural History*. Trident Press, London, and the Environment Agency, Abu Dhabi.
- Gardner, A. (2013). *The amphibians and reptiles of Oman and the UAE*. Frankfurt am Main: Edition Chimaira.
- IUCN (2017). *Red List of Threatened Species*. http://www.iucnredlist.org.
- Javed S. (2008). Birds. In Perry R. *Terrestrial Habitats of Abu Dhabi Emirate*. Environment Agency Abu Dhabi.
- Jennings M. (2010). *Atlas of the Breeding Birds of Arabia*. Fauna of Arabia Vol. 25. KACST, Riyadh and Senckenburg, Germany.
- Ornithological Society of the Middle East, the Caucasus and Central Asia (OSME). (2012). Simplified OSME list of bird taxa.
- Perry R. (ed.) (2008). *Terrestrial Environment of Abu Dhabi Emirate*. Environment Agency, Abu Dhabi, UAE.
- Porter R. and Aspinall S.J. (2010). *Birds of the Middle East*. Second Edition. Christopher Helm, London

ADNOC Lightning Project Das Island Landfall Terrestrial Ecology Survey Report

NEA Reference: N684-0821-DAS-1.1 dated September 2021

ANNEX B Photographic Documentation and Data Sheets State of Manual Contractory

16

Cardinal Point CP01

e

1. 8 19 18

Coordinates: N25.124, £52.87648 Location: Das Island Date-Time: 03 Aug 2021 - 09:52

Figure B1: CP1

-

10/

Cardinal Point CP02

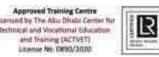
Coordinates: N25.1234, E52.87744 Location: Das Island Date-Time: 03 Aug 2021 - 09:54

Figure B2: CP2

C

NAUTICA ENVIRONMENTAL ASSOCIATES LLC N684-0821-DAS-1.1 dated September 2021

Approved Training Centre senard by The Also Divide Center for Instituted and Vocational Education and Training (ACTVET) Sistems No: DESO/2020

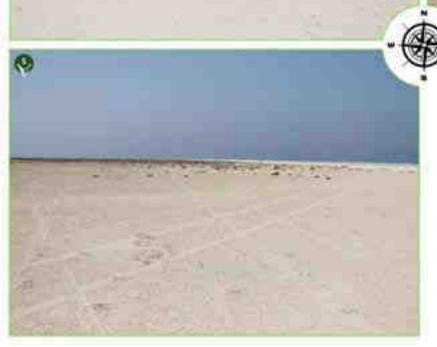


a.

I

Cardinal Point CP04

Coordinates: N25.11875, E52.87701 Location: Des bland Date-Time: 03 Aug 2021 - 10:04


Figure B4: CP4

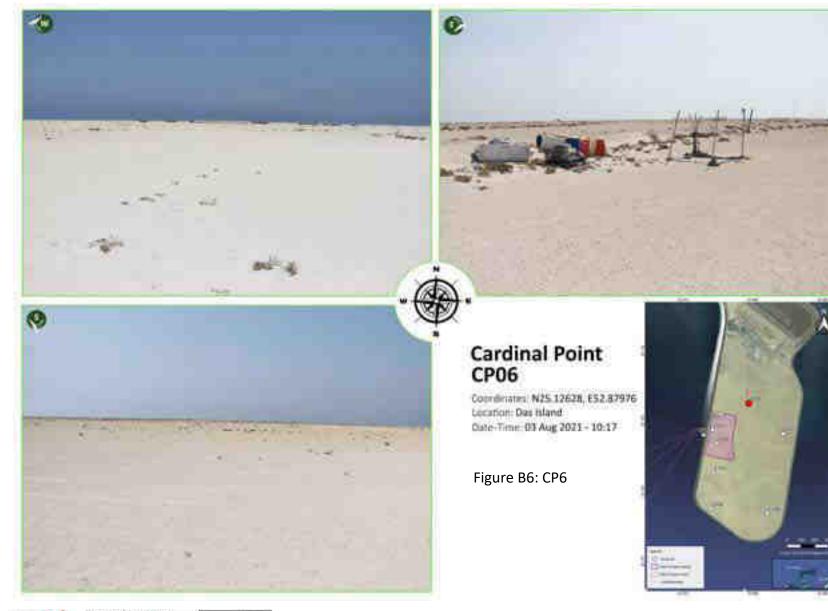
0

-

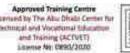
I

Cardinal Point CP05

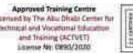
Coordinates: N25.12436, E52.87712 Location: Das Island Date-Time: 03 Aug 2021 - 10:10


Figure B5: CP5

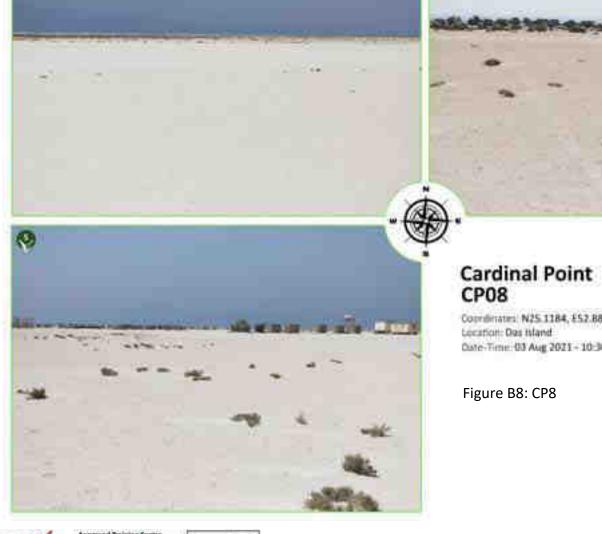
6



NAUTICA ENVIRONMENTAL ASSOCIATES LLC N684-0821-DAS-1.1 dated September 2021



NAUTICA ENVIRONMENTAL ASSOCIATES LLC N684-0821-DAS-1.1 dated September 2021



6

e

Coordinates: N25 1184, E52 88104 Date-Time: 03 Aug 2021 - 10:30

			Table B1:	Soil Analyse	S				
Method	Parameter Name	Unit	Detection Limit	DS01	DS02	DS03	DS04	DS05	1
pH [BS 1377-3: 2018] Soil-DXB	рН	pH units	0.1	8.7	8.8	8.8	8.6	8.8	!
Oil & Grease [APHA 5520 E]-DXB	Oil and Grease	%	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Nitrogen (Ammonia) [HACH 8155] Solids-DXB	Nitrogen (Ammonia)	mg/kg	0.25	1.95	2.05	2	0.5	3.05	
Nitrogen (Ammonia) [HACH 8155] Solids-DXB	Ammonium	mg/kg	0.32	2.51	2.64	2.57	0.64	3.92	
Nitrogen (Ammonia) [HACH 8155] Solids-DXB	Ammonia	mg/kg	0.3	2.37	2.49	2.43	0.61	3.7	į
Salinity [APHA 2520 B]-DXB	Salinity	ppt	1	1	1.15	2.25	1.35	1.3	·
Sulphide [HACH 8131/DIN 38405-D27]-DXB	Sulphide (S ²⁻)	mg/kg	5	<5	<5	<5	<5	<5	
Fluoride [HACH 8029]-DXB	Fluoride	mg/kg	0.5	4.8	3	4.2	3	5.7	
Nitrate [HACH 8039]-DXB	Nitrate	mg/kg	0.22	75.3	86.3	84.1	38.5	64.1	
Metals ICP OES [APHA 3120 B] SSS-DXB	Cadmium (Cd)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Metals ICP OES [APHA 3120 B] SSS-DXB	Aluminium (Al)	mg/kg	130	583	323	413	401	365	
Metals ICP OES [APHA 3120 B] SSS-DXB	Arsenic (As)	mg/kg	1	4.1	3.2	2.7	2.6	2.6	
Vietals ICP OES [APHA 3120 B] SSS-DXB	Barium (Ba)	mg/kg	3	12.6	16.5	14.5	14.1	14.7	
Vietals ICP OES [APHA 3120 B] SSS-DXB	Chromium (Cr)	mg/kg	1	4.8	3.1	3.3	4.6	3	
Vietals ICP OES [APHA 3120 B] SSS-DXB	Cobalt (Co)	mg/kg	1	<1.0	<1.0	<1.0	<1.0	<1.0	
Metals ICP OES [APHA 3120 B] SSS-DXB	Copper (Cu)	mg/kg	3	3.6	4.2	4.8	4.7	4.7	1
Metals ICP OES [APHA 3120 B] SSS-DXB	Lead (Pb)	mg/kg	1	1.6	1.3	1	1.6	1.1	
Metals ICP OES [APHA 3120 B] SSS-DXB	Manganese (Mn)	mg/kg	3	20	11.7	14.3	13	12.3	
Vietals ICP OES [APHA 3120 B] SSS-DXB	Nickel (Ni)	mg/kg	1	2.5	2.1	2.3	2.1	1.9	
Metals ICP OES [APHA 3120 B] SSS-DXB	Phosphorus (P)	mg/kg	50	337	308	319	310	306	
Metals ICP OES [APHA 3120 B] SSS-DXB	Zinc (Zn)	mg/kg	3	14.3	45.5	16.2	33.4	12.2	
Chromium (Hexavalent) [HACH 8023] Solids-DXB	Chromium (VI)	mg/kg	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	
Metals ICP OES [APHA 3120 B] SSS-DXB	Antimony (Sb)	mg/kg	1	<1.0	<1.0	<1.0	1.4	1.4	
Metals ICP OES [APHA 3120 B] SSS-DXB	Beryllium (Be)	mg/kg	1	<1.0	<1.0	<1.0	<1.0	<1.0	
Mercury by PSA [EPA 245.7] SSS-DXB	Mercury (Hg)	mg/kg	0.01	<1.980	<1.990	<2.000	<1.990	<1.980	
VPH C5-C10 by GC-FID [EPA 8015B]-SSS-DXB	VPH C5-C10	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
EPH C10-C40 by GC-FID [EPA 8015B] SSS-DXB	EPH C10-C40	mg/kg	50	<50	<50	<50	<50	<50	
PAH in Soils [EPA 8270 D]-DXB	Acenaphthene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
PAH in Soils [EPA 8270 D]-DXB	Acenaphthylene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
PAH in Soils [EPA 8270 D]-DXB	Anthracene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
PAH in Soils [EPA 8270 D]-DXB	Benzo(a)anthracene	mg/kg	0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	

DS06	DS07	DS08
9	8.8	9
<0.01	<0.01	<0.01
1.9	1.5	2
2.44	1.93	2.57
2.31	1.82	2.43
<1.00	1.93	<1.00
<5	<5	<5
3.2	3.4	2.5
12.2	106	37.6
<0.5	<0.5	<0.5
360	314	264
2.7	2.6	2.6
13.6	14.9	12.5
3.2	2.8	2.6
<1.0	<1.0	<1.0
4.3	4.1	3.7
1.2	1.3	<1.0
11.6	10.2	10.4
2	1.5	1.5
321	289	313
17.2	15.3	11
<0.4	<0.4	<0.4
2.5	1.7	1.7
<1.0	<1.0	<1.0
<2.000	<1.980	<1.990
<0.05	<0.05	<0.05
<50	<50	<50
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01

	Table B1: Soil Analyses								
Method	Parameter Name	Unit	Detection Limit	DS01	DS02	DS03	DS04	DS05	
PAH in Soils [EPA 8270 D]-DXB	Benzo(a)pyrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
PAH in Soils [EPA 8270 D]-DXB	Benzo(b)fluoranthene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
PAH in Soils [EPA 8270 D]-DXB	Benzo(g,h,i)perylene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
PAH in Soils [EPA 8270 D]-DXB	Benzo(k)fluoranthene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
PAH in Soils [EPA 8270 D]-DXB	Chrysene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
PAH in Soils [EPA 8270 D]-DXB	Dibenzo(a,h)anthracene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
PAH in Soils [EPA 8270 D]-DXB	Fluoranthene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
PAH in Soils [EPA 8270 D]-DXB	Fluorene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
PAH in Soils [EPA 8270 D]-DXB	Indeno(1,2,3-c,d)pyrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
PAH in Soils [EPA 8270 D]-DXB	Naphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
PAH in Soils [EPA 8270 D]-DXB	Phenanthrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
PAH in Soils [EPA 8270 D]-DXB	Pyrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Phenols Soil [EPA 8270D]-DXB	2,4,5-Trichlorophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenols Soil [EPA 8270D]-DXB	2,4,6-Trichlorophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenols Soil [EPA 8270D]-DXB	2,4-Dichlorophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenols Soil [EPA 8270D]-DXB	2,4-Dimethylphenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenols Soil [EPA 8270D]-DXB	2-Chlorophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenols Soil [EPA 8270D]-DXB	2-Methylphenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenols Soil [EPA 8270D]-DXB	2-Nitrophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenols Soil [EPA 8270D]-DXB	4-Chloro-3-methylphenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenols Soil [EPA 8270D]-DXB	4-Methylphenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenols Soil [EPA 8270D]-DXB	4-Nitrophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenols Soil [EPA 8270D]-DXB	Pentachlorophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenols Soil [EPA 8270D]-DXB	2,3,4,6-Tetrachlorophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenols Soil [EPA 8270D]-DXB	2,6-Dichlorophenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenols Soil [EPA 8270D]-DXB	3-Methylphenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Phenols Soil [EPA 8270D]-DXB	Phenol	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
VOCs in Soil [EPA 8260 B]-DXB	Dichlorodifluoromethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
VOCs in Soil [EPA 8260 B]-DXB	Chloromethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
VOCs in Soil [EPA 8260 B]-DXB	Vinyl Chloride	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
VOCs in Soil [EPA 8260 B]-DXB	Bromomethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	

DS06	DS07	DS08
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.01	<0.01	<0.01
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05

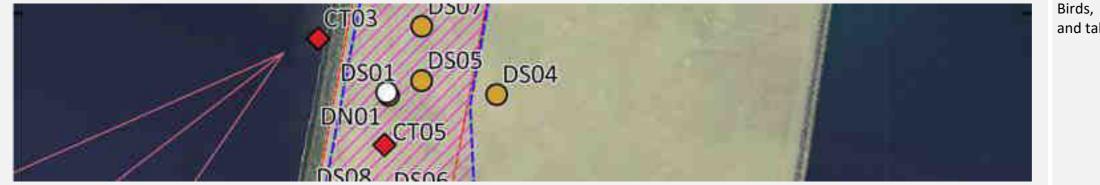
	Table B1: Soil Analyses							
Method	Parameter Name	Unit	Detection Limit	DS01	DS02	DS03	DS04	DS05
VOCs in Soil [EPA 8260 B]-DXB	Chloroethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Trichlorofluoromethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,1-Dichloroethene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Methylene Chloride	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,2-Dichloroethene(trans)	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,1-Dichloroethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,2-Dichloroethene(cis)	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	2,2-Dichloropropane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Bromochloromethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Chloroform	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,1,1-Trichloroethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,1-Dichloropropene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Carbon Tetrachloride	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,2-Dichloroethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Benzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Trichloroethene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,2-Dichloropropane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Bromodichloromethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Dibromomethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,3-Dichloropropene(cis)	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Toluene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,3-Dichloropropene(trans)	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,1,2-Trichloroethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,3-Dichloropropane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Tetrachloroethene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Dibromochloromethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,2-Dibromoethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Chlorobenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,1,1,2-Tetrachloroethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Ethyl benzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	m,p-Xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

DS07	DS08
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.05	<0.05
<0.1	<0.1
	<0.05

Table B1: Soil Analyses								
Method	Parameter Name	Unit	Detection Limit	DS01	DS02	DS03	DS04	DS05
VOCs in Soil [EPA 8260 B]-DXB	o-Xylene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Styrene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	iso-Propylbenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Bromoform	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,1,2,2-Tetrachloroethane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,2,3-Trichloropropane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	n-Propylbenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Bromobenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,3,5-Trimethylbenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	2-Chlorotoluene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	4-Chlorotoluene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	tert-Butylbenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,2,4-Trimethylbenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	sec-Butylbenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	p-Isopropyltoluene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,3-Dichlorobenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,4-Dichlorobenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	n-Butylbenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,2-Dichlorobenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,2-Dibromo-3-Chloropropane	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,2,4-Trichlorobenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Hexachlorobutadiene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	Naphthalene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
VOCs in Soil [EPA 8260 B]-DXB	1,2,3-Trichlorobenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

DS06	DS07	DS08
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05
<0.05	<0.05	<0.05

Table B2: ADQCC Soil Limits for Industrial and Commercial use								
Parameter	Unit	Screening level	Clean-up level					
Antimony (Sb)	mg/kg (DW)	470	4700					
Arsenic (As)	mg/kg (DW)	30	300					
Beryllium (Be)	gm/kg (DW)	2.3	23.0					
Cadmium (Cd)	mg/kg (DW)	980	9800					
Chromium (Cr VI)	mg/kg (DW)	63	630					
Cobalt (Co)	mg/kg (DW)	350	3500					
Lead (Pb)	gm/kg (DW)	8.0	80					
Mercury (Hg)	mg/kg (DW)	46	460					
Nickel (Ni)	gm/kg (DW)	22	220					
Selenium (Se)	gm/kg (DW)	5.8	58					
Asbestos	gm/10 kg (DW)	5.0	5.0					
Benzene	mg/kg (DW)	51	510					
Toluene	gm/kg (DW)	47	470					
Ethylbenzene	mg/kg (DW)	250	2500					
Xylene	gm/kg (DW)	2.5	25.0					
Benzo (a) pyrene (BaP)	mg/kg (DW)	2.9	29					
Polychlorinated Biphenyls	mg/kg (DW)	330	3300					


Table Notes:

- Taken from Environmental Specification for Soil Contamination ADS 19/2017 •
- Mg/kg = milligram per kilogram ٠
- Gm/kg = gram per kilogram •
- DW = Dry Weight •

Table B3: Noise Data Sheet DN01									
User:	Ross Pappin			Job No:	N684	Project:	MM Lightning		
Report No:	N684-0821-DAS-1.0	Survey Date:	See comments	Checked:	DT	Date:	-		
Site No:	DN01	Mic. Height:	155cm	Free Field	\checkmark	Facade:	N/A		
Location Description (draw a little picture of the area):						Noise Source:			

Period	Calibration		Wind		Time		14.00		Trucks (tally)	Commont
	Start	End	Speed	Direction	On	Off	LAeq	Cars (tally)	Trucks (tally)	Comment
Day (Week)	94.4dB	94.1dB	3.0m/s	SW (245°)	16:20	16:35	31.4 dBA	-	-	03.08.2021
Night (Week)	94.3dB	93.9dB	1.2m/s	S (176°)	19:39	19:54	39.9 dBA	-	-	04.08.2021
Day (W-end)	94.3dB	94.0dB	1.6m/s	SW (247°)	06:44	06:59	30.9 dBA	-	-	06.08.2021
Night (W-end)	94.4dB	94.0dB	1.3m/s	NE (50°)	19:42	19:57	37.2 dBA	-	-	06.08.2021
General Weather Conditions:										
Noise measurements were collected only during periods of low wind speed										
Specific Conditions:			Calm		Fog		Precipitation	Frost	Tonal	Impulse
BS4142 Compliance:			\checkmark		Х		х	х	-	-
Factory Cal. Date:	Factory Cal. Date: 16.05.2021									
Checked:		Doug T	ilbury				Date:	03	3-06.08.2021	
Key to Abbreviations:										
Mic = Microphone / LAeq = Equivalent Continuous Level / SW = Southwest / NE = Northeast / N = North / E = East / m/s = Metre per second / dB = Decibel / Cal = Calibration / cm = Centimetre / min = Minute										

Specific Conditions:	Calm	Fog	Precipitation	Frost	T			
BS4142 Compliance:	\checkmark	Х	Х	Х				
Factory Cal. Date:	16.05.2021							
Checked:	Doug Tilbury		Date:	03-	06.08.2021			

Birds, machinery (distant), people exercising and talking, oil facilities (distant)

Table B4: Noise Data Sheet DN02											
User:	Ross Pappi	n						Job No:	N684	Project:	MM Lightning
Report No:	N684-0821	-DAS-1.0	Surv	vey Date:		See com	ments	Checked:	DT	Date:	-
Site No:	DN02		Mic	. Height:		155cm		Free Field	\checkmark	Facade:	N/A
Location Description	n (draw a littl	e picture o	f the area)	:						Noise Source:	
CT02 DN02 DS02					Mosque, aircraft, bi	rds, oil facilities					
Period	C Start	Calibration Er	nd	Speed	Wind Direction	T On	ime Off	LAeq	Cars (tally)	Trucks (tally)	Comment
Day (Week)	94.6dB	94.2dB		2.3m/s	SW (229°)	16:53	17:08	36.2 dBA	1 (distant)	-	03.08.2021
Night (Week)	94.4dB	94.0dB		0.1m/s	SSW (196°)	20:06	20:21	42.6 dBA	-	-	04.08.2021
Day (Weekend)	94.6dB	94.0dB		1.7m/s	SW (231°)	07:17	07:33	32.0 dBA	-	-	06.08.2021
Night (Weekend)	94.5dB	94.1dB		0.7m/s	SSW (208°)	20:05	20:20	35.1 dBA	-	-	06.08.2021
General Weather Co	onditions:										
Noise measurement	s were colled	cted only d	uring perio	ods of low v	vind speed						
Specific Conditions:				Calm		Fog		Precipitation	Frost	Tonal	Impulse
BS4142 Compliance	:			\checkmark		х		х	Х	-	-
Factory Cal. Date: 16.05.20			16.05.202	21							
Checked:			Doug Tilb	ury				Date:	(03-06.08.2021	
Key to Abbreviation	s:										
	No = Number / Mic = Microphone / LAeq = Equivalent Continuous Level / SE = Southeast / NE = Northeast / N = North / m/s = Metre per second / dB = Decibel / Cal = Calibration / cm = Centimetre / min =										

	Table B5: Noise Data Sheet DN03						
User:	Ross Pappin			Job No:	N684	Project:	MM Lightning
Report No:	N684-0621-DAS-1.0	Survey Date:	See comments	Checked:	DT	Date:	-
Site No:	DN03	Mic. Height:	155cm	Free Field	\checkmark	Facade:	N/A
Location Descripti	Location Description (draw a little picture of the area): Noise Source:						

DS03 DN03	
CT03 DS07	
CT03 OSU	

Deried	Ca	Calibration		Wind		me	1400	Care (tally)	Tr
Period	Start	End	Speed	Direction	On	Off	LAeq	Cars (tally)	
Day (Week)	94.6dB	94.0dB	2.4m/s	SW (235°)	17:34	17:49	37.2 dBA	-	-
Night (Week)	94.4dB	94.0dB	1.6m/s	WNW (285°)	20:35	20:50	44.2 dBA	-	-
Day (Weekend)	94.4dB	94.0dB	1.1m/s	SSW (217°)	07:44	07:59	33.7 dBA	-	-
Night (Weekend)	94.4dB	94.0dB	0.1m/s	SW (225°)	20:41	20:56	39.1 dBA	-	-

General Weather Conditions:

Noise measurements were collected only during periods of low wind speed

Specific Conditions:	Calm	Fog	Precipitation	Frost	
BS4142 Compliance:	\checkmark	Х	Х	х	
Factory Cal. Date:	16.05.2021				
Checked:	Doug Tilbury		Date:	03-0	6.08.2021

Key to Abbreviations:

No = Number / Mic = Microphone / LAeq = Equivalent Continuous Level / SE = Southeast / NE = Northeast / N = North / m/s = Metre per second / dB = Decibel / Cal = Cal Minute

Trucks (tally)	Comment				
	03.08.2021				
-	04.08.2021				
-	06.08.2021				
-	06.08.2021				
Tonal	Impulse				
-	-				
)21					
libration / cm = Centimetre / min =					

ADNOC Lightning Project Das Island Landfall Terrestrial Ecology Survey Report

NEA Reference: N684-0821-DAS-1.1 dated September 2021

ANNEX C Quaity Control Documentation

Contents:

Part 1: Field Documentation	C1
Part 2: NEA Licences and Accreditations	C4
Part 3: Equipment Specifications and Calibration	C8

Part 1: Field Documentation

Table C1, below, details field logs, provided on subsequent pages.

	Table C1: Field Documentation						
Figure №	Description	Usage					
Figure C1	NEA Field Log Day 03.08.2021	Daily log of activities					
Figure C2	NEA Field Log Day 04.08.2021	Daily log of activities					
Figure C3	NEA Field Log Day 05.08.2021	Daily log of activities					
Figure C4	NEA Field Log Day 06.08.2021	Daily log of activities					

Figure C1: NEA Activity Log 03.08.2021						
Projec	t № & Clien	t: N684	Date/Day:	03.08.2021 / Tuesday		
	Site Tean	n: RP	P PD/PM: DT/RP			
Vessel(s)/Vehicle(s): ADNOC Pick-up	Visitors:	None		
	Weathe	r: -	W/Source:	AD MET		
Time	ID	Activities / Notes				
09:10	AF1	Depart Al Falalah 1 Camp	for site			
09:25	DS	Arrive at Das survey locat	ion - ecology inv	estigations and CT deployment		
11:20	DS	Depart survey site for mai	in office			
11:38	NA	Arrive at Das main office				
15:35	AF1	Depart accommodation for survey site				
15:59	DS	Arrive at survey site				
16:05	DN01	DN01 – Noise monitoring (Day – Weekday)				
16:43	DN02	DN02 – Noise monitoring (Day – Weekday)				
17:26	DN03	DN03 – Noise monitoring (Day – Weekday)				
18:36	DS	Depart survey site for accommodation				
18:50	AF1	Arrive at Al Falalah 1 Cam	Arrive at Al Falalah 1 Camp			
Chang	e of Plans:	None				
EQ,	/PE issues:	None	lone			
Incidents/PIR №: None						
Abbreviations: NEA = Nautica Environmental Associates LLC / ID = Site ID / EQ = Equipment / PE = Personnel PM = Project Manager / PD = Project Director / PIR = Process Improvement Report / CT = Camera Trap RP = Ross Pappin / DT = Doug Tilbury / AQF1 = AI Falalah 1 Camp / DS = Das Survey location						
F	PM Name: Ross Pappin					
PM Sign	PM Name: Ross Pappin					

Rott is Russociates LLC.

		Figure C2: NEA Activ	ity Log 04.08	3.2021			
Projec	t № & Clien	t: N684	Date/Day:	04.08.2021 / Wednesday			
	Site Team	n: RP	PD/PM:	DT/RP			
Vessel(s)/Vehicle(s): ADNOC Pick-up	Visitors:	1 x driver (at night)			
	Weathe	r: -	W/Source:	AD MET			
Time	ID	Activities / Notes	Activities / Notes				
07:45	AF1	Depart Al Falalah 1 Camp	for site				
08:24	DS	Arrive at Das survey locat	ion - ecology inv	estigations and CT collection			
09:04	DS	Depart survey site for acc	ommodation				
09:20	AF1	Arrive at Al Falalah 1 Cam	p. Data downloa	ad and reviewal			
19:05	AF1	Depart accommodation for	or survey site				
19:20	DS	Arrive at survey site	Arrive at survey site				
19:30	DN01	DN01 – Noise monitoring (Night – Weekday)					
20:02	DN02	DN02 – Noise monitoring (Night – Weekday)					
20:33	DN03	DN03 – Noise monitoring (Night – Weekday)					
20:54	DS	Depart survey site for accommodation					
21:09	AF1	Arrive at Al Falalah 1 Camp					
Chang	e of Plans:	None					
EQ,	/PE issues:	None					
Incider	nts/PIR №:	None					
	M = Project Ma	a = Nautica Environmental Associate: nager / PD = Project Director / PIR = Pappin / DT = Doug Tilbury / AQF1 = .	Process Improvem Al Falalah 1 Camp /	ent Report / CT = Camera Trap			
F	PM Name:	Ross Pappin	CAPENVIA	0			
RP = Ross Pappin / DT = Doug Tilbury / AQF1 = Al Falalah 1 Camp / DS = Das Survey location PM Name: Ross Pappin PM Signature and Stamp: MMMM Vertication MMMMM Vertication							
		Č8 1	SSOCIATES LLC				

	Figure C3: NEA Activity Log 05.08.2021					
Projec	t № & Clien	t: N684	N684 Date/Day: 05.0			
	Site Tean	n: RP	PD/PM:	DT/RP		
Vessel(s)/Vehicle(s): ADNOC Pick-up	Visitors:	None		
	Weathe	r: -	W/Source:	AD MET		
Time	ID	Activities / Notes				
07:01	AF1	Depart Al Falalah 1 Camp	Depart Al Falalah 1 Camp for site			
07:20	DS	Arrive at Das survey locat	Arrive at Das survey location to undertake ecology investigations			
08:40	DS	Depart survey site for accommodation				
08:58	AF1	Arrive at Al Falalah 1 Camp. Data download and reviewal				
Chang	e of Plans:	None				
EQ,	/PE issues:	None	lone			
Incider	nts/PIR №:	None	lone			
Abbreviations: NEA = Nautica Environmental Associates LLC / ID = Site ID / EQ = Equipment / PE = Personnel PM = Project Manager / PD = Project Director / PIR = Process Improvement Report / CT = Camera Trap RP = Ross Pappin / DT = Doug Tilbury / AQF1 = AI Falalah 1 Camp / DS = Das Survey location						
F	TL Name:	Ross Pappin	CA ENVIA	01		

PM Signature and Stamp:

		Figure C4: NEA Activ	ity Log 06.08	3.2021			
Projec	t № & Client	: N684	Date/Day:	06.08.2021 / Friday			
	Site Team	: RP	PD/PM:	DT/RP			
Vessel(s)/Vehicle(s)	: ADNOC Pick-up	Visitors:	1 x driver (at night)			
	Weather	: -	W/Source:	AD MET			
Time	ID	Activities / Notes	Activities / Notes				
06:13	AF1	Depart Al Falalah 1 Camp	for site				
06:27	DS	Arrive at Das survey locat	ion – ecology an	d noise investigations			
06:34	DN01	DN01 – Noise monitoring	(Day – Weekend	(k			
07:11	DN02	DN02 – Noise monitoring	(Day – Weekend	()			
07:39	DN03	DN03 – Noise monitoring	(Day – Weekend	()			
08:02	DS01	DS01 – Soil sample collect	tion				
08:24	DS02	DS02 – Soil sample collect	DS02 – Soil sample collection				
08:55	DS03	DS03 – Soil sample collect	DS03 – Soil sample collection				
09:19	DS04	DS04 – Soil sample collect	DS04 – Soil sample collection				
09:33	DS05	DS05 – Soil sample collect	DS05 – Soil sample collection				
09:52	DS06	DS06 – Soil sample collect	tion				
10:13	DS07	DS07 – Soil sample collect	tion				
10:27	DS08	DS08 – Soil sample collect	tion				
10:30	DS	Depart survey site for acc	ommodation				
10:45	AF1	Arrive at Al Falalah 1 Cam	р				
19:11	AF1	Depart Al Falalah 1 Camp	for site				
19:20	DS	Arrive at Das survey locat	ion to take noise	e measurements			
19:45	DN01	DN01 – Noise monitoring	DN01 – Noise monitoring (Night – Weekend)				
20:03	DN02	DN02 – Noise monitoring	(Night – Weeke	nd)			
20:37	DN03	DN03 – Noise monitoring	(Night – Weeke	nd)			
21:02	DS	Depart survey site for acc	Depart survey site for accommodation				
21:18	AF1	Arrive at Al Falalah 1 Cam	р				
Chang	e of Plans:	None					
EQ,	/PE issues:	None	lone				
Incider	Incidents/PIR Nº: None						
Abbr	Abbreviations: NEA = Nautica Environmental Associates LLC / ID = Site ID / EQ = Equipment / PE = Personnel						

Abbreviations: NEA = Nautica Environmental Associates LLC / ID = Site ID / EQ = Equipment / PE = Personnel PM = Project Manager / PD = Project Director / PIR = Process Improvement Report / CT = Camera Trap RP = Ross Pappin / DT = Doug Tilbury / AQF1 = AI Falalah 1 Camp / DS = Das Survey location

	Figure C4: NEA Ac	tivity Log 06.08	3.2021
Project № & Clier	nt: N684	Date/Day:	06.08.2021 / Friday
PM Name:	Ross Pappin	CA ENVIA	0
PM Signature and Stamp:	Roys Li	194 NAL	MENTA
		ABU DHABI UNE	

Part 2: NEA Licenses and Accreditations

Table C2, below, provides a list of NEA licenses and accreditations, provided on subsequent pages.

	Table C2: NEA Licenses and Accreditations				
Figure №	Description	Usage			
Figure C5	NEA Trade License	-			
Figure C6	NEA EAD Registration	-			
Figure C7	NEA Quality Assurance Accreditation	-			

Figure C5: NEA Trade License

In the second se

Professional License

Litance No	.편	CN-1006373	H.	الد الرياضية
ADCCI Nel		228824	1	ملوية لقرقة
Extainishment Cent WOHRE	11		18	رزارة لموارد فيشرية وتترطن يحادة تبنشاد
Establishment Cant ODRFA	9 <u>4</u>		14	ولارد تعنيا تظلماً وكوري لايتياء بطقة استثنا
Legal Furm	Livited Liability Comp	any	يقوكة التنصورية مغينة	لشكل لقلولى
			وترتبك الزمانة البينية ومم	1.747
Trade Name		VENTAL ASSOCIATES - LLC		
Establishment Date	annenneenneen	09/06/2007	<u>8</u>	فيخ النجن اجتذاد
Innue Date	a	16/05/0021		نليج الاصناب
Explicy Date	10	09/02/2022		*1617 (SUR

100			
- 4_⊥ Partner	الإمارات تعريبه الشعنا United Arab Emerities	بند الأر مثر PETER ARTHUR MELLYER	41208291
Pattoer	United Kingdom	ریخود مولمی HICHARD JOHN HORNBY	20029757
Patter	فت النب Untel Kingdom	الرش من الرابي المن المراجع في الله الله المراجع الم	20029756
Fiel Airs Tuesin Wallie Polector Services Of Tests Of and Ges Face Barrey Herman Consultancy Environment Plus Orohate And Off	nalitarity and studies and rese 8 ing And Maximum OF Environm tion Consultancy An Photography and Informatic	ارتبا عرف همه عند صدر اسر والسري المري رخر ادره استرباد (Matagement Systems Engineering) اليه سراحيز الرب رفسية	نزيد اير على ملية
	ment invest without eignetur	a y and a search and a new search and the Descentions of the Expression Descentions of a Aba Displet. This is never knowledge with http://www.chef.atomic.edu.at	
mulai Email	i î	nansperieriQines se	ه اللادغ فرسم

The second se

3

غيقتية البوطيحي

	Figu	ure C6: NEA E	AD Registration	
				vi el Li La Vi del Disa
EC-	59/05	ارد معب		
ECR-	778(21	رقم التوصنية		
Date of insue	25/9/2021	للريح الإصدار		
Date of Expiry	14/5/2022	14407 St. 10		
	2.3	ي في مجـال البي	إعتماد مكتب استشارع	
		(1)	• فنة	
	Registra	ition of Enviro	nmental Consultancy	
		* Cla	ass A	
Office Name:	Nautica Environe	nental Associates	الوتيكا للرمانة البينية لأمرم	امو (مکتبر
Type of Office:	Local (100 %)		معلى (100%)	يو الكرين
Address:	Office M3, East 1 Sheikha Zoyed A Bidg Al Meena Street, Abu Dhabi	hmad and Others.	هزیرد لوظنی ، غرق 14 - غار ع البیاء ، بنایة البیاد ثبنده سعید المند والغزین ، المزانین سالب رام 3	لعبران:
Environment Ana	ency – Abu Dhabi		رىتىسى الكثرونية - لايتعلقب أي توقيع	

Part 3: Support Equipment Specifications

Table C3, below, provides a list of key equipment either used or on hand for the survey programme, with specifications provided on subsequent pages.

	Table C3: Survey equipment available			
Figure №	Description	Usage		
Figure C8	Beacon on a Belt (BOB)	DGPS locational system		
Figure C9	Trimble GoXT handheld unit	DGPS locational system		
Figure C10	Nikon Forestry Pro Laser Rangefinder	Tree height measurements (NU)		
Figure C11	Bushnell Camera Traps	Small mammal/reptile activity		
Figure C12	Sherman Traps	Small mammal activity		
Figure C13	Anabat Detector	Bat Detection		
Figure C14	Malaise Traps	Insect trapping		
Figure C15	RIDGID Micro-inspection unit	Den/Borrow/Hole investigation (NU)		
Figure C16	Pitfall Trap	Insect / small reptile trapping		
Figure C17	Mavik Pro 2 UAV (Drone)	Aerial photography/videography		

Beacon-on-a-Belt (BoB)

Cable-free Differential Correction Receiver

and Samefills

- Provides real-line OGPS accuracy to magazing receivers
- Cattle-free
 conversarie at key with
 framatic Good spheror 3
- Buggel, orgonoesi: stratup
- Notice rejecting beacon receiver

for Boll"3 receiver lets you add. the extra precision of real-time differential GPS to your GIS projects- without adding the encombranes of a bulky radio pack. The system incorporates a beacon receiver, an antenna and battery in time compact rable line" package that you wear on your helt. The Boll reprinter decodes GPS differential correction information from Incal MSK hearing and then transmits that information to any GPS receives that accepts. standard RTCM SC-104 data. eliminating the need to postproceus your data. Rest of all, this is completely rable-first when used with Trimble's Geol/aplane* 2.

Thinkle's Beacon on a Belt

Real Arrive DGPS Accuracy

The accuracy of differential GPS not selly means that your databases have better data. It also makes locating previously mapped smets in the field quicket and tours accurate tuo. With differential GPS. distinguishing between thirdy queed assets in fast and unamhighour. Back in the office you'll alver three new. Silver the data years suffected was convected as your gethered it, you can trainife that data directly into your GUS without the delay of a separate postprocycsing step

Remove and a Rell (Ball) Amount .

Cable From Committee

To complement the convenience of Tituble's handbold GeoExplorer* 3 system, the Bolt differential overtwe communicates with that system automatically — with no cabling or accessories whatnever. There's nothing to connect, andbing to forget, and instituting to carry on your back. Your crews will succe fastes and incur less descoting due to magged or broken cables.

Rupped and Easy to Operate.

No matter where your data collection and update projects take you, the Boll receiver is ready to follow. Shockpool and water resistant, it will withstand all the rigors of fieldwork, in any weather. Right out of the forthe Boll receiver is ready to start working with your Trimble GPS/GIS data collection system. Within seconds of powering on, it automatically wheth the best beacon and starts manuniting corrections. If you want to reconfigure the maxime in the field an easy to use two button interface simplifies the process.

Powerful Software

For more extensive configurations the versatile PC-BoB office software makes it easy to exclude beacon stations, define custom display names for stations, and coordigate the initial tracking made. All in all, the BoB member is the roost correnient and service ever shoringed

in branch to the set of the base bases in branch the bott provide and bott and another the LS time the same in provide bases and most to next with a

Figure C8: Beacon-on-a-Belt (BOB)

Beacon-on-a-Belt (BoB)

Cable-free Differential Correction Receiver

FRAMINES STAROARD ACT · Hell and Indexe · Dial channel Meannam Beth Keying (MSR) IMDrennial CPS · Chargeng cable for mineral furthers (DG25) bewon receive · PC 808 without its configuration and diagnostics . Calife Dee real time link to the Trimble Gasilinghour 3 mapping + Printed manual and Quick Reference Card system in the Linited States · Ciarly seell modom cable + Assumationally, marks the annuagest or closest bearer signal, or care be lists to track a specified beavier station OFTIGANL ADDRESONER · Ruged, don, and wave rectant beaming initiates carrierite hatting, which and carrierite Entered planet pld · Compact, registance helt maturiset disage adapters, tobally splitter calify and and absolder · Demulty to note and pressing signals pai. All day teternal techargeable battery Sample two battan/new LEDI superlays - Full DGPS status in the field via Geoffaginere 3 in a belt theft Heat the 280.00 00 ENG! - Advanced configuration when the PC-Boll with any **Bdf with Centrolouer 3** DEEDO NO ENCO - Advanted diagramities via PC Sold software Bull with Geologiani 3: 20100/10/15/01 HARIVALUE ENCOUCATIONS 10013-00 Entertial geneer kit 20.4 cm (#17) H + 30.7 cm (817)W + 10.7 cm these part reserved, and has not it into 115 only. Therease the U.S. control trees have the 14.773 D fat annual \$ 18 kg (7.56 Hed Sec. 1 1.1 W. President States Operating - 10 C to +10 C +-14 F to +122 F) **Interim** Sonage: -20 C to +70 C [-4 F to +158 F] Ep to 98% non-confirming 325 232 at 2409 hand # data hm, it mp htt. in alli to party PERMITANDA SPECIFICATIONS Call Hart Stee -25 serveds operation Non-weighted street and the state of the sta +57 seconds topical Slew cast for 200 Karge: 245.5.325 kill: freeman. Spaine 300.Hz 10, 100 to 200 h/s surrenine turn MX main Salard prime if X7CM 30.104 fraint picture N545A-0182 Barberg Bli. **Up to 10 hours** 前日日 **Trimble** en barriaer -2010 a and a final state. the fact that have THE LOCK PERSON PERSON IN APPROXIMENT

Figure C9: Trimble GeoXT 2005 Series

KEY FEATURES

High-performance submeter GPS with integrated SBAS and EVEREST multipath technology

Microsoft Windows Mobile version. 5.0 software, allowing maximum fleability in software choice

512 MB onboard memory plus removable SD memory

Bluetooth and wireless LAN connectivity options

Rugged handheld with all-day battery

TrinsPia technology for wireless camera support

THE TOTAL GPS PLATFORM FOR ALL YOUR GIS FIELD REQUIREMENTS

The GeoXT[®] handheid, from Trimble's GeoExplorar® series, is the essential tool for maintaining your GD. A high performance, submeter GPS inceiver combined with a rugged handheid computer, the GeoXT hundheid is ideal for use by utility companies, local government organizations, federal agencies, or anyone managing states or mapping critical infrastructure who needs accurate data to do the jub right—the first time.

Delivering consistent submeter accuracy both real-time and postprocessed, the GreaXT handheid is the most dependable submeter solution available. And it's specifically designed with your GIS in mind.

Real-world submeter performance

The GeoXT hundheid is optimized to provide the reliable, high accuracy location data when and where you need it. With advanced features like EVERET multipath rejection technology, the GeoXT handheid outputs quality GPS positions even under canopy, in urbain canyons, and in all the everyday environments you work in

If you need submeter accuracy in real time, you can use corrections from a satellite-based sugmentation system (SBAS) like WAAS or EGNOS, or use the integrated Bluetoeth® radie to connect to a Trimble® Gno8escon® receiver. And if you need that extra edge in precision, you can collect data with Trimble TerraSync software or the GPScorrect® extension for ESR ArcPad softwarg, and then postprocess back in the office.

Software to fit your workflow

The GeoXT handheld comes with a powerful 416 Milz processor running the most advanced operating system available—Microsoft® Windows Mobile* version 5.0 software. Windows Mobile is the industry standard spen platform for mobile devices, so you can choose a software solution to match your verkflow, whether off-the-shell or purpose built.

Windows Mobile version 5.0 features familiar Microsoft software, including Word Mobile, Excel Mobile, and Dutlock[®] Mobile, giving you all the tools you need for a sumilar exchange of data between the field and the office.

Built for the field

The GeoXT handheld has an integrated battery, good for a full day's work: simply charge the battery overright and you're ready to go again. The GeoXT handheld will last the distance, and its rugged design can take a lot of pumitment. Sain, hall, or shine, it's built to keep working, whatever the weather throws at you.

Convenient connectivity

With the GeoXT handheld you have the fexibility to work exactly the way you work to. Do you need to access the internet or your organization's secure ontwork so get the most up to date data? No problem—with the GeoXT handheld you have built in wireless LAN and Bluetooth technology to ensure you may connected.

Using the built-in wireless LAN and TrimPix" technology, the GeoXT transfreed can insprect to a range of WFI-rapable Nikon digital cameras for automated capture of digital images. Download the TrimPix software and you have initideal solution for easily collecting high resolution digital photos to link to your GPS positions.

All the memory you need

There's plenty of storage space in the GeoXT handheid for all your GIS data, and with its fait processor even big graphics files load quickly. Because the GeoXT handheid rum Windows Mobile version 5.0 software, all your data and applications are stored in persistent memory, to your data it completely safe. And with a Secure Digital (SD) memory card slet, you can add gigabytes of memory for all your map data.

Accuracy you can rety on

Accurate information is crucial to making informed decisions and improving the way you do business. The GeoXT delivers consistent autometer accuracy both real-time and postprocessed, so you know your GB has the information that others can depend on to do the job right—this time, next time and every time.

Approved Training Centre literated by The Alas Dhala Center for Technical and Vocational Education and Training (ACTVET) Literate Net 0890/3020

Figure C9: Trimble GeoXT 2005 Series

GeoXT handheld

STANDARD FLATORES

- Numerous Marcowski Winstews Melalis sension Lif softwares STS Mill Well S.Sold prinsions STS Mill Well environment Subject Well services and sensibility Subject and water restrict damps Add day thermuly softwarpaties beings Add the stream

- PH
 Subtractor security in real time
 Subtractor security in real time
 Single and time constitute support
 SING and TOP posterior support
 SING and TOP posterior support
 SING and TOP posterior support

- You Table State of the second of the

- Accession and a series supply and US data using a Cartrag Nathad Carts. Cartrag Nathad Carts.

- · Hand street
- · Data Int
- OFTEMAL PLATINES

- Incomingence conference
 Incomingence conference
 Incoming Collectment instances in the USK Archiel antimases
 COL Prophysical Instances in the USK Archiel antimases
 COL Prophysical Collectment
 Collectments
 Income USK Archiel
 Income USK
 I

TEORECAL EPECIFICATIONS

Human	
See .	The set is the on a TP section is a third with the
- Congression	S IR by III 75 By entl battery EN, Mily and 78 C J/V X byte processor
	LE MY MAR and LTJ ME started light day
and the second s	the first show and the second right shee
Construction or hast	April
Rented Long Coll.	or makend 22 Were
	Elder, Harrant, and annexes LAN 32 Week
Ballary .	Informal DEEK much interact, not an Astrophilip in parts
1 1 1 2 1 1	The second se
distance in the local	
Terroretter and	
Contraction of Contra	
And Management and the	二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、
Carry 10	and drown oper and dues operate par PTA standard
	Uponteget grip, shall and obtainer mattern
Rectingent	
Communications	111
1 Mar 1 M	128 -them yild compilant? we support module
	Secol size comprise DU9 secol City adaptor.
	Plantal 12732 Base? Compartille one poppetit troubuits
Bastordi, Auflan	
Circl and hot a	argent Sand Pers, Organ Paula
Charge support and	Status Schercherg
The support mil	Advanced Autoban (11, 20) - 20 plant
1917	U.S.E. cope, with backlape
A	propheros and special, recting and physical stiffing
information of the local division of the loc	South assume, Soft Track Paran (SPS on Soal Arginian if
TT Barriel	age certail last, handwriting tampettion onferena
and the second se	Rulti what auto, waving, and methators
101	
Garrier	1211 contract (press)
Trengrated stal form	MAD'
Uption rate	111 111 111 11 11 11 11 11 11 11 11 11
, True to face the	Hand Market
	THE MALAVILA, VIC, INC. INA, INA, UNI, MACH
Amatory States, Mr.	
Colle professioned	5.denster
Certar postprocesse?"	
Write L Adventione In	
Well, 12 remains	
Wr. L. writer	Tarting sautha
Bear time 20145" or un	which manual
and the second s	which interests and first loss descent losses
markets or most Andrew of	inder speech beiden street Bild fein Augenehlten Spierer
and in strengt of	Contraction of the second s
Construction of the supported	the second second second second by the base best second as \$1000
Fast Marked All'almost	an anna a sana anna anna an an an an an an an an an
and the local to	
The second se	and the second s
married Staff of a summer	an all of the constant all the statements
	the state of the second st

CITY OF THE PARTY OF THE PARTY OF

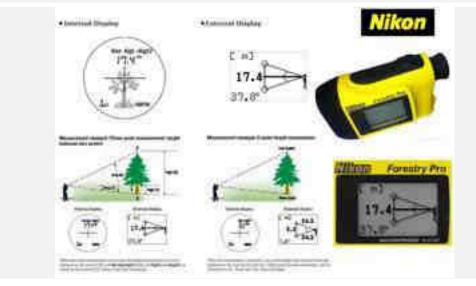


Figure C10: Nikon Forestry Pro Laser Rangefinder Specifications

Unit Specifications:

	•		
•	Magnification:	6.0x	
•	Objective Lens Diameter:	21mm	
•	Angle of View:	6°	A CONTRACTOR
•	Laser Type:	Class 1M	
•	Range:	11-550 yd / 10-500 m	
•	Exit Pupil Diameter:	3.5 mm	
٠	Eye Relief:	18.2 mm	
٠	Distance Display Increments:	[Internal Display]	
•	Actual Distance:	Every 0.5m/yd. or 1.0' ou 1.0 m/yd or 1.0' beyond 2	.,
•	Horizontal distance and height: `	0.2 m/yd or 0.5' up to 10 1.0 m/yd or 1.0' up to 10	
•	Angle:	0.1° up to 10° / 1° beyon	d 10°
Ext	ernal Display:		
•	Actual Distance:	0.5 m/yd or 1.0'	
	Horizontal distance and height:	0.2 m/yd or 0.5'	
•	Angle:	0.1°	
•	Weatherproofing:	3.3' (1.0 m) to 10 minute	2S
•	Environment:	RoHS/WEEE compliant	
•	Power Source:	(1) CR2 battery	
•	Dimensions:	5.0 x 2.8 x 1.8" (12.7 x 7.	1 x 4.5 cm)
•	Weight (Without Batteries):	7.4 oz (209.8 g)	

Figure C11: Bushnell Camera Trap Specifications			ions
Model:	119876		
Sensor Resolution	2, 8, 20MP		
Images Resolution:	3MP sensor wit	h 2MP compression and	20MP interpolation
Flash:	48 LEDs No-Glov	w	
Flash Range (ft/m):	100ft/30m		
Backlit LCD Display:	B&W text LCD		
Colour:	Brown		
Battery Type:	AA (8)		
Battery Life:	up to 12 mo.		
Video Resolution:	1920x1080p		
Infrared Sensor Range:	80ft / 25m		Colored and a
Multi Flash Mode:	Yes		
Hyper Night Vision:	Yes	OUT	
Field Scan 2x:	Yes	- Provent	

Figure C12: Sherman Trap Specifications

Sherman traps are an environmentally friendly way to research small mammal populations and can be used for mammal collection, teaching and environmental impact studies.

Sherman folding traps have the advantage of folding down to a size and shape which is easy to transport. The trap works by use of a trigger platform which causes the door to shut when the animal runs into the trap.

This is a 'live catch' trap and should be checked regularly. Where appropriate traps should be provided with water and food.

The Small Folding Aluminum Trap is suitable for trapping small animals such as mice and shrews. The Sherman Trap is available in a range of sizes to suit specific needs as shown below.

Figure C13: Anabat Express Bat Detector Unit Specifications

The Anabat Express is a compact and weatherproof recorder that is designed to be deployed in the field for several weeks. It will record bat calls which can then be used for species identification or activity monitoring.

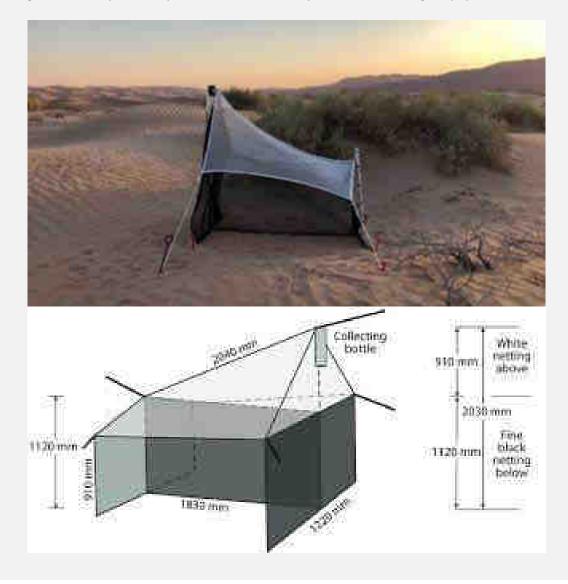
Camouflaged and compact, the unit has a weatherproof casing and omni-directional weatherproof microphone with a 1.5m extension cable. An optional five-metre microphone extension cable allows you to position the microphone away from the unit, which makes it easier to site the recorder in an inconspicuous location, or to raise your microphone up to an elevated position when needed.

The Express is powered by 4 x AA batteries. The unit should record for around 14 nights on one set of batteries and up to 30 nights with high quality lithium batteries. Supplied with a padded case, wrist strap, 1.5m microphone extension, a magnet for status checking and USB cable.

Features:

- New, easy-to-use interface for setup & download;
- Weatherproof, camouflaged plastic case (IP67);
- Weatherproof, compact microphone;
- Records temperature and battery voltage;

- Specifications:
- Dimensions: (H) 182 x (W) 119 x (D) 43mm;
- Weight: 385g (without batteries)
- Built-in GPS for location, transect tracking, setting the clock and calculating sunset/rise;
- Runs for 14 nights on 4 AA batteries and up to 30 nights with lithium-ion batteries;
- One-touch for continuous, scheduled or night-only recording modes. SD card memory and easy downloading.


Figure C14: Malaise Trap Specifications

A malaise trap is a large, tent-like structure used for trapping flying insects, particularly Hymenoptera and Diptera.

The trap is generally made of a material such as terylene netting and can vary in colour. Insects fly into the tent wall and are funnelled into a collecting vessel attached to highest point (see diagram below).

Typical Dimensions; Tall end height = 1.7m; Short end height = 0.9m; Width = 1.15m and Length = 1.88m. The opening is around 12–15 mm (0.47–0.59 in), and can vary according to the size of insect desired.

If using a dry agent, a smaller hole results in a faster death, limiting the amount of damage a newly caught insect can inflict on older, fragile specimens. In ethanol, this is less of a concern. Larger holes can potentially allow in more butterfly, moth and/or dragonfly species.

Figure C15: RIDGID Micro-inspection Camera (Hole/Burrow Investigations)

The Ridgid 37888 micro CA-300 inspection camera is the next evolution of the SeeSnake micro inspection camera, it allows you to perform more detailed visual inspections in even harder-to-reach areas (see Plate below of an NEA scientist's use in a burrow investigation).

Comfortable pistol-grip design, one-hand controls, and large screen make it easy to detect and diagnose the unreachable. It comes standard with a rugged anodized aluminum camera head with 4 super bright LEDs.

Easily rotate the active image counter-clockwise to see in any situation. This micro CA300 inspection camera provides solutions whenever and wherever you need them. Easily record still images and videos of problems in hard-to-reach areas.

Specifications:

- Item Name: Inspection Camera
- Model: 37888
- SV Code: 291302AAKY3
- Brand: Ridgid
- Resolution: 320 x 240
- Video Output: 3 Feet (90 cm) RCA cable included (640 x 480 resolution)
- Power Supply: 3.7V Li-Ion battery 5VAC adapter
- Cable Length: 3 Feet (90cm) expandable to 30 Feet (9m) w-optional extensions

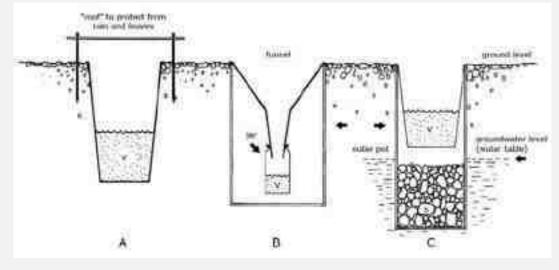


Figure C16: Pitfall Trap Specifications

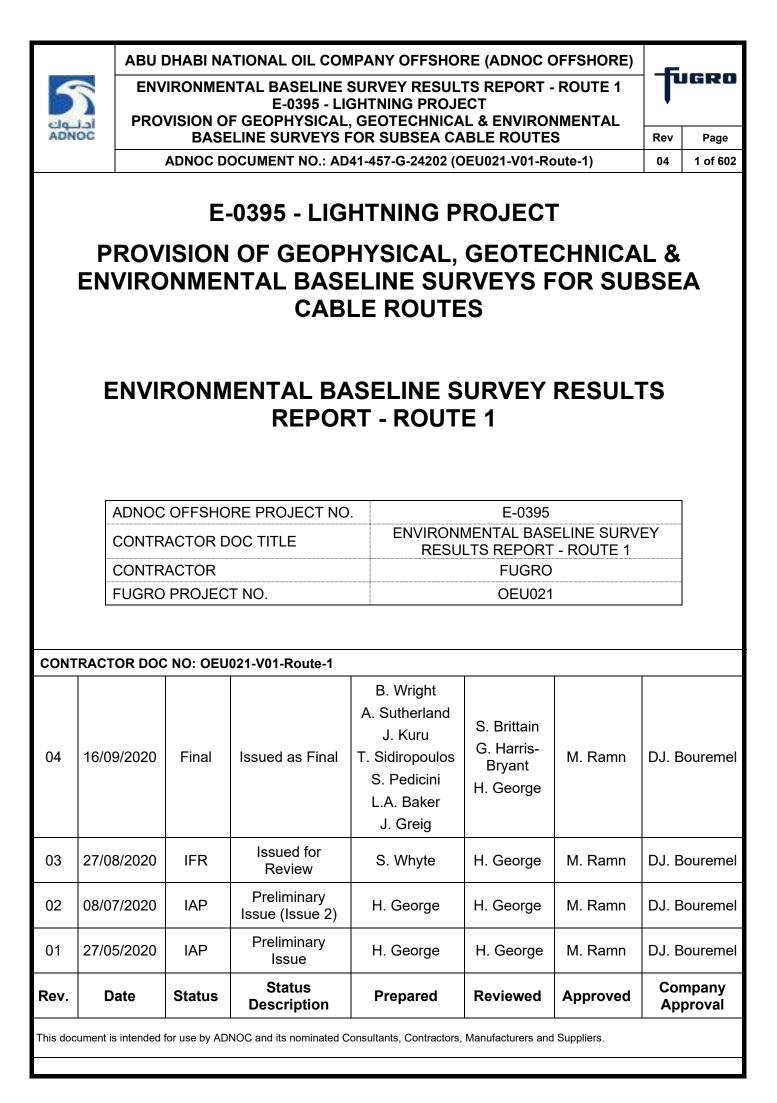
A pitfall trap is a device used to trap insects that are active on the ground surface. Pitfall traps usually consist of a beaker that is buried so that the lip of the beaker is level with the ground surface. The trap is then left and returned to, at a later date, to inspect 'the catch'.

The diagram below the photograph of an NEA deployment, depicts the several variations of pitfall trap layout, with a recurring theme. Insects reaching the lip of the beaker slip and fall in and are then unable to climb back out. Sometimes alcohol or another substance is poured into the trap so that any insects falling in are killed. The rationale behind this is that predatory insects falling in to the trap will eat the rest of the catch.

Figure C17: Mavic Pro 2 (Aerial photography/videography)

The Mavic 2 Pro from DJI is a drone that balances power, portability, and professional-quality visuals with the inclusion of a 20MP Hasselblad L1D-20c gimbal camera. The camera delivers a 1" CMOS sensor with an adjustable f/2.8 to f/11 aperture, support for a 10-bit Dlog-M color profile, and 4K 10-bit HDR video capture. The Mavic 2 Pro utilizes a low-drag aerodynamic body design for achieving speeds up to 47.7 mph, a four-cell LiPo battery for up to 31 minutes of flight time, and low-noise propellers for filming without being distracting. This power and performance are coupled with a variety of dynamic shooting modes and other capabilities that help you achieve cinematic results.

- Item Name: Mavic Pro 2
- Model: 37888
- SV Code: 291302AAKY3
- Brand: DJI
- Camera: Hassleblad 20MP, 1" CMOS, 77° FOV, f/2.8 to f/11
- Max Video Output: 4k 10 bit HDR (.MP4, .MOV), 5472 × 3648 Stills (.JPG or .DNG)
- Power Supply: 15.4V, 3850 mAh, LiPo 4S
- Transmission Length: 8 km (line of sight)



Appendix 2.3 – Fugro Marine Environmental Baseline Survey Reports

Appendix 2.3.1 – Environmental Baseline Survey Results Report – Route 1

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

TugRORevPage042 of 602

SUMMARY OF DOCUMENT REVISIONS

Rev. No.	Date Revised	Section Revised	Revision Description
01	27/05/2020	IAP	Preliminary Issue
02	08/07/2020	IAP	Preliminary Issue (Issue 2)
03	27/08/2020	IFR	EBS Report, Issued for Review
04	16/09/2020	IAF	EBS Report, Issued as Final

INTERNAL DISTIBUTION LIST

Company	Project Role	Name
FUGRO	Project Director	Michael Meyer
FUGRO	Project Manager – Geophysical Survey	Venugopalan Nambiar
FUGRO	Senior Project Manager	Dr. Surya Kumar
FUGRO	Service Line Manager - Environmental Services	Harry George
FUGRO	Service Line Manager - Metocean	Youssef Atmani
FUGRO	Director Marine Geophysics	Gerard Ferreira
FUGRO	Client Deliverables Manager	Tony Farn
FUGRO	Country QHSSE Manager	May De la Cruz
FUGRO	Operations Manager	Richard Harding
FUGRO	Data Centre Manager	David Duguid
FUGRO	Deputy Director	Chris Blake
FUGRO	Regional Business Line Director Marine Site Characterisation	Remmelt de Jong
FUGRO	Technical Manager (Geophysical)	Johan Van der Merwe

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

PROJECT DEFINITIONS AND REFERENCES		
PROJECT DEFINITIONS		
PROJECT:	LIGHTNING PROJECT - OFFSHORE GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	
COMPANY:	Abu Dhabi National Oil Company Offshore (ADNOC Offshore)	
CLIENT:	Abu Dhabi National Oil Company Offshore (ADNOC Offshore)	
CONTRACTOR:	FUGRO	
ADNOC JOB NO:	E-0395	
SCOPE OF WORK:	AD41-G-450-023796 and Drawing AD102-450-PLG-80432	

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1) RevPage044 of 602

ABBREVIATIONS				
ADNOC	Abu Dhabi Specification			
BGS	British Geological Survey			
BOD	Biochemical Oxygen Demand			
BOT	Near Seabed Water Sample			
BSL	Below Sea Level			
BTEX	Benzene, Toluene, Ethylbenzene and Xylene			
CBD	Convention on Biological Diversity			
CCC	Criterion Continuous Concentration			
CCME	Canadian Council of Ministers of the Environment			
CD	Chart Datum			
CFU	Coliform Forming Unit			
СН	Critical Habitats			
CITES	Convention on International Trade in Endangered Species			
СМ	Central Meridian			
CMC	Criterion Maximum Concentration			
COD	Chemical Oxygen Demand			
CTD	Conductivity, Temperature, Depth			
DO	Dissolved Oxygen			
DP	Dynamic Positioning			
DTI	Department of Trade and Industry			
DNV	Det Norsk Veritas			
EAD	Environment Agency–Abu Dhabi			
EBS	Environmental Baseline Survey			
EOL	End of Line			
EPH	Extractable Petroleum Hydrocarbons			
ERL	Effects Range Low			
ERM	Effects Range Median			
ESH	Environmentally Sensitive Habitats			

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev Page 04 5 of 602

fugro

ABBREVIATIONS				
FGBML	Fugro GB Marine Limited			
GC	Gas Chromatography			
GC-µECD	Gas Chromatography with micro-Electron Capture Detection			
GC-FID-HS	Headspace Gas Chromatography with Flame Ionisation Detection			
GC-MS	Gas Chromatography-Mass Spectrometry			
НС	Hydrocarbon Sample			
НМ	Heavy Metal Sample			
HVDC	High Voltage Direct Current			
ICP-MS	Inductively Coupled Plasma–Mass Spectrometry			
ICP-OES	Inductively Coupled Plasma-Mass Spectrometry			
IUCN	International Union of Conservation of Nature			
KP	Kilometre Point			
LTDP	Long Term Development Plan			
MAC	Maximum Allowable Concentration			
MID	Mid Water Depth Water Sample			
MLEAD	Marine Life of the Emirate of Abu Dhabi			
MOCCAE	Ministry of Climate Change and Environment			
MRV	Minimum Reporting Value			
MV	Motor Vessel			
NBSAP	National Biodiversity Strategy and Action Plan			
ND	Not Detected			
NDIR	Non-Dispersive Infrared Detection			
NMBAQC	National Marine Biological Association Quality Control			
NOAA	National Oceanographic and Atmospheric Administration			
NPCC	National Petroleum Construction Company			
NS	No Sample			
NTU	Nephelometric Turbidity Units			
QCC	Abu Dhabi Quality and Conformity Council			

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1) RevPage046 of 602

ABBREVIATIONS				
РАН	Polycyclic Aromatic Hydrocarbon			
PC	Physico-chemical Sample			
РСВ	Polychlorinated Biphenyl			
PSA	Particle Size Analysis			
PSD	Particle Size Distribution			
ppt	Parts Per Thousand			
PSU	Practical Salinity Unit			
RSD	Relative Standard Deviation			
SD	Standard Deviation			
SLMXD	Sublittoral Mixed Deposit			
SLSED	Sublittoral Sediment			
SOL	Start of Line			
SoW	Scope of Work			
SSS	Side Scan Sonar			
TDS	Total Dissolved Solids			
ТНС	Total Hydrocarbon Content			
тос	Total Organic Carbon			
ТОР	Surface Water Sample			
TSS	Total Suspended Solids			
UAE	United Arab Emirates			
UNEP	United Nations Environment Programme			
US EPA	United States Environmental Protection Agency			
UTC	Coordinated Universal Time			
UTM	Universal Transverse Mercator			
UV	Ultra Violet			
VPH	Volatile Petroleum Hydrocarbons			
VV	Single Van Veen Grab			
WCMC	World Conservation Monitoring Centre			

ABU DHABI NATIONAL OIL O	COMPANY OFFSHORE	(ADNOC OFFSHORE)
--------------------------	------------------	------------------

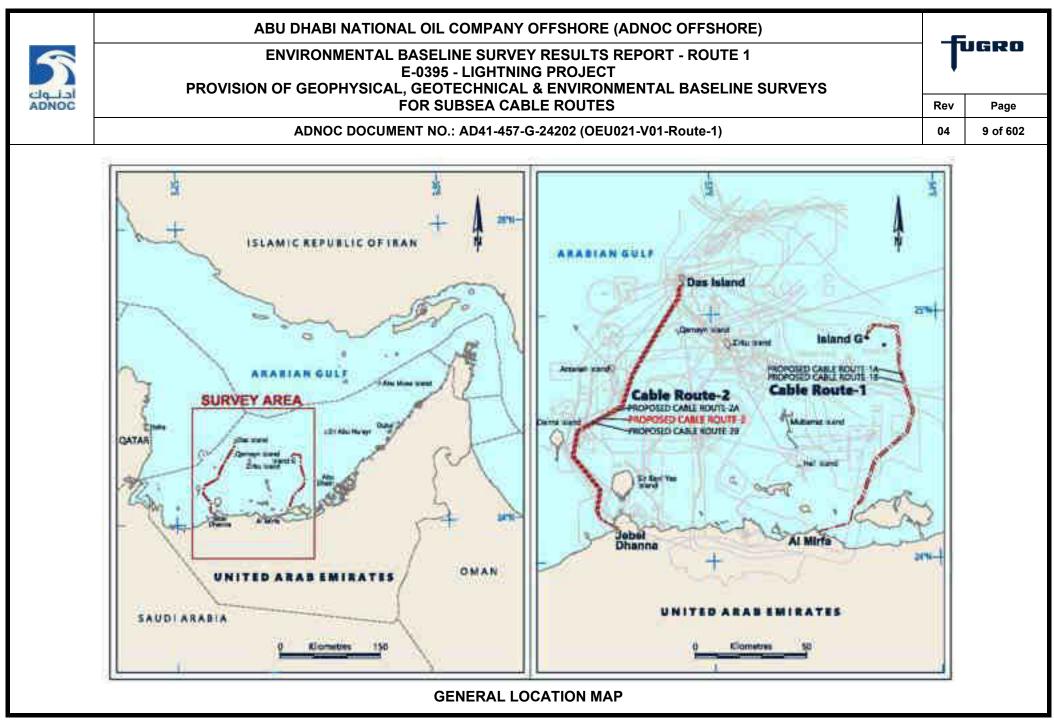
ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1) RevPage047 of 602

ABBREVIATIONS			
WGS84	World Geodetic System 1984		
WHO	World Health Organisation		
WP	Water Profile		
WS	Water Sample		
?	Identification of a Taxon Not Certain		

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1) FugroRevPage048 of 602

Document Control

Document Information


ADNOC Offshore Project No.	E-0395		
Project Title	Lightning Project - Provision of Geophysical, Geotechnical, and Environmental Baseline Surveys for Subsea Cable Routes		
Document Title	EBS Survey Results Report – Route 1		
Fugro Project No.	OEU021		
Fugro Document No.	OEU021-V01-Route-1		
Issue Number	04		
Issue Status	Issued for Review		

Client Information

Client	Abu Dhabi National Oil Company for Offshore Oil Operations (ADNOC Offshore)		
Client Address	PO Box 303, Abu Dhabi, U.A.E.		
Client Contact	Mr. Djaafar Bouremel		
Client Document No.	AD41-457-G-24202		

Revision History

Issue	Date	Status	Comments on Content	Prepared By	Checked By	Approved By
01	27 May 2020	Preliminary	For Review	HG	HG	MR
02	08 July 2020	Preliminary (Issue 2)	For Review	HG	HG	MR
03	27 August 2020	IFR	For Review	SGW	HG	SW/MR
04	15 September 2020	Final	Final	BW/AIS/JKK/ TXS/LAB/JSG/ SXP	SRB/GHB/ HG	MR

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

Rev Page
 04 10 of 602

UGRO

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Summary of Survey Results

Introduction

Fugro was contracted by ADNOC Offshore (Client) for the conduct of bathymetric, geotechnical and geophysical investigations and environmental baseline surveys (EBS) along two proposed cable routes. Proposed Route 1 will connect Lower Zakum Island G to Mirfa and Route 2 will connect Umm Shaif LTDP Island to Shuweihat, within the Zakum Field and the Umm Shaif field, respectively.

Survey Strategy

The EBS was designed to characterise the water column and seabed sediments at 130 stations along the vicinity of Route 1. Water column profiles were taken to characterise water column physical parameters. Water column samples were taken for physico-chemical analysis. Seabed sediment and soil samples were taken for physico-chemical analysis, whereas seabed photographic data were obtained to characterise benthic habitats and epifauna.

Water samples were acquired from all proposed stations. A complete suite of physico-chemical sediment sub-samples was acquired at 60 stations and partial suite of samples at 12 stations. Photographic still and video data were successfully acquired along all proposed camera transects. Soil samples were acquired at nine out of the seventeen proposed stations.

Water Column Profiles

No major stratification was present in the water columns. Temperature, salinity, turbidity, dissolved oxygen content and pH remained generally constant throughout the water column at all stations. Differences displayed between stations were considered to be representative of ambient seawater conditions for the region and season across all parameters.

Inorganic Water Quality Parameters

The majority of inorganic water quality parameters (total suspended solids (TSS), ammonia, ammonium, silicon, sulphide, nitrite, total phosphorus, orthophosphate, chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total coliform) were below their respective minimum reporting values (MRVs) at all stations across the survey area. Most parameters with values greater than the MRV (pH, total dissolved solids (TDS), sulphate, chloride and total organic carbon (TOC), total nitrogen, total cyanide, nitrate, nitrite, total phosphorus, turbidity) were considered to be of no environmental concern.

BASELINE SURVEYS FOR SUBSEA CABLE ROUTES ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL

Water Column Hydrocarbons

Concentrations of volatile petroleum hydrocarbons, extractable petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, ethylbenzene and xylene (BTEX) and phenols were below their respective minimum reporting values in all samples obtained, and unlikely to be of environmental concern. Naphthalene, phenanthrene and pyrene concentrations recorded at a limited number of stations exceeded their respective MRVs, but they were considered unlikely to be of environmental concern. Benzene, toluene and ethylbenzene were below the Canadian Council of Ministers of the Environment (CCME) guideline values and considered to be representative of background conditions.

Water Column Metals

Chromium, copper, lead and zinc, concentrations exceeded their respective Abu Dhabi Specification (ADS) 18/2017 Ambient Marine Water Standards Maximum Allowable Concentration (MAC) for both general use areas and marine protected areas (QCC, 2017) in 100, 17, 31 and 129 samples respectively. Copper and lead concentrations exceeded the United States Environmental Protection Agency (US EPA) criterion continuous concentration (CCC) in 16 and 4 samples, respectively. Copper and zinc concentrations exceeded the US EPA criterion maximum concentration (CMC; US EPA, 2020) in 8 and 5 samples, respectively. Except for chromium, copper, lead and zinc, concentrations of all major and trace elements were below their respective ADS 18/2017 MACs, where available, as well as the US EPA CCC and CMC values and considered to be of no environmental concern.

Sediment Characterisation

Using the Wentworth (1922) sediment description, stations across the Route 1 survey area comprised coarse sand to fine silt. High interstation variability was demonstrated for all fractional composition parameters, except for sand which showed moderate variability.

Sediment Nutrients

All sediment concentrations across the Route 1 survey area demonstrated low to moderate variation. No spatial patterns were observed, indicating broadly homogenous sediments within the region.

Sediment Hydrocarbons

Concentrations of total hydrocarbon content were considered as typical for the region as they were comparable to concentrations previously recorded around non-industrialised coastal environments distant from hydrocarbon inputs. The concentrations of BTEX and individual PAHs were below their respective MRVs at all stations across the Route 1 survey area. Total sediment PAH concentrations were below the ADS 18/2017 MAC and are therefore unlikely to harm the sediment macrofauna.

Sediment Polychlorinated Biphenyls

The concentrations of polychlorinated biphenyls (PCBs) were below the method MRV (0.020 ng/g) at most stations across the Route 1 survey area. All total PCB concentrations were below the ADS 18/2017 MAC.

Sediment Metals

All sediment metals concentrations across the survey area were below their respective US National Oceanographic and Atmospheric Administration (NOAA) effects range low (ERL) and effects range median (ERM) threshold values. With the exception of chromium, lead and nickel, concentrations of all sediment metals were below their respective ADS 18/2017 MAC for both general use areas and marine protected areas. Concentrations of chromium and nickel exceeded the ADS 18/2017 MAC (QCC, 2017) for marine protected areas at numerous stations and lead at one station. Nickel concentrations also exceeded the ADS 18/2017 MAC (QCC, 2017) for general use areas at 4 stations. There was no clear spatial distribution pattern that would indicate a point source related to possible anthropogenic activities within the survey area, and the differences recorded are therefore most likely to be associated with natural sediment variations.

Seabed Habitats and Epifauna

Within the survey area, three distinct seabed habitats were identified under Marine Life of the Emirate of Abu Dhabi (MLEAD) (John & George, 2001) and Environment Agency–Abu Dhabi (EAD; Al Dhaheri et al., 2017) habitat classifications.

'Sublittoral mixed deposit' (SLMXD)/"13,000 - Hard bottom" habitat comprised a mainly flat substratum of calcarenite (cemented sand), covered by a veneer of sand sediment, with occasional coral outcrops mainly including finger corals (Porites sp.) and boulder corals (Faviidae).

'Sublittoral sediment' (SLSED)/"14,000 – Unconsolidated bottom" habitat comprised predominantly sand sediment, with varying proportions of gravel and shell and coral fragments.

'Seagrass bed'/"12,000 - Seagrass bed" habitat comprised predominantly sand sediment, colonised by varying densities of the seagrasses *Halodule uninervis*, Halophila ovalis and *Halophila stipulacea*.

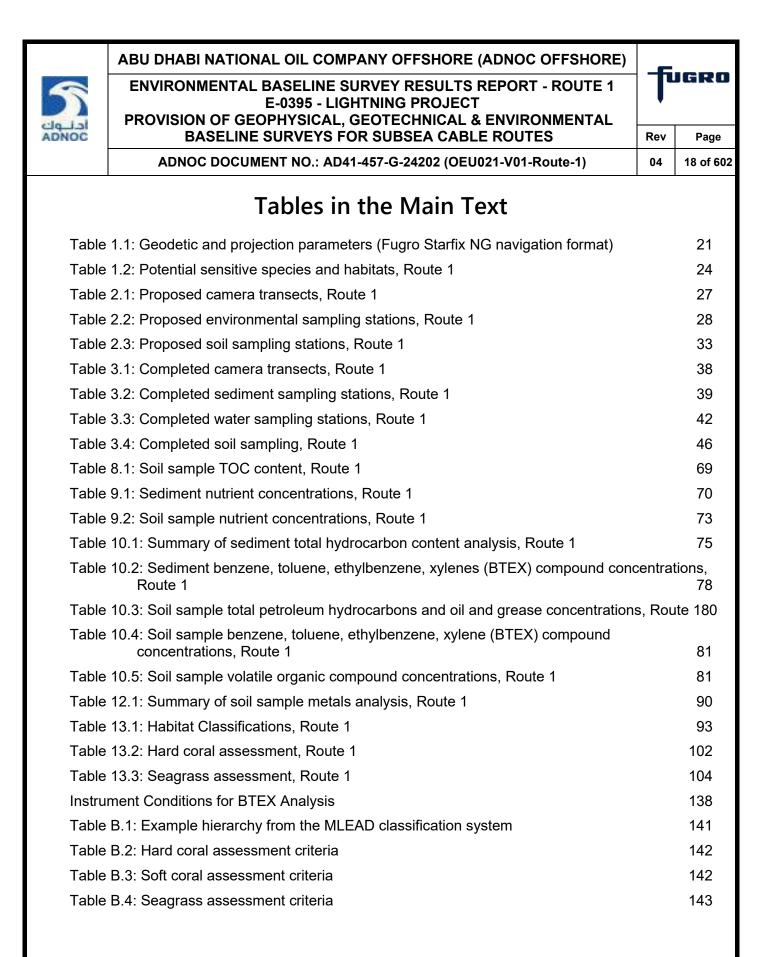
ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	_	
ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	Ţ	IGRO
BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	13 of 602

Survey Deliverables

Document Description	ADNOC Document No.	Fugro Document No.
EBS Results Report – Route 1	AD41-457-G-24202	OEU021-V01-Route-1
EBS Results Report – Route 2	AD41-457-G-24203	OEU021-V02-Route-2

	ABU DH	IABI NA	TIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	-	
ادنیون		SION OI	NTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT F GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	I	JGRO
ADNOC			LINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	A		OCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	14 of 602
			Contents		
1.	INTR	ODUCT	ION		20
	1.1	Gener	ral		20
	1.2	Scope	e of Work		20
	1.3	Units	and Conversion Parameters		20
		1.3.1	Units		20
		1.3.2	Geodetic and Projection Parameters		21
		1.3.3	Vertical Datum		22
		1.3.4	Time		22
	1.4	Backg	round Information		22
	1.5	Enviro	onmental Legislation		23
	1.6	Regio	nal Standards and Comparable Studies		26
2.	ENVI	RONME	INTAL SURVEY METHODS		27
	2.1	Surve	y Strategy		27
	2.2	Surve	y Methods		36
		2.2.1	Water Column Profiling		36
		2.2.2	Water Column Sampling		36
		2.2.3	Sediment Grab Sampling		36
		2.2.4	Seabed Video/Photography		36
	2.3	Analy	tical Sampling		37
3.	FIELI	D OPER	ATIONS		38
	3.1	Seabe	ed Video/Photography		38
	3.2	Seabe	ed Sampling		39
	3.3	Water	Sampling and Profiling		41
	3.4	Soil S	ampling		46
	3.5	Bathy	metry and Seabed Features		46
4.	WAT	ER COL	UMN PROFILES		50
	4.1	Introd	uction		50
	4.2	Resul	ts		50
		4.2.1	Temperature		50
		4.2.2	Salinity		51
		4.2.3	Turbidity		51
		4.2.4	Dissolved Oxygen (DO) Saturation		51
		4.2.5	рН		51

	ABU DH	HABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)		
~		RONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1	1 T	JGRO
	PROVI	E-0395 - LIGHTNING PROJECT SION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	·	
ADNOC	 	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
		DNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	15 of 602
5.	INOF	RGANIC WATER QUALITY PARAMETERS		58
	5.1	Introduction		58
	5.2	Results		58
6.	WAT	ER COLUMN HYDROCARBONS		60
	6.1	Introduction		60
	6.2	Results		60
		6.2.1 Hydrocarbons		60
		6.2.2 Polycyclic Aromatic Hydrocarbons (PAHs)		60
		6.2.3 Benzene, Toluene, Ethylbenzene and Xylene (BTEX)		61
		6.2.4 Phenols		61
7.	WAT	ER COLUMN MAJOR AND TRACE ELEMENTS		62
	7.1	Introduction		62
	7.2	Results		62
8.	SEDI	IMENT CHARACTERISATION		64
	8.1	Introduction		64
	8.2	Sediment Sample Results		64
	8.3	Soil Sample Results		69
9.	SEDI	IMENT NUTRIENTS		70
	9.1	Introduction		70
	9.2	Sediment Sample Results		70
	9.3	Soil Sample Results		72
10.	SEDI	IMENT HYDROCARBONS		74
	10.1	Introduction		74
	10.2	Sediment Sample Results		74
		10.2.1 Total Hydrocarbon Content		74
		10.2.2 Aromatic Hydrocarbon Content		77
		10.2.3 Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)		77
	10.3	Soil Sample Results		80
11.	SEDI	IMENT POLYCHLORINATED BIPHENYLS		84
	11.1	Introduction		84
	11.2	Results		84
12.	SEDI	IMENT METALS		85
	12.1	Introduction		85
	12.2	Sediment Sample Results		85
	12.3	Soil Sample Results		88


	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)							
5		ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL						
ADNOC		BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page				
	AD	NOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	16 of 602				
13.	SEAB	ED HABITATS AND EPIFAUNA		92				
	13.1	Introduction		92				
	13.2	Results		92				
		13.2.1 Seabed Habitats and Fauna		93				
		13.2.2 Potentially Sensitive Habitats	1	01				
14.	DISCL	JSSION	1	06				
	14.1	Water Profiles	1	07				
	14.2	Water Quality	1	09				
	14.3	Water Column Hydrocarbons	1	10				
	14.4	Water Column Major and Trace Elements	1	12				
	14.5	Sediment Characterisation	1	13				
	14.6	Sediment Nutrients	1	14				
	14.7	Sediment Hydrocarbons	1	14				
	14.8	Sediment Polychlorinated Biphenyls	1	15				
	14.9	Sediment Metals	1	15				
	14.10	Seabed Habitats	1	16				
15.	CONC	LUSIONS	1	19				
16.	REFE	RENCES	1	21				

Appendices

A. GUIDELINES ON USE OF REPORT

- B. METHODOLOGIES
 - B.1 Laboratory Analysis of Water Samples
 - B.1.1 Water Quality
 - B.1.2 Hydrocarbon Content
 - B.1.3 Polycyclic Aromatic Hydrocarbons (PAHs)
 - B.1.4 Benzene, Toluene, Ethylbenzene and Xylene (BTEX)
 - B.1.5 Phenols
 - B.1.6 Major and Trace Elements
 - B.2 Laboratory Analysis for Sediment Samples
 - B.2.1 Sediment Characterisation
 - B.2.2 Sediment Hydrocarbons
 - B.3 Habitat Assessment
 - B.3.1 Seabed Habitat Classification
 - B.3.2 Seabed Habitat Assessment

	ABU DH	ABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	-	
5	ENVIR	TUGRO		
ADNOC		BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	AD	DNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	17 of 602
C.	LOGS	3		
	C.1	Survey Log		
	C.2	Grab Log		
	C.3	Video and Photographic Log		
D.	WATE	ER COLUMN PROFILE		
E.	INOR	GANIC WATER QUALITY PARAMETERS		
	E.1	Summary of Water Quality Parameters		
F.	WATE	ER COLUMN HYDROCARBONS		
	F.1	Summary of Water Column Hydrocarbon Content Analysis		
	F.2	Summary of Water Column Polycyclic Aromatic Hydrocarbon (PAH) (Conter	nt
	F.3	Summary of Water Column Benzene, Toluene, Ethylbenzene and Xy (BTEX) Concentrations	lene	
	F.4	Summary of Water Column Phenol Concentrations		
G.	WATE	ER COLUMN MAJOR AND TRACE ELEMENTS		
	G.1	Summary of Water Column Major and Trace Element Analysis		
Н.	SEDI	MENT CHARACTERISTICS		
	H.1	Sediment Particle Size and Grab Sample Photographs		
	H.2	Summary of Sediment Characteristics		
	H.3	Summary of Particle Size Distribution		
Ι.	SEDI	MENT HYDROCARBONS		
	l.1	Sediment United States Environmental Protection Agency 16 Polycyc Aromatic Hydrocarbons Concentrations	lic	
J.		MENT POLYCHLORINATED BIPHENYL (PCB) CONGENER CENTRATIONS		
	J.1	Sediment Individual Polychlorinated Biphenyl (PCB) Congener Conce	entratio	ons
К.	SEDI	MENT METALS		
	K.1	Summary of Sediment Metals Analysis		
L.	SEAE	BED PHOTOGRAPHS		

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	_	
~	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1	Τ	IGRO
	E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	•	
ADNOC	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	19 of 602
	Figures in the Main Text		
Figure	e 1.1: Protected areas relevant to the survey area, Route 1		25
Figure	2.1a: Proposed environmental survey locations overlain on survey area side scar (SSS) mosaic, Route 1	n sona	ar 34
Figure	e 3.1a: Completed environmental sampling locations overlain on survey area side (SSS) mosaic, Route 1	scan s	sonar 47
Figure	e 4.1: Example water profile showing temperature, salinity, turbidity, dissolved oxy pH at station R1_ENV_005, Route 1	gen ai	nd 52
Figure	e 4.2: Example water profile showing temperature, salinity, turbidity, dissolved oxy pH at station R1_ENV_035, Route 1	gen ai	nd 53
Figure	e 4.3: Example water profile showing temperature, salinity, turbidity, dissolved oxy pH at station R1_ENV_041, Route 1	gen ai	nd 54
Figure	e 4.4: Example water profile showing temperature, salinity, turbidity, dissolved oxy pH at station R1_ENV_053, Route 1	gen ar	nd 55
Figure	e 4.5: Example water profile showing temperature, salinity, turbidity, dissolved oxyg pH at station R1_ENV_113, Route 1	gen ar	nd 56
Figure	e 4.6: Example water profile showing temperature, salinity, turbidity, dissolved oxy pH at station R1_ENV_124, Route 1	gen ar	nd 57
Figure	e 8.1: Sediment composition, Route 1		66
Figure	e 8.2a: Sediment fractional composition overlaid on bathymetry, Route 1		67
Figure	e 12.1: Relative (maximum normalised) elemental concentrations in sediments, Ro	ute 1	87
Figure	e 13.1: Example seabed photographs of 'Sublittoral mixed deposit' (SLMXD)/ "13,0 bottom", Route 1)00 - H	lard 95
Figure	e 13.2: Example seabed photographs of 'Sublittoral sand and gravel' (SLSED)/ "14 Unconsolidated bottom", Route 1	,000 -	- 97
Figure	e 13.3: Example seabed photographs of "12,000 – Seagrass bed", Route 1		100
Figure	e 13.4: Completed environmental transects, showing hard coral assessment result	s, Roi	ute 1103
Figure	e 13.5: Completed environmental transects, showing seagrass assessment results	, Rou	te 1105
	Tables in the Appendices		

Table B.1: Example hierarchy from the MLEAD classification system	141
Table B.2: Hard coral assessment criteria	142
Table B.3: Soft coral assessment criteria	142
Table B.4: Seagrass assessment criteria	143

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev Page 04 20 of 602

1. Introduction

1.1 General

Fugro was contracted by ADNOC Offshore (Client) to provide bathymetric, geotechnical and geophysical investigations and environmental baseline surveys (EBS) along two proposed cable routes. This project consists of the development of two independent sub-sea high voltage direct current (HVDC) transmission links complete with onshore and offshore HVDC converter stations in the Emirate of Abu Dhabi. Cable Route 1 will connect Lower Zakum Island G to Mirfa and Route 2 will connect Umm Shaif Long Term Development Plan (LTDP) Island to Shuweihat, within the Zakum field and the Umm Shaif field, respectively.

Offshore survey operations were carried out by the MV DMS Challenger, a non-Dynamic Positioning (DP) vessel on a 24-hour basis, and the Fugro owned and operated survey launch small boat 'Thea' on a daylight only basis. The MV DMS Challenger acted as the mother vessel for the survey launch. Nearshore field operations were carried out onboard a nearshore vessel of opportunity on a daylight only basis.

This document, AD41-457-G-24202, details the results of the EBS undertaken at the proposed Route 1 location. Survey operations were undertaken between 14 April and 20 June 2020.

All survey-related works were carried out in accordance with client requirements and Fugro's standing Survey Work Practices.

1.2 Scope of Work

The scopes of work (SoW) for the EBS surveys are detailed in Fugro document P158874 Lightning EBS SoW, Rev.2, 7 May 2020, which covers the methods to be employed to conduct the environmental surveys for Project Lightning.

The EBS was designed to characterise the water column and seabed sediments at 130 stations, including a reference station, along the vicinity of Route 1. This was proposed to be achieved through collection of the following samples and data:

- Water column profiles to characterise water column physical parameters;
- Water column samples for physico-chemical and biological analysis;
- Seabed sediment samples for physico-chemical analysis;
- Seabed photographic data to characterise benthic habitats and epifauna.

1.3 Units and Conversion Parameters

1.3.1 Units

• Coordinates are expressed in metres [m];

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)			-				
~	ENVIRONMENTAL				T - ROUT	E 1	TUGRO	
	E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL						•	
ADNOC			OR SUBSEA C				Rev	Page
	ADNOC DOCUM	MENT NO.: AD	41-457-G-24202	(OEU021-V01-	Route-1)		04	21 of 602
	A		pressed in metr	es [m];				
	 Angular units a 	ie expresseu	in degrees [*].					
1.3.2	Geodetic and Proje	ction Parame	ters					
	All coordinates det Universal Transver (CM 51° E). Table 1	(UTM) projectio	n Zone 39N,	central r	meridia	n 51°		
	Table 1.1: Geodetic and	projection parar	parameters (Fugro Starfix NG navigation format)					
	Global Positioning Ge	odetic Coordina	te Reference Syster	n Parameters*				
	Datum:		WGS84 (ITRF 200	0)		Epoch 2	2000.0	
	Ellipsoid:	Ellipsoid: WGS84 EPSG C		EPSG C	ode 632	26		
	Semi-major Axis:		a = 6 378 137.000 0 m					
	Semi-minor Axis:		b = 6 356 752.314 2 m					
	Inverse Flattening:		1/f = 298.257 223 6					
	Local Datum Geodetic	Coordinate Ref	Reference System Parameters ⁺					
	Datum:		Nahrwan 1967			EPSG: 6	5270	
	Ellipsoid:		Clarke 1880 (Moc))		EPSG: 7	012	
	Semi-major Axis:		a = 6 378 249.145	5 m				
	Semi-minor Axis:		b = 6 356 514.870) m				
	Inverse Flattening:		¹ / _f = 293.465 000	0				
	Datum Transformation			wan 1967‡	I			
	X-axis Translation	+ 233.4 m	X-axis Rotation	0.00 arcsec	Scale – 0.2263 ppm		ppm	
	Y-axis Translation	+ 160.7 m	Y-axis Rotation	0.00 arcsec				
	Z-axis Translation	– 381.5 m	Z-axis Rotation	0.554 arcsec	Fugro Coo	de:	4	1231
	Local Projection Paran	neters						
	Map Projection:		Universal Transverse Mercator EPSG C		EPSG C	ode 16()39	
	Grid System:		UTM Zone 39 N					
	Central Meridian:		5° 00 00 East					
	Latitude of Origin:		CO CO CO North)				
	False Easting:		500 000 m					
	False Northing:		0 m					
	Scale Factor on Centra	l Meridian:	0.9996					
	Units:		Metre					
	Notes * = Fugro Starfix navigati † = ADNOC Offshore Tea ‡ = Right-handed coordir	chnical Standard A	0-ENG-Y-SP-001 (Re	v.0)			ons	

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

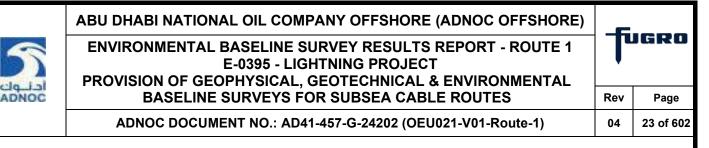
1.3.3 Vertical Datum

All water depths on charts are reduced to Chart Datum (CD) using predicted tides. Water depths measured while using sampling equipment, such as the drop-down camera and in situ water profiler, are depths below sea level (BSL).

1.3.4 Time

All survey data were logged in Coordinated Universal Time (UTC). United Arab Emirates local time is UTC + 4 hours.

1.4 Background Information


The Arabian Gulf is a semi-enclosed marginal sea, connected to the Gulf of Oman through the 56 km Strait of Hormuz (Chao et al., 1992). Several biotopes of potential ecological importance are known to occur in the Arabian Gulf, within the region of the Hail and Mubarraz Islands.

Coral communities of the Arabian Gulf occur in two main forms: patch or platform reefs in shallow water, and as fringing reefs around offshore islands and bathymetric highs. Coral reefs support high abundances of a diverse array of fauna. They act as nurseries for commercial fish species and provide shoreline protection from erosion and inundation during storms (Environment Agency-Abu Dhabi [EAD], 2008).

Coral reefs in the Arabian Gulf are often patchy in nature, which is reported to be attributed to high rates of sedimentation, and a lack of suitable substrate. The corals of the Arabian Gulf are also species poor when compared to communities in other areas of the world (John & George, 2001). John and George (1998) observed that extremely high sea water temperatures, recorded during El Niño events in 1996 and 1998, were primarily responsible for the coral bleaching and subsequent mass mortality of coral in this part of the world. Coral reefs in the Arabian Gulf are also subject to very high salinity levels, typically 40 parts per thousand (ppt), to 50 ppt, but sometimes up to 60 ppt (John & George, 2001), which add to the rigors of this habitat.

Approximately 540 species of coral are reported to exist in the Arabian Gulf (Basson et al., 1977). The shallow water reefs contain large areas of Acropora with under stories of *Porites, Platygyra* and *Favia* spp. at depths of 1 m to 4 m. Deeper waters are dominated by large *Porites* colonies, with an under story of *Acropora* (John & George, 2001; Riegl, 2001; Rezai et al., 2004).

Sheppard et al. (2010) reported changes to the extent of natural marine habitats in the Arabian Gulf and general deterioration of their condition. The authors report this is due to a combination of natural stressors (high temperatures and salinity), the rapid development of the region and lack of cross border collaboration to mitigate environmental impacts.

In the Arabian Gulf only three species of seagrass can tolerate the seasonal variations of water temperature and salinity (*Halodule uninervis, Halophila stipulacea* and *Halophila ovalis*). These seagrasses are important as they support the world's second largest population of dugongs (Erftemeijer & Shuail, 2012). These seagrasses develop in deep soft sediment and encourage sedimentation, leading to the stabilisation of an area for other species to colonise the fine sediment (John & George, 2001).

Macroalgae communities are unable to grow on living corals and are found in shallow areas where corals reef coverage is lower. Where coral reefs dominate an area the brown algae *Lobophora variegata*, hard red coralline algae (Corallinales) and turf algae are found on surrounding rock or damaged/dead corals (John & George, 2001). These areas of macroalgae, coralline algae and turf algae have increased with the demise of the corals (John & George, 2001).

1.5 Environmental Legislation

Several Federal laws and policies regarding the protection of the marine and coastal environment are in place in the UAE. The primary legislation for environmental protection in the UAE is Federal Law No. 24 of 1999 for the environment protection and development of the environment which relates to environmental protection and development, pollution control, conservation of biodiversity, sustainable exploitation and compliance with international and regional conventions.

Other laws relevant to environmental issues are:

- Federal Law 9 was introduced in 1983 in response to a marked decline in desert and marine species in the UAE and regulates the hunting and gathering of various species including the dugong and several seabirds;
- Federal law 23 on the exploitation, protection and development of marine biological resources was introduced in 1999 to regulate fisheries and mitigate overfishing;
- Federal Laws 11 of 2002 and 16 of 2007 respectively regard the regulation and control of international trade in endangered species of wild flora and fauna animal protection. In addition to the latter, an executive order was issued by the Council of Ministers Decree No. 22 of 2003.

A number of international conventions involving the environment also apply in the UAE. Among these, the Convention on Biological Diversity (CBD) is the single most important multi-lateral framework for the conservation of biodiversity. To ensure its implementation, the National Biodiversity Strategy and Action Plan (NBSAP) has been developed to implement global commitment through local actions. The objectives and targets of the Biodiversity Strategy are aligned to the National Biodiversity Strategy and Action Plan 2014 to 2021, which was developed by the Ministry of Climate Change and Environment (MOCCAE) (Al Dhaheri et al., 2017). In 1990, the Convention on International Trade in Endangered Species of Fauna and Flora (CITES), which prevents the trade of listed

threatened species such as the dugong (United Nations Environment Programme World Conservation Monitoring Centre [UNEP-WCMC], 2014), was also applied in UAE.

In line with the Emirate's commitment to sustainable development and to implementing an ecosystem approach to biodiversity conservation, the EAD has identified 12 critical habitats (CH) and 8 environmentally sensitive habitats (ESH) within Abu Dhabi Emirate (QCC, 2017). The classification of these habitats as 'critical' or 'environmentally sensitive' is based on the importance of the habitat and its threat status as outlined in the International Union of Conservation of Nature (IUCN) Red List of Ecosystems Criteria for assessing the risk of ecosystem collapse (IUCN, 2020).

Table 1.2 provides a list of sensitive habitats that may occur within the current survey area, along with their designation. Figure 1.1 spatially displays the marine protected areas of Abu Dhabi in relation to the Route 1 survey area.

Species/Habitat	Habitat Classification Manual Code (2015)	Description	Designation/Status
Coral reef	11,000	Areas characterized by a substrate or environmental setting largely constructed by the reef-building activities of corals and associated organisms	Critical habitat
Seagrass	12,000	Subtidal benthic substrates, generally composed of unconsolidated sediments, and characterised by greater than 10 % cover of rooted vascular seagrass species	Critical habitat
Algae communities	13,010	Seaweeds (macro algae) that are found either in combination with seagrass and reef communities or in a separate community aggregation	Environmentally sensitive

Table 1.2: Potential sensitive species and habitats, Route 1

Page

24 of 602

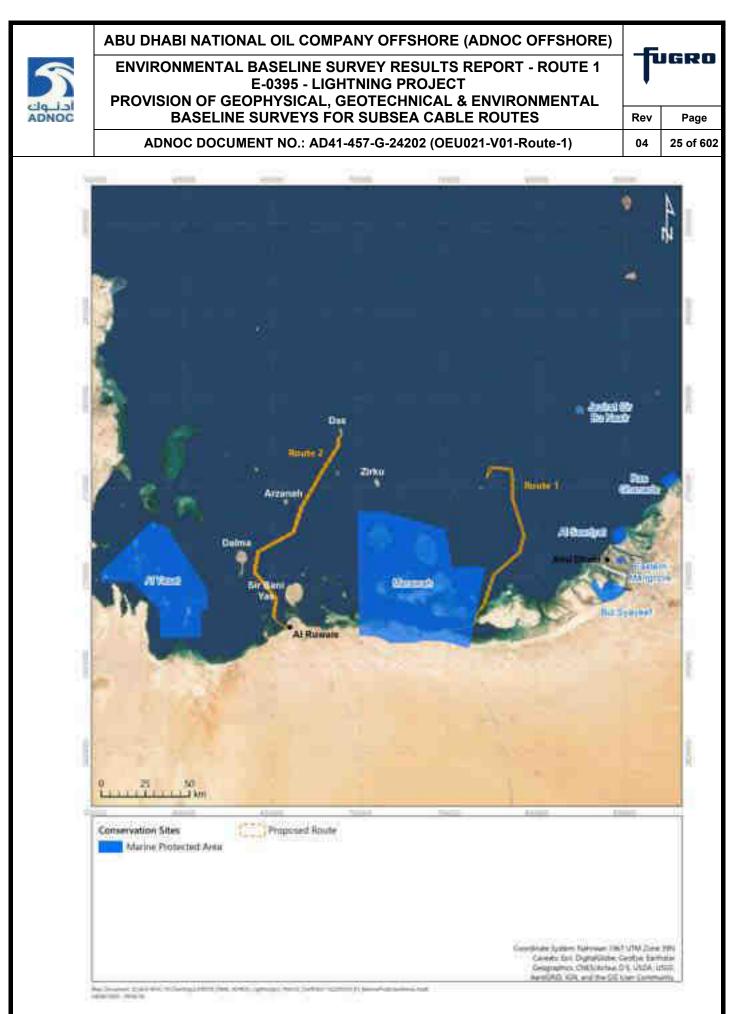


Figure 1.1: Protected areas relevant to the survey area, Route 1

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)		
5	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	Ţ	IGRO
ADNOC	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	26 of 602

1.6 Regional Standards and Comparable Studies

Sediments and water sample data were compared to the Abu Dhabi Specification ADS 18/2017 Ambient Marine Water and Sediments Maximum Allowable Concentrations (MAC) (QCC, 2017).

Additionally, water sample data were also compared to the internationally recognised United States Environmental Protection Agency (US EPA) criterion continuous concentration (CCC) and criterion maximum concentration (CMC) values (US EPA, 2020), where available. Benzene, toluene, ethylbenzene and xylene (BTEX) concentrations were compared to the Canadian Council of Ministers of the Environment (CCME) Marine Long Term Water Quality Guidelines for the Protection of Aquatic Life values (CCME, 2020).

Sediment sample data were compared to US National Oceanographic and Atmospheric Administration (NOAA) effects range low (ERL) values (Buchman, 2008). Detrimental effects are rarely observed in biota when concentrations are below these values.

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)		
5	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	Ţ	IGRO
ADNOC	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	27 of 602

2. Environmental Survey Methods

2.1 Survey Strategy

The survey strategy comprised the acquisition of seabed video data to assess the benthic habitats and communities present in the survey area. Sediment sampling (including soil samples taken every 8 km along the proposed route) was to be undertaken to determine the physico-chemical properties of the marine sediments. Water column sampling and water profiling was undertaken to assess water column physico-chemistry at the time of sampling.

Eleven transects were proposed along Route 1. Acquisition of seabed video data was required to assess the benthic habitats and communities.

Tables 2.1 to 2.3 provide the coordinates, data to be acquired and rationale for each location, Figure 2.1 a and b provide a spatial display of the proposed survey positions.

Clarke 1880 (Clarke 1880 (Mod) Spheroid, Nahrwan 1967 Datum, UTM Projection, Zone 39 North, CM 51° East							
Station	Point on Line	Easting [m]	Northing [m]	Rationale	Data Acquisition			
D1 TD01	SOL	760 179.2	2 671 403.9	Transition on slope from lower area to	Video and			
R1_TR01	EOL	760 273.9	2 671 448.8	shallower area up slope. Area of mottled bathymetry surface	stills			
D1 TD02	SOL	762 897.0	2 672 216.3	Shallow area of survey corridor with	Video and			
R1_TR02	EOL	762 782.8	2 672 177.5	uneven bathymetric surface. Shallowest point with a depression at centre	stills			
	SOL	764 845.6	2 673 959.7	Running across deeper area across	Video and			
R1_TR03	EOL	764 727.5	2 673 927.2	shallow area with uneven bathymetric surface	stills			
	SOL	764 987.8	2 675 363.7	Mound in the deeper area of the survey	Video and			
R1_TR04	EOL	765 082.0	2 675 363.3	corridor, possible coral	stills			
	SOL	788 820.3	2 711 668.3	Selected for coverage of a slight bathymetric trough with higher	Video and			
R1_TR04B	EOL	788 932.0	2 711 776.1	reflectivity and to give coverage on route as alternative to R1_TR04	stills			
	SOL	771 193.4	2 689 055.8	Chosen for ground truthing in area of	Video and			
R1_TR05	EOL	771 217.7	2 689 171.2	higher reflectivity sediments to cover Route 1B	stills			

Table 2.1: Proposed camera transects, Route 1

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT **PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES**

fugro Rev Page 04 28 of 602

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Station	Point on Line	Easting [m]	Northing [m]	Rationale	Data Acquisition	
D1 TD00	SOL	777 401.5	2 701 779.7		Video and	
R1_TR06	EOL	777 340.1	2 701 657.1	Depth change and sediment boundary	stills	
D1 TD07	SOL	793 049.3	2 722 052.6	Depth change and sediment boundary,	Video and	
R1_TR07	EOL	792 993.1	2 722 185.4	as well as being located within the deepest part of the route	stills	
D1 TD09	SOL	791 645.3	2 713 424.6	Deference station shacen by ADNOC	Video and	
R1_TR08	EOL	791 736.9	2 713 316.5	Reference station chosen by ADNOC	stills	
D1 TD00	SOL	786 713.4	2 744 250.3	Patches of higher reflectivity chosen by	Video and	
R1_TR09	EOL	786 810.6	2 744 305.3	geophysicist interpreted to be possible gas discharges from sediments	stills	
D1 TD10	SOL	779 346.7	2 761 563.9	Chosen for ground-truthing of hard area	Video and	
R1_TR10	EOL	779 443.5	2 761 547.3	where low sample retention was observed.	stills	

SOL = Start of line

EOL = End of line

Table 2.2: Proposed environmental sampling stations, Route 1

Clarke 1880 (Mod) Spheroid, Nahrwan 1967 Datum, UTM Projection, Zone 39 North, CM 51° East					
Station	Easting [m]	Northing [m]	Rationale	Data/Sample Acquisition	
R1_ENV_001	751 800.5	2 669 184.1	Approx. KP 1.000	PC, WP, WS	
R1_ENV_002	752 765.9	2 669 444.8	Approx. KP 2.000	PC, WP, WS	
R1_ENV_003	753 732.2	2 669 702.4	Approx. KP 3.000	PC, WP, WS	
R1_ENV_004	754 698.0	2 669 961.5	Approx. KP 4.000	PC, WP, WS	
R1_ENV_005	755 664.9	2 670 216.9	Approx. KP 5.000	PC, WP, WS	
R1_ENV_006	756 631.1	2 670 474.6	Approx. KP 6.000	PC, WP, WS	
R1_ENV_007	757 597.3	2 670 732.2	Approx. KP 7.000	PC, WP, WS	
R1_ENV_008	758 565.9	2 670 981.4	Approx. KP 8.000	PC, WP, WS	
R1_ENV_009	759 529.8	2 671 247.5	Approx. KP 9.000	PC, WP, WS	
R1_ENV_010	760 496.1	2 671 505.1	Approx. KP 10.000	PC, WP, WS	
R1_ENV_011	761 468.0	2 671 740.2	Approx. KP 11.000	PC, WP, WS	
R1_ENV_012	762 431.8	2 672 008.6	Approx. KP 12.000	PC, WP, WS	
R1_ENV_013	763 402.3	2 672 259.4	Approx. KP 13.000	PC, WP, WS	

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

TugRORevPage0429 of 602

Station	Easting [m]	Northing [m]	Rationale	Data/Sample Acquisition
R1_ENV_014	764 370.7	2 672 508.5	Approx. KP 14.000	PC, WP, WS
R1_ENV_015	764 666.3	2 673 463.8	Approx. KP 15.000	PC, WP, WS
R1_ENV_016	764 873.6	2 674 442.1	Approx. KP 16.000	PC, WP, WS
R1_ENV_017	765 082.2	2 675 420.1	Approx. KP 17.000	PC, WP, WS
R1_ENV_018	765 298.5	2 676 396.5	Approx. KP 18.000	PC, WP, WS
R1_ENV_019	765 502.2	2 677 375.5	Approx. KP 19.000	PC, WP, WS
R1_ENV_020	765 711.4	2 678 353.4	Approx. KP 20.000	PC, WP, WS
R1_ENV_021	766 221.4	2 679 183.1	Approx. KP 21.000	PC, WP, WS
R1_ENV_022	766 890.2	2 679 926.5	Approx. KP 22.000	PC, WP, WS
R1_ENV_023	767 564.6	2 680 664.9	Approx. KP 23.000	PC, WP, WS
R1_ENV_024	768 867.9	2 681 362.2	Approx. KP 24.000	PC, WP, WS
R1_ENV_025	768 797.8	2 682 774.6	Approx. KP 25.000	PC, WP, WS
R1_ENV_026	770 226.2	2 683 071.7	Approx. KP 26.000	PC, WP, WS
R1_ENV_027	769 598.4	2 684 338.9	Approx. KP 27.000	PC, WP, WS
R1_ENV_028	770 865.6	2 684 966.7	Approx. KP 28.000	PC, WP, WS
R1_ENV_029	770 237.8	2 686 233.9	Approx. KP 29.000	PC, WP, WS
R1_ENV_030	771 505.1	2 686 861.7	Approx. KP 30.000	PC, WP, WS
R1_ENV_031	770 877.3	2 688 128.9	Approx. KP 31.000	PC, WP, WS
R1_ENV_032	772 144.5	2 688 756.7	Approx. KP 32.000	PC, WP, WS
R1_ENV_033	771 516.7	2 690 024.0	Approx. KP 33.000	PC, WP, WS
R1_ENV_034	772 783.5	2 690 650.6	Approx. KP 34.000	PC, WP, WS
R1_ENV_035	772 156.1	2 691 919.0	Approx. KP 35.000	PC, WP, WS
R1_ENV_036	773 423.4	2 692 546.8	Approx. KP 36.000	PC, WP, WS
R1_ENV_037	772 795.6	2 693 814.0	Approx. KP 37.000	PC, WP, WS
R1_ENV_038	774 062.8	2 694 441.8	Approx. KP 38.000	PC, WP, WS
R1_ENV_039	773 435.0	2 695 709.1	Approx. KP 39.000	PC, WP, WS
R1_ENV_040	774 702.2	2 696 336.8	Approx. KP 40.000	PC, WP, WS
R1_ENV_041	774 074.4	2 697 604.1	Approx. KP 41.000	PC, WP, WS
R1_ENV_042	775 341.7	2 698 231.9	Approx. KP 42.000	PC, WP, WS
R1_ENV_043	774 713.9	2 699 499.1	Approx. KP 43.000	PC, WP, WS
R1_ENV_044	775 981.1	2 700 126.9	Approx. KP 44.000	PC, WP, WS
R1_ENV_045	775 622.5	2 701 529.6	Approx. KP 45.000	PC, WP, WS

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

FUGRORevPage0430 of 602

Station	Easting [m]	Northing [m]	Rationale	Data/Sample Acquisition
R1_ENV_046	777 033.2	2 701 428.9	Approx. KP 46.000	PC, WP, WS
R1_ENV_047	777 133.9	2 702 839.5	Approx. KP 47.000	PC, WP, WS
R1_ENV_048	778 544.5	2 702 738.8	Approx. KP 48.000	PC, WP, WS
R1_ENV_049	778 638.4	2 704 157.3	Approx. KP 49.000	PC, WP, WS
R1_ENV_050	780 062.6	2 704 040.9	Approx. KP 50.000	PC, WP, WS
R1_ENV_051	780 156.5	2 705 459.4	Approx. KP 51.000	PC, WP, WS
R1_ENV_052	781 567.1	2 705 358.7	Approx. KP 52.000	PC, WP, WS
R1_ENV_053	781 667.8	2 706 769.3	Approx. KP 53.000	PC, WP, WS
R1_ENV_054	783 078.5	2 706 668.6	Approx. KP 54.000	PC, WP, WS
R1_ENV_055	783 179.2	2 708 079.2	Approx. KP 55.000	PC, WP, WS
R1_ENV_056	784 589.8	2 707 978.5	Approx. KP 56.000	PC, WP, WS
R1_ENV_057	784 690.5	2 709 389.1	Approx. KP 57.000	PC, WP, WS
R1_ENV_058	786 101.1	2 709 288.4	Approx. KP 58.000	PC, WP, WS
R1_ENV_059	786 201.8	2 710 699.1	Approx. KP 59.000	PC, WP, WS
R1_ENV_060	787 612.4	2 710 598.3	Approx. KP 60.000	PC, WP, WS
R1_ENV_061	787 713.1	2 712 009.0	Approx. KP 61.000	PC, WP, WS
R1_ENV_062	789 123.8	2 711 908.3	Approx. KP 62.000	PC, WP, WS
R1_ENV_063	789 224.5	2 713 318.9	Approx. KP 63.000	PC, WP, WS
R1_ENV_064	790 729.0	2 713 506.2	Approx. KP 64.000	PC, WP, WS
R1_ENV_065	790 019.4	2 714 729.5	Approx. KP 65.000	PC, WP, WS
R1_ENV_066	791 242.6	2 715 439.1	Approx. KP 66.000	PC, WP, WS
R1_ENV_067	790 533.0	2 716 662.4	Approx. KP 67.000	PC, WP, WS
R1_ENV_068	791 756.3	2 717 372.1	Approx. KP 68.000	PC, WP, WS
R1_ENV_069	791 046.6	2 718 595.3	Approx. KP 69.000	PC, WP, WS
R1_ENV_070	792 269.9	2 719 305.0	Approx. KP 70.000	PC, WP, WS
R1_ENV_071	791 560.3	2 720 528.3	Approx. KP 71.000	PC, WP, WS
R1_ENV_072	792 783.6	2 721 237.9	Approx. KP 72.000	PC, WP, WS
R1_ENV_073	792 073.9	2 722 461.2	Approx. KP 73.000	PC, WP, WS
R1_ENV_074	793 197.5	2 723 445.7	Approx. KP 74.000	PC, WP, WS
R1_ENV_075	791 945.8	2 724 103.8	Approx. KP 75.000	PC, WP, WS
R1_ENV_076	792 603.9	2 725 355.6	Approx. KP 76.000	PC, WP, WS
R1_ENV_077	791 352.1	2 726 013.7	Approx. KP 77.000	PC, WP, WS

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

RevPage0431 of 602

Station	Easting [m]	Northing [m]	Rationale	Data/Sample Acquisition
R1_ENV_078	792 010.3	2 727 265.4	Approx. KP 78.000	PC, WP, WS
R1_ENV_079	790 758.5	2 727 923.5	Approx. KP 79.000	PC, WP, WS
R1_ENV_080	791 416.6	2 729 175.3	Approx. KP 80.000	PC, WP, WS
R1_ENV_081	790 164.9	2 729 833.4	Approx. KP 81.000	PC, WP, WS
R1_ENV_082	790 823.0	2 731 085.2	Approx. KP 82.000	PC, WP, WS
R1_ENV_083	789 571.2	2 731 743.3	Approx. KP 83.000	PC, WP, WS
R1_ENV_084	790 229.4	2 732 995.0	Approx. KP 84.000	PC, WP, WS
R1_ENV_085	788 881.5	2 733 962.3	Approx. KP 85.000	PC, WP, WS
R1_ENV_086	789 635.7	2 734 904.9	Approx. KP 86.000	PC, WP, WS
R1_ENV_087	788 384.0	2 735 563.0	Approx. KP 87.000	PC, WP, WS
R1_ENV_088	789 042.1	2 736 814.8	Approx. KP 88.000	PC, WP, WS
R1_ENV_089	787 790.3	2 737 472.9	Approx. KP 89.000	PC, WP, WS
R1_ENV_090	788 448.5	2 738 724.6	Approx. KP 90.000	PC, WP, WS
R1_ENV_091	787 196.7	2 739 382.8	Approx. KP 91.000	PC, WP, WS
R1_ENV_092	787 854.8	2 740 634.5	Approx. KP 92.000	PC, WP, WS
R1_ENV_093	786 603.1	2 741 292.6	Approx. KP 93.000	PC, WP, WS
R1_ENV_094	787 261.2	2 742 544.4	Approx. KP 94.000	PC, WP, WS
R1_ENV_095	786 009.4	2 743 202.5	Approx. KP 95.000	PC, WP, WS
R1_ENV_096	786 750.8	2 744 304.6	Approx. KP 96.000	PC, WP, WS
R1_ENV_097	785 770.7	2 745 324.1	Approx. KP 97.000	PC, WP, WS
R1_ENV_098	786 790.2	2 746 304.2	Approx. KP 98.000	PC, WP, WS
R1_ENV_099	785 810.1	2 747 323.7	Approx. KP 99.000	PC, WP, WS
R1_ENV_100	786 829.6	2 748 303.8	Approx. KP 100.000	PC, WP, WS
R1_ENV_101	785 849.5	2 749 323.3	Approx. KP 101.000	PC, WP, WS
R1_ENV_102	786 869.0	2 750 303.4	Approx. KP 102.000	PC, WP, WS
R1_ENV_103	785 888.8	2 751 322.9	Approx. KP 103.000	PC, WP, WS
R1_ENV_104	786 908.3	2 752 303.1	Approx. KP 104.000	PC, WP, WS
R1_ENV_105	785 928.2	2 753 314.2	Approx. KP 105.000	PC, WP, WS
R1_ENV_106	786 864.4	2 754 382.3	Approx. KP 106.000	PC, WP, WS
R1_ENV_107	785 725.6	2 755 221.2	Approx. KP 107.000	PC, WP, WS
R1_ENV_108	786 565.0	2 756 359.7	Approx. KP 108.000	PC, WP, WS
R1_ENV_109	785 425.7	2 757 198.6	Approx. KP 109.000	PC, WP, WS

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

FUGRORevPage0432 of 602

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Clarke 1880 (Mod)	Clarke 1880 (Mod) Spheroid, Nahrwan 1967 Datum, UTM Projection, Zone 39 North, CM 51° East						
Station	Easting [m]	Northing [m]	Rationale	Data/Sample Acquisition			
R1_ENV_110	786 265.5	2 758 337.2	Approx. KP 110.000	PC, WP, WS			
R1_ENV_111	785 125.7	2 759 176.0	Approx. KP 111.000	PC, WP, WS			
R1_ENV_112	785 966.0	2 760 314.7	Approx. KP 112.000	PC, WP, WS			
R1_ENV_113	784 772.4	2 760 185.6	Approx. KP 113.000	PC, WP, WS			
R1_ENV_114	783 859.2	2 761 244.2	Approx. KP 114.000	PC, WP, WS			
R1_ENV_115	782 782.9	2 760 393.0	Approx. KP 115.000	PC, WP, WS			
R1_ENV_116	781 863.5	2 761 380.8	Approx. KP 116.000	PC, WP, WS			
R1_ENV_117	780 793.3	2 760 600.4	Approx. KP 117.000	PC, WP, WS			
R1_ENV_118	779 867.9	2 761 517.3	Approx. KP 118.000	PC, WP, WS			
R1_ENV_119	778 769.3	2 760 811.4	Approx. KP 119.000	PC, WP, WS			
R1_ENV_120	777 872.3	2 761 653.9	Approx. KP 120.000	PC, WP, WS			
R1_ENV_121	776 814.2	2 761 015.2	Approx. KP 121.000	PC, WP, WS			
R1_ENV_122	775 876.6	2 761 790.4	Approx. KP 122.000	PC, WP, WS			
R1_ENV_123	775 086.9	2 760 965.0	Approx. KP 123.000	PC, WP, WS			
R1_ENV_124	773 137.2	2 761 211.9	Approx. KP 124.000	PC, WP, WS			
R1_ENV_125	774 141.5	2 759 676.9	Approx. KP 125.000	PC, WP, WS			
R1_ENV_126	772 466.7	2 759 400.9	Approx. KP 126.000	PC, WP, WS			
R1_ENV_127	773 006.5	2 758 130.4	Approx. KP 127.000	PC, WP, WS			
R1_ENV_128	772 093.6	2 757 483.3	Approx. KP 128.000	PC, WP, WS			
R1_ENV_129	772 016.8	2 756 312.8	Approx. KP 129.000	PC, WP, WS			
R1_ENV_REF	791 692.6	2 713 369.3	Reference station	PC, WP, WS			

Notes

KP = Kilometre point

PC = Physico-chemical sample

WP = Water profile

WS = Water samples

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev Page
 04 33 of 602

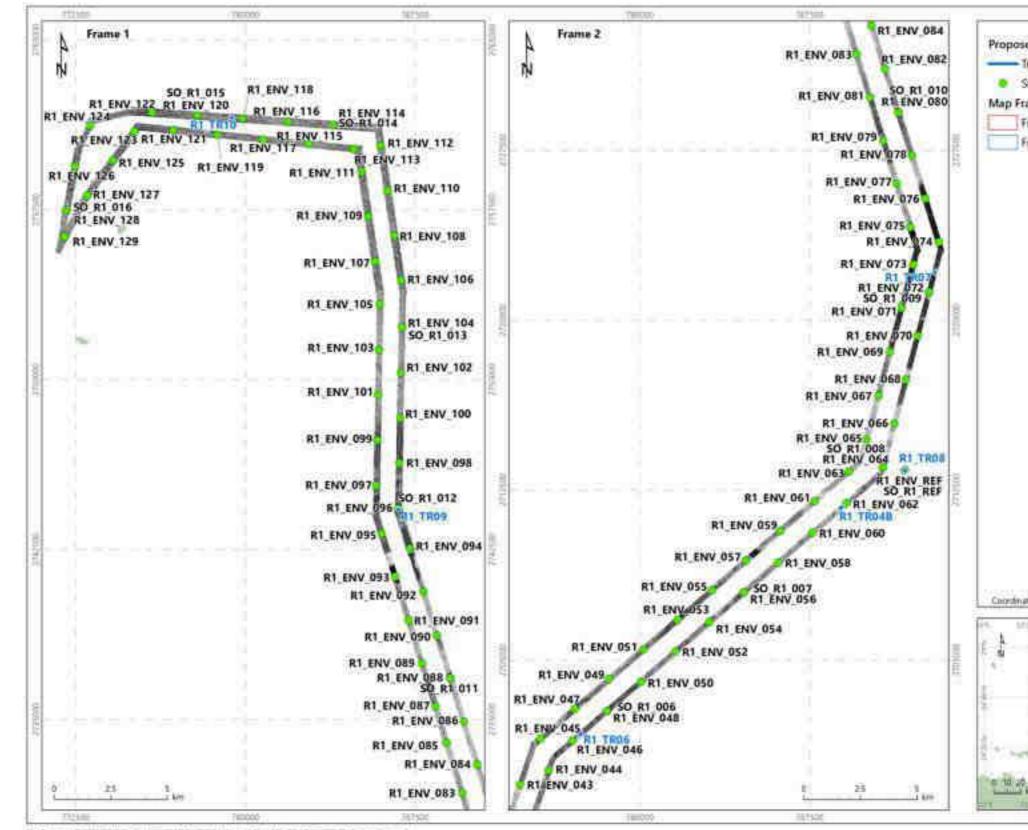
UGRO

Table 2.3: Proposed soil sampling stations, Route 1

Clarke 1880 (Moc	Clarke 1880 (Mod) Spheroid, Nahrwan 1967 Datum, UTM Projection, Zone 39 North, CM 51° East						
Station	Easting [m]	Northing [m]	Rationale	Sample Acquisition			
SO_R1_001	758 565.9	2 670 981.4	Approx. KP 7.000	Soil sample			
SO_R1_002	764 873.6	2 674 442.1	Approx. KP 16.000	Soil sample			
SO_R1_003	768 867.9	2 681 362.2	Approx. KP 24.000	Soil sample			
SO_R1_004	772 144.5	2 688 756.7	Approx. KP 32.000	Soil sample			
SO_R1_005	774 702.2	2 696 336.8	Approx. KP 40.000	Soil sample			
SO_R1_006	778 544.5	2 702 738.8	Approx. KP 48.000	Soil sample			
SO_R1_007	784 589.8	2 707 978.5	Approx. KP 56.000	Soil sample			
SO_R1_008	790 729.0	2 713 506.2	Approx. KP 64.000	Soil sample			
SO_R1_009	792 783.6	2 721 237.9	Approx. KP 72.000	Soil sample			
SO_R1_010	791 416.6	2 729 175.3	Approx. KP 80.000	Soil sample			
SO_R1_011	789 042.1	2 736 814.8	Approx. KP 88.000.	Soil sample			
SO_R1_012	786 750.8	2 744 304.6	Approx. KP 96.000	Soil sample			
SO_R1_013	786 908.3	2 752 303.1	Approx. KP 104.000	Soil sample			
SO_R1_014	785 966.0	2 760 314.7	Approx. KP 112.000	Soil sample			
SO_R1_015	777 872.3	2 761 653.9	Approx. KP 120.000	Soil sample			
SO_R1_016	772 093.6	2 757 483.3	Approx. KP 128.000	Soil sample			
SO_R1_REF	791 692.6	2 713 369.3	Reference station	Soil sample			

Notes

KP = Kilometre point



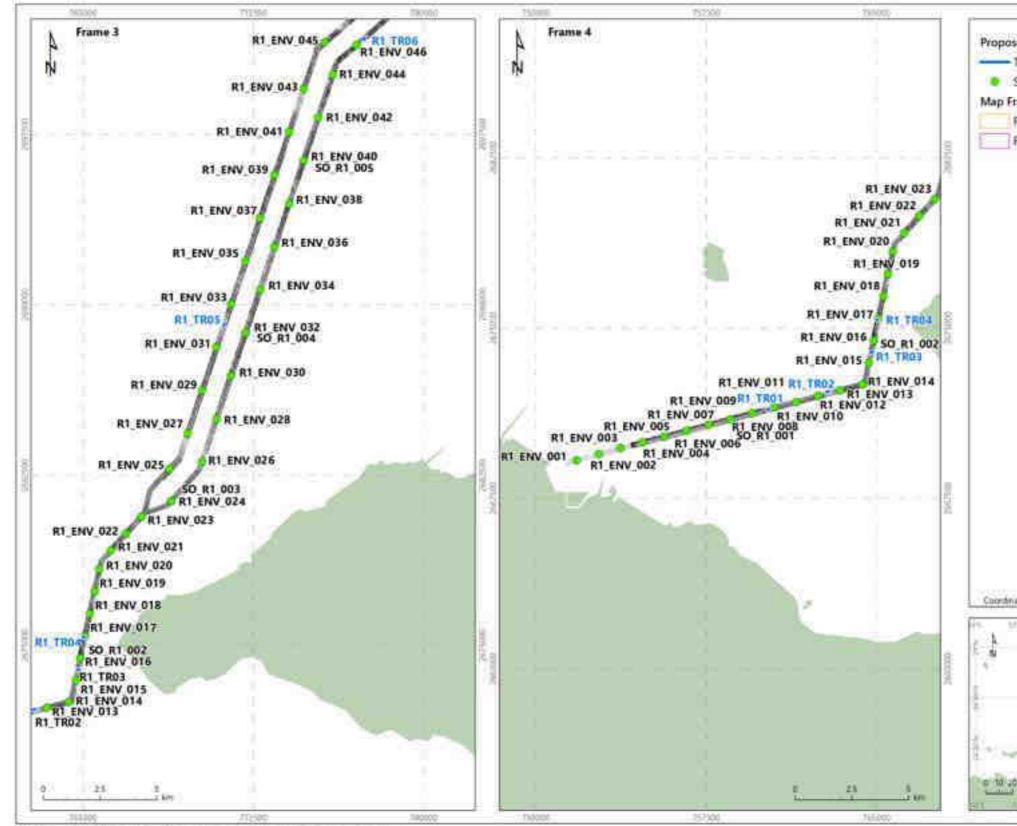
ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1

E-0395 - LIGHTNING PROJECT

PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Mag Departure (2011) Mill Mills Perturbang (2011) (Mill (2011) (approxip)) March (2011) 2 A Perturbang and many training and a


Figure 2.1a: Proposed environmental survey locations overlain on survey area side scan sonar (SSS) mosaic, Route 1

		UGRO
	Rev	Page
	04	34 of 602
ect on Extents e 1 e 2		
dem, Nahmun 1967 UTM.	Down With	
19/901 344	bene p	
3	and a	
J.	1	

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Naj Deserve (2019 Mill Prilling) (2019 Hill 2019 (2019 (2019)) Paris (2019) Collar College A. Paparette grant, NARON (2019)

Figure 2.1b: Proposed environmental survey locations overlain on survey area side scan sonar (SSS) mosaic, Route 1

	l l	UGRO
	Rev	Page
	04	35 of 602
d Survey Locations ansect ation me Extents ame 3 ame 4		
tem National 1967 UTM	Zone 2911	

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	ļ	GRO
BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	v	Page
ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	1	36 of 602

2.2 Survey Methods

A

2.2.1 Water Column Profiling

Water profiles were to be acquired from sea surface to near seabed during deployment and recovery of a YSI EXO2 conductivity, temperature and depth (CTD) profiler. The water column profiler was set up to record depth, dissolved oxygen (DO), pH, salinity, turbidity and temperature. At each station, the instrument was stabilised in the water column for 5 minutes before being slowly lowered to the bottom, where a fix was taken. The instrument was then recovered to the surface, resulting in the acquisition of data on both the down-cast and the up-cast.

2.2.2 Water Column Sampling

Water samples were to be collected using a 5 L Niskin water sampler at three water depths for each station. At each station, one water sample was collected approximately 1 m below the surface ('top'), one approximately halfway (middle) and one from approximately 1 m above the seabed ('bottom'). Due to water depth limitations in shallow coastal areas, the following criteria was established to determine where the samples would be recovered from.

Where the water depth was:

- < 5 m, a mid-depth sample was taken;</p>
- Between 5 m to 10 m, a bottom and top sample were taken;
- > 10 m, a bottom, mid-depth and top sample were taken.

The water at each depth/station was recovered and decanted into labelled sample bottles provided by the laboratories with subsamples for water quality, hydrocarbons and metals parameters.

2.2.3 Sediment Grab Sampling

Seabed samples were to be acquired using a 0.1 m² single van Veen grab with a KC Denmark Day grab as a back-up. At each station, grab samples were to be acquired for physico-chemical analysis (particle size distribution (PSD), metals and hydrocarbons, sediment nutrients and polychlorinated biphenyls (PCBs)).

2.2.4 Seabed Video/Photography

Seabed video and photography were acquired using a Subsea Technology and Rentals SeaSpyder Nano underwater camera.

Seabed video footage was displayed on a computer monitor, and viewed in real time, assisting in the control of the camera in the water. A video overlay was used to overlay a navigation string including the time, date, depth (below sea level) and location (easting and northing). The survey location and station number were also displayed (manually updated).

Video footage and video frame captures (stills) were taken during all deployments. Manual positional fixes were taken for all stills.

The standard height of the camera above the seabed was ~ 0.5 m, which provided an approximate field of view of 1 m of seabed. Two lasers were set up at 6.8 cm apart to provide a scale.

2.3 Analytical Sampling

The following list briefly describes the suites of analyses carried out. Further details of the methods used for the analyses are in Appendix B.

- Water column physical parameters were measured using a multiparameter sonde; data are presented in Section 4.
- Water quality was assessed by analysis of a suite of analytes, presented in Sections 5, 6 and 7;
- Water total hydrocarbon content (THC) by gas chromatography–flame ionisation detection (GC–FID; Section 6.2.1);
- Water 2 to 6 ring aromatic hydrocarbons, by gas chromatography-mass spectrometry (GC–MS; Section 6.2.2);
- Benzene, toluene, ethylbenzene and xylene (BTEX) by headspace gas chromatography with flame ionisation detection (GC–FID–HS) and phenols by GC–MS, Sections 6.2.3 and 6.2.4;
- Water trace and major elements, by inductively coupled plasma-mass spectrometry (ICP-MS; Section 7);
- The results of the sediment characterisation (PSD, total organic carbon, carbonate and nutrient content) are presented in Sections 8 and 9;
- Sediment THC by gas chromatography–flame ionisation detection (GC-FID) is presented in Section 10.2.1 and 10.3;
- Sediment polycyclic aromatic hydrocarbons (PAHs) are presented in Section 10.2.2 and 10.3;
- BTEX by gas chromatography-flame ionisation detection (GC-MS) are presented in Section 10.2.3 and 10.3;
- Polychlorinated biphenyls (PCBs) were analysed by gas chromatography with micro-electron capture detection (GC-µECD) (Section 11);
- Sediment trace and major elements, by ICP-OES and ICP-MS are presented in Section 12;
- Habitats were classified in accordance with the Marine Life of the Emirate of Abu Dhabi (MLEAD) and EAD classifications (Section 13).

The results from the soil samples are detailed within Sections 8.3, 0, 10.3 and 12.3.

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1) FUGRORevPage0438 of 602

3. Field Operations

3.1 Seabed Video/Photography

Photographic still and video data were successfully acquired along all proposed camera transects.

Table 3.1 lists the completed environmental camera transects surveyed and details the data acquired from each transect.

Table 3.1: Completed camera transects, Route 1

Clarke 1880 (Mod) Spheroid, Nahrwan 1967 Datum, UTM Projection, Zone 39 North, CM 51° East						
Transect		Easting [m]	Northing [m]	Depth [m BSL]	Length [m]	Data Acquisition
R1_TR01	SOL	760 295.3	2 671 460.7	6.1	138	2 min 28 sec 13 stills
	EOL	760 168.6	2 671 405.4	7.1		
D1 TD00	SOL	762 923.0	2 672 225.9	3.8		3 min 21 sec
R1_TR02	EOL	762 779.9	2 672 177.4	3.8	151	11 stills
D1 TD00	SOL	764 719.3	2 673 923.9	6.2	121	3 min 36 sec
R1_TR03	EOL	764 847.7	2 673 949.4	6.9	131	10 stills
	SOL	788 940.4	2 711 779.3	16.5	170	15 min 27 sec 18 stills
R1_TR04B	EOL	788 817.7	2 711 661.5	16.5		
	SOL	771 190.9	2 689 048.2	12.8	129	10 min 38 sec 14 stills
R1_TR05A	EOL	771 217.1	2 689 174.4	12.8		
54 7500	SOL	777 336.0	2 701 650.7	14.4	148	11 min 41 sec 17 stills
R1_TR06	EOL	777 401.6	2 701 783.0	16.4		
54 7507	SOL	793 050.8	2 722 048.5	22.6		12 min 10 sec 19 stills
R1_TR07	EOL	792 992.7	2 722 187.8	26.0	151	
54 75004	SOL	791 639.0	2 713 431.6	19.8		12 min 38 sec 19 stills
R1_TR08A	EOL	791 738.5	2 713 314.5	19.9	154	
	SOL	786 709.7	2 744 249.1	12.7	116	7 min 34 sec 24 stills
R1_TR09	EOL	786 810.8	2 744 306.9	12.5		
R1_TR10	SOL	779 340.6	2 761 566.1	16.1	126	5 min 49 sec 12 stills
	EOL	779 465.0	2 761 544.1	16.4		

Notes

BSL = Below sea level

SOL = Start of line

EOL = End of line

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

3.2 Seabed Sampling

Due to the presence of hard substrate, suitable seabed samples were not obtained from 58 of the 130 proposed sampling stations. At least three grab attempts were made at each station. At 12 stations, limited sediment recovery enabled a partial suite of samples to be obtained. At the remaining 60 stations, a complete suite of physico-chemical sub-samples was acquired.

Sediment sampling at station SO_R1_012 was moved away from the proposed sampling location due to suspected presence of surficial gas charged sediments. Stations R1_ENV_083, R1_ENV_128 and R1_ENV_129 were moved as the proposed sampling locations fell within 200 m of subsea infrastructure.

Table 3.2 details the samples acquired, and Appendix C.1 presents detailed sampling logs.

Clarke 1880 (Mod) Spheroid, Nahrwan 1967 Datum, UTM Projection, Zone 39 North, CM 51° East					
Station	Easting [m]	Northing [m]	Depth [m BSL]	Sample Acquisition	
R1_ENV_001	751 795.0	2 669 186.9	9.7	PC	
R1_ENV_002	752 759.6	2 669 445.5	11.0	PC	
R1_ENV_011	761 465.2	2 671 732.8	4.3	Partial sample	
R1_ENV_014	764 373.4	2 672 513.5	6.1	PC	
R1_ENV_024	768 866.7	2 681 374.1	9.1	Partial sample	
R1_ENV_029	770 239.1	2 686 236.2	11.7	PC	
R1_ENV_030	771 505.4	2 686 863.6	12.5	РС	
R1_ENV_031	770 878.2	2 688 129.7	13.2	PC	
R1_ENV_038	774 057.4	2 694 442.0	9.3	PC	
R1_ENV_039	773 435.0	2 695 709.8	15.3	PC	
R1_ENV_040	774 703.5	2 696 337.3	15.4	PC	
R1_ENV_041	774 074.8	2 697 605.5	14.4	РС	
R1_ENV_042	775 347.5	2 698 224.1	12.8	Partial sample	
R1_ENV_043	774 713.7	2 699 499.7	14.6	РС	
R1_ENV_044	775 972.8	2 700 121.8	14.7	PC	
R1_ENV_045	775 614.5	2 701 524.1	17.1	PC	
R1_ENV_046	777 033.2	2 701 429.0	19.0	PC	
R1_ENV_047	777 128.9	2 702 846.8	16.2	Partial sample	
R1_ENV_048	778 544.1	2 702 738.6	17.6	PC	
R1_ENV_049	778 645.1	2 704 149.8	17.3	PC	

Table 3.2: Completed sediment sampling stations, Route 1

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

FugeRevPage0440 of 602

Clarke 1880 (Mod) Spheroid, Nahrwan 1967 Datum, UTM Projection, Zone 39 North, CM 51° East					
Station	Easting	Northing	Depth	Sample	
	[m]	[m]	[m BSL]	Acquisition	
R1_ENV_050	780 056.3	2 704 048.2	17.2	PC	
R1_ENV_051	780 162.0	2 705 453.1	13.6	Partial sample	
R1_ENV_052	781 567.6	2 705 358.4	18.6	PC	
R1_ENV_053	781 665.7	2 706 771.1	18.3	РС	
R1_ENV_054	783 071.0	2 706 673.9	16.9	РС	
R1_ENV_055	783 178.6	2 708 079.3	19.4	РС	
R1_ENV_056	784 591.0	2 707 980.0	18.6	PC	
R1_ENV_057	784 689.4	2 709 390.7	19.1	PC	
R1_ENV_058	786 103.8	2 709 289.1	18.6	PC	
R1_ENV_059	786 201.3	2 710 700.1	18.5	PC	
R1_ENV_060	787 611.7	2 710 598.3	19.4	PC	
R1_ENV_061	787 713.6	2 712 013.0	18.6	РС	
R1_ENV_064	790 026.1	2 714 734.2	20.6	РС	
R1_ENV_065	791 246.4	2 715 446.9	20.2	РС	
R1_ENV_066	790 533.9	2 716 672.0	21.9	РС	
R1_ENV_067	791 751.4	2 717 380.0	19.4	РС	
R1_ENV_068	791 038.4	2 718 601.0	22.5	РС	
R1_ENV_069	792 262.3	2 719 300.8	20.9	РС	
R1_ENV_070	791 561.8	2 720 521.1	24.1	РС	
R1_ENV_071	792 783.9	2 721 238.6	23.4	РС	
R1_ENV_072	792 073.4	2 722 462.6	25.4	РС	
R1_ENV_073	793 197.0	2 723 444.5	23.8	PC	
R1_ENV_074	791 945.4	2 724 102.9	24.5	PC	
R1_ENV_075	792 603.9	2 725 355.0	23.1	РС	
R1_ENV_076	792 019.0	2 727 262.8	22.1	РС	
R1_ENV_078	791 415.2	2 729 175.1	20.0	РС	
R1_ENV_079	790 164.9	2 729 832.1	19.9	PC	
R1_ENV_080	790 816.1	2 731 090.5	20.4	PC	
R1_ENV_081	789 396.8	2 732 329.4	15.4	PC	
R1_ENV_082	790 229.5	2 732 994.6	17.7	PC	
R1_ENV_083	789 635.0	2 734 905.0	19.2	PC	
R1_ENV_084	788 391.8	2 735 568.2	18.3	PC	

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev Page 04 41 of 602

Station	Easting	Northing	Depth [m BSL]	Sample Acquisition
R1_ENV_086	[m] 789 042.8	[m] 2 736 815.3	[m BSL] 18.7	PC
R1_ENV_087	787 783.0	2 737 467.4	20.8	PC
 R1_ENV_088	787 198.2	2 739 382.2	24.9	PC
R1_ENV_089	787 853.1	2 740 641.4	19.9	PC
R1_ENV_091	786 603.9	2 741 292.2	19.4	PC
R1_ENV_092	787 262.7	2 742 542.1	21.0	PC
R1_ENV_093	786 009.9	2 743 200.7	22.0	PC
R1_ENV_094	786 757.9	2 744 407.7	20.4	PC
R1_ENV_095	785 768.5	2 745 325.7	16.6	PC
R1_ENV_096	785 809.0	2 747 324.1	11.3	PC
R1_ENV_097	786 910.7	2 752 302.1	10.2	PC
R1_ENV_099	785 931.4	2 753 306.7	8.9	PC
R1_ENV_104	786 572.6	2 756 355.4	14.6	Partial sample
R1_ENV_105	785 428.8	2 757 191.5	13.5	Partial sample
R1_ENV_108	775 873.8	2 761 791.0	14.6	Partial sample
R1_ENV_109	773 137.0	2 761 220.8	17.3	Partial sample
R1_ENV_122	774 147.8	2 759 683.1	21.5	PC
R1_ENV_124	772 462.1	2 759 408.7	22.2	Partial sample
R1_ENV_125	751 795.0	2 669 186.9	21.1	Partial sample
R1_ENV_126	752 759.6	2 669 445.5	21.1	Partial sample

PC = Physico-chemical sample

3.3 Water Sampling and Profiling

Water samples were acquired from all proposed stations. Due to water depth limitations, a single mid water sample was acquired at 5 stations, whilst top and bottom samples were acquired at 20 stations.

Table 3.3 provides coordinates of water profiles and water samples acquired within the Route 1 survey area.

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

Rev Page 04 42 of 602

fugro

Clarke 1880 (Mod) Spheroid, Nahrwan 1967 Datum, UTM Projection, Zone 39 North, CM 51° East					
Station	Easting [m]	Northing [m]	Depth [m BSL]	Sample/Data Acquisition	
R1_ENV_001	751 799.1	2 669 198.9	9.5	WS (Bottom, Mid, Top), WP	
R1_ENV_002	752 779.7	2 669 441.6	11.0	WS (Bottom, Mid, Top), WP	
R1_ENV_003	753 734.6	2 669 700.6	6.0	WS (Bottom, Top), WP	
R1_ENV_004	754 694.5	2 669 957.8	5.0	WS (Bottom, Top), WP	
R1_ENV_005	755 666.3	2 670 215.3	5.0	WS (Bottom, Top), WP	
R1_ENV_006	756 636.4	2 670 472.9	5.5	WS (Bottom, Top), WP	
R1_ENV_007	757 596.2	2 670 730.4	6.0	WS (Bottom, Top), WP	
R1_ENV_008	758 557.1	2 671 023.0	6.5	WS (Bottom, Top), WP	
R1_ENV_009	759 522.9	2 671 328.8	6.0	WS (Bottom, Top), WP	
R1_ENV_010	760 497.7	2 671 501.7	4.5	WS (Bottom, Top), WP	
R1_ENV_011	761 469.8	2 671 735.7	5.0	WS (Bottom, Top), WP	
R1_ENV_012*	762 365.0	2 671 999.7	2.5	WS (Mid), WP	
R1_ENV_013*	763 399.3	2 672 270.6	1.7	WS (Mid), WP	
R1_ENV_014	764 357.1	2 672 491.3	5.5	WS (Bottom, Top), WP	
R1_ENV_015	764 659.3	2 673 442.7	5.0	WS (Bottom, Top), WP	
R1_ENV_016	764 864.3	2 674 442.2	11.0	WS (Bottom, Mid, Top), WP	
R1_ENV_017	765 086.2	2 675 416.4	4.5	WS (Bottom, Top), WP	
R1_ENV_018*	765 316.6	2 676 381.1	3.9	WS (Mid) WP	
R1_ENV_019*	765 485.6	2 677 370.6	2.5	WS (Mid) WP	
R1_ENV_020*	765 710.8	2 678 333.2	4.7	WS (Mid), WP	
R1_ENV_021	766 219.4	2 679 177.0	5.5	WS (Bottom, Top), WP	
R1_ENV_022	766 874.4	2 679 920.1	6.0	WS (Bottom, Top), WP	
R1_ENV_023	767 561.1	2 680 670.4	6.0	WS (Bottom, Top), WP	
R1_ENV_024	768 882.8	2 681 291.1	8.0	WS (Bottom, Top)	
R1_ENV_025	768 670.1	2 682 683.6	11.0	WS (Bottom, Mid, Top)	
R1_ENV_026	770 223.0	2 683 068.2	11.0	WS (Bottom, Mid, Top), WP	
R1_ENV_027	769 599.4	2 684 339.8	11.8	WS (Bottom, Mid, Top), WP	
R1_ENV_028	770 862.5	2 684 956.8	10.0	WS (Bottom, Top), WP	
R1_ENV_029	771 505.2	2 686 860.7	12.5	WS (Bottom, Mid, Top), WP	
R1_ENV_030	770 878.3	2 688 125.8	13.2	WS (Bottom, Mid, Top), WP	
R1_ENV_031	772 145.3	2 688 754.8	11.9	WS (Bottom, Mid, Top), WP	
R1_ENV_032	770 234.6	2 686 234.2	11.7	WS (Bottom, Mid, Top), WP	

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

RevPage0443 of 602

Clarke 1880 (Mod) Spheroid, Nahrwan 1967 Datum, UTM Projection, Zone 39 North, CM 51° East					
Station	Easting [m]	Northing [m]	Depth [m BSL]	Sample/Data Acquisition	
R1_ENV_033	771 517.1	2 690 024.1	10.6	WS (Bottom, Mid, Top), WP	
R1_ENV_034	772 786.0	2 690 648.9	11.7	WS (Bottom, Mid, Top), WP	
R1_ENV_035	772 158.9	2 691 919.4	13.8	WS (Bottom, Mid, Top), WP	
R1_ENV_036	773 423.4	2 692 546.5	12.8	WS (Bottom, Mid, Top), WP	
R1_ENV_037	772 795.4	2 693 814.0	12.6	WS (Bottom, Mid, Top), WP	
R1_ENV_038	774 064.2	2 694 441.0	9.6	WS (Bottom, Mid, Top), WP	
R1_ENV_039	773 435.2	2 695 708.8	15.4	WS (Bottom, Mid, Top), WP	
R1_ENV_040	774 703.1	2 696 337.4	15.2	WS (Bottom, Mid, Top), WP	
R1_ENV_041	774 075.3	2 697 603.8	14.5	WS (Bottom, Mid, Top), WP	
R1_ENV_042	775 343.2	2 698 231.5	12.6	WS (Bottom, Mid, Top), WP	
R1_ENV_043	774 714.2	2 699 499.2	14.6	WS (Bottom, Mid, Top), WP	
R1_ENV_044	775 981.1	2 700 127.3	14.8	WS (Bottom, Mid, Top), WP	
R1_ENV_045	775 622.4	2 701 530.2	17.0	WS (Bottom, Mid, Top), WP	
R1_ENV_046	777 033.1	2 701 428.9	18.9	WS (Bottom, Mid, Top), WP	
R1_ENV_047	777 135.0	2 702 837.8	15.9	WS (Bottom, Mid, Top), WP	
R1_ENV_048	778 545.6	2 702 738.2	17.5	WS (Bottom, Mid, Top), WP	
R1_ENV_049	778 639.3	2 704 157.3	17.3	WS (Bottom, Mid, Top), WP	
R1_ENV_050	780 062.9	2 704 041.3	17.3	WS (Bottom, Mid, Top), WP	
R1_ENV_051	780 156.5	2 705 459.5	13.7	WS (Bottom, Mid, Top), WP	
R1_ENV_052	781 566.7	2 705 359.2	18.6	WS (Bottom, Mid, Top), WP	
R1_ENV_053	781 670.1	2 706 769.2	18.3	WS (Bottom, Mid, Top), WP	
R1_ENV_054	783 081.6	2 706 670.9	17.2	WS (Bottom, Mid, Top), WP	
R1_ENV_055	783 177.5	2 708 079.6	19.5	WS (Bottom, Mid, Top), WP	
R1_ENV_056	784 589.8	2 707 977.4	18.6	WS (Bottom, Mid, Top), WP	
R1_ENV_057	784 689.8	2 709 388.3	19.1	WS (Bottom, Mid, Top), WP	
R1_ENV_058	786 103.4	2 709 289.4	18.8	WS (Bottom, Mid, Top), WP	
R1_ENV_059	786 201.7	2 710 699.6	18.5	WS (Bottom, Mid, Top), WP	
R1_ENV_060	787 612.1	2 710 599.3	19.4	WS (Bottom, Mid, Top), WP	
R1_ENV_061	787 715.6	2 712 013.1	18.7	WS (Bottom, Mid, Top), WP	
R1_ENV_062	789 125.0	2 711 908.4	14.6	WS (Bottom, Mid, Top), WP	
R1_ENV_063	789 222.5	2 713 319.4	19.4	WS (Bottom, Mid, Top), WP	
R1_ENV_064	790 728.9	2 713 505.9	20.7	WS (Bottom, Mid, Top), WP	

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

-TUGRO			
Rev	Page		
04 44 of 602			

Clarke 1880 (Mod) Spheroid, Nahrwan 1967 Datum, UTM Projection, Zone 39 North, CM 51° East					
Station	Easting [m]	Northing [m]	Depth [m BSL]	Sample/Data Acquisition	
R1_ENV_065	790 020.0	2 714 730.2	20.1	WS (Bottom, Mid, Top), WP	
R1_ENV_066	791 241.3	2 715 439.8	22.1	WS (Bottom, Mid, Top), WP	
R1_ENV_067	790 532.0	2 716 662.9	19.5	WS (Bottom, Mid, Top), WP	
R1_ENV_068	791 756.0	2 717 371.1	22.3	WS (Bottom, Mid, Top), WP	
R1_ENV_069	791 046.5	2 718 595.2	20.7	WS (Bottom, Mid, Top), WP	
R1_ENV_070	792 269.4	2 719 304.7	24.0	WS (Bottom, Mid, Top), WP	
R1_ENV_071	791 560.1	2 720 529.0	23.4	WS (Bottom, Mid, Top), WP	
R1_ENV_072	792 783.6	2 721 239.0	25.5	WS (Bottom, Mid, Top), WP	
R1_ENV_073	792 075.0	2 722 460.8	23.3	WS (Bottom, Mid, Top), WP	
R1_ENV_074	793 196.8	2 723 445.3	24.5	WS (Bottom, Mid, Top), WP	
R1_ENV_075	791 946.6	2 724 103.1	23.1	WS (Bottom, Mid, Top), WP	
R1_ENV_076	792 604.1	2 725 355.4	22.1	WS (Bottom, Mid, Top), WP	
R1_ENV_077	791 351.3	2 726 012.6	18.1	WS (Bottom, Mid, Top), WP	
R1_ENV_078	792 012.1	2 727 266.5	20.1	WS (Bottom, Mid, Top), WP	
R1_ENV_079	790 757.9	2 727 924.6	19.9	WS (Bottom, Mid, Top), WP	
R1_ENV_080	791 415.9	2 729 175.3	20.4	WS (Bottom, Mid, Top), WP	
R1_ENV_081	790 164.9	2 729 832.5	15.4	WS (Bottom, Mid, Top), WP	
R1_ENV_082	790 822.9	2 731 084.7	17.9	WS (Bottom, Mid, Top), WP	
R1_ENV_083	789 397.1	2 732 329.7	19.3	WS (Bottom, Mid, Top), WP	
R1_ENV_084	790 229.4	2 732 995.1	18.2	WS (Bottom, Mid, Top), WP	
R1_ENV_085	788 882.2	2 733 962.4	18.6	WS (Bottom, Mid, Top), WP	
R1_ENV_086	789 635.0	2 734 903.7	18.8	WS (Bottom, Mid, Top), WP	
R1_ENV_087	788 384.5	2 735 560.4	20.8	WS (Bottom, Mid, Top), WP	
R1_ENV_088	789 042.0	2 736 813.8	24.9	WS (Bottom, Mid, Top), WP	
R1_ENV_089	787 790.1	2 737 471.1	19.7	WS (Bottom, Mid, Top), WP	
R1_ENV_090	788 447.3	2 738 724.0	20.7	WS (Bottom, Mid, Top), WP	
R1_ENV_091	787 197.4	2 739 383.7	19.4	WS (Bottom, Mid, Top), WP	
R1_ENV_092	787 855.8	2 740 635.4	21.0	WS (Bottom, Mid, Top), WP	
R1_ENV_093	786 602.9	2 741 292.7	22.0	WS (Bottom, Mid, Top), WP	
R1_ENV_094	787 259.2	2 742 546.3	20.4	WS (Bottom, Mid, Top), WP	
R1_ENV_095	786 009.1	2 743 199.9	16.6	WS (Bottom, Mid, Top), WP	
R1_ENV_096	786 749.7	2 744 305.5	12.1	WS (Bottom, Mid, Top), WP	

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

FugroRevPage0445 of 602

Clarke 1880 (Mod) Spheroid, Nahrwan 1967 Datum, UTM Projection, Zone 39 North, CM 51° East					
Station	Easting [m]	Northing [m]	Depth [m BSL]	Sample/Data Acquisition	
R1_ENV_097	785 770.8	2 745 324.3	10.1	WS (Bottom, Mid, Top), WP	
R1_ENV_098	786 790.3	2 746 304.6	9.7	WS (Bottom, Top), WP	
R1_ENV_099	785 811.1	2 747 323.5	9.0	WS (Bottom, Top), WP	
R1_ENV_100	786 828.9	2 748 303.3	9.6	WS (Bottom, Top), WP	
R1_ENV_101	785 849.1	2 749 323.1	10.2	WS (Bottom, Mid, Top), WP	
R1_ENV_102	786 870.7	2 750 302.6	11.9	WS (Bottom, Mid, Top), WP	
R1_ENV_103	785 889.2	2 751 322.1	12.1	WS (Bottom, Mid, Top), WP	
R1_ENV_104	786 908.8	2 752 302.9	15.2	WS (Bottom, Mid, Top), WP	
R1_ENV_105	785 929.1	2 753 313.6	13.5	WS (Bottom, Mid, Top), WP	
R1_ENV_106	786 864.1	2 754 382.9	14.2	WS (Bottom, Mid, Top), WP	
R1_ENV_107	785 724.8	2 755 220.2	15.0	WS (Bottom, Mid, Top), WP	
R1_ENV_108	786 565.4	2 756 359.7	14.7	WS (Bottom, Mid, Top), WP	
R1_ENV_109	785 426.3	2 757 198.6	17.2	WS (Bottom, Mid, Top), WP	
R1_ENV_110	786 266.5	2 758 337.1	16.6	WS (Bottom, Mid, Top), WP	
R1_ENV_111	785 125.2	2 759 176.6	17.0	WS (Bottom, Mid, Top), WP	
R1_ENV_112	785 966.3	2 760 315.0	18.1	WS (Bottom, Mid, Top), WP	
R1_ENV_113	784 773.6	2 760 185.6	17.6	WS (Bottom, Mid, Top), WP	
R1_ENV_114	783 859.1	2 761 249.7	17.5	WS (Bottom, Mid, Top), WP	
R1_ENV_115	782 789.9	2 760 392.3	18.2	WS (Bottom, Mid, Top), WP	
R1_ENV_116	781 863.4	2 761 381.4	18.2	WS (Bottom, Mid, Top), WP	
R1_ENV_117	780 794.6	2 760 600.7	17.5	WS (Bottom, Mid, Top), WP	
R1_ENV_118	779 867.8	2 761 517.6	17.2	WS (Bottom, Mid, Top), WP	
R1_ENV_119	778 776.2	2 760 801.3	17.0	WS (Bottom, Mid, Top), WP	
R1_ENV_120	777 875.5	2 761 655.0	18.8	WS (Bottom, Mid, Top), WP	
R1_ENV_121	776 817.0	2 761 013.2	20.4	WS (Bottom, Mid, Top), WP	
R1_ENV_122	775 879.4	2 761 789.9	21.4	WS (Bottom, Mid, Top), WP	
R1_ENV_123	775 087.2	2 760 961.7	21.1	WS (Bottom, Mid, Top), WP	
R1_ENV_124	773 137.1	2 761 208.5	22.2	WS (Bottom, Mid, Top), WP	
R1_ENV_125	774 141.4	2 759 677.8	21.5	WS (Bottom, Mid, Top), WP	
R1_ENV_126	772 467.4	2 759 400.9	21.1	WS (Bottom, Mid, Top), WP	
R1_ENV_127	773 007.0	2 758 131.3	17.6	WS (Bottom, Mid, Top), WP	
R1_ENV_128	772 192.6	2 757 601.0	15.5	WS (Bottom, Mid, Top), WP	

E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Page 46 of 602

Rev

04

UGRO

Clarke 1880 (Mod) Spheroid, Nahrwan 1967 Datum, UTM Projection, Zone 39 North, CM 51° East					
Station	Easting [m]	Northing [m]	Depth [m BSL]	Sample/Data Acquisition	
R1_ENV_129	771 972.9	2 756 199.9	13.5	WS (Bottom, Mid, Top), WP	
R1_ENV_REF	791 694.0	2 713 367.7	19.3	WS (Bottom, Mid, Top), WP	

Notes

Coordinates provided for bottom water sample

* = Coordinates provided for a single mid-water sample taken

BSL = Below sea level

WS = Water sample

WP = Water profile

3.4 Soil Sampling

Soil samples were acquired at ten out of the seventeen proposed stations. A partial soil sample was collected from stations SO_R1_003 and SO_R1_013.

Table 3.4 provides the details of soil samples acquired.

 Table 3.4: Completed soil sampling, Route 1

Clarke 1880 (Mod) Spheroid, Nahrwan 1967 Datum, UTM Projection, Zone 39 North, CM 51° East						
Station	Easting [m]	Northing [m]	Depth [m BSL]	Sample Acquisition		
SO_R1_003	768 878.1	2 681 357.4	8.9	Partial soil sample		
SO_R1_005	774 702.9	2 696 337.3	15.3	Soil sample		
SO_R1_006	778 544.5	2 702 736.6	17.4	Soil sample		
SO_R1_007	784 582.9	2 707 985.5	18.7	Soil sample		
SO_R1_008	790 722.2	2 713 510.2	20.6	Soil sample		
SO_R1_009	792 783.7	2 721 238.9	25.4	Soil sample		
SO_R1_010	791 412.5	2 729 165.9	20.5	Soil sample		
SO_R1_011	789 042.6	2 736 816.0	24.8	Soil sample		
SO_R1_012	786 759.1	2 744 406.9	10.5	Soil sample		
SO_R1_013	786 910.1	2 752 301.8	14.5	Partial soil sample		
Notes						

BSL = Below sea level

3.5 Bathymetry and Seabed Features

The water depth along Route 1 ranged from 0.0 m to 25.4 m CD.

The seabed features consisted of pockmarks, seabed depressions, spudcan depressions, seabed scars, ridges, mounds and pinnacles as well as areas of boulders, dredged areas and areas of sand ripple marks.

Further details can be found in the geophysical report (Fugro, 2020a,b).

Figure 3.1 displays the actual sampling stations, overlain on side scan sonar (SSS).



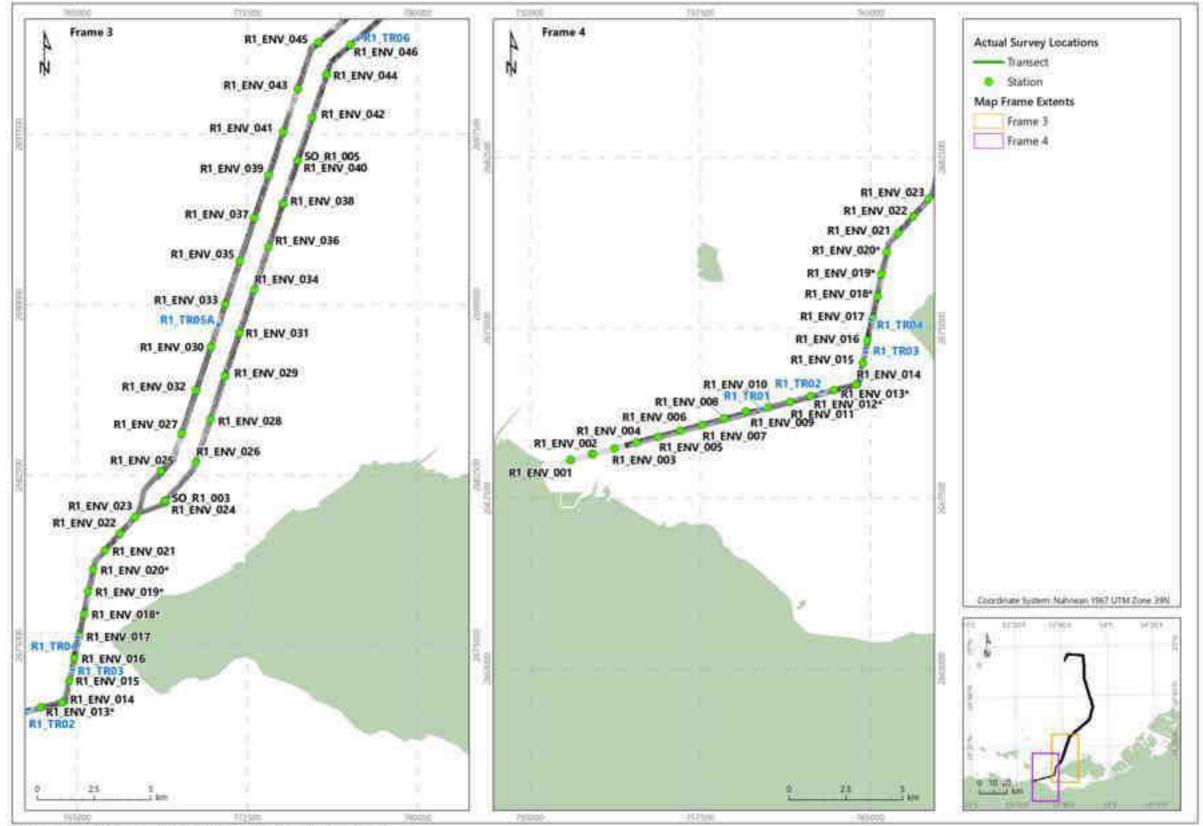
ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1

E-0395 - LIGHTNING PROJECT

PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

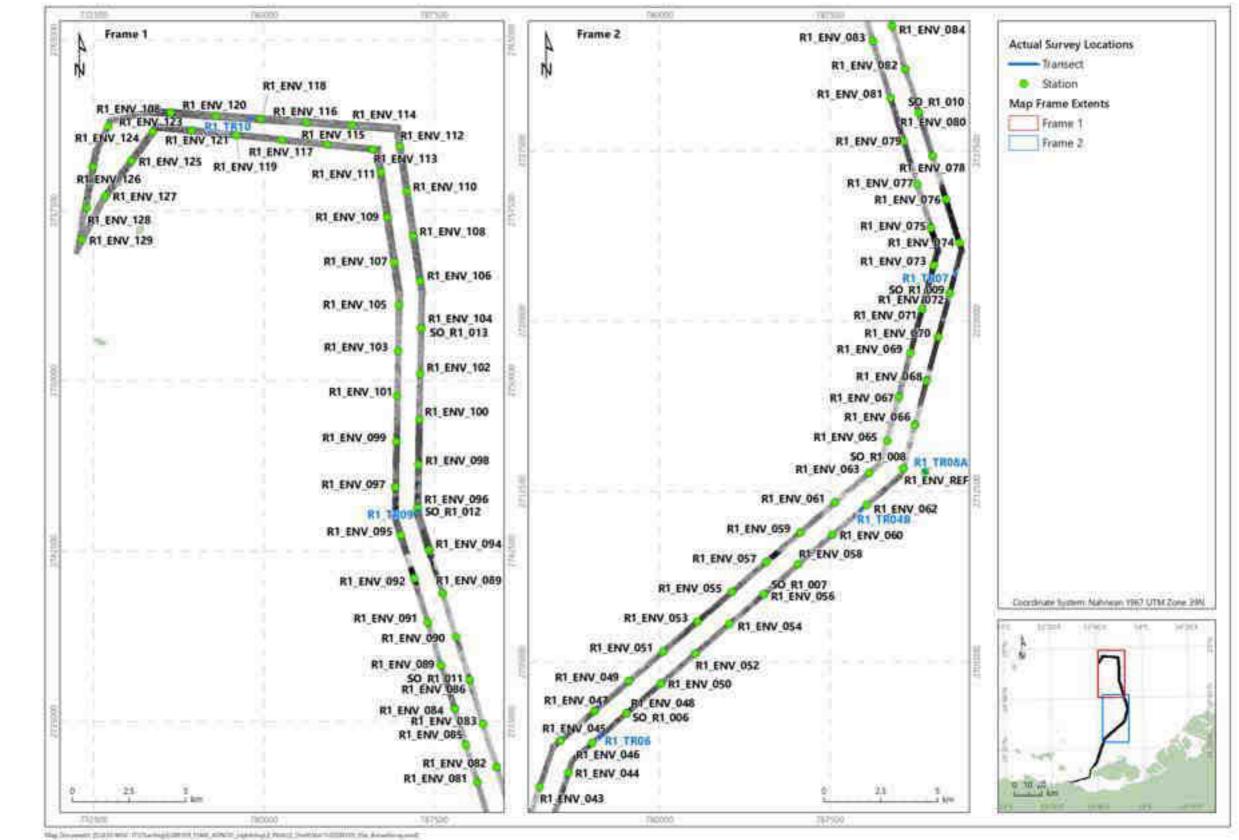
Mag December 2010 Mar Processing and Chine Aller's Linear Society Print Distance Statistics for Annals and Computer Society 20


Figure 3.1a: Completed environmental sampling locations overlain on survey area side scan sonar (SSS) mosaic, Route 1

		UGRO
	Rev	Page
	04	47 of 602
Survey Locations Transect Station rame Extents Frame 1 Frame 2		
er System Nahwan 1967 UTS 201 - 1790 - 141	If Zone 24N	
n	4	

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)


Mag Darawan (Schleimer Prickersuppieren Party Aren's Japaney) Party (Schleimer Million Party Andrewson) Martine (1995)

-	Tugro	
Rev	Page	
04	48 of 602	

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT

PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

althread in the second fraction of the second fraction of the second second fraction of the second s

Figure 3.1b: Completed environmental sampling locations overlain on survey area side scan sonar (SSS) mosaic, Route 1

TUGRO		
Rev	Page	
04	49 of 602	

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

4. Water Column Profiles

4.1 Introduction

Water column profiles were successfully acquired at 128 stations within the survey area. Profiles were collected using a YSI EXO2 CTD instrument, which was setup to continuously log (0.5 s intervals) temperature, salinity, depth, turbidity, DO saturation and pH.

Example water profiles are presented in Figures 4.1 to 4.6 with all water profiles acquired during the survey presented in Appendix D.

4.2 Results

4.2.1 Temperature

Water temperatures within the survey area varied between stations, with an overall range between 26 $^\circ\text{C}$ and 35 $^\circ\text{C}.$

At nearshore stations (R1_ENV_001 to R1_ENV_023), temperatures ranged from approximately 26 °C to 27 °C (sampled 14 April 2020), apart from at station R1_ENV_019, where the temperature was approximately 34.9 °C throughout the water column (2.5 m depth, sampled 11 June 2020). Figure 4.1 displays an example profile from station R1_ENV_005.

At offshore stations (R1_ENV_027 and R1_ENV_029 to R1_ENV_037), water temperatures typically ranged from 28 °C to 29 °C (sampled on 14 and 15 April 2020). This can be observed in Figure 4.2.

At stations R1_ENV_063 to R1_ENV_099 and R1_ENV_106 to R1_ENV_129, water temperatures ranged from approximately 30 °C to 32 °C (sampled 22 May and 3 June). A slight decrease in temperatures from approximately 8 m depth was observed at some stations, with temperatures at stations R1_ENV_116 to R1_ENV_124 decreasing to a minimum of 28.5 °C. This can be observed in Figures 4.5 and 4.6.

The highest water temperatures were recorded between 5 and 15 June 2020 (stations R1_ENV_026, R1_ENV_028, R1_ENV_038 to R1_ENV_062, R1_ENV_100 to R1_ENV_105, R1_ENV_108 and R1_ENV_REF). These ranged from approximately 32 °C to 33 °C throughout the water column. At stations R1_ENV_038 to R1_ENV_042, these temperatures were elevated within the surface waters (< 1 m depth), reaching a maximum of 33.7 °C (station R1_ENV_041, Figure 4.3). However, stations R1_ENV_048 to R1_ENV_062 presented a slight increase in temperatures below approximately 8 m depth.

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	-	
	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL		IGRO
	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	51 of 602

4.2.2 Salinity

At nearshore stations (ENV_001 to ENV_023), salinity ranged from approximately 44 practical salinity units (PSU) to 46 PSU, with values generally consistent throughout the water column. At offshore stations, the salinity values ranged from approximately 40 PSU to 44.5 PSU, with the majority falling between 40 PSU and 42 PSU. A slight, gradual increase in salinity was occasionally recorded below approximately 8 m to 10 m depth in numerous stations (e.g. stations R1_ENV_048 to R1_ENV_094 and R1_ENV_127 to R1_ENV_REF, Figure 4.4).

Salinities in the Gulf typically reach between 40 ppt and 50 ppt (Carpenter et al., 1997), with ranges between 35.2 to 44.0 previously demonstrated in the wider region (Shriadah & Al-Ghais, 1999). Whilst units are not clarified; these are likely to be ppt or PSU, with these two units of measurement approximately equivalent to each other. With this assumption, the salinity recorded in the offshore survey area were considered to be within these ranges, whilst salinity at the nearshore stations was slightly higher.

4.2.3 Turbidity

Turbidity values at stations ENV_001 to ENV_023 typically ranged from approximately 0.8 nephelometric turbidity units (NTU) to 4.8 NTU, apart from station ENV_019 where the turbidity values were between 0.1 NTU and 0.5 NTU. The remaining offshore stations had turbidity values between 0.0 NTU and 1.5 NTU, occasionally with a gradual increase observed below 14 m.

Some anomalous readings were recorded when the sensor contacted the seabed and were removed from the dataset. There were no major trends between turbidity and water depth at any of the stations profiled.

4.2.4 Dissolved Oxygen (DO) Saturation

The DO measurements obtained during the profiling operations ranged between approximately 80 % saturation (% sat.) and 119.3 % sat. Overall, DO measurements either decreased or remained relatively stable with increasing depth.

4.2.5 pH

pH values ranged from 7.9 to 8.2, with no clear depth-related trends in pH values at any of the stations profiled.

The pH values reported in the current survey were within the range of values reported previously in the Arabian Gulf (7.91 to 8.60; Shriadah & Al-Ghais, 1999).

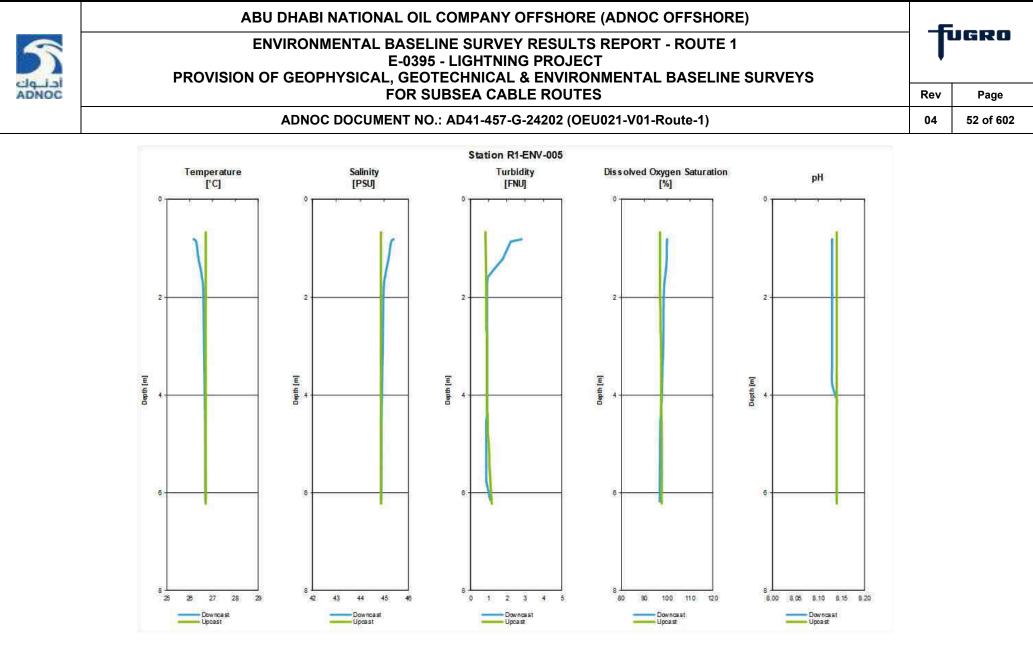
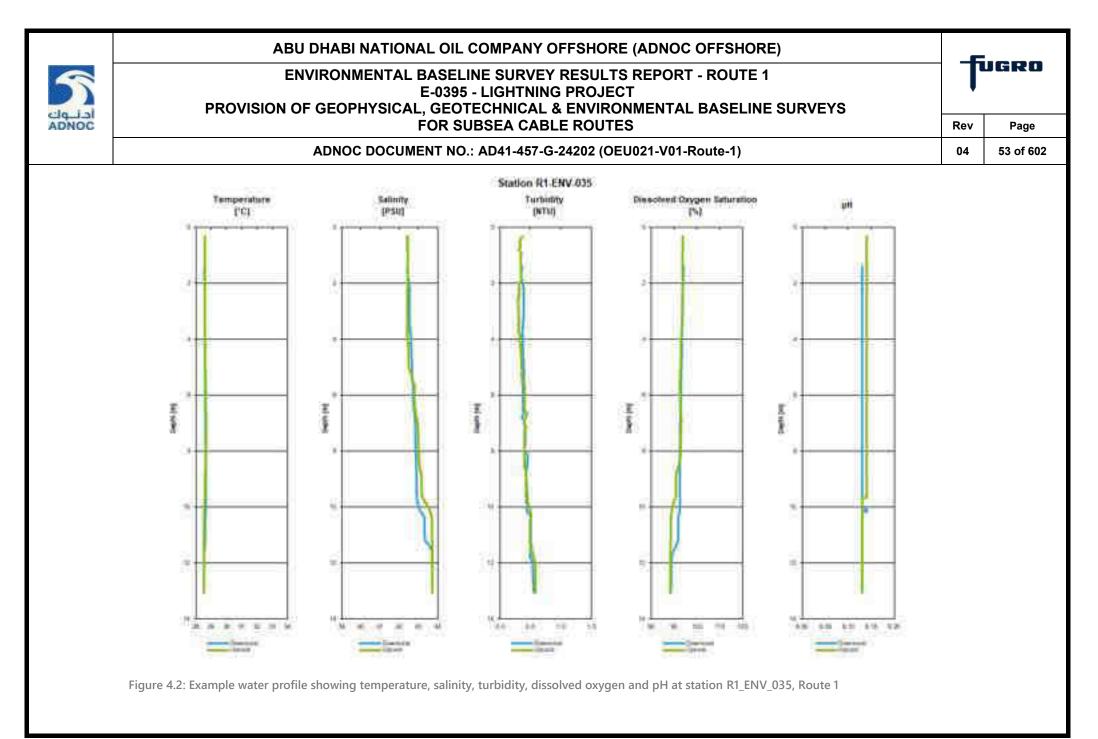
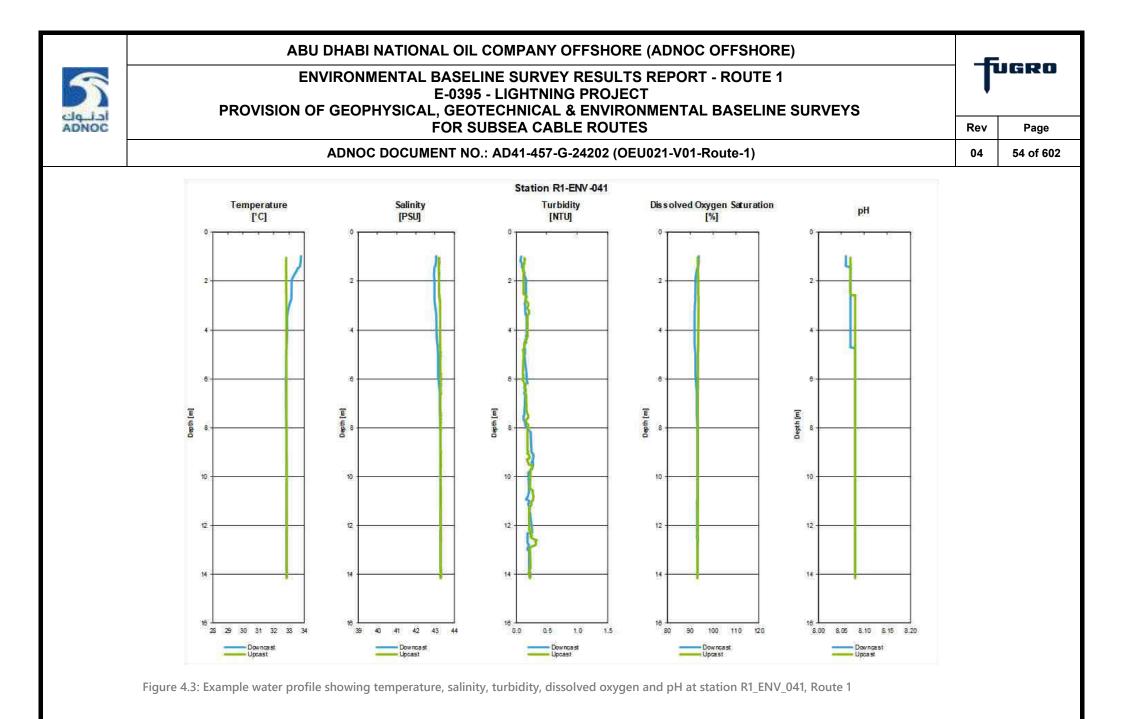




Figure 4.1: Example water profile showing temperature, salinity, turbidity, dissolved oxygen and pH at station R1_ENV_005, Route 1

DOCUMENT CLASS - 1

Uncontrolled When Printed

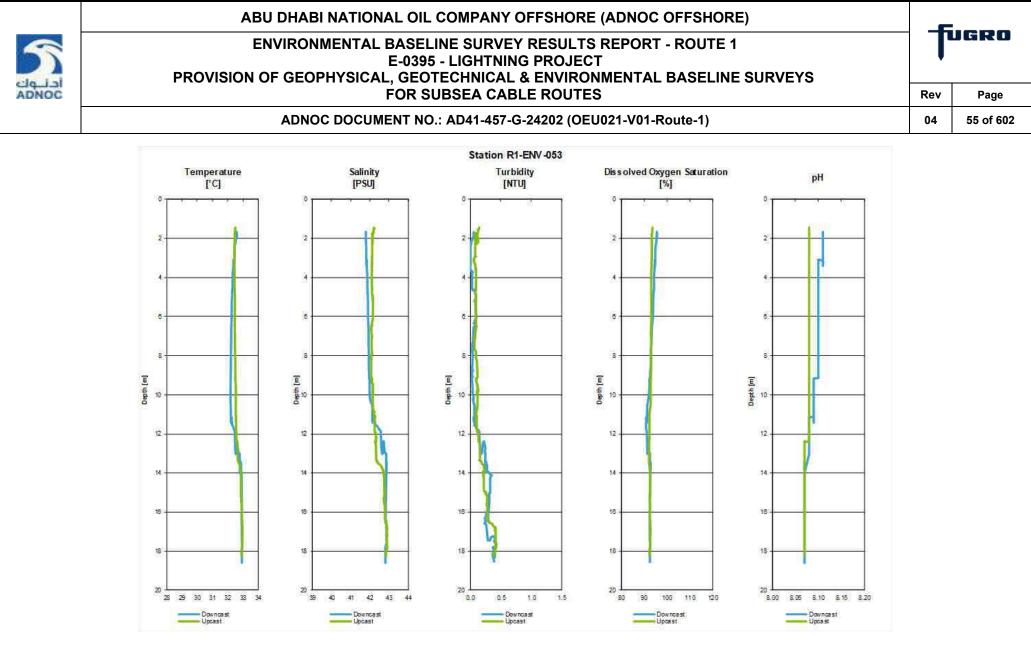
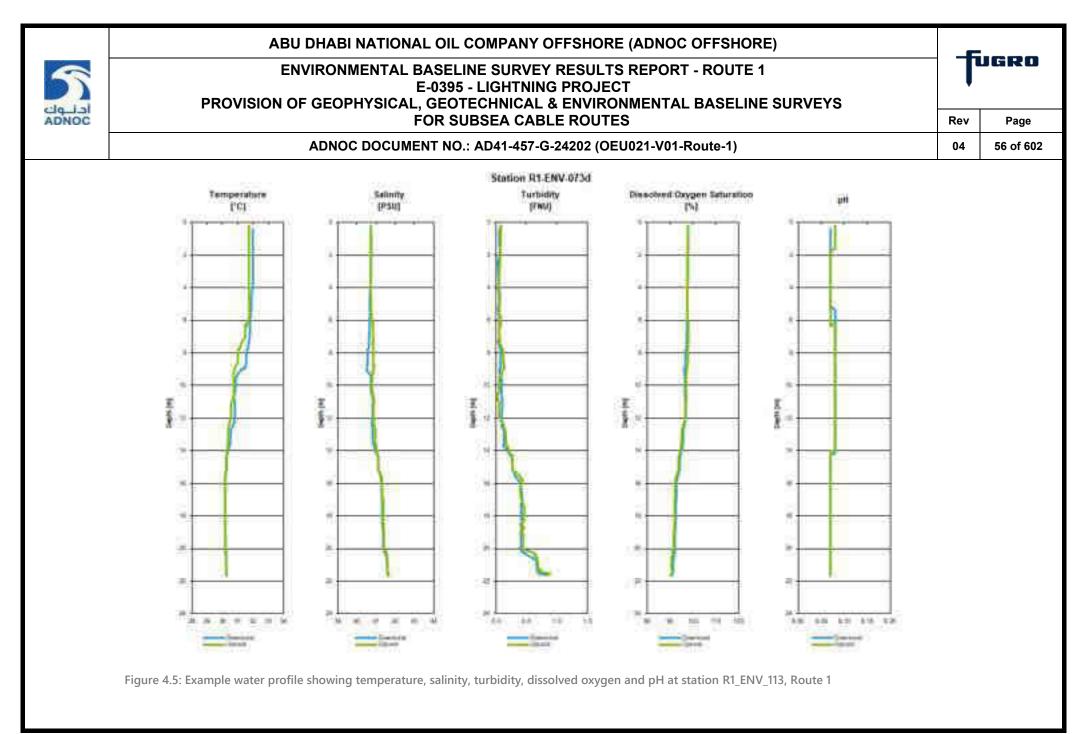
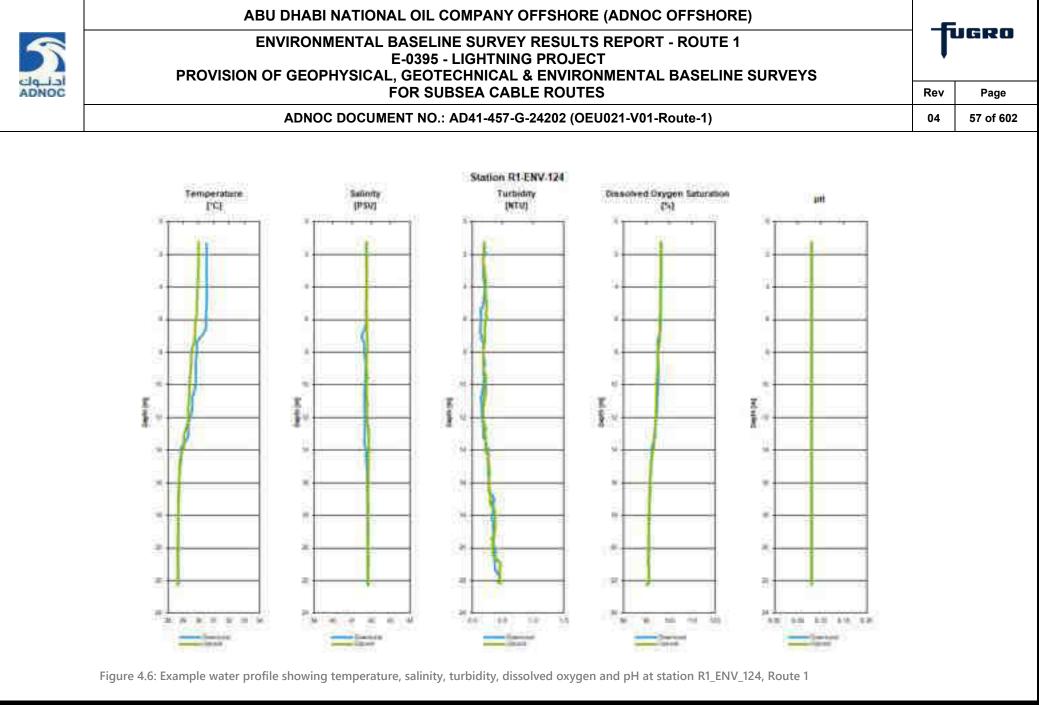




Figure 4.4: Example water profile showing temperature, salinity, turbidity, dissolved oxygen and pH at station R1_ENV_053, Route 1

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	_		
	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL		TUGRO	
	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page	
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	58 of 602	

5. Inorganic Water Quality Parameters

5.1 Introduction

Water samples were analysed for a suite of inorganic indicators of water quality, presented in Appendix E.1.

Inorganic water quality parameters were compared to their respective ADS 18/2017 MACs (QCC, 2017), US EPA CCC and CMC values (US EPA, 2020). Concentrations below the CCC and CMC values are considered concentrations at which detrimental effects are rarely observed in biota.

Relative standard deviation (RSD) indicates the extent of variability in a dataset in relation to the mean value. The RSD value expresses the standard deviation as a percentage of the mean. For the purpose of this report, RSD of less than 30 % will be considered low variability, 30 % to 70 % will be considered moderate variability and more than 70 % will be considered high variability.

5.2 Results

The pH ranged between 7.9 and 8.2 in all water samples acquired. These values fall within the US EPA CCC range of 6.5 to 8.5 (US EPA, 2020).

Turbidity ranged from < 0.1 NTU in 32 samples to 3.6 NTU in sample R1_ENV_002-Bottom, with a mean value of 0.4 NTU and high variability (RSD 105 %).

Total dissolved solids (TDS) ranged from 45500 mg/L in samples R1_ENV_075-Top, R1_ENV_079-Top and R1_ENV_084-Top to 53000 mg/L in sample R1_ENV_016-Middle, with a mean value of 48200 mg/L and low variability (RSD 4 %).

Total organic carbon (TOC) ranged from 1.2 mg/L in 14 samples to 2.6 mg/L in sample R1_ENV_063-Bottom, with a mean value of 1.5 mg/L and low variability (RSD 13 %).

Total nitrogen concentrations were below the MRV (0.5 mg/L) in all samples except in sample R1_ENV_028-Top (0.7 mg/L).

Nitrate concentrations were below the MRV (0.04 mg/L) in 282 samples and the remaining 77 samples ranged from 0.04 mg/L (10 samples) to 0.85 mg/L in sample R1_ENV_036-Middle.

Total phosphorus concentrations were below the MRV (0.03 mg/L) in all but nine samples where concentrations ranged from 0.04 mg/L (5 samples) to 0.15 mg/L in sample R1_ENV_004- Bottom.

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)		
5	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	Τ	IGRO
NOC	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	59 of 602

Nitrite concentrations were below the MRV (0.016 mg/L) at all samples except in sample R1_ENV_083-Middle which recorded a concentration of 0.017 mg/L.

Sulphate concentrations ranged from 2930 mg/L in samples R1_ENV_016-Top and R1_ENV_024-Bottom to 3710 mg/L in sample R1_ENV_001-Middle, with a mean of 3170 mg/L and low variability (RSD 4 %).

Chloride concentrations ranged from 22300 mg/L (8 samples) to 26600 mg/L (7 samples), with a mean of 24200 mg/L and low variability (RSD 4 %).

Total cyanide concentrations were below the MRV (0.01 mg/L) in all but three samples (R1_ENV_022- Bottom, R1_ENV_055-Middle and R1_ENV_077-Top). The MRV for total cyanide concentrations (0.01 mg/L) was higher than the US EPA CCC and CMC threshold values (0.001 mg/L) and therefore could not be compared.

The remaining water quality parameters presented in Appendix E.1 were below their respective MRVs for all samples obtained.

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)			
ادنون ADNOC	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL		-fugro	
	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page	
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	60 of 602	

Water Column Hydrocarbons 6.

6.1 Introduction

Seawater samples were analysed for their hydrocarbon content, including volatile hydrocarbons, extractable petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), BTEX and phenols.

Concentrations of extractable petroleum hydrocarbons were compared to their ADS 18/2017 MACs (QCC, 2017). In the absence of local guideline values, BTEX concentrations were compared to the CCME Marine Long-Term Water Quality Guidelines for the Protection of Aquatic Life values (CCME, 2020).

Appendix F.1 displays the concentrations of volatile petroleum hydrocarbons, extractable petroleum hydrocarbons, dissolved and emulsified oil and free oil.

6.2 Results

6.2.1 **Hydrocarbons**

Most concentrations of all analytes sampled across the Route 1 survey area were below their respective MRVs. Concentrations of free oil were above the MRV in all samples obtained at stations R1 ENV 036, R1 ENV 037, R1 ENV 120, R1 ENV 121, R1 ENV 122 and R1 ENV 123, as well as sample R1 ENV 119 top.

The MRV (10 µg/L) for extractable petroleum hydrocarbons was above the ADS 18/2017 MAC for both general use areas (7.0 µg/L) and marine protected areas (7.0 µg/L) and therefore no meaningful comparison of the current data can be made to the reference values.

6.2.2 Polycyclic Aromatic Hydrocarbons (PAHs)

Naphthalene concentrations were below the MRV (0.02 μ g/L) in all samples except R1 ENV 001-Middle, R1 ENV 028-Top, R1 ENV 049-Top, R1 ENV 080-Top, R1 ENV 095-Top and R1 ENV 108- Top which recorded concentrations of 0.02 µg/L.

Phenanthrene concentrations were below the MRV (0.01 µg/L) in all samples except R1_ENV_061- Middle (0.02 µg/L), R1 ENV 004-Bottom (0.03 µg/L) and R1 ENV 017-Bottom (0.05 µg/L).

Pyrene concentrations were below the MRV (0.01 µg/L) in all samples except R1 ENV 001-Bottom and R1 ENV 004-Bottom which recorded concentrations of 0.01 µg/L.

The remaining PAH parameters presented in Appendix F.2 were below their respective MRVs for all samples.

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	-		
	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL		TUGRO	
	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page	
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	61 of 602	

6.2.3 Benzene, Toluene, Ethylbenzene and Xylene (BTEX)

Concentrations of BTEX were below their respective MRVs at all samples across the Route 1 survey area (Appendix F.3). Benzene, toluene and ethylbenzene concentrations were below their respective CCME guideline values for the protection of aquatic life (CCME, 2020).

6.2.4 Phenols

Concentrations of phenol and phenolic compounds were below their respective MRVs at all samples across the Route 1 survey area (Appendix F.4).

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	_	_ E	
	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL		TUGRO	
	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page	
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	62 of 602	

7. Water Column Major and Trace Elements

7.1 Introduction

Water samples collected from the survey area were analysed for selected elements: aluminium, arsenic, barium, cadmium, chromium, copper, iron, lead, mercury, silver, vanadium and zinc using ICP-MS.

Concentrations of metals in the water samples were compared to their respective ADS 18/2017 MACs (QCC, 2017), US EPA CCC and criterion maximum concentration CMC values (US EPA, 2020).

7.2 Results

Appendix G.1 summarises the concentrations of major and trace elements in the water samples from the Route 1 survey area.

Aluminium concentrations ranged from below the MRV (0.005 mg/L) in 252 samples to 0.100 mg/L in sample R1_ENV_045-Bottom.

Arsenic concentrations ranged from below the MRV (0.0005 mg/L) in seven samples to 0.0053 mg/L in sample R1_ENV_052-Top, with a mean of 0.0027 mg/L and moderate variability (RSD 32 %). Concentrations of arsenic were below the US EPA CCC threshold of 0.036 mg/L in at all samples.

Barium concentrations ranged from below the MRV (0.0005 mg/L) in sample R1_ENV_103-Top to 0.0235 mg/L (sample R1_ENV_077-Bottom), with a mean of 0.0068 mg/L and moderate variability (RSD 53 %).

Cadmium concentrations were below the MRV (0.0001 mg/L) in all samples, except 23 samples with a concentration of 0.0001 mg/L, 4 samples with a concentration of 0.0002 mg/L and one sample with a concentration of 0.0019 mg/L (sample R1_ENV_081-Top). Concentrations of cadmium were above the ADS 18/2017 MAC for both general use areas (0.0003 mg/L) and marine protected areas (0.0007 mg/L) in sample R1_ENV_081-Top, but below the US EPA CCC threshold of 0.0079 mg/L and US EPA CMC threshold of 0.033 mg/L.

Chromium concentrations ranged from below the MRV (0.0001 mg/L) in 237 samples to 0.0055 mg/L (sample R1_ENV_051-Top). Concentrations of chromium were above the ADS 18/2017 MAC for both general use areas (0.0002 mg/L) and marine protected areas (0.0002 mg/L) in 100 samples but below the US EPA CCC threshold of 0.050 mg/L. All samples were below the US EPA CMC threshold of 1.100 mg/L.

Copper concentrations ranged from below the MRV (0.0003 mg/L) in 276 samples to 0.1300 mg/L (sample R1_ENV_077-Bottom). Concentrations of copper were above the ADS 18/2017 MACs for both general use areas (0.0030 mg/L) and marine protected areas (0.0030 mg/L) in 17 samples, as well as the US EPA CCC threshold of 0.0031 mg/L in 16 samples and the US EPA CMC threshold of 0.0048 mg/L in 8 samples.

Iron concentrations were below the MRV (0.02 mg/L) at all samples, apart from 34 samples where the concentrations ranged from 0.02 mg/L to 0.19 mg/L.

Lead concentrations were below the MRV (0.0002 mg/L) at 210 samples to 0.0175 mg/L (sample R1_ENV_077-Bottom). The lead concentrations were above the ADS 18/2017 MAC for both general use areas (0.0022 mg/L) and marine protected areas (0.0022 mg/L) in 31 samples, the US EPA CCC threshold of 0.0056 mg/L in 4 samples and were below the US EPA CMC threshold of 0.140 mg/L in all samples.

Vanadium concentrations ranged from 0.0011 mg/L in sample R1-ENV-084-Top to 0.0049 mg/L in sample R1_ENV_121 Top, with a mean concentration of 0.0026 mg/L and low variability (RSD 17 %).

Zinc concentrations ranged from below the MRV (0.002 mg/L) in 128 samples to 0.156 mg/L in sample R1_ENV_095-Bottom. Concentrations of zinc were above the ADS 18/2017 MAC for general use areas (0.015 mg/L) and for marine protected areas (0.015 mg/L) in 129 samples, as well as US EPA CCC and CMC thresholds (US EPA, 2020; 5 samples).

Concentrations of mercury and silver were all below their respective MRVs (presented in Appendix G.1) at all samples across the survey area and were below their respective ADS 18/2017 MAC for both general use and marine protected areas, as well as the US EPA CCC and CMC thresholds (US EPA, 2020).

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	-E		
$\mathbf{\tilde{s}}$	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	Τ	-TUGRO	
DNOC	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page	
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	64 of 602	

8. Sediment Characterisation

8.1 Introduction

Sediment samples were analysed for their PSD using a combination of two techniques; sieve analysis for all material retained by a 1 mm sieve followed by laser diffraction analysis of the finer material. The results of the particle size analysis were treated statistically to characterise the sediment type (Wentworth Scale and Folk) and particle size homogeneity (sorting index).

Carbonate content was analysed with the following method. A pre-dried aliquot of the sediment was weighed and then treated with hydrochloric acid to remove inorganic carbon in the form of carbonate. Fresh acid was added until all effervescence ceased; the sediment was then washed over a glass-fibre filter and the residue dried to a constant weight.

The TOC content was determined by combustion with Non-Dispersive Infrared Detection (NDIR).

Appendix B provides full details of the analytical techniques employed and Appendix H.1 displays the histograms of particle size class summary for each station.

8.2 Sediment Sample Results

Appendix H.2 presents the sediment characteristics, including granulometry, TOC and carbonate content across the Route 1 survey area. Figure 8.1 presents the granulometry of the sediments at each station, whilst Figure 8.2a and b presents the fractional composition of the sediments spatially across the Route 1 survey area.

The TOC content across Route 1 ranged from 0.08 % at station R1_ENV_030 to 0.83 % at station R1_ENV_074 (mean 0.34 %) with moderate interstation variability (RSD 65 %).

The carbonate content across Route 1 ranged from 73.7 % at station R1_ENV_002 to 99.1 % at stations R1_ENV_038, R1_ENV_081, R1_ENV_096 and R1_ENV_099 (mean 95.0 %), with low interstation variability (RSD 5 %).

When fractional composition (Table H.2 and Figure 8.1) was considered, the sand fraction was the prevalent sediment fraction at the majority of the stations across Route 1 and ranged from 12.02 % at station R1_ENV_074 to 99.66 % at station R1_ENV_122 (mean 70.73 %) with moderate variability (RSD 34 %). The gravel fraction was recorded in low levels across the survey area whereas the fines fraction dominated 10 stations (stations R1_ENV_068, R1_ENV_070 to R1_ENV_076, R1_ENV_088 and R1_ENV_093). The Folk descriptions classify sediment by the relative proportion of sediment fractions (gravel, sand and fines). The Folk description (BGS modified) classified twenty-nine stations as slightly gravelly muddy sand, ten stations as slightly gravelly sand, ten stations as gravelly muddy sand.

The fractional composition of the Route 1 survey area was comparable to previously reported data from the Zakum area, which recorded sand as the dominant sediment type (mean 82 %) (Blue Sea Environmental Consultants, 2011).

Appendix H.3 presents the physical composition of the sediments (Folk and Ward) at each station across the Route 1 survey area. The mode (or modal distribution) represents the peak of the particle size frequency distribution. Within the Route 1 survey area, distributions were mixed, with 40 stations displaying a unimodal distribution, 17 stations displaying a bimodal distribution and 3 stations displaying a trimodal distribution (Appendix H.1).

The mean particle size (μ m) (Appendix H.3) across Route 1 ranged from 14 μ m at station R1_ENV_074 to 750 μ m at station R1_ENV_038 (mean 263 μ m), with moderate interstation variability (RSD 67 %).

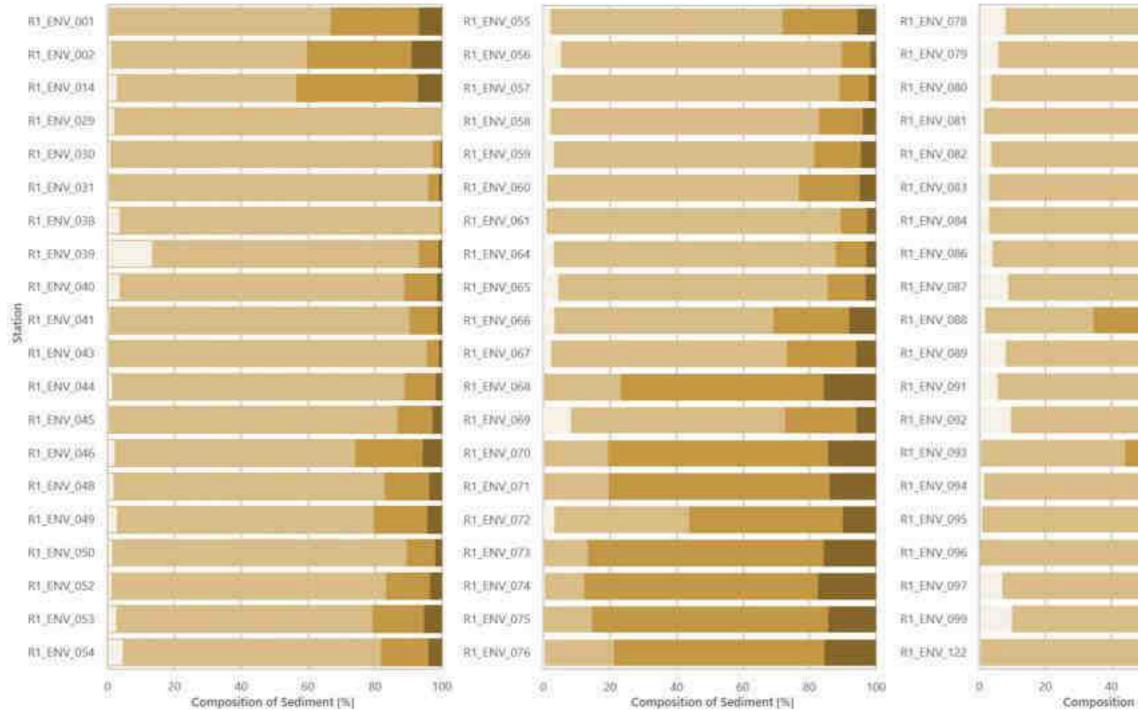
The Wentworth description, assigned from mean particle size, categorised sediments across Route 1 as coarse sand (3 stations), coarse silt (4 stations), fine sand (14 stations), fine silt (1 station), medium sand (28 stations), medium silt (6 stations) and very fine sand (4 stations).

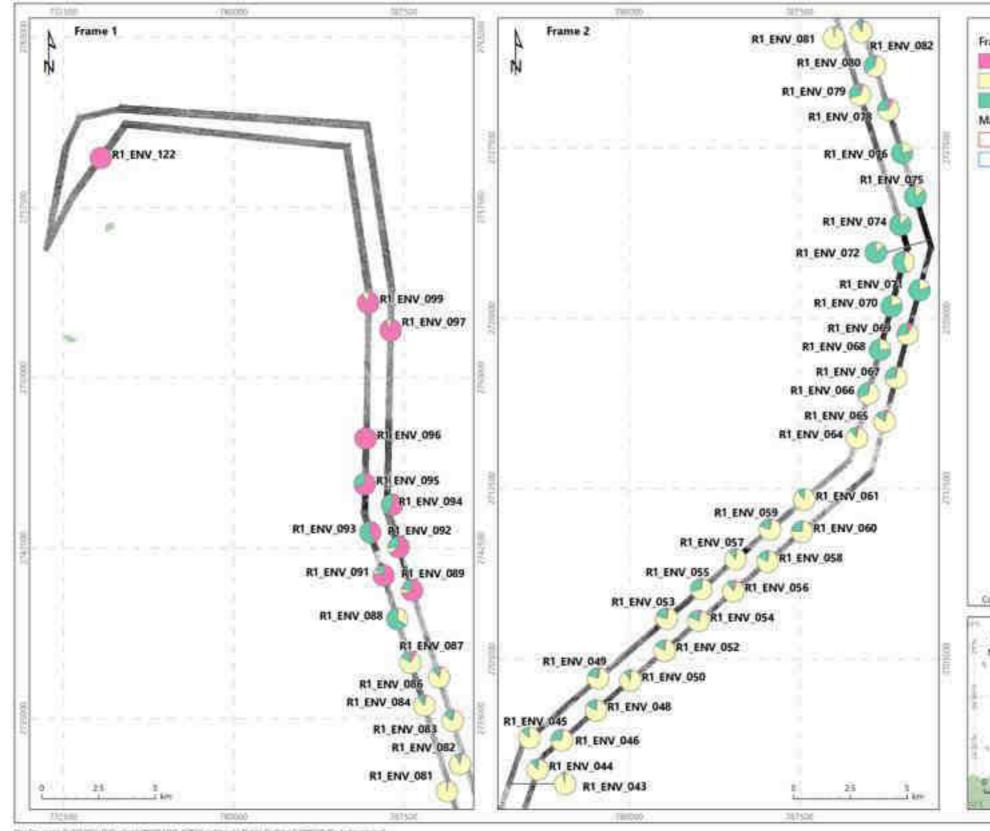
The sorting coefficient of particle size indicates the degree of spread of individual size classes about the mean and provides the basis of a sorting index, in which low values indicate sediments to be fairly homogeneous (well sorted) while high values suggest a relatively large scatter of particle sizes about the mean (poorly sorted). Across Route 1 six stations were described as moderately sorted, sixteen stations described as poorly sorted and thirty-eight stations described as very poorly sorted.

Skewness indicates the tendency of particle size classes to be skewed about the mean, either towards coarser sediment (negative skewness) or finer sediment (positive skewness). Across Route 1 skewness ranged from $-0.23 \,\mu\text{m}$ at station R1_ENV_099 to 0.50 μm at station R1_ENV_058 (mean 0.28 μm). Thirty-four stations were described as very fine skewed, fourteen as fine skewed, two stations as coarse skewed and ten stations as symmetrical.

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT

PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES



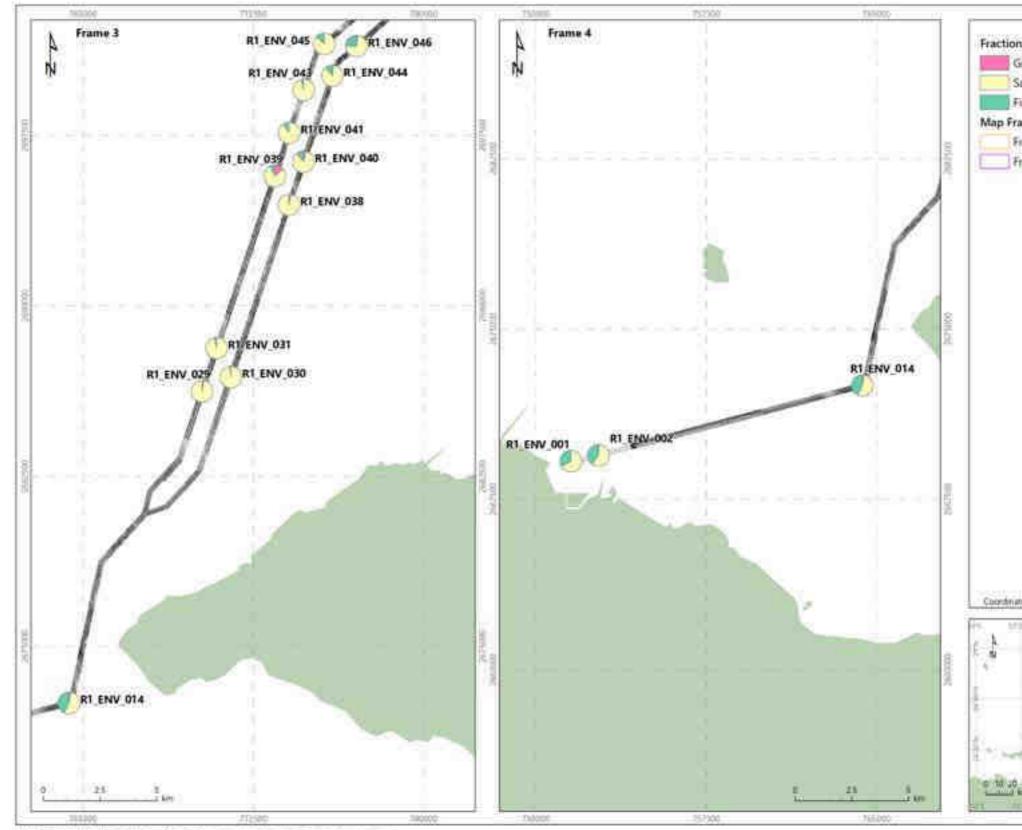

Figure 8.1: Sediment composition, Route 1

		Ŧ	JGRO
		Rev	Page
		04	66 of 602
60 Sediment (%)		¥5/it (3.5 µm)	(1 to 2 mm) to 62.5 pm) i to 1.9 pm)

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

National Control of Co


Figure 8.2a: Sediment fractional composition overlaid on bathymetry, Route 1

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT

PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

National Society (Section of Charles (2000) 1988, New Yorks, States of Carlos and Carlos and Carlos and States of Carlos and Carlos

Figure 8.2b: Sediment fractional composition overlaid on bathymetry, Route 1

Rev Page 04 68 of 602 al Sediment Composition revel [%] and [%] me Extents ame 3 ame 4
al Sediment Composition ravel [%] net [%] me Extents ame 3
ravel (%) and (%) me Extents ame 3

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

TugRORevPage0469 of 602

8.3 Soil Sample Results

The TOC content across Route 1 within the eight soil samples ranged from 0.13 % at station SO_R1_005 (R1_ENV_040) to 0.75 % at station SO_R1_009 (R1_ENV_072) (mean 0.37 %) with moderate interstation variability (RSD 64 %).

Table 8.1: Soil sample TOC content, Route 1

Station	тос [%]				
SO_R1_005	0.13				
SO_R1_006	0.29				
SO_R1_007	0.24				
SO_R1_008	0.21				
SO_R1_009	0.75				
SO_R1_010	0.37				
SO_R1_011	0.74				
SO_R1_012	0.25				
Minimum	0.13				
Maximum	0.75				
Mean	0.37				
Standard Deviation	0.240				
RSD [%]	64				
Upper Zakum Pipelines Replacement Project EBS (NPCC, 2019)*					
Mean	0.4692				
Notes TOC = Total organic carbon RSD = Relative standard deviation					

* = Mean taken from Environmental Baseline Survey Upper Zakum Replacement Project Phase 1 (NPCC, 2019)

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

9. Sediment Nutrients

9.1 Introduction

Seabed sediments were analysed for silicon, phosphorus, total cyanide and total nitrogen.

Silicon and phosphorus were determined on an air dried and ground sample following an aqua regia digest with analysis by ICP-OES. Total cyanide was determined on wet sediment by segmented flow analysis with colorimetric detection. Total nitrogen was determined on an air dried and ground sediment sample by an elemental analyser.

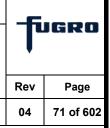
9.2 Sediment Sample Results

Silicon concentrations ranged from 64 mg/kg at station R1_ENV_076 to 408 mg/kg at station R1_ENV_014, with a mean of 164 mg/kg and moderate variability (RSD 47 %).

Phosphorus concentrations ranged from 171 mg/kg at station R1_ENV_038 to 611 mg/kg at station R1_ENV_072, with a mean of 375 mg/kg and low variability (RSD 26 %).

Total cyanide concentrations were below the MRV (0.5 mg/kg) at all stations sampled.

Total nitrogen concentrations ranged from less than the MRV (0.04 % or 0.05 %) at nine stations to 0.16 % at station R1_ENV_072, with a mean of 0.07 % and moderate variability (RSD 60 %).


Table 9.1 presents the concentration of nutrients in the surface sediment samples across the Route 1 survey area.

Station	Silicon*	Phosphorus*	Total Cyanide*	Total Nitrogen ⁺
R1_ENV_001	226	266	< 0.5	0.05
R1_ENV_002	246	215	< 0.5	0.06
R1_ENV_014	408	306	< 0.5	0.15
R1_ENV_029	194	303	< 0.5	< 0.04
R1_ENV_030	197	283	< 0.5	< 0.04
R1_ENV_031	117	236	< 0.5	< 0.04
R1_ENV_038	208	171	< 0.5	< 0.04
R1_ENV_039	193	349	< 0.5	< 0.04
R1_ENV_040	279	347	< 0.5	0.04
R1_ENV_041	238	322	< 0.5	0.04
R1_ENV_043	250	270	< 0.5	0.05

Table 9.1: Sediment nutrient concentrations, Route 1

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Station	Silicon*	Phosphorus*	Total Cyanide*	Total Nitrogen [†]
R1_ENV_044	124	277	< 0.5	0.05
R1_ENV_045	231	342	< 0.5	0.05
R1_ENV_046	199	291	< 0.5	0.05
R1_ENV_048	170	254	< 0.5	0.06
R1_ENV_049	189	355	< 0.5	0.05
R1_ENV_050	125	323	< 0.5	0.05
R1_ENV_052	174	360	< 0.5	0.04
R1_ENV_053	120	339	< 0.5	0.05
R1_ENV_054	125	283	< 0.5	0.05
R1_ENV_055	166	389	< 0.5	0.1
R1_ENV_056	124	224	< 0.5	< 0.05
R1_ENV_057	97	346	< 0.5	0.06
R1_ENV_058	293	436	< 0.5	0.06
R1_ENV_059	107	433	< 0.5	< 0.05
R1_ENV_060	90	406	< 0.5	0.05
R1_ENV_061	94	373	< 0.5	< 0.05
R1_ENV_064	315	433	< 0.5	0.04
R1_ENV_065	101	433	< 0.5	0.05
R1_ENV_066	97	435	< 0.5	0.1
R1_ENV_067	94	440	< 0.5	0.08
R1_ENV_068	112	547	< 0.5	0.13
R1_ENV_069	83	394	< 0.5	0.07
R1_ENV_070	98	549	< 0.5	0.13
R1_ENV_071	99	539	< 0.5	0.14
R1_ENV_072	291	611	< 0.5	0.16
R1_ENV_073	93	555	< 0.5	0.14
R1_ENV_074	114	599	< 0.5	0.14
R1_ENV_075	76	525	< 0.5	0.15
R1_ENV_076	64	380	< 0.5	0.14
R1_ENV_078	90	474	< 0.5	0.06
R1_ENV_079	80	365	< 0.5	0.06
R1_ENV_080	318	516	< 0.5	0.09
R1_ENV_081	163	252	< 0.5	0.04
R1_ENV_082	121	358	< 0.5	0.06

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Station	Silicon*	Phosphorus*	Total Cyanide*	Total Nitrogen ⁺
R1_ENV_083	_ENV_083 193		< 0.5	0.05
R1_ENV_084	96	372	< 0.5	0.05
R1_ENV_086	139	412	< 0.5	0.04
R1_ENV_087	125	375	< 0.5	0.05
R1_ENV_088	280	441	< 0.5	0.15
R1_ENV_089	120	380	< 0.5	0.05
R1_ENV_091	157	364	< 0.5	0.05
R1_ENV_092	173	403	< 0.5	0.08
R1_ENV_093	94	396	< 0.5	0.13
R1_ENV_094	92	443	< 0.5	0.13
R1_ENV_095	103	376	< 0.5	0.11
R1_ENV_096	328	390	< 0.5	0.05
R1_ENV_097	175	353	< 0.5	0.05
R1_ENV_099	163	202	< 0.5	0.05
R1_ENV_122	196	308	< 0.5	< 0.04
Minimum	64	171	Y	< 0.04
Maximum	408	611	< 0.5	0.16
Mean	164	375	-	0.07
Standard Deviation	77.1	97.8	-	0.041
RSD [%]	47	26	-	60

Notes

For statistical evaluation, results < MRV were treated as absolute values determined by MRV/2

* = Concentrations expressed as mg/kg of dry sediment

† = Concentrations expressed as a percentage [%] of dry sediment

RSD = Relative standard deviation

MRV = Minimum reporting value

9.3 Soil Sample Results

Fluoride concentrations across the Route 1 survey area ranged from below the MRV (4.0 mg/kg) at four stations to 4.8 mg/kg at station SO_R1_007, with a mean of 3.2 mg/kg and moderate variability observed (RSD 41 %).

Total cyanide concentrations were below the MRV (0.5 mg/kg) at all stations.

Total nitrogen concentrations ranged from 0.04 % at stations SO_R1_005 and SO_R1_008 to 0.16 % at station SO_R1_009, with a mean of 0.08 % and moderate variability observed (RSD 59 %).

1
ale int
CIQ_J_JI
ADNOC

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	_	
ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	T	IGRO
BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	[

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Phosphate concentrations across Route 1 ranged from 106 mg/l at station SO R1 005 to 180 mg/l at station SO_R1_009, with a mean of 143 mg/l and low variability observed (RSD 19%).

The acid soluble sulphate concentrations ranged from 3470 mg/kg at station SO R1 007 to 8630 mg/kg at station SO R1 011, with a mean of 5670 mg/kg and low variability (RSD 29 %).

Similarly, the water soluble sulphate concentrations ranged from 765 mg/l at station SO_R1_012 to 2110 mg/l at station SO_R1_011, with a mean of 1100 mg/l and moderate variability (RSD 46%).

	Fluoride	Total	Total		Sulpl	hates
Station	Water Soluble*	Cyanide*	Nitrogen [†]	Phosphates [‡]	Acid Soluble*	Water Soluble [‡]
SO_R1_005	< 4.0	< 0.5	0.04	106	4800	981
SO_R1_006	4.5	< 0.5	0.06	140	5470	779
SO_R1_007	4.8	< 0.5	0.06	134	3470	789
SO_R1_008	4.4	< 0.5	0.04	118	4820	768
SO_R1_009	< 4.0	< 0.5	0.16	180	7570	1670
SO_R1_010	< 4.0	< 0.5	0.09	163	5080	933
SO_R1_011	< 4.0	< 0.5	0.15	128	8630	2110
SO_R1_012	4.0	< 0.5	0.05	174	5540	765
Minimum	< 4.0	< 0.5	0.04	106	3470	765
Maximum	4.8	< 0.5	0.16	180	8630	2110
Mean	3.2	-	0.08	143	5670	1100
Standard Deviation	1.31	-	0.048	26.8	1650	508
RSD [%]	41	-	59	19	29	46

Table 9.2: Soil sample nutrient concentrations, Route 1

Notes

For statistical evaluation, results < MRV were treated as absolute values determined by MRV/2

* = Concentrations expressed as mg/kg of dry sediment

† = Concentrations expressed as % of dry sediment

‡ = Concentrations expressed as mg/l of dry sediment

RSD = Relative standard deviation

MRV = Minimum reporting value

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

10. Sediment Hydrocarbons

10.1 Introduction

Seabed sediments were analysed for hydrocarbon concentrations including THC (C_{10} to C_{40}), BTEX and the US EPA 16 PAHs.

Samples were extracted by ultrasonication of wet sediments with mixed solvents. The sample extracts were then cleaned up using absorption column chromatography with the resulting extracts analysed for THC and US EPA 16 PAHs.

The total hydrocarbon material present was quantified using response factors calculated from the analysis of mixed oil standard solutions over an appropriate range and analysed by GC-FID.

Calibration was undertaken using a range of PAH standard solutions, a number of alkylated PAH, dibenzothiophene and a range of suitable internal standards. Individual response factors were calculated for each of the compounds present in the calibration solution. Response factors for the non-calibrated alkylated PAH were taken to be equivalent to closely related compounds. The MRV of individual and alkylated PAHs is 0.1 ng/g. PAHs were analysed by GC-MS.

BTEX were determined using static headspace sampling and analysed by GC-MS.

Full details of all the analytical techniques employed are included in Appendix B.2.2.

Reference criteria are available for some sediment hydrocarbons, including ADS 18/2017 MACs (QCC, 2017) and internationally recognised environmental effect threshold values, specifically effects range low (ERL) and effects range median (ERM), have been established for several US EPA 16 PAHs (Buchman, 2008).

10.2 Sediment Sample Results

10.2.1 Total Hydrocarbon Content

Table 10.1 presents the THC concentrations in the surface sediment samples across the Route 1 survey area.

Concentrations of THC across the Route 1 survey area ranged from 1.2 μ g/g at stations R1_ENV_029 to R1_ENV_031 to 37.4 μ g/g at station R1_ENV_94 (mean 5.4 μ g/g) with high variability (RSD 105 %).

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

RevPage0475 of 602

Table 10.1: Summary of sediment total hydrocarbon content analysis, Route 1

Station	THC (C ₁₀ -C ₄₀)
R1_ENV_001	3.1
R1_ENV_002	2.3
R1_ENV_011	15.4
R1_ENV_014	4.4
R1_ENV_024	4.6
R1_ENV_029	1.2
R1_ENV_030	1.2
R1_ENV_031	1.2
R1_ENV_038	1.5
R1_ENV_039	2.0
R1_ENV_040	2.6
R1_ENV_041	1.8
R1_ENV_042	5.9
R1_ENV_043	1.4
R1_ENV_044	1.7
R1_ENV_045	2.6
R1_ENV_046	2.5
R1_ENV_047	6.7
R1_ENV_048	2.5
R1_ENV_049	2.2
R1_ENV_050	1.4
R1_ENV_051	10.1
R1_ENV_052	1.9
R1_ENV_053	2.3
R1_ENV_054	2.0
R1_ENV_055	3.4
R1_ENV_056	2.2
R1_ENV_057	2.6
R1_ENV_058	3.2
R1_ENV_059	2.3
R1_ENV_060	1.9
R1_ENV_061	2.6

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHO	RE)
---	-----

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev Page 04 76 of 602

Station	THC (C ₁₀ -C ₄₀)
R1_ENV_064	2.5
R1_ENV_065	2.4
R1_ENV_066	1.5
R1_ENV_067	4.2
R1_ENV_068	4.9
R1_ENV_069	4.9
R1_ENV_070	7.4
R1_ENV_071	9.8
R1_ENV_072	10.8
R1_ENV_073	12.1
R1_ENV_074	8.7
R1_ENV_075	10.2
R1_ENV_076	4.8
R1_ENV_078	6.8
R1_ENV_079	10.5
R1_ENV_080	3.7
R1_ENV_081	1.8
R1_ENV_082	3.6
R1_ENV_083	4.0
R1_ENV_084	3.7
R1_ENV_086	3.9
R1_ENV_087	3.2
R1_ENV_088	13.0
R1_ENV_089	5.5
R1_ENV_091	8.7
R1_ENV_092	12.7
R1_ENV_093	22.5
R1_ENV_094	37.4
R1_ENV_095	18.0
R1_ENV_096	4.5
R1_ENV_097	2.6
R1_ENV_099	1.8
R1_ENV_104	8.1
R1_ENV_105	4.6

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	
ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT	
PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Re
ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	0

Station	THC (C ₁₀ -C ₄₀)
R1_ENV_108	5.7
R1_ENV_122	2.7
R1_ENV_124	2.0
R1_ENV_125	3.9
R1_ENV_126	4.2
Minimum	1.2
Maximum	37.4
Mean	5.4
Standard Deviation	5.71
RSD [%]	105

Concentrations expressed as μ g/g of dry sediment RSD = Relative standard deviation

THC = Total hydrocarbon content

10.2.2 Aromatic Hydrocarbon Content

Appendix I.1 summarises the individual concentrations of the US EPA 16 PAHs across the Route 1 survey area. Comparison of the total US EPA 16 concentrations was made to the ADS 18/2017 MAC value for total PAHs (QCC, 2017). Although this document does not state which PAHs constitute the total PAH value, comparison of the total US EPA 16 concentration to this value has been undertaken.

Individual US EPA 16 PAH concentrations were below the MRV (0.1 ng/g) at most stations across Route 1. The total US EPA 16 PAH values were treated as absolute values to enable comparison with the ADS 18/2017 MAC dataset. All values were reported as lower than their respective ADS 18/2017 MAC value for total PAHs (1700 ng/g; QCC, 2017) for both general use and marine protected areas.

10.2.3 Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)

Table 10.2 presents the concentrations of BTEX compounds in sediment samples within across the Route 1 survey area.

The concentrations of BTEX compounds along the Route 1 were below the MRV (5.0 ng/g) at all stations.

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

FugroRevPage0478 of 602

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Table 10.2: Sediment benzene, toluene, ethylbenzene, xylenes (BTEX) compound concentrations, Route 1

Station	Benzene	Toluene	Ethylbenzene	m, p-Xylene	o-Xylene
R1_ENV_001	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_002	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_011	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_014	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_024	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_029	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_030	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_031	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_038	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_039	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_040	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_041	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_042	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_043	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_044	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_045	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_046	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_047	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_048	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_049	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_050	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_051	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_052	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_053	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_054	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_055	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_056	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_057	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_058	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_059	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_060	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_061	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_064	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

 Rev
 Page

 04
 79 of 602

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Station	Benzene	Toluene	Ethylbenzene	m, p-Xylene	o-Xylene
R1_ENV_065	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_066	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_067	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_068	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_069	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_070	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_071	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_072	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_073	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_074	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_075	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_076	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_078	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_079	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_080	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_081	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_082	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_083	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_084	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_086	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_087	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_088	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_089	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_091	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_092	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_093	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_094	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_095	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_096	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_097	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_099	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_104	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_105	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_108	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

FugeRevPage0480 of 602

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Station	Benzene	Toluene	Ethylbenzene	m, p-Xylene	o-Xylene
R1_ENV_122	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_124	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_125	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
R1_ENV_126	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Minimum	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Maximum	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0

Notes

Concentrations expressed as ng/g of dry sediment

BTEX = Benzene, toluene, ethylbenzene, m' and p'-xylene and o'-xylene. Note that m-xylene and p-xylene are not separated by the method. The result is reported as the sum of both isomers

10.3 Soil Sample Results

Table 10.3 presents the concentrations of THC and oil and grease concentrations in the soil samples. Concentrations of THC in the soil samples across Route 1 ranged from 2.5 μ g/g at station SO_R1_006 to 13.0 μ g/g at station SO_R1_011, with a mean of 5.55 μ g/g and moderate variability (RSD 68 %). The concentrations of oil and grease will be consistently lower than the THC results. The MRV for oil and grease in sediment was determined to be 50 μ g/g, therefore there was no requirement to carry out the analysis.

Table 10.3: Soil sample tota	l petroleum hydrocarbor	ns and oil and grease	concentrations. Route 1
Tuble 10.5. Son Sumple tota	i petroleann nyaroearbor	is and on and grease	concentrations, noute i

Station	THC (C ₁₀ -C ₄₀)	Oil and Grease
SO_R1_003	4.6	< 50.0
SO_R1_005	2.6	< 50.0
SO_R1_006	2.5	< 50.0
SO_R1_007	3.2	< 50.0
SO_R1_008	2.5	< 50.0
SO_R1_009	10.8	< 50.0
SO_R1_010	3.7	< 50.0
SO_R1_011	13.0	< 50.0
SO_R1_012	4.5	< 50.0
SO_R1_013	8.1	< 50.0
Minimum	2.5	< 50.0
Maximum	13.0	< 50.0
Mean	5.55	-
Standard Deviation	3.77	-
RSD [%]	68	-

Concentrations expressed as μ g/g of dry sediment THC = Total hydrocarbon content

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)		
ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	T	JGRO
BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	81 of 602

Station	THC (C ₁₀ -C ₄₀)	Oil and Grease
RSD = Relative standard deviation		

Table 10.4 presents the concentrations of BTEX compounds in soil samples across the Route 1. The concentrations of BTEX compounds within the Route 1 soil samples were below the MRV (5.0 ng/g) at all stations.

Table 10.4: Soil sample benzene, toluene, ethylbenzene, xylene (BTEX) compound concentrations, Route 1

Station	Benzene	Toluene	Ethylbenzene	m, p-Xylene	o-Xylene
SO_R1_003	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
SO_R1_005	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
SO_R1_006	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
SO_R1_007	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
SO_R1_008	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
SO_R1_009	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
SO_R1_010	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
SO_R1_011	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
SO_R1_012	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
SO_R1_013	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Minimum	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Maximum	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0

Notes

Concentrations expressed as ng/g of dry sediment

BTEX = Benzene, toluene, ethylbenzene, m' and p'-xylene and o'-xylene. Note that m-xylene and p-xylene are not separated by the method. The result is reported as the sum of both isomers

Table 10.5 presents the concentrations of VOCs in the soil samples across Route 1. Concentrations of VOCs in the soil samples across the Route 1 were all below their respective MRVs, apart from at station SO_R1_009 where the tetrachloroethene concentration exceeded the MRV (3 μ g/kg) with a concentration of 17 μ g/kg.

Table 10.5: Soil sample volatile organic compound concentrations, Route 1

				Stat	tion					
voc	SO_R1_005	SO_R1_006	SO_R1_007	SO_R1_008	SO_R1_009	SO_R1_010	SO_R1_011	SO_R1_012	Minimum	Maximum
1,1,1,2-Tetrachloroethane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

 Rev
 Page

 04
 82 of 602

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

				Stat	tion					
voc	SO_R1_005	SO_R1_006	SO_R1_007	SO_R1_008	SO_R1_009	SO_R1_010	SO_R1_011	SO_R1_012	Minimum	Maximum
1,1-Dichloroethane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,2,3-Trichloropropane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
1,2,4-Trimethylbenzene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromochloromethane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromoform	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Carbon Tetrachloride	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Chloroform	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloromethane	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
cis 1,2-Dichloroethene	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 6.0	< 5.0	< 5.0	< 6.0
cis 1,3-Dichloropropene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

 Rev
 Page

 04
 83 of 602

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

				Stat	tion					
voc	SO_R1_005	SO_R1_006	SO_R1_007	SO_R1_008	SO_R1_009	SO_R1_010	SO_R1_011	SO_R1_012	Minimum	Maximum
Dibromochloromethane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dichlorodifluoromethane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Hexachlorobutadiene	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
iso-Propylbenzene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m and p-Xylene	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
МТВЕ	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 6.0	< 5.0	< 5.0	< 6.0
n-Butylbenzene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
p-Isopropyltoluene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Propylbenzene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	< 3.0	< 3.0	< 3.0	< 3.0	17	< 3.0	< 3.0	< 3.0	< 0.3	17.0
Toluene	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 6.0	< 5.0	< 5.0	< 6.0
trans 1,2-Dichloroethene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans 1,3-Dichloropropene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Notes

Concentrations expressed as $\mu g/kg$ of dry sediment

VOCs = Volatile organic compounds

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	_	
5	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL		IGRO
DNOC	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	84 of 602

11. Sediment Polychlorinated Biphenyls

11.1 Introduction

Seabed sediments were analysed for a group of 12 PCBs compiled by the World Health Organisation (WHO) by GC-µECD.

Full details of these methodologies are provided in Appendix B.2.2.5.

11.2 Results

Appendix J.1 presents the concentrations of individual PCB congeners and total WHO12 concentrations across the Route 1 survey area. Concentrations of all 12 individual PCBs were reported below the MRV (0.020 ng/g) at all stations across Route 1 except for PCB 77 at station R1_ENV_088, which was slightly above the MRV at 0.021 ng/g. The total WHO12 concentrations are below the ADS 18/2017 MAC (22.0 ng/g) for general use areas and MPAs. However, this comparison should be treated with caution as PCB congeners were not specified in the QCC (2017) document.

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES UGRO

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

12. Sediment Metals

12.1 Introduction

Sediments collected from the Route 1 survey areas were analysed for selected elements: aluminium, arsenic, barium, cadmium, chromium, copper, iron, mercury, nickel, lead, silver, vanadium and zinc.

Metals were extracted from the sediment matrix using an aqua regia digest technique. This provides a partial digest and the results obtained from this method are typically considered indicative of the concentration of metals available for biological interactions. The resulting digests were then analysed for aluminium, barium, iron and vanadium using ICP-OES and analysed for arsenic, cadmium, lead, copper, chromium, nickel, mercury, silver and zinc using ICP-MS. Appendix B.2.2.6 provides full details of all analytical techniques employed.

Concentrations of metals in the sediment samples were compared to their respective ADS 18/2017 MACs (QCC, 2017) and the US National Oceanographic and Atmospheric Administration (NOAA) effects range low (ERL) and effects range median (ERM) values (Buchman, 2008).

12.2 Sediment Sample Results

Appendix K.1 summarises the concentrations of the aqua regia extractable metals in the sediment samples across the Route 1 survey area.

Aluminium concentrations ranged from 128 μ g/g at station R1_ENV_038 to 5100 μ g/g at station R1_ENV_002, with a mean of 1560 μ g/g and high variability (RSD 79 %).

Arsenic concentrations ranged from 0.810 μ g/g at station R1_ENV_038 to 5.96 μ g/g at station R1_ENV_124, with a mean of 3.67 μ g/g and moderate variability (RSD 36 %). Concentrations of arsenic were below the US EPA CCC threshold of 7.0 μ g/g at all stations sampled.

Barium concentrations ranged from 9.18 μ g/g at station R1_ENV_038 to 1700 μ g/g at station R1_ENV_095, with a mean of 143 μ g/g and high variability (RSD 230 %).

Chromium concentrations ranged from 1.08 μ g/g at station R1_ENV_038 to 23.5 μ g/g at station R1_ENV_002, with a mean of 8.72 μ g/g and moderate variability (RSD 51 %). Concentrations of chromium were above the ADS 18/2017 MAC for marine protected areas (11 μ g/g; QCC, 2017) at 14 stations but below the ERL (81.0 μ g/g) and ERM (370 μ g/g) thresholds (Buchman, 2008).

Copper concentrations ranged from below the MRV (0.800 μ g/g) at 5 stations including R1_ENV_038, R1_ENV_096, R1_ENV_097, R1_ENV_099 and R1_ENV_105, to 5.06 μ g/g at station R1_ENV_093, with a mean of 1.96 μ g/g and high variability (RSD 71 %). The copper concentrations recorded across the survey area were below the

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)		
5	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	Τ	IGRO
DC	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	86 of 602

ADS 18/2017 MAC for general use areas and marine protected areas (20.0 μ g/g; QCC, 2017).

Iron concentrations ranged from 142 μ g/g at station R1_ENV_038 to 5780 μ g/g at station R1_ENV_001, with a mean of 1760 μ g/g and moderate variability (RSD 63 %).

Lead concentrations ranged from 0.774 μ g/g at station R1_ENV_040 to 9.45 μ g/g at station R1_ENV_093, with a mean of 2.28 μ g/g and high variability (RSD 79 %). The lead concentrations were above the ADS 18/2017 MAC for marine protected areas (5.0 μ g/g) at 4 stations, including R1_ENV_088, R1_ENV_093 to R1_ENV_095, but below their respective ERL and ERM values (Buchman, 2008).

Nickel concentrations ranged from 1.00 μ g/g at station R1_ENV_104 to 19.8 μ g/g at station R1_ENV_002, with a mean of 6.36 μ g/g and high variability (RSD 71 %). Concentrations of nickel were above the ADS 18/2017 MAC for general use areas (16.0 μ g/g; QCC, 2017) at 4 stations (stations R1_ENV_001, R1_ENV_002, R1_ENV_073, R1_ENV_074) and marine protected areas (7.0 μ g/g; QCC, 2017) at 18 stations but below the ERL (20.9 μ g/g) and ERM (51.6 μ g/g) thresholds at all stations (Buchman, 2008).

Silver concentrations ranged from below the MRV ($0.00700 \mu g/g$) at 42 stations to 0.313 $\mu g/g$ at station R1_ENV_093. All silver concentrations recorded were below their respective ERL and ERM values (Buchman, 2008).

Vanadium concentrations ranged from 1.21 μ g/g at station R1_ENV_038 to 20.5 μ g/g at station R1_ENV_001, with a mean of 7.76 μ g/g and moderate variability (RSD 46 %).

Zinc concentrations ranged from 0.830 μ g/g at station R1_ENV_051 to 20.6 μ g/g at station R1_ENV_053, with a mean of 4.60 μ g/g and high variability (RSD 83 %). The zinc concentrations recorded across the survey area were below the ADS 18/2017 MAC for general use areas (125.0 μ g/g; QCC, 2017) and marine protected areas (70.0 μ g/g; QCC, 2017).

Concentrations of cadmium and mercury were all below their respective MRVs (presented in Appendix G.1) at all stations across the survey area and were below their respective ADS 18/2017 MAC for both general use and marine protected areas, as well as their respective ERL and ERM thresholds (Buchman, 2008).

Figure 12.1 presents the overall trend in individual metals concentrations, assessed by comparing the relative (maximum normalised) concentrations. By maximum normalising the elemental data for the sediment samples to the highest concentration for each element, it can be seen that the some of the highest concentrations for most metals were recorded at nearshore stations R1_ENV_001 and R1_ENV_002, as well as station R1_ENV_093, and the lowest at stations R1_ENV_096 to R1_ENV_099.

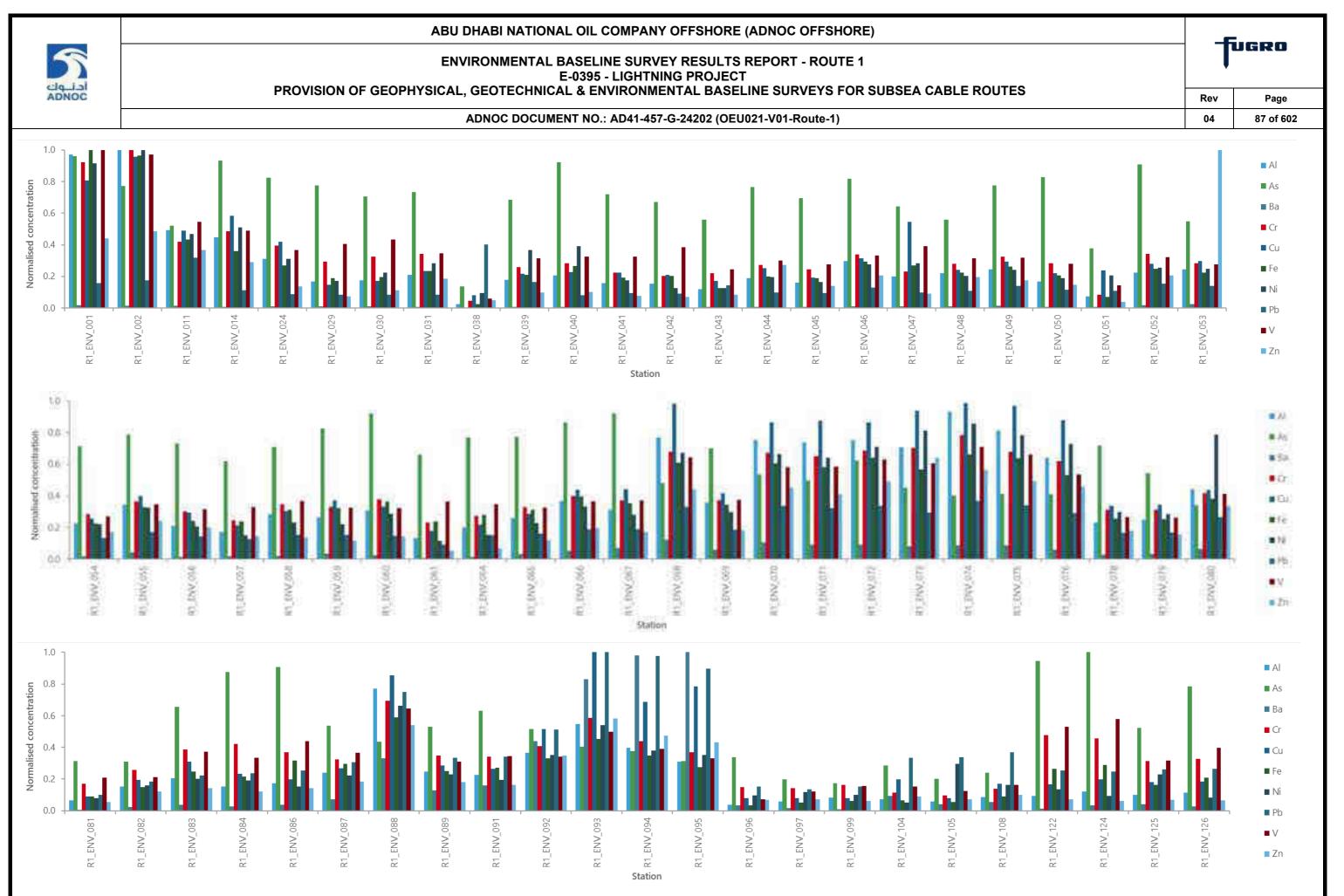


Figure 12.1: Relative (maximum normalised) elemental concentrations in sediments, Route 1

DOCUMENT CLASS - 1

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

12.3 Soil Sample Results

Table 12.1 presents the concentrations of the aqua regia extractable metals in the ten soil samples across the Route 1 survey area, including antimony, arsenic, barium, cadmium, chromium, cobalt, copper, iron, mercury, molybdenum, nickel, lead, selenium and zinc.

Arsenic concentrations across the survey area ranged from $1.70 \ \mu$ g/g at station SO_R1_013 to 5.49 μ g/g at station SO_R1_005, with a mean of 3.46 μ g/g and moderate variability (RSD 39 %). All arsenic concentrations were below the ADS 18/2017 MAC for general use areas (7.0 μ g/g; QCC, 2017) and marine protected areas (7.0 μ g/g; QCC, 2017).

Barium concentrations ranged from 13.8 μ g/g at station SO_R1_005 to 564 μ g/g at station SO_R1_011, with a mean of 116 μ g/g and high variability (RSD 144 %).

Cobalt concentrations ranged from 0.077 μ g/g at station SO_R1_012 to 1.45 μ g/g at station SO_R1_009, with a mean of 0.664 μ g/g and moderate variability (RSD 69 %).

Chromium concentrations ranged from 2.67 μ g/g at station SO_R1_013 to 16.3 μ g/g at station SO_R1_011, with a mean of 8.55 μ g/g and moderate variability (RSD 54 %). Chromium concentrations at stations SO_R1_009 and SO_R1_011 exceeded the ADS18/2017 MAC for marine protected areas (11 μ g/g; QCC, 2017). However, these values were below the NOAA ERL value (81.0 μ g/g), so deemed not to be of environmental concern.

Copper concentrations ranged from below the MRV (0.800 μ g/g) at station SO_R1_012 to 4.37 μ g/g at station SO_R1_009, with a mean of 1.95 μ g/g and moderate variability (RSD 70 %). All copper concentrations were below the ADS 18/2017 MAC for general use areas and marine protected areas (20.0 μ g/g; QCC, 2017).

Iron concentrations ranged from 206 μ g/g at station SO_R1_012 to 3700 μ g/g at station SO_R1_009, with a mean of 1770 μ g/g and moderate variability (RSD 63 %).

Molybdenum concentrations ranged from 0.205 μ g/g at station SO_R1_013 to 1.24 μ g/g at station SO_R1_009, with a mean of 0.669 μ g/g and moderate variability (RSD 48 %).

Nickel concentrations ranged from 1.00 μ g/g at station SO_R1_013 to 15.6 μ g/g at station SO_R1_010, with a mean of 7.13 μ g/g and high variability (RSD 75 %). Nickel concentrations at stations SO_R1_005, SO_R1_009, SO_R1_010 and SO_R1_011 were above the ADS 18/2017 MAC (7.0 μ g/g; QCC, 2017) for marine protected areas. However, these values were below the NOAA ERL threshold value (20.9 μ g/g).

Lead concentrations ranged from 0.774 μ g/g at station SO_R1_005 to 7.09 μ g/g at station SO_R1_011, with a mean of 2.29 μ g/g and high variability (RSD 83 %). The lead concentration at station SO_R1_011 exceeded the ADS18/2017 MAC (5.0 μ g/g;

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)		
5	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	ŢĽ	IGRO
00	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	89 of 602

QCC, 2017) for marine protected areas, but was below the NOAA ERL threshold value (46.7 μ g/g).

Antimony concentrations ranged from below the MRV ($0.0400 \mu g/g$) at stations SO_R1_012 and SO_R1_013 to 0.161 $\mu g/g$ at station SO_R1_011, with a mean of 0.097 $\mu g/g$ and moderate variability (RSD 53 %).

Selenium concentrations ranged from 0.140 μ g/g at station SO_R1_013 to 0.508 μ g/g at station SO_R1_009, with a mean of 0.307 μ g/g and moderate variability (RSD 40 %).

Zinc concentrations ranged from 1.42 μ g/g at station SO_R1_008 to 11.1 μ g/g at station SO_R1_011, with a mean of 4.46 μ g/g and high variability (RSD 81 %). All zinc concentrations were below the ADS 18/2017 MAC for general use areas (125.0 μ g/g; QCC, 2017) and marine protected areas (70.0 μ g/g; QCC, 2017).

All cadmium and mercury concentrations recorded across the survey area were below their respective MRVs at all stations sampled, as well as below their respective ADS 18/2017 MAC for general use areas and marine protected areas (QCC, 2017).

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)		•
5	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE	T	UGRO
ادنیوك ADNOC	SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	90 of 602

Table 12.1: Summary of soil sample metals analysis, Route 1

Station	As	Ва	Cd	Со	Cr	Cu	Fe	Hg	Мо	Ni	Pb	Sb	Se	Zn
SO_R1_003	4.91	16.6	< 0.0800	0.735	9.29	2.13	1560	< 0.0400	1.01	6.19	0.830	0.145	0.381	2.79
SO_R1_005	5.49	13.8	< 0.0800	0.527	6.62	1.15	1540	< 0.0400	0.708	7.73	0.774	0.125	0.384	2.12
SO_R1_006	3.34	17.5	< 0.0800	0.500	6.60	1.23	1300	< 0.0400	0.408	4.01	1.04	0.0869	0.198	4.06
SO_R1_007	4.23	37.1	< 0.0800	0.611	8.16	1.55	1810	< 0.0400	0.703	4.62	1.46	0.133	0.296	2.82
SO_R1_008	4.58	26.2	< 0.0800	0.416	6.46	1.10	1620	< 0.0400	0.663	3.04	1.43	0.130	0.272	1.42
SO_R1_009	3.71	159	< 0.0800	1.45	16.1	4.37	3700	< 0.0400	1.24	14.1	3.19	0.101	0.508	10.1
SO_R1_010	2.03	110	< 0.0800	0.820	9.78	2.21	2200	< 0.0400	0.613	15.6	2.51	0.0513	0.290	6.96
SO_R1_011	2.59	564	< 0.0800	1.37	16.3	4.32	3400	< 0.0400	0.878	13.1	7.09	0.161	0.439	11.1
SO_R1_012	2.01	55.0	< 0.0800	0.0770	3.48	< 0.800	206	< 0.0400	0.260	1.94	1.43	< 0.0400	0.158	1.44
SO_R1_013	1.70	161	< 0.0800	0.136	2.67	0.999	385	< 0.0400	0.205	1.00	3.15	< 0.0400	0.140	1.83
Minimum	1.70	13.8	< 0.0800	0.0770	2.67	< 0.800	206	< 0.0400	0.205	1.00	0.774	< 0.0400	0.140	1.42
Maximum	5.49	564	< 0.0800	1.45	16.3	4.37	3700	< 0.0400	1.24	15.6	7.09	0.161	0.508	11.1
Mean	3.46	116	-	0.664	8.55	1.95	1770	-	0.669	7.13	2.29	0.097	0.307	4.46
Standard Deviation	1.34	168	-	0.457	4.61	1.37	1120	-	0.324	5.32	1.91	0.051	0.121	3.63
RSD [%]	39	144	-	69	54	70	63	-	48	75	83	53	40	81
Sediment Standards (C	QCC, 2017)													
General use areas	7.0	-	0.7	-	52	20.0	-	0.2	-	16.0	30.0	-	-	125.0
Marine protected areas	7.0	-	0.2	-	11	20.0	-	0.2	-	7.0	5.0	-	-	70.0

StationAsBaCdCoCrCuFeHgMoNiPbSbSeZrNOAA Assessment Criteria (Buchman, 2008)ERL8.20-1.20-81.034.0-0.150-20.946.7150ERM70.0-9.60-370270-0.710-51.6218-410Notes Concentrations expressed in µg/g dry sediment For statistical evaluation, results < MRV were treated as absolute values determined by MRV/2	SURVEYS FOR SUBSEA CABLE ROUTESRevPageADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)0491 of 602StationAsBaCdCoCrCuFeHgMoNiPbSbSeZnNOAA Assessment Criteria (Buchman, 2008)ERL8.20-1.20-81.034.0-0.150-20.946.7150ERM70.0-9.60-370270-0.710-51.6218-410Notes Concentrations expressed in µd/g dry sediment For statistical evaluation, results < MRV were treated as absolute values determined by MRV/2	5		pc	ENV	IRONME	NTAL B/	ASELINE -0395 - L	SURVE	resul g proje	'S REPOI	DC OFFSH RT - ROUT	ГЕ 1			Ŧ	JGRO
StationAsBaCdCoCrCuFeHgMoNiPbSbSeZrNOAA Assessment Criteria (Buchman, 2008)ERL8.20-1.20-81.034.0-0.150-20.946.7150ERM70.0-9.60-370270-0.710-51.6218-410Notes Concentrations expressed in µg/g dry sediment For statistical evaluation, results < MRV were treated as absolute values determined by MRV/2As = ArsenicBa = Barium Ni = NickelCd = Cadmium Pb = LeadCo = Cobalt Sb = Antimony MRV = Minimum reporting value ERL = Effects range lowCu = Copper Zn = Zinc RSD = Relative standard deviation 	StationAsBaCdCoCrCuFeHgMoNiPbSbSeZnNOAA Assessment Criteria (Buchman, 2008)ERL8.20-1.20-81.034.0-0.150-20.946.7150ERM70.0-9.60-370270-0.710-51.6218410Notes Concentrations expressed in µg/g dry sediment for statistical evaluation, results < MRV were treated as absolute values determined by MRV/2As = ArsenicBa = Barium Pb = LeadCo = Cobalt Sb = AntimonyCr = Chromium Se = Selenium MRV = Minimum reporting value ERL = Effects range lowCu = Copper RSD = Relative standard deviation ERL = Effects range median	ADNOC		FR		N OF GEU						ICNIAL D	ASELIN	E		Rev	Page
NOAA Assessment Crieria (Buchwar, 2008) Image: Second	NOAA Assessment Criteria (Buchman, 2008) Image: Second					ADNOC D	OCUMEN	IT NO.: A	D41-457-0	G-24202 (O	EU021-V0	1-Route-1)				04	91 of 6
ERL8.20-1.20-81.034.0-0.150-20.946.7150ERM70.0-9.60-370270-0.710-51.6218410Notes Concentrations expressed in µg/g dry sediment For statistical evaluation, results < MRV were treated as absolute values determined by MRV/2	ERL8.20-1.20-81.034.0-0.150-20.946.7150ERM70.0-9.60-370270-0.710-51.6218410Notes Concentrations expressed in µg/g dry seliment For statistical evaluation, results < MRV were treated as absolute values determined by MRV/2	Station		As	Ва	Cd	Co	Cr	Cu	Fe	Hg	Мо	Ni	Pb	Sb	S	e Z
ERM70.0-9.60-370270-0.710-51.6218410Notes Concentrations expressed in µg/g dry sediment For statistical evaluation, results < MRV were treated as absolute values determined by MRV/2	ERM 70.0 - 9.60 - 370 270 - 0.710 - 51.6 218 - - 410 Notes Concentrations expressed in µg/g dry sediment For statistical evaluation, results < MRV were treated as absolute values determined by MV/2	NOAA Asses	sment Criteri	a (Buchm	nan, 2008)												
Notes Concentrations expressed in µg/g dry sediment For statistical evaluation, results < MRV were treated as absolute values determined by MRV/2 As = Arsenic Ba = Barium Cd = Cadmium Co = Cobalt Cr = Chromium Cu = Copper Fe= Iron Hg = Mercury Mo = Molybdenum Ni=Nickel Pb = Lead Sb = Antimony Se = Selenium Zn = Zinc QCC = Abu Dhabi Quality and Conformity Council MRV = Minimum reporting value RSD = Relative standard deviation NOAA = National Oceanic and Atmospheric Administration ERL = Effects range low ERL = Effects range median	Notes Concentrations expressed in µg/g dry sediment For statistical evaluation, results < MRV were treated as absolute values determined by MRV/2 As = Arsenic Ba = Barium Cd = Cadmium Co = Cobalt Cr = Chromium Cu = Copper Fe= Iron Hg = Mercury Mo = Molybdenum Ni=Nickel Pb = Lead Sb = Antimony Se = Selenium Zn = Zinc QCC = Abu Dhabi Quality and Conformity Council MRV = Minimum reporting value RSD = Relative standard deviation NOAA = National Oceanic and Atmospheric Administration ERL = Effects range low ERL = Effects range median	ERL		8.20	-	1.20	-	81.0	34.0	-	0.150	-	20.9	46.7	-		150
Concentrations expressed in µg/g dry sediment For statistical evaluation, results < MRV were treated as absolute values determined by MRV/2 As = Arsenic Ba = Barium Cd = Cadmium Co = Cobalt Cr = Chromium Cu = Copper Fe= Iron Hg = Mercury Mo = Molybdenum Ni=Nickel Pb = Lead Sb = Antimony Se = Selenium Zn = Zinc QCC = Abu Dhabi Quality and Conformity Council MRV = Minimum reporting value RSD = Relative standard deviation NOAA = National Oceanic and Atmospheric Administration ERL = Effects range low ERL = Effects range median	Concentrations expressed in µg/g dry sediment For statistical evaluation, results < MRV were treated as absolute values determined by MRV/2 As = Arsenic Ba = Barium Cd = Cadmium Co = Cobalt Cr = Chromium Cu = Copper Fe= Iron Hg = Mercury Mo = Molybdenum Ni=Nickel Pb = Lead Sb = Antimony Se = Selenium Zn = Zinc QCC = Abu Dhabi Quality and Conformity Council MRV = Minimum reporting value RSD = Relative standard deviation NOAA = National Oceanic and Atmospheric Administration ERL = Effects range low ERL = Effects range median	ERM		70.0	-	9.60	-	370	270	-	0.710	-	51.6	218	-		410
			al Oceanic and	l Atmosphe				RL = Effects	-	ediment Stand	ard for Gene		U		Standard for	r Marine P	otected Are
		ley.			Delow St	eument Stan	uarus		ADORE 36	ediment Stand		Tal USE Aleas	ADC	we Sediment o			Olecled Ale

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

13. Seabed Habitats and Epifauna

13.1 Introduction

Video data from the 10 video transects surveyed were analysed by experienced Fugro marine biologists/taxonomists. Habitats were classified in accordance with the MLEAD (John & George, 2001) and EAD (Al Dhaheri et al., 2017) habitat classifications. Epifauna were identified to the lowest practicable taxonomic level and the presence of sensitive species (hard corals) assessed.

13.2 Results

Three distinct seabed habitats were identified within the survey area:

'Sublittoral mixed deposit' (SLMXD) was identified from five transects (R1_TR04B, R1_TR06, R1_TR07, R1_TR08A and R1_TR10). This habitat was restricted to relatively deeper water depths of between ~14.0 m and ~26.0 m below sea level (BSL).

'Sublittoral sediment' (SLSED) comprising sand and gravel was identified interspersed with seagrass beds habitat from three transects (R1_TR02, R1_TR03 and R1_TR09). This habitat was restricted to relatively shallower water depths of between ~4.0 m and ~12.0 m BSL.

'Seagrass beds' were identified within the survey area and displayed two biotopes variants:

'Maturing beds of the seagrasses *H. uninervis*, H. ovalis and *H. stipulacea*' (SLSED.Huni.Hoval.Hstip) biotope was identified from three transects (R1_TR01, R1_TR02 and R1_TR03). This biotope consisted of more stable and dense seagrass meadows (*H. uninervis*, *H. ovalis* and *H. stipulacea* complex), growing on relatively deeper soft sediment at lower depths of between ~4.0 m and ~6.0 m BSL.

'Low density beds of the seagrasses *H. ovalis* and *H. stipulacea* colonising bare sediment' (SLSED.Hoval.Hstip) was identified from two transects (R1_TR05A and R1_TR09). This biotope variant consisted of a lower density of the seagrasses *H. ovalis* and *H. stipulacea*, colonising bare sediment at deeper depths of between ~12.0 m and ~13.0 m BSL.

Although, theoretically a biotope can be assigned to any sized area of seabed, for the purposes of this assessment, the commonly accepted minimum habitat size of 25 m2 (Parry, 2019) was adopted for the designation of the biotopes encountered within the survey area. Therefore, this biotope variant identified from small areas of transect TR09 (although relative seagrass cover \geq 10 %) was not assigned to the 'Seagrass beds' habitat.

Table 13.1 presents the habitat classification hierarchy for the habitats observed within the survey area. This is detailed in the video and photographic log presented in Appendix C.3.

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE) UGRO **ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1** E-0395 - LIGHTNING PROJECT **PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES** Rev Page ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1) 04 93 of 602

Table 13.1: Habitat Classifications, Route 1

MLEAD (2001) Habitat Classification		MLEAD Classification (John & George, 2001)	EAD Habitat Classification and Protection Guideline (Al Dhaheri et al., 2017)
Depth Zone Level 1	Substratum Level 2	-	-
SL Sublittoral zone	MXD Mixed deposit	SLMXD 'Sublittoral mixed deposit'	4 13,000 - hard bottom"
	SED	SLSED	"14,000 - unconsolidated bottom"
	Sediment (gravels/sands deposit)	SLSED.Huni.Hoval.Hstip	"12.000
	(gravels/sallus deposit)	SLSED.Hoval.Hstip*	- "12,000 - seagrass bed"

Notes

MLEAD = The Marine Life of the Emirate of Abu Dhabi

EAD = Environment Agency-Abu Dhabi

* = This habitat was adapted from MLEAD habitat classification to better describe the habitat observed within the survey area

13.2.1 Seabed Habitats and Fauna

13.2.1.1 'Sublittoral Mixed Deposit' (SLMXD)/"13,000 - Hard Bottom"

Mixed sediment areas were classified as the 'Sublittoral mixed deposit' (SLMXD) habitat defined by John & George (2001) and under the "13,000 - Hard bottom" habitat defined by AI Dhaheri et al. (2017). This habitat comprised a mainly flat substratum of calcarenite (cemented sand) with occasional coral outcrops including finger corals (Porites sp.), plate corals (Turbinaria sp.) and boulder corals (Faviidae). The calcarenite was generally covered by a veneer of sand sediment.

This habitat displayed generally a scarce diversity and abundance of corals within the survey area; with exception of transect R1 TR10, where a low abundance of corals was recorded and a segment of transect R1 TR06, which displayed moderate density. This is detailed in the hard coral assessment presented in Appendix B.3.2.1. The most frequently recorded corals across the survey area were boulder corals (Faviidae, ?Cyphastrea sp.), plate coral (Turbinaria sp.), finger corals (Porites sp.) and gorgonians (Alcyonacea including ?Subergorgia suberosa).

Sessile epifauna included sponges (Porifera), ascidians (Phallusia nigra, Didemnum sp.), faunal turf (Bryozoa/Hydrozoa), hydroids (Hydrozoa), sea cucumber (Holothuroidea), shells (Bivalvia), fanshell (Pinna muricata), pearl oyster (Pinctada sp.) and hammer oysters (Malleus sp.).

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	_	
S	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	Τ	IGRO
NOC	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	94 of 602

Mobile epifauna included snails (Gastropoda), cone shells (Conidae), sea urchins (Echinoidea including *Echinometra mathei*), long spined sea urchins (*Diadema setosum*), sand dollar (Clypeasteroidea inc. *Clypeaster humilis*, ?*Echinodiscus* sp), pencil urchins (*Phyllacanthus imperialis*), starfish (Asteroidea including *Linckia* sp., *Astropecten* polyacanthusphragmorus, *Pentaceraster mammillatus, Luidia maculata, Aquilonastra burtoni*), brittlestars (Ophiuroidea including possible *Ophiothela* sp.), hermit crabs (Paguroidea), crabs (Decapoda) including decorator crab (Majoidea) and shrimps (Caridea). Some seaweeds and algal turf, including peacock weed (*Padina boergesenii*) and coralline algae (Corallinales), were occasionally observed across the survey area.

Fish fauna was diverse and included yellowband angel fish (*Pomacanthus maculosus*), emperor fish (*Lethrinus* sp.) including the pink ear emperor fish (*Lethrinus lentjan*), snapper (*Lutjanus* sp.) including blackspot snapper (*Lutjanus fulviflamma*), orange spot grouper (*Epinephelus coioides*), doublebar bream (*Acanthopagrus bifasciatus*), Arabian monocle bream (*Scolopsis ghanam*), black-streaked monocle bream (*Scolopsis taeniatus*), blackspotted rubberlip (*Plectorhinchus gaterinus*), marbled spinefoot (*Siganus rivulatus*), parrotfish (*Chlorurus sordidus*), scad (Carangidae) including yellowstripe scad (*Selaroides leptolepis*), goatfish (Mullidae including *Upeneus* sp.), pearly goatfish (*Parupeneus margaritatus*), yellowstripe goatfish (*Mulloidichthys flavolineatus*), flatfish (Pleuronectiformes), mojarra fish (Gerreidae), small scale terapon (*Terapon puta*), anchovies (Clupeiformes), cardinal fish (Apogonidae), goby (Gobiidae), unidentified fish (Pisces).

Figure 13.1 presents example seabed photographs of this habitat.

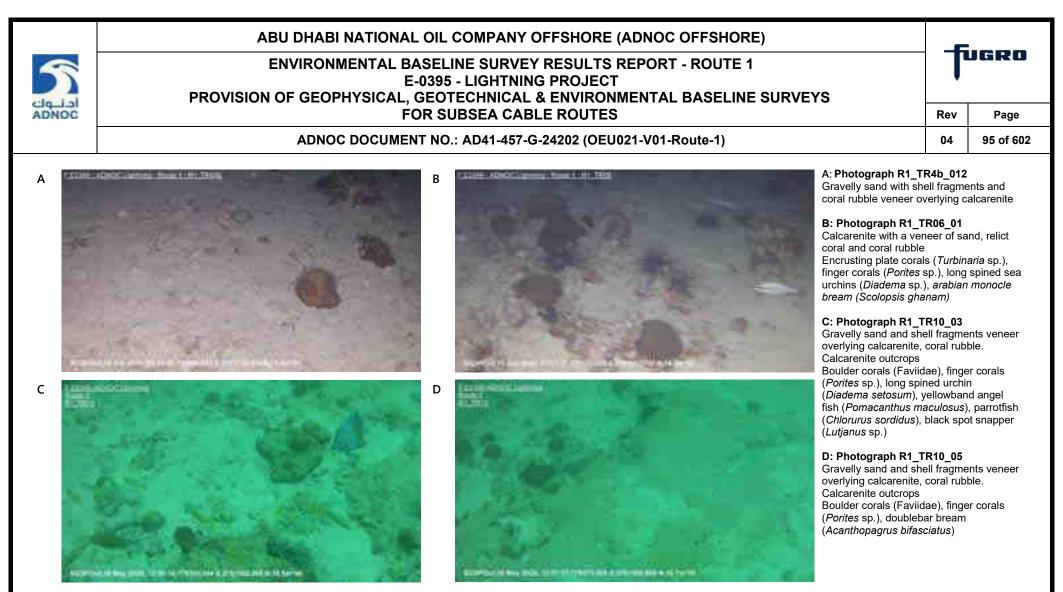
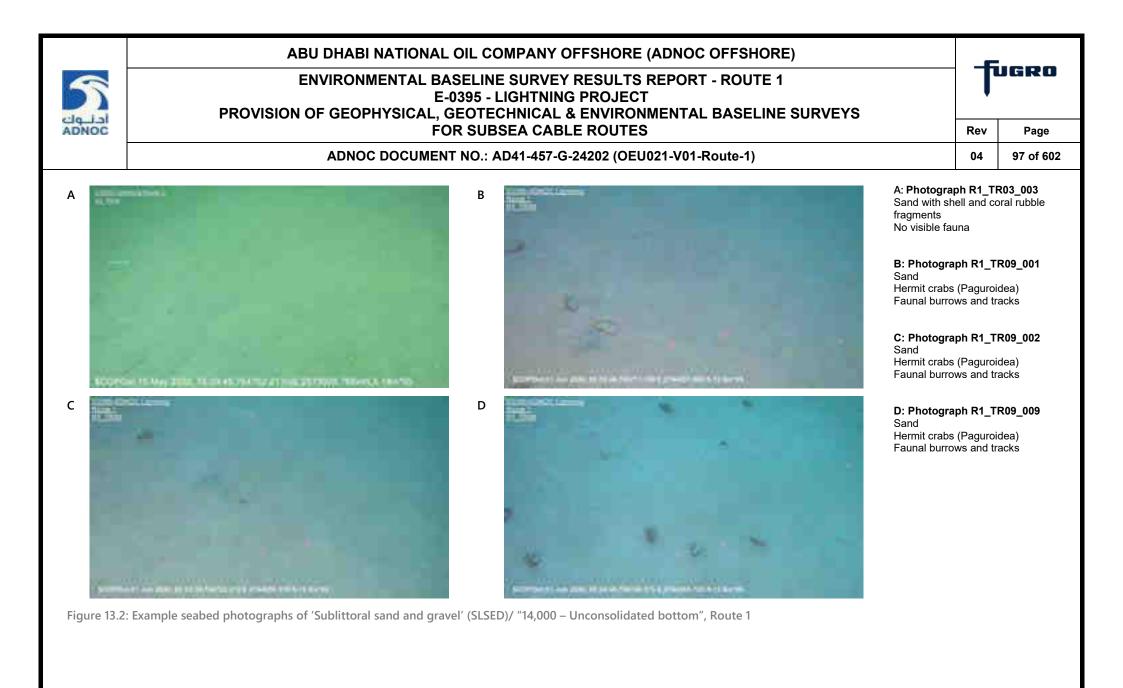


Figure 13.1: Example seabed photographs of 'Sublittoral mixed deposit' (SLMXD)/ "13,000 - Hard bottom", Route 1

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE) ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1) 04 96 of 602


13.2.1.2 Sublittoral Sand and Gravel' (Sublittoral Sediment; SLSED)/"14,000 – Unconsolidated Bottom"

'Sublittoral sand and gravel' was classified within the 'Sublittoral sediment' (SLSED) habitat of John & George (2001) and "14,000 – Unconsolidated bottom" habitat by Al Dhaheri et al. (2017).

This habitat comprised predominantly sand sediment, with varying proportions of gravel and shell and coral fragments. Visible epifauna and epiflora was very sparse and generally restricted to occasional outcrops of hard material or aggregations of rubble. Some red algae (Rhodophyta, *?Chondria dasyphylla*) and peacock weed (*P. boergesenil*) were also occasionally observed. Errant invertebrates included hermit crabs (Paguroidea). Fish fauna including goby (*Cryptocentrus* sp.) and unidentified fish (Pisces) were sporadically observed. Faunal burrows and tracks were also present.

Within this habitat, small patches of seagrass (*H. uninervis*, *H. stipulacea* and *H. ovalis* complex) were observed in low density in segments of transects R1_TR02 and R1_TR03. However, seagrass cover was scattered and less than 10 %. For the purpose of this survey, the lower limit of what constitutes a seagrass bed is approximately 10 % cover.

Figure 13.2 presents example seabed photographs of this habitat.

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	_	
5	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	Ţ	IGRO
ADNOC	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	98 of 602

13.2.1.3 'Seagrass Bed'/"12,000 – Seagrass Bed"

'Seagrass bed' was classified within 'Sublittoral sediment' (SLSED) habitat of John & George (2001) and the "12,000 – Seagrass bed" habitat by Al Dhaheri et al. (2017).

This habitat comprised predominantly sand sediment, where the seagrass *H. uninervis* is the dominant cover species and in places *H. ovalis* and *H. stipulacea* form an understorey. Soft sediments were relatively deep and stable to provide a three-dimensional habitat on and amongst seagrass blades for the establishment of other organisms.

Within the survey area, 'Seagrass beds' displayed two habitat variants:

'SLSED.Huni.Hoval.Hstip' ('Maturing beds of the seagrasses *H. uninervis*, *H. ovalis* and *H. stipulacea*').

'Maturing beds of the seagrasses *H. uninervis*, *H. ovalis* and *H. stipulacea*' was defined within 'Sublittoral sediment' (SLSED) habitat of John & George (2001).

This habitat displays more stable seagrass beds and a considerably greater biological diversity. Soft sediments are relatively deeper, and shrimp-gobies can form burrows. In this habitat, the seagrass *H. uninervis* is dominant along with an understorey of *H. ovalis* and *H. stipulacea*. In current swept areas, drift algal material may occur and small scale terapon (*Terapon puta*), a small fish species characteristic of seagrass habitats, are commonly encountered. In areas with lower currents, orange botrylloid ascidians may occur with a branching purple sponge (Porifera).

Visible epifauna and epiflora included sponges (Porifera), ascidians (Ascidiacaea, including *?Didemnum* sp.), epiphytic branching sponges/ascidians (Porifera/Ascidiacea) red algae (Rhodophyta, possibly *Chondria dasyphylla*) and peacock weed (*Padina boergesenil*). Faunal burrows and fish (Pisces) were occasionally observed.

Figure 13.3 presents example seabed photographs of this habitat.

'SLSED.Hoval.Hstip' 'Low density beds of H. ovalis and H. stipulacea colonizing bare sediment'

Across the survey area, low density beds of the seagrasses *H. ovalis* and *H. stipulacea* colonising bare sediment were also observed in areas where the seagrass *H. uninervis* was absent. This habitat variant was adapted from the 'seagrass bed' habitat classification defined by John & George (2001) and, for the use of this report, classified as 'low density beds of *H. ovalis* and *H. stipulacea* colonising bare sediment' ('SLSED.Hoval.Hstip').

Visible epifauna and epiflora included sponges (Porifera), faunal turf (Bryozoa), fanshells (*Pinna muricata*), sand dollar (Clypeasteroidea), hermit crabs (Paguroidea) and red algae (Rhodophyta). Fish fauna included goatfish (Mullidae inc. *Upeneus* sp.), yellowstripe scad (*Selaroides leptolepis*), pink ear emperor (*Lethrinus lentjan*), anchovies (Clupeiformes) and mojarra fish (Gerreidae).

Figure 13.3 presents example seabed photographs of this habitat.

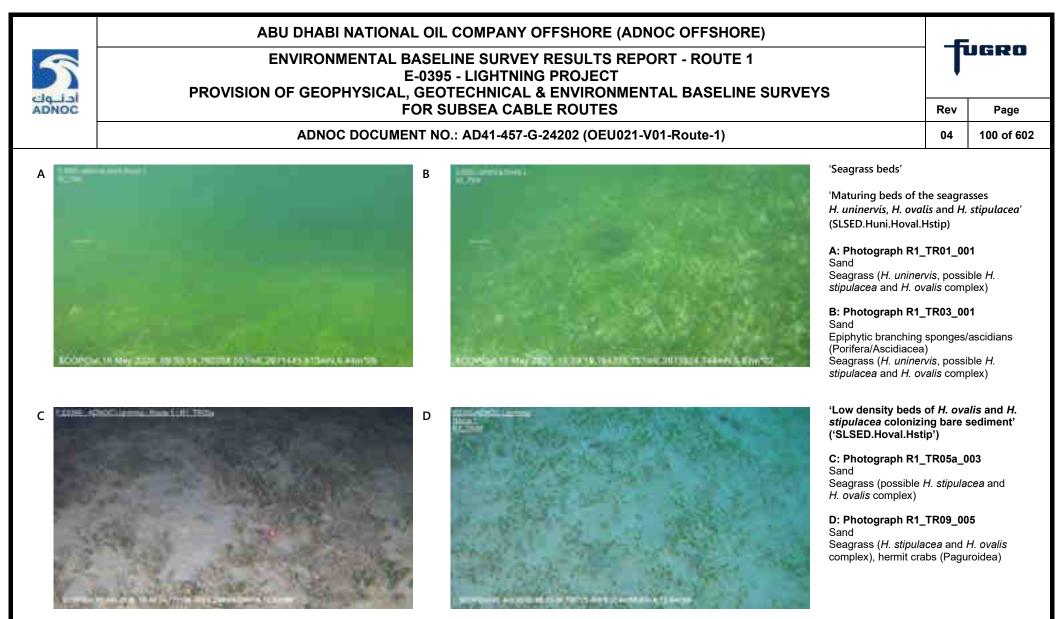


Figure 13.3: Example seabed photographs of "12,000 – Seagrass bed", Route 1

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)		
5	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	Ţ	JGRO
ADNOC	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Re v	Page
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	101 of 602

13.2.2 Potentially Sensitive Habitats

13.2.2.1 Corals

Hard Corals

Table 13.2 summarises the hard coral assessment with proportions of transects and this is displayed spatially in Figure 13.4. Appendix C.3 provides the detailed assessment for the individual transects.C.3.

Within the survey area, the majority of the transects displayed 'No coral cover' with few or no live corals reported. Sporadic coral outcrops were identified from transect R1_TR04B, where the density of live corals reached 'low live coral cover' (1 % to 5 %) in two segments of the transect, and at R1_TR10 which displayed an average 'low live coral cover' (5 % to 10 %). In a segment of transect R1_TR06, the density of live corals was classified as 'moderate live coral cover' (10 % to 20 %).

Hard corals diversity was generally low within the survey area and included finger corals (*Porites* spp.), boulder corals (*Faviidae*, *?Cyphastrea* sp.) and plate corals (*Turbinaria* sp.).

Soft Corals

Only a very low density of gorgonians (Alcyonacea) were identified during the survey, with these only recorded from transects R1_TR07 and R1_TR10 at very low density (< 1 %). Under the assessment methodology adopted all areas with < 1 % coral cover were defined as containing 'No coral'.

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE) ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1) 04

UGRO

Table 13.2: Hard coral assessment, Route 1

Table 15.2. Hard Coral asse						
Transect		Hard Coral Assessm Proportion of Trans [%]				
R1_TR01	N (100 %)					
R1_TR02	N (100 %)					
R1_TR03		N (100 %)				
R1_TR04B		L (11.3 %)				
R1_TR05A		N (100 %)				
R1_TR06	M (36.2 %)		R (63.8%)			
R1_TR07		N (100 %)				
R1_TR08A		N (100 %)				
R1_TR09		N (100 %)				
R1_TR10		L (100 %)				
Notes N = No coral (< 1 %) L = Low coral cover (1 % to M = Moderate coral cover (1 R = Coral rubble (< 1 %)						
Key: No coral	Coral rubble Dead coral framework	Low live coral cover	Moderate live coral cover	High live coral cover		

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT

PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

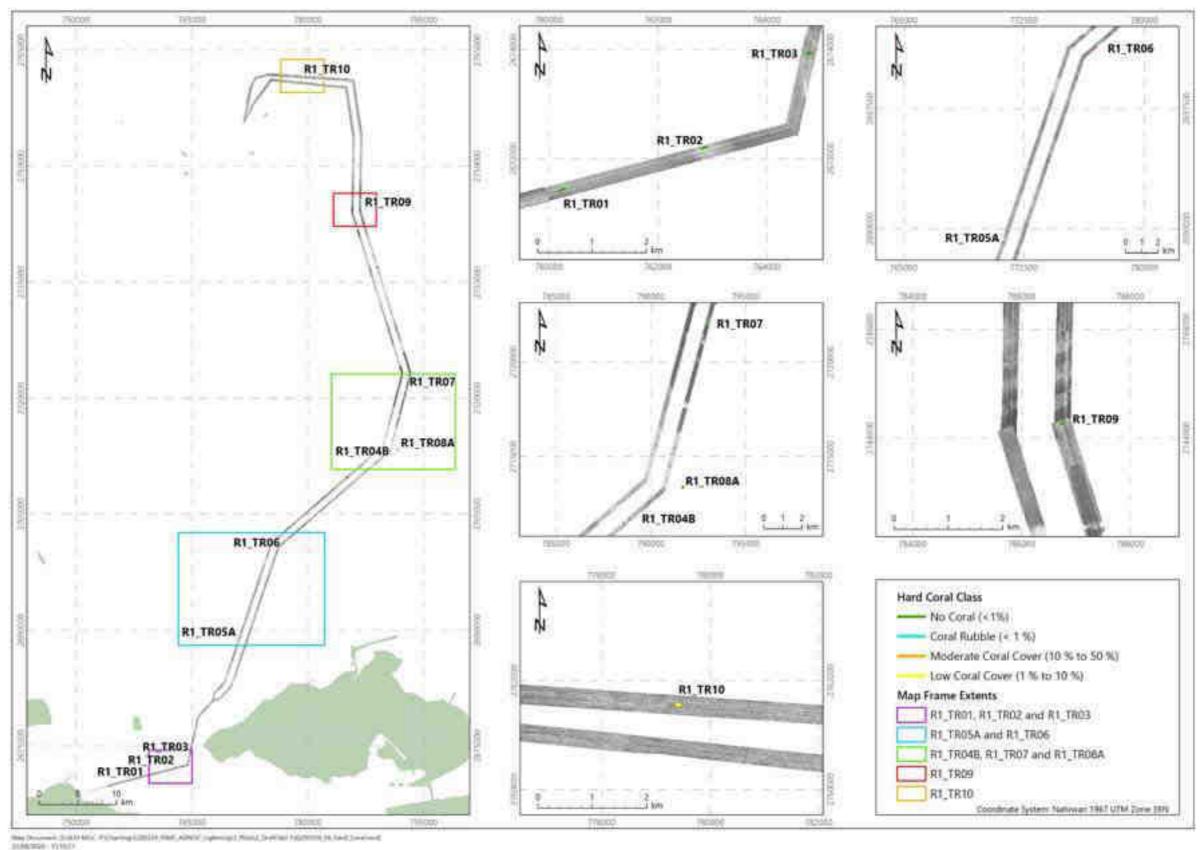


Figure 13.4: Completed environmental transects, showing hard coral assessment results, Route 1

TUGRO	
Rev	Page
04	103 of 602

13.2.2.2 Seagrass

Table 13.3 summarises the seagrass assessment and this is displayed spatially in Figure 13.4. Appendix C.3 provides the detailed assessment for the individual transects.

Within the survey area, the seagrasses *H. uninervis, H. stipulacea and H. ovalis complex* were recorded in higher density with more than 10 % cover in transect R1_TR01, and in segments of transects R1_TR02 and R1_TR03, forming dense and long-leaved seagrass meadows.

The seagrasses *H. stipulacea and H. ovalis* were recorded in lower density, but at greater than 10 % cover, in transect R1_TR05A and in segments of R1_TR09, forming patchy and short-leaved seagrass beds.

Small patches of seagrass (*H. uninervis*, *H. stipulacea* and *H. ovalis* complex) were also observed in low density in segments of transects R1_TR02, R1_TR03 and R1_TR09. However, seagrass cover was scattered and less than 10 %. For the purpose of this survey, the lower limit of what constitutes a seagrass bed is approximately 10 % cover.

Table 13.3: Se	eagrass	assessment,	Route	1

Transect		Seagrass Assessme (Proportion of Tran [%]			
R1_TR01		(100 %)			
R1_TR02		(93.9 %)		(6.1 %)	
R1_TR03	(58.1 %)	(41.9 %)		
R1_TR04B		(100 %)			
R1_TR05A	(100 %)				
R1_TR06		(100 %)			
R1_TR07		(100 %)			
R1_TR08A		(100 %)			
R1_TR09	(25.4 %)		(74.6%)		
R1_TR10		(100 %)			
Notes N = No seagrass (< 1 %) L = Low seagrass cover (1 % to 10 %) S = Seagrass bed (≥ 10 %)					
Key: No Sea		ow Seagrass Cover 1 to 10 %	Seagrass Bec ≥ 10 %	l	

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT

PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

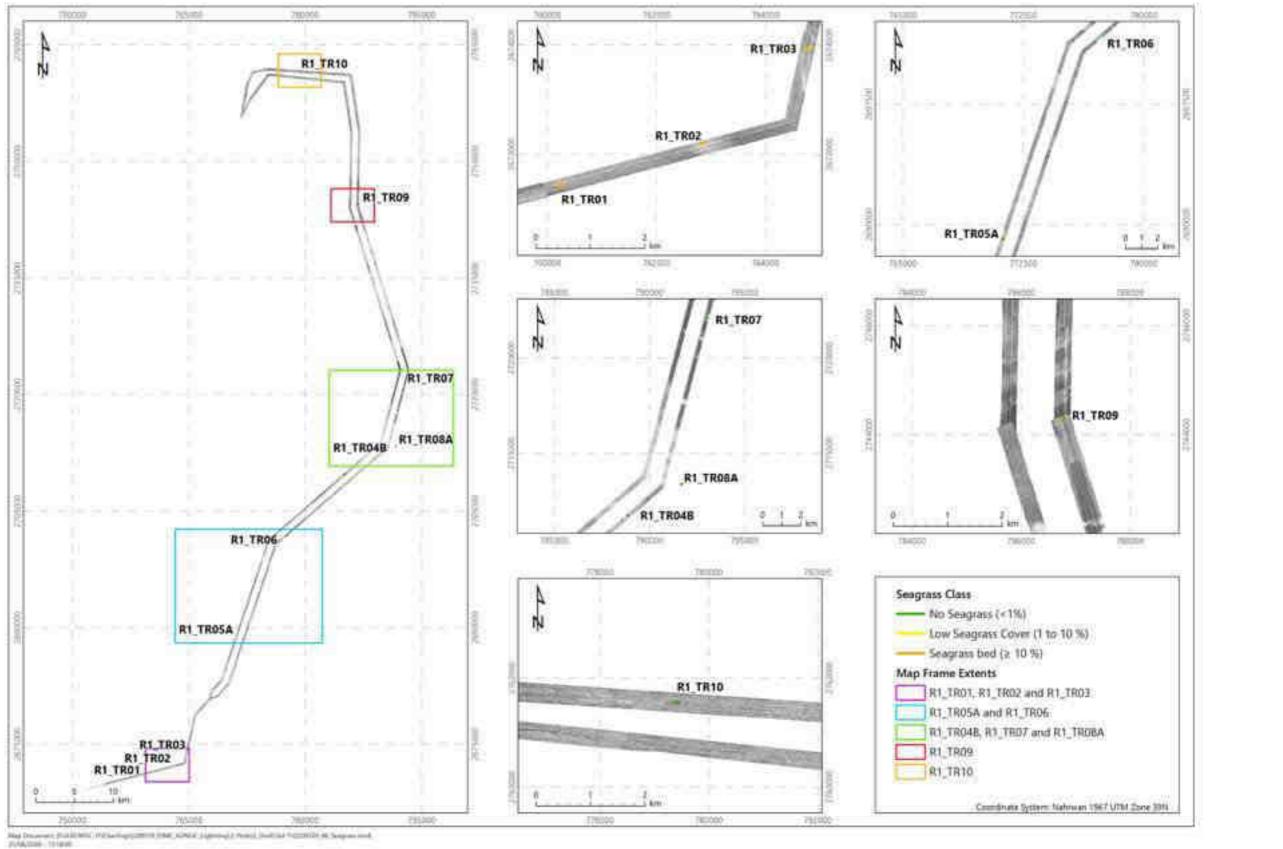
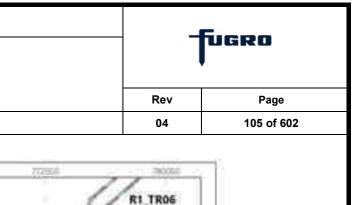



Figure 13.5: Completed environmental transects, showing seagrass assessment results, Route 1

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

14. Discussion

This survey was undertaken to establish the current biological and physico-chemical conditions of the seabed sediments and water column along the proposed Route 1 that will connect Lower Zakum Island G to Mirfa within the Zakum Field, Offshore Abu Dhabi. The survey and analytical strategies were designed to provide a comprehensive baseline dataset of the physico-chemical characteristics within the survey area. An assessment of likely habitats and biotopes, with particular attention to environmentally sensitive habitats and species, was also conducted. The sampling plan included the collection of water profiles, water samples and surface sediments at 130 pre-selected stations along Route 1. Photographic data was acquired from 10 transects approximately 116 m to 170 m in length.

Water profiles were collected to record in situ parameters throughout the water column, including temperature, turbidity, salinity, DO saturation and pH. Water samples (from top, middle and bottom depths) were analysed for inorganic parameters (ammonium, ammoniacal nitrogen, COD, chloride, nitrate, nitrite, sulphide, total nitrogen, total cyanide, TSS, total coliform, BOD, chloride, pH, phosphate, sulphate, TDS, TOC, orthophosphate, silicon, turbidity, total phosphorus), hydrocarbons and heavy and trace metals.

The surface (0 cm to 2 cm) sediment samples were analysed for nutrients, TOC, carbonate content, hydrocarbons (including THC, PAHs and BTEX), PCBs and heavy metal content. The surface (0 cm to 5 cm) sediment samples were analysed for selected physical characteristics (e.g. PSD).

The previous sections of this report have presented the data generated from the analysis programme stated above with the aid of data tables and graphics. This discussion section will review the data with respect to cited reference levels. The Abu Dhabi Specification Ambient Marine Water and Sediments Maximum Allowable Concentrations (ADS 18/2017 MAC) (QCC, 2017) and the US EPA CCC and CMC values (US EPA, 2020) were used to support the interpretation of data from the current survey. Respectively, these set maximum allowable limits for general use areas and MPAs, as well as maximum concentrations that if exceeded could potentially cause detrimental effects in biota. The NOAA screening quick reference tables provide assessment criteria for contaminants in sediments in the form of ERL and ERM threshold values (Buchman, 2008). Adverse effects on organisms are rarely observed when concentrations are present below the ERL value but are generally observed when above the ERM value (NOAA, 1999).

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

14.1 Water Profiles

The Arabian Gulf is a semi-enclosed body marine body of water that connects to open waters via the Strait of Hormuz. In that area, ecosystems are under high environmental pressures with high temperatures causing high evaporation rates and high salinity, poor flushing causing limited dilution, slow dispersion and high resident time, atmospheric fallout from dust storms and high ultra violet (UV) exposure.

The water profiles within the survey area were considered to be representative of ambient seawater conditions for the region and time of year across all parameters.

A monthly hydrographical survey carried out in the Arabian Gulf between October 1993 and September 1994 (Shriadah & Al-Ghais, 1999) demonstrated water temperatures ranged from 16.9 °C to 34.6 °C. Similarly, seawater temperatures around Abu Dhabi have been recorded as increasing from 21.0 °C in February to 33.3 °C in July (Taher et al., 2012). The nearshore stations sampled in the current survey had the lowest recorded temperatures in the survey area (approximately 26 °C to 27 °C). This increased to 34.9 °C in station R1_ENV_019 (< 2.5 m depth), located in the same area, but sampled two months later in June 2020. A similar trend was observed between offshore stations, in which temperatures increased from approximately 28 °C in April 2020, to 33 °C in June 2020. The temperature values across the survey area are therefore consistent with previous findings in the wider area and suggest a seasonal trend.

Temperature profiles were broadly consistent throughout the water column, with the exception of some offshore stations (R1_ENV_063 to R1_ENV_94 and R1_ENV_0127 to R1_ENV_REF), which showed a minor decrease in temperature (< 2 °C) below approximately 8 m depth. This reflects a weak thermocline due to the sinking of colder (< 29 °C), denser water below warmer waters at these stations. However, at stations R1_ENV_048 to R1_ENV_062 there was a slight increase in water temperatures (by < 1 °C) with depth, which corresponded to a similar increase in salinity (by approximately 1 ppt), indicating the subduction (sinking) of warmer (> 32 °C), hypersaline water below cooler, less saline surface waters. Despite these changes, the stability of the water profiles across the survey area generally reflects a lack of pronounced thermoclines and suggests a certain degree of mixing throughout water column.

The arid climate influences the sea salinity, which together with shallow water and a limited circulation pattern, as well as inconsequential freshwater runoff due to the low annual rainfall, means that salinities in the Gulf normally reach between 40 ppt and 50 ppt (Carpenter et al., 1997). However, this can average 37 ppt in deeper, central waters and as high as 70 ppt in southern bays and shallow lagoons (Simmonds & Lamboeuf, 1981; Taher et al., 2012). The salinity profiles in the current survey ranged between 39.8 ppt and 46.1 ppt. The highest salinity ranges (> 44 ppt) were found at nearshore stations, whilst lower salinities (< 42 ppt) were typical of offshore stations.

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	H	
ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	Τ	JGRO
BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	108 of 602

Salinity was broadly consistent throughout the water column, likely due to the shallow water depths across the survey area; however, a slight increase in salinity was observed below approximately 10 m depth for some deeper offshore stations. These corresponded to both an increase in water temperature (subduction) and decrease in water temperatures (weak thermocline), depending on the density of the water, and reflects a weak halocline for some stations. This is consistent with previous findings in the wider area.

Turbidity can be an indicator of suspended solids within the water column, often related to factors including erosion, seasonal inputs from rivers and resuspension of sediments. High turbidity may also be indicative of phytoplankton or algal growth. In particular, prevailing north-westerly 'shamal' winds occur between November and April. These drive seasonal eddies in the central Gulf and influence coastal storms surges and currents in the south (Sheppard, 1993). Not only does this cause fluctuations in seawater temperature, but the resulting wave-driven sediment resuspension across the shallow (< 10 m) coastal areas can cause periods of elevated turbidity (> 20 NTU) (Paparella et al., 2019).

Water turbidity profiles across the survey area were generally constant with low values (< 1.5 NTU) at all offshore stations. This suggests clear waters with low levels of suspended material in the water, despite a slight increase in turbidity towards the seabed at some stations. Nearshore stations had a higher turbidity average (up to 5 NTU) which would be expected in shallow waters (< 10 m) due to the resuspension of sediments. However, in station R1_ENV_019, which was sampled two months later in June 2020, the turbidity was recorded between 0 NTU and 0.5 NTU, which could also suggest a seasonal influence. Large anomalies recorded at stations were attributed to the sensor contacting the seabed.

The oxygen content of natural waters varies with temperature, salinity, turbulence, the photosynthetic activity of algae and plants and atmospheric pressure. Biological respiration, including that related to decomposition processes, reduces DO concentrations. The solubility of oxygen also decreases as temperature and salinity increase. Dissolved oxygen saturation across the survey area was between 80 % to 120 % throughout the water column. A slight decrease was observed with depth, with higher concentrations recorded at shallower stations. The observed pattern typically reflects greater photosynthesis (from increased light levels) in surface waters, as well as greater gas exchange with the atmosphere, compared to deeper waters. Overall, the water profiles demonstrate that marine waters within the survey area were at, or near, oxygen saturation at the time of survey, with little indication of oxygen depletion.

The average pH value of the water profiles acquired during water profiling was approximately 8.1 and were relatively constant throughout the water column. High pH in water samples can occur during algae blooms due to chemical processes associated with photosynthesis but moderate to high salinities usually 'buffer' pH in the range 7 to 8 range. A typical pH range for seawater is 6.5 to 8.5 (US EPA, 2020); the pH in all survey areas were within these criteria indicating little evidence of algal blooms.

Overall, the results indicate a poorly developed thermocline and halocline across the survey area, which could be attributed to shallow waters, seasonal winds and currents that mostly disturb stratification.

14.2 Water Quality

Most of the inorganic water quality parameters (including total suspended solids, ammonia, ammonium, sulphide, nitrite, silicon, orthophosphate, COD, BOD and total coliform) were below their respective MRVs at all stations across the survey area. Values for total nitrogen, total cyanide, nitrate and total phosphorus, were below their respective MRVs for the majority of stations across the survey area. Reference values were available for some parameters (pH, total cyanide and total coliform).

Total suspended solids (TSS) are related to turbidity and linked to factors including erosion, seasonal inputs from rivers and resuspension of sediments. TSS have a deleterious effect on water quality due to a reduction in light transmission and the transport of nutrients and bacteria in the water column (Bilotta & Brazier, 2008). Across the survey area TSS values were < 5.0 mg/L and turbidity ranged from below the MRV (0.1 mg/L) to 3.6 mg/L. According to the EPA (Klemas, 2012), TSS concentrations of < 10 mg/L are classified as clear waters, therefore the results from the survey area are indicative of clear water.

In water the forms of nitrogen that are of greatest interest are nitrate, nitrite, ammonia and organic nitrogen. Nitrate is the final oxidation product of nitrogen compounds in seawater and is considered the most thermodynamically stable oxidation level under aerobic conditions; it is one of the most important nutrients controlling primary production. Nitrite forms the intermediate between the reduction of nitrate and the oxidation of ammonia in sea and estuarine water. The concentrations of nitrite are typically low except in transition zones between oxic and anoxic conditions (Mordy et al., 2010). In oxygenated natural water systems, nitrite is rapidly oxidised to nitrate and consequently, concentrations of nitrite is reduced by anaerobic bacteria to ammonia (Koike & Sorensen, 1988). Nitrite levels across the survey area were below the MRV (0.016 mg/L) at all stations, and nitrate ranged from below the MRV of 0.04 mg/L to 0.85 mg/L.

Phosphorus in waters occurs mostly as dissolved orthophosphate, polyphosphates and organically bound phosphates. Changes between these forms occur continuously due to decomposition and synthesis of organically bound forms and oxidised inorganic forms. Natural sources of phosphorus are mainly the weathering of phosphorus-bearing rocks and the decomposition of organic matter. Domestic waste waters (particularly those containing detergents), industrial effluents and fertilisers' run-off contribute to elevated levels in surface waters. Phosphorus associated with organic and mineral constituents in water bodies can also be mobilised by bacteria and released to the water column. Because phosphorus is actively taken up by algae and marine plants, there can be considerable seasonal fluctuations in concentrations in surface waters, and elevated phosphorus levels may lead

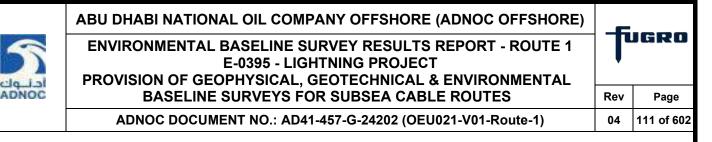
to the eutrophication of water. The orthophosphate concentrations were below the MRV (0.060 mg/L). Total phosphorus concentrations exceeded the MRV (0.03 mg/L) in nine samples.

TOC consists of both dissolved and particulate organic carbon and can be an approximate indicator of productivity in marine waters where anthropogenic inputs are not present. The mean TOC values observed across the Lightning Route 1 survey area were comparable at different depths suggesting no evidence of stratification.

Sulphate concentrations (ranging from 2930 mg/L to 3710 mg/L) did not show clear spatial or depth-driven trends within the dataset and were below the sulphate concentrations reported from the wider Arabian Gulf region (3750 mg/L to 4490 mg/L; Taher et al., 2012).

Chemical oxygen demand (COD) is a measurement of the oxygen required to oxidise soluble and particulate organic matter in water. Biochemical oxygen demand (BOD) is a measurement of the amount of dissolved oxygen that is used by aerobic microorganisms when decomposing organic matter in water. High BOD and COD values can be indicative of nutrient enrichment in marine waters. BOD and COD levels were < MRV (2 mg/L and 5 mg/L respectively), and they were broadly comparable to the levels reported previously in the region (BOD < 5 mg/L and COD < 10 mg/L; Fugro unpublished, 2019).

Microbiological analysis of coliforms showed that bacterial colonies were not present within the water samples, suggesting no influence of human or animal wastes.


Generally, the water samples from the Lightning Route 1 survey area demonstrated no evidence of anthropogenic pollution and are likely to be representative of background conditions for the local area.

14.3 Water Column Hydrocarbons

Hydrocarbon content can be used as an indicator of petrogenic inputs into water columns. This is because soluble fractions of hydrocarbons can partition between dissolved and particulate bound phases in the water column (Latimer & Zheng, 2003; Thibodeaux et al., 2011).

Concentrations of volatile petroleum hydrocarbons, extractable petroleum hydrocarbons and dissolved and emulsified oil were below their respective MRVs at all stations. The concentration of free oil was below the MRV at all stations except for all sample depths at six stations (R1_ENV_036, R1_ENV_037, R1_ENV_120, R1_ENV_121, R1_ENV_122 and R1_ENV_123) and the top sample of station R1_ENV_119; all of which had a concentration of 0.02 % vol/vol.

The MRV for extractable petroleum hydrocarbons was above the ADS 18/2017 MACs for both general use areas and marine protected areas, thus no comparison to the threshold could be made.

Polycyclic aromatic hydrocarbons and their alkyl homologues have been recorded in a wide range of marine matrices (Laflamme & Hites, 1978; Neff, 1979; Youngblood & Blumer, 1975). These compounds consist of two or more fused benzene rings in linear, angular or cluster arrangements. By definition, PAHs only contain carbon and hydrogen atoms. However, other atoms (e.g. nitrogen, sulphur and oxygen) may be readily substituted into the benzene ring to form heterocyclic compounds that are present in significant levels in petroleum and refined products.

Monitoring of aromatic hydrocarbon type and content is important due to the particularly toxic nature (mutagenic/carcinogenic) of several PAHs even at very low concentrations. The EPA has identified sixteen priority PAHs to be monitored that primarily reflect inputs from man-made combustion sources (further alkylated and parent compounds are normally studied because of the information they provide on PAH origin and fate). Many PAHs have long been recognised as universal environmental pollutants with the heavier molecular weight PAHs (mainly 4 to 6 ring PAH) generally being regarded as carcinogens and mutagens. Indeed, 11 of 40 PAHs ranging from 3 to 6 ring structures have been listed as being strongly carcinogenic or mutagenic with a further ten listed as weakly carcinogenic or mutagenic (Edwards, 1983).

By far the greatest concentrations of PAHs released into the environment are formed during fossil fuel combustion and man-made forest and agricultural fires (Sims & Overcash, 1983; Edwards, 1983). Once released into the atmosphere PAHs may be carried long distances adsorbed to particulate material (e.g. soot and fly-ash; Windsor & Hites, 1979). Similarly, when deposited within the water environment PAHs may undergo further transport (e.g. by rivers or ocean currents) before final deposition in the sediments. Due to the low solubility and hydrophobic nature of PAHs, when deposited within the water column they tend to be adsorbed to suspended inorganic and organic particulate matter, which gradually settles out. Once deposited in the sediment PAHs are less susceptible to photochemical and biological degradation and may accumulate to relatively high concentrations.

Concentrations of PAHs were below their respective MRVs at all stations across the Lightning Route 1 survey area, apart from naphthalene, phenanthrene and pyrene. Concentrations of naphthalene and pyrene equalled their respective MRVs for six (R1 ENV 001-Middle, R1 ENV 028-Top, R1 ENV 049-Top, R1 ENV 080-Top. R1 ENV 095-Top and R1 ENV 108-Top) and two (R1 ENV 001-Bottom and R1 ENV 004-Bottom) samples respectively. Phenanthrene concentrations exceeded the (R1_ENV_061-Middle, MRV for three samples R1 ENV 004-Bottom and R1 ENV 017-Bottom). However, the concentrations of PAHs recorded across the Route 1 survey area are unlikely to be of environmental concern.

BTEX is the term used to describe a group of compounds related to benzene: toluene (methyl benzene), ethyl benzene, xylenes and benzene itself. BTEX are volatile and present in light crude oils and gasoline and sources are primarily from oil and gas industries, chemical industries and other combustion processes. BTEX compounds are volatile in

nature and can be lost through evaporation processes, however they are toxic to organisms when in the marine environment if contact time is sufficient (Alpar & Unlu, 2010).

BTEX concentrations were all below their respective MRVs. The concentrations of benzene, toluene and ethylbenzene were all below their respective CCME values, and therefore unlikely to be of environmental concern.

Phenol and its derivatives are common by-products of industrial processes such refining or treatment of fossil fuels and the production of coke, steel, paint, fiberglass etc. (Krastanov et al., 2013). Phenol and phenolic compounds are water-soluble substances and toxic to marine organisms (Duan et al., 2017; Duan et al., 2018). The concentrations of phenol and phenolic compounds were below their respective MRVs at all stations across the Lightning Route 1 survey area.

14.4 Water Column Major and Trace Elements

Metals and metalloids occur naturally in the marine environment and are widely distributed in both dissolved and sedimentary forms. Some are essential to marine life while others have no biological function and therefore are toxic to numerous organisms at certain levels (Paez-Osuna & Ruiz Fernandez, 1995; Boening, 1999). Metals can enter the environment via natural methods such as riverine transport, coastal discharges, geological weathering and atmospheric fallout (Brady et al., 2015). Other routes into marine waters are from anthropogenic activities such as direct discharges from industrial activities.

Except for chromium, copper, lead and zinc, concentrations of all major and trace elements were below their respective ADS 18/2017 MAC for both general use areas and marine protected areas in all samples, as well as the US EPA CCC and CMC thresholds (US EPA, 2020) and considered to be of no environmental concern. Concentrations of chromium, copper, lead and zinc exceeded the ADS 18/2017 MAC for both general use areas and marine protected areas in 100, 17, 31 and 129 samples respectively. The chromium concentrations determined across the Lightning Route 1 survey area were total chromium concentrations including hexavalent chromium (Cr VI), whereas the ADS 18/2017 standard is for hexavalent chromium only. As such, the analysis results are not directly comparable to the MACs.

It is not clear if the ADS 18/2017 MACs are for total or dissolved metals, whereas the major and trace element concentrations analysed across the Lightning Route 1 survey area are total concentrations, consisting of both dissolved and particulate forms. Consequently, the copper, lead and zinc concentrations in the particulate fraction could influence total concentrations resulting in an exceedance of the water quality standards across the Lightning Route 1 survey area.

There were no spatial patterns in the dataset, or any relationships with depth, suggesting no influence on water column concentrations from the underlying sediment.

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	_	
5	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	Ţ	JGRO
ADNOC	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	113 of 602

14.5 Sediment Characterisation

The general physical and chemical characteristics of sediment particles have a significant effect on how other chemical components and biological species interact with seabed sediments. For example, the silt/clay fraction is known to adsorb petroleum hydrocarbons/heavy metals from seawater and through this pathway, these chemicals become incorporated into the sediment system (Meyers & Quinn, 1973). Granulometry data can therefore be critical when interpreting chemical and biological data obtained in this type of benthic study.

With regard to macrofaunal communities, the species distributions and community structure can be greatly influenced by the nature of the sediment, which represents the effects of a complex set of hydrological factors, such as water movement, turbulence and suspended load, at one particular point in time. Some animals have a behavioural preference for sediment of a particular grain size (Meadows, 1964; Gray, 1981), while this factor and organic matter content are closely associated with other properties of the sediment such as density, porosity, permeability, oxygenation and bacterial count (Buchanan, 1984), all of which affect animal functions such as locomotion, attachment, tube construction and feeding. Specifically, the proportion of fine (silt/clay) material often influences the distribution of macrofaunal communities.

The sediments within the Route 1 survey areas demonstrated moderate interstation variability in mean diameter (μ m) and sand content (Appendix H.2). Sediment descriptions using the Folk description (1954) categorised the seabed across Route 1 as slightly gravelly muddy sand, slightly gravelly sandy mud, slightly gravelly sand, gravelly muddy sand and gravelly sand. This was classified further within the laboratory to Wentworth (1922) sediment descriptions of 'coarse sand' to 'fine silt', with sand as the dominant fraction (mean 70.73 %). No clear spatial patterns between depth and sediment type were apparent along Route 1.

Carbonate content within sediments in the Arabian Gulf has been well documented to be high and closely correlated with grain size, with an average of 85 % in coarser sediment (Basaham & El Sayed, 1998). Carbonate content across the Route 1 survey area was higher than this (mean 95.0 %). Elevated carbonate percentages have been associated with high temperature and high salinity, as observed in the water column profiles (Section 4), in addition to low dilution from land derived inputs and low precipitation, which increases the carbonate production of benthic organisms (Fugro, 2016).

Sediment TOC content within the Route 1 survey area was lower (mean 0.34 %) than data presented by the National Petroleum Construction Company (2019) for the Zakum Field, (0.4692 %).

Det 00	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	.		
	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL		TUGRO	
	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page	
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	114 of 602	

14.6 Sediment Nutrients

Sediment nutrient concentrations are important indicators of primary production and the health of an ecosystem. All sediment nutrient concentrations recorded across the survey area demonstrated low to moderate variation. No spatial patterns were observed or any association with depth, hence the concentrations recorded were considered as background for the region.

14.7 Sediment Hydrocarbons

Marine sediments contain hydrocarbons derived from many sources that enter the marine environment via three general processes: biosynthesis (marine and land organisms biosynthesise hydrocarbons), geochemical processes (submarine and coastal/terrestrial oil-seeps) and anthropogenic sources (from accidental or intentional discharge of fossil fuel) (Farrington & Meyer, 1975; Myers & Gunnerson, 1976).

Biosynthesised hydrocarbons are ubiquitous in the marine environment (Harada et al., 1995; Parinos et al., 2013). Odd carbon number, long chain n-alkanes are widely distributed in the plant kingdom (Eglinton et al., 1962; Douglas & Eglinton, 1966; Bush & McInerney, 2013) as components of cuticle waxes. These are common on the surfaces of leaves, stems, flowers and pollen and their presence in sediment is indicative of terrestrial inputs from adjacent land masses. Relatively high concentrations of nC_{29} , nC_{31} and nC_{33} are therefore a common feature of many marine sediments (Farrington et al., 1977), particularly inshore marine sediments (Bouloubassi et al., 1997).

Anthropogenic hydrocarbon inputs enter the marine environment from a number of sources: for example, marine transportation, offshore oil production, coastal oil refineries, accidental shipping losses, industrial and municipal waste (including sewage and dredged spoils) with a significant contribution to the global budget entering via urban and river run-off, atmospheric deposition (i.e. from combustion sources, including PAHs) and natural seepages (Johnston, 1980; Dicks et al., 1987).

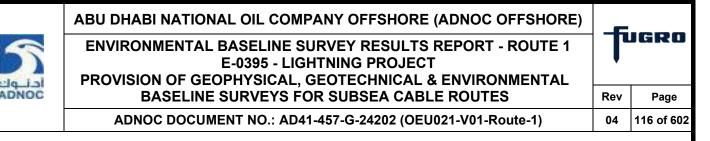
The total hydrocarbon content concentrations measured in sediment samples collected along the cable route displayed high variability (RSD 105%). The three stations (R1_ENV_93, 22.5 μ g/g; R1_ENV_94, 37.4 μ g/g and R1_ENV_95, 18.0 μ g/g) with the highest THC concentrations were grouped together. Overall, concentrations were low (ranging from 1.2 μ g/g to 37.4 μ g/g) with values that are typical of concentrations recorded around non-industrialised coastal environments distant from hydrocarbon inputs (de Mora et al., 2010).

Most of the sediment individual PAH concentrations were below the MRV (0.1 ng/g). Total PAH concentrations did not exceed the ADS 18/2017 MAC value (1700 ng/g) at any station. Although comparison of total US EPA 16 PAH concentrations was made to the MAC values for total PAHs (QCC, 2017), they should be treated with caution as this document does not state which PAHs constitute the total PAH value. The concentrations of

individual PAHs were also lower than the available estimated environmental effect threshold values (ERL values, listed in Appendix I.1). Total PAH concentrations were broadly comparable to the range (0 ng/g to 31.5 ng/g) reported previously in offshore UAE waters (Al Katheeri, 2004).

The concentrations of BTEX measured in the sediment samples collected throughout the Route 1 survey area were all below the MRV (5.0 ng/g). Previous site-specific studies in UAE offshore waters (Fugro, 2016) reported BTEX sediment concentrations below the MRV (range from < 0.05 mg/kg to < 0.1 mg/kg), which were higher than the current survey.

14.8 Sediment Polychlorinated Biphenyls


PCBs are a group of industrial chemicals that were widely used in electrical equipment. They are manufactured by reacting chlorine with biphenyl resulting in the formation of a complex mixture of compounds (known as congeners). The properties of the final product are modified by varying the proportion of chlorine to biphenyl present. PCBs in environmental samples are therefore present as technical mixtures not as individual compounds. PCBs have been identified as being potentially harmful to the environment and are no longer commercially produced but may still be present on offshore installations in sealed units (such as power transformers). Releases of PCBs to the environment would therefore not be expected to be widespread with the most likely source of contamination being related to historic use of coatings/paint containing PCBs or spillages from damaged equipment.

PCB concentrations along Route 1 were below the MRV (0.020 ng/g) at most stations and all total WHO12 PCB concentrations were below the ADS 18/2017 MAC (22.0 ng/g) for general use areas and MPAs. Although comparison to the MAC values have been made, the ADS 18/2017 (QCC, 2017) document does not specify which PCBs constitute the PCB total. Previous studies in UAE offshore waters demonstrated higher PCB sediment concentrations (< 0.01 mg/kg Fugro, 2016), than those from the current survey.

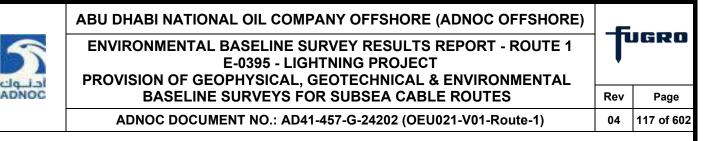
14.9 Sediment Metals

The analysis of samples for heavy metal content can provide further corroboration in conjunction with the physical characteristics and hydrocarbon content of marine sediments in assessing either the background levels or the dispersion of discharged material around offshore installations.

Trace metal contaminants in the marine environment tend to form associations with the non-residual phases of mineral matter, such as iron and manganese oxides and hydroxides, metal sulphides, clays, organics and carbonates (Warren & Zimmerman, 1993; Dang et al., 2015; Wang et al., 2015). Non-residual trace metals are associated with more reactive and available sediment components through processes such as adsorption onto mineral surfaces and organic complexation. Metals associated with these more reactive phases are prone to various environmental interactions and transformations (physical,

chemical and biological) potentially increasing their mobility and biological availability (Tessier et al., 1979; Warren & Zimmerman, 1993; Du Laing et al., 2009). Residual trace metals are defined as those that are part of the crystal structure of the component minerals and are generally unavailable to organisms (de Orte et al., 2018). Therefore, in monitoring trace metal contamination of the marine environment, it is important to distinguish the more mobile non-residual trace metals from the residual metals held tightly in the sediment lattice (Chester & Voutsinou, 1981), which are of comparatively lesser environmental significance because of their low reactivity and availability.

In this study, an analytical procedure involving the digestion of sediment using aqua regia was employed to analyse the elemental content of the sediments. The aqua regia digest releases for analysis the non-residual heavy metals, which are not incorporated in the mineral matrix and are therefore potentially available for biological uptake.


Except for chromium, lead and nickel, concentrations of all sediment metals were below their respective ADS 18/2017 MAC for both general use areas and marine protected areas. Concentrations of chromium, lead and nickel exceeded the ADS 18/2017 MAC (QCC, 2017) for marine protected areas at 14, 4 and 18 stations respectively. Nickel concentrations also exceeded the ADS 18/2017 MAC (QCC, 2017) for general use areas at 4 stations, including the two nearshore stations R1_ENV_001 and R1_ENV_002.

There were no spatial patterns in the dataset, or any relationships with depth. None of the metal concentrations recorded across the survey area exceeded ERL threshold values (NOAA, 1999), hence no adverse effects on organisms are expected.

14.10 Seabed Habitats

Seabed across the survey area encompasses three distinct habitats in accordance with the MLEAD (John and George, 2001) and EAD (Al Dhaheri et al., 2017) habitat classifications.

'Sublittoral mixed deposit' (SLMXD) habitat was identified from five transects (R1_TR04B, R1_TR06, R1_TR07, R1_TR08A and R1_TR10). This habitat consisted of a hard, calcarenite substratum, overlaid with a veneer of sand, shell sediment and coral rubble. Calcarenite substrata comprise cemented calcareous sand grains and can be formed in marine or terrestrial settings. Calcarenite is widespread throughout shallower waters and coastal areas of the UAE (Macklin et al., 2012). The findings of the seabed photography analysis aligned with those of the geophysical survey (Fugro, 2020b) which reported calcarenite surficial sediments throughout the Route 1 survey area. The authors of this classification describe shallower water variants of this habitat, in which macroalgae are the dominant biota, as being widespread throughout Abu Dhabi waters. Previous surveys offshore Abu Dhabi (e.g. Fugro, 2016) and across the wider region have also reported habitats more akin to that recorded from Route 1 survey area; these appear to be deeper variants of the mixed sediment habitat reported by John & George (2001), with boulder corals and other attached invertebrates found to be the dominant taxa.

Overall, the survey area comprised a low diversity and abundance of corals, including boulder corals (Faviidae, ?Cyphastrea sp.), plate coral (Turbinaria sp.), finger corals (Porites sp.), all of which are widespread offshore UAE (Riegl et al., 2012). The majority of coral colonies identified were small (less than 20 cm diameter), with the largest colony reported (Porites sp.) reaching approximately 50 cm diameter.

A hard coral assessment was undertaken in line with internationally recognised assessment criteria (Det Norske Veritas [DNV], 2019; Santavy et al., 2012) and coral cover was classified as 'no coral' (< 1 % cover) from all but three transects. In transect R1_TR04B small coral outcrops were sporadically observed and, in two segments of the transect, coral cover was classified as 'low' (estimated 1 % to 5 %), whereas in transect R1_TR10 corals outcrops were occasionally observed throughout the transect and displayed a 'low' cover of 5 % to 10 %. Coral cover in a segment of transect R1_TR06 was classified as 'moderate coral' (estimated at 10 % to 20 %). No transects were interpreted to have high (greater than 50 %) coral cover.

'Sublittoral sand and gravel' (SLSED) habitat was identified from segments of three transects (R1_TR02, R1_TR03 and R1_TR09), where bare soft sediment was interspersed with seagrass beds. Compared to the other two habitats observed across the survey area, the 'Sublittoral sand and gravel' displayed the lowest diversity and abundance in terms of epifauna and epiflora. The biological assemblages usually associated to this habitat are largely represented by infauna, including a range of polychaetes and crustaceans. Large burrows in stable sediment are often occupied by shrimp gobies (*Cryptocentrus lutheri*) and their attendant bulldozer alpheid shrimps (John & George, 2004).

'Seagrass beds' were identified from five transects across the survey area. Seagrass beds are common in the vast shallow subtidal areas (< 15 m) that dominate much of the south and southwestern Gulf, with the most extensive beds occurring off of the coast of the UAE and Qatar (Jones. 1985). Three main seagrass species occur regionally. Halodule uninervis (most widely distributed), Halophila stipulacea (less common, but forming dense meadows in some areas) and Halophila ovalis (rarely forming dense monospecific meadows), with > 90 % of seagrass being H. uninervis alone (Erftemeijer & Shuail, 2012).

Across the survey area, 'Seagrass beds' displayed two habitat variants. 'Maturing beds of the seagrasses *H. uninervis*, H. ovalis and *H. stipulacea*' (SLSED.Huni.Hoval.Hstip) habitat was identified from transects R1_TR01, R1_TR02 and R1_TR03. This habitat consisted of relatively deeper soft sediment at lower depths, where can form more stable and dense seagrass meadows (*H. uninervis*, H. ovalis and *H. stipulacea* complex). The type of substratum plays a major role in the distribution of seagrasses. For the rhizomes to grow and for the anchoring of roots, seagrasses typically require a soft substrate of gravel, sand or mud (Greve & Binzer, 2004). In the Arabian Gulf, seagrasses are subject to extreme natural variations in water temperature which plays a major stressor in the seagrass productivity. Among seagrass species, *H. uninervis* shows the highest tolerance when

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	_	
ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	Ţ	JGRO
BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	118 of 602

compared to the broader leaved plants (Ballorain, et al., 2010). This could explain the higher density of *H. uninervis* at shallower depths, where waters reach higher temperature. The upright growth form of the seagrass blades supports further deposition of fines sediment from the water column as the beds develop to maturity, thus providing a habitat for a further range of infauna that favour finer sediment (John & George, 2004). At deeper depths, ranging between ~12.0 m and ~13.0 m BSL, 'Low density beds of H. ovalis and *H. stipulacea* colonising bare sediment' (SLSED.Hoval.Hstip) was identified from two transects (R1_TR05A and R1_TR09). This habitat variant consisted of lower density of the understorey seagrass *H. ovalis* and *H. stipulacea*, colonising bare sediment.

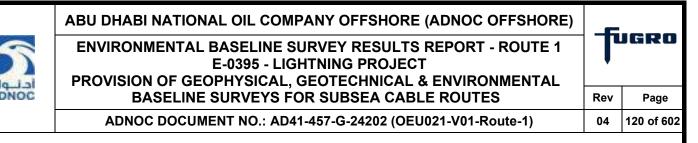
Seagrasses have significant ecological and economic importance in the Gulf. They are a direct food source for many herbivores, they provide indirect energy to the detrital food web (Coles & McCain, 1990), and provide nursery habitats for a variety of commercially important fishes (Jones et al., 2002; Sheppard et al., 2010).

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

15. Conclusions

The aim of this report is to establish the current biological and physico-chemical conditions of the seabed sediments and water column along the proposed Route 1 that will connect Lower Zakum Island G to Mirfa within the Zakum Field, Offshore Abu Dhabi. A review of the environmental data in context with other cited studies from the region and estimated water and sediment effects threshold values (QCC, 2017; US EPA 2020, Buchman, 2008 and CCME, 2020) was also undertaken. Based on the overall assessment of the survey area, the following key conclusions can be stated:


Water profiling identified an unstratified water column, in which the majority of parameters remained near-constant from sea surface to seabed. Variation recorded for all water profile parameters sampled within the water column across the survey area can be attributed to seasonality differences within sampling regimes.

The concentrations of inorganic water quality parameters > MRV (TDS, sulphate, pH, chloride, total nitrogen, total cyanide, nitrate, total phosphorus, nitrite, turbidity and TOC) displayed low to moderate variability where statistics were available and were typical of marine water. The majority of inorganic water quality parameters were below their respective MRVs at all stations across the survey area.

Concentrations of volatile petroleum hydrocarbons, extractable petroleum hydrocarbons, polycyclic aromatic hydrocarbons, BTEX and phenols in the water samples were below their respective minimum reporting values in all samples, apart from naphthalene, phenanthrene and pyrene, where some samples had values above the MRV. However, the concentrations recorded are unlikely to be of environmental concern. Benzene, toluene and ethylbenzene were below the CCME guideline values and considered to be representative of background conditions.

Except for chromium, copper, lead and zinc, concentrations of all major and trace elements were below their respective ADS 18/2017 MACs, as well as the US EPA CCC and CMC values and considered to be of no environmental concern. Concentrations of chromium, copper, lead and zinc exceeded the ADS 18/2017 MACs for both general use areas and marine protected areas in 100, 17, 31 and 129 samples respectively. Copper and lead concentrations exceeded the US EPA CCC in 16 and 4 samples, respectively. Copper and zinc concentrations exceeded the US EPA CMC in 8 and 5 samples, respectively.

Using the Wentworth (1922) sediment description, stations along the Route 1 survey area comprised mainly sand and were classified as coarse sand to fine silt. No clear spatial patterns between depth and sediment type were apparent along Route 1. Total organic carbon content was low across the survey area and lower than previous studies in the region. Conversely, the carbonate content observed within sediments was higher than previously reported values.

All sediment nutrient concentrations demonstrated low to moderate variation across the survey area with no spatial patterns, demonstrating broadly homogenous sediments.

Concentrations of THC were low and typical of concentrations recorded around non-industrialised coastal environments distant from hydrocarbon inputs. Total PAH concentrations were below the ADS 18/2017 MAC. The concentrations of BTEX in the current survey were below the MRV at all stations along the Route 1 survey area and lower than the values reported previously in the region.

The concentrations of PCBs in the current survey were below the MRV at most stations along the Route 1 survey area and lower than the values reported previously in the region. Total WHO12 PCB concentrations were below the ADS 18/2017 MAC.

All sediment metals concentrations recorded across the survey area were below their respective US National Oceanographic and Atmospheric Administration (NOAA) effects range low (ERL) and effects range median (ERM) threshold values. Except for chromium, lead and nickel, concentrations of all sediment metals were below their respective ADS 18/2017 MAC for both general use areas and marine protected areas. Concentrations of chromium and nickel exceeded the ADS 18/2017 MAC (QCC, 2017) for marine protected areas in numerous stations. Lead concentrations exceeded the ADS 18/2017 MAC (QCC, 2017) for marine protected areas in one station. Nickel concentrations also exceeded the ADS 18/2017 MAC (QCC, 2017) for general use areas in 4 stations. There was no clear spatial distribution pattern that would indicate a point source related to possible anthropogenic activities within the survey area, and the differences recorded area therefore most likely to be associated with natural sediment variations.

The seabed was heterogeneous across the survey area and encompassed three distinct habitats: 'Sublittoral mixed deposit', 'Sublittoral sediment' and 'Seagrass bed'. 'Sublittoral mixed deposit' comprised a mainly flat substratum of calcarenite (cemented sand) with a veneer of sand sediment and occasional coral outcrops, mainly including finger corals (*Porites* sp.), plate corals (*Turbinaria* sp.) and boulder corals (Faviidae). 'Sublittoral sediment' encompasses predominantly sand sediment, with varying proportions of gravel, shell and coral fragments. 'Seagrass bed' comprised predominantly sand sediment seagrass of which *Halodule uninervis* is the dominant cover species and/or in places *Halophila ovalis* and *Halophila stipulacea* form an understorey. All habitats reported, and the taxa resident therein, were typical of areas of similar sediment and water depth in the southern Arabian Gulf.

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

16. References

Al Dhaheri, S.S., Al Cibahi, A., Javed, S., Grandcourt, E., Bin Kulaib, R., & Al Mazrouei, S. (2017). *Abu Dhabi State of Environment report 2017*. Biodiversity, Environment Agency-Abu Dhabi.

Al Katheeri, B.S., 2004. Geochemical Studies to Assess Marine Oil Pollution Zakum Field, Abu Dhabi, UAE. United Arab Emirates University Thesis. 575. Available at: <u>https://scholarworks.uaeu.ac.ae/all_theses/575</u>

Alpar, B. and Unlu, S. (2010). Volatile aromatic compounds (BTEX) in sediments offshore Zonguldak industrial region, Black Sea, Turkey. *Asian Journal of Chemistry*, *22*(5), 3531.

Ballorain, K., Ciccione, S., Bourjea, J., Grizel, H., Enstipp, M. R. and Georges, J.-Y. (2010). Habitat use of a multispecific seagrass meadow by green turtles Chelonia mydas at Mayotte Island. *Marine Biology*, 157, 2581-2590.

Basaham, A.S., & El-Sayed, M.A. (1998). Distribution and phase association of some major and trace elements in the Arabian Gulf sediments. *Estuarine, Coastal and Shelf Science, 46*(2), 185-194.

Basson, P.W., Burchard Jr, J.E., Hardy, J.T., & Price, A.R. (1977). Biotopes of the western Arabian Gulf; marine life and environments of Saudi Arabia.

Bilotta, G.S. & Brazier, R.E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota, *Water Research*, *42*(12), 2849-2861.

Blott, S. (2010). *GRADISTAT Version 8.0: a grain size distribution and statistics package for the analysis of unconsolidated sediment by sieving or laser granulometer.* Berkshire: Kenneth Pye Associates.

Blue Sea Environmental Consultants, 2011. *Environmental baseline study ADMA OPCO'S existing facilities Zakum Oil Field Abu Dhabi.* Report of February 2011 Survey. Document No. OP/04-001/ZK-EBS/029.

Bouloubassi, I., Lipiatou, E., Saliot, A., Tolosa, I., Bayona, J.M., & Albaiges, J. (1997). Carbon sources and cycle in the Western Mediterranean: II. The use of molecular markers to determine the origin of organic matter. *Deep Sea Research*, *44*(7), 81-799.

Boening, D.W. (1999). An evaluation of bivalves as biomonitors of heavy metals pollution in marine waters. *Environmental Monitoring and Assessment*, *55*(3), 459-470.

Brady, J.P., Ayoko, G.A., Martens, W.N., & Goonetilleke, A. (2015). Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. *Environmental Monitoring and Assessment*, *187*(5), 306.

Buchanan, J.B. (1984). Sediment analysis. In N.A. Holme and A.D. McIntyre (Eds.) *Methods for the study of marine benthos*. 2nd edition. IBP Handbook No 16. Blackwell Scientific Publications, Oxford, London, Edinburgh, Boston, Palo Alto and Melbourne.

Buchman, M.F., 2008. *NOAA screening quick reference tables, NOAA OR&R report 08-01.* Seattle, NOAA.

Bush, R.T. & McInerney, F.A. (2013). Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. *Geochimica et Cosmochimica Acta*, *117*, 161-179.

Canadian Council of Ministers of the Environment [CCME]. (2020). *Canadian Water Quality Guidelines for the Protection of Aquatic Life: CCME Water Quality Index Summary Table.* http://st-ts.ccme.ca/en/index.html Accessed August 2020.

Carpenter K.E., Krupp F., Jones D.A., & Zajonz, U. (1997). *Living marine resources of Kuwait, Eastern Saudi Arabia, Bahrain, Qatar, and the United Arab Emirates*. Report to Food and Agriculture Organisation of the United Nations (FAO), Rome. ISBN 92-5-103741-8.

Chao, S.Y., Kao, T.W., & Al-Hajri, K.R. (1992). A numerical investigation of circulation in the Arabian Gulf. *Journal of Geophysical Research*, *97*(11), 219-236.

Chester, R., & Voutsinou, F.G. (1981). The initial assessment of trace metal pollution in coastal sediments. *Marine Pollution Bulletin, 12*, 84-91.

Coles, S.L., & McCain, J.C., 1990. Environmental factors affecting benthic infaunal communities of the western Arabian Gulf. *Marine Environmental Research*, 29(4), 289-315.

Dang, D.H., Lenoble, V., Durrieu, G., Omanović, D., Mullot, J.U., Mounier, S., & Garnier, C. (2015). Seasonal variations of coastal sedimentary trace metals cycling: Insight on the effect of manganese and iron (oxy)hydroxides, sulphide and organic matter. *Marine Pollution Bulletin*, *92*(1-2), 113-124.

de Mora S., Tolosa I., Fowler S.W., Villeneuve J-P., Cassi R., & Cattini C. (2010). Distribution of petroleum hydrocarbons and organochlorinated contaminants in marine biota and coastal sediments from the ROPME Sea Area during 2005. *Marine Pollution Bulletin, 60*(12), 2323-2349.

de Orte, M.R., Bonnail, E., Sarmiento, A.M., Bautista-Chamizo, E., Basallote, M.D., Riba, I., DelValls, Á., & Nieto, J.M. (2018). Metal fractionation in marine sediments acidified by enrichment of CO₂: a risk assessment. *Marine Pollution Bulletin*, *131*, 611-619.

Department of Trade and Industry [DTI]. (1993). *Conditions for the discharge of oil contaminated cuttings resulting from offshore drilling.* Department of Trade and Industry, Oil and Gas Division.

Det Norske Veritas [DNV]. (2019). Species and habitats of environmental concern. *Mapping, risk assessment, mitigation and monitoring - in relation to oil and gas activities.* (No. 2019–007, Rev. 0).

Dicks, B., Bakke, T., & Dixon, I.M.T. (1987). Oil exploration and production: impacts of the North Sea. *Oil and Chemistry Pollution*, *3*, 289-306.

Douglas, A.G., & Eglinton, G. (1966). The distribution of alkanes. In T. Swain (Ed.) *Comparative Phytochemistry*, 57-71. Academic Press, London.

Duan, W., Meng, F., Lin, Y., & Wang, G. (2017). Toxicological effects of phenol on four marine microalgae. *Environmental toxicology and pharmacology, 52*, 170-176.

Duan, W., Meng, F., Cui, H., Lin, Y., Wang, G., & Wu, J. (2018). Ecotoxicity of phenol and cresols to aquatic organisms: a review. *Ecotoxicology and environmental safety*, *157*, 441-456.

Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F.M.G. (2009). Trace metal behaviour in estuarine and riverine floodplain sediments: a review. *Science of the Total Environment*, *407*, 3972-3985.

Edwards, N.T. (1983). Polycyclic aromatic hydrocarbons (PAHs) in the terrestrial environment – a review. *Journal of Environmental Quality*, *12*, 427-441.

Eglinton, G., Gonzalez, A.G., Hamilton, R.J., & Raphael, R.A. (1962). Hydrocarbon constituents of the wax coatings of plant leaves: a taxonomic survey. *Phytochemistry*, *1*, 89-102.

Environment Agency-Abu Dhabi [EAD], (2008). *Marine and coastal environments of Abu Dhabi Emirates, United Arab Emirates*. Abu Dhabi Global Environmental Data Initiative. pp. 12.

Environment Agency – Abu Dhabi [EAD]. (2017). *Marine water quality annual summary report*. https://www.ead.gov.ae/storage/Post/files/353857ac9178887858be8de07b8439 04.pdf

Erftemeijer, P.L,. & Shuail, D.A. (2012). Seagrass habitats in the Arabian Gulf: distribution, tolerance thresholds and threats. *Aquatic Ecosystem Health & Management*, *15*(sup1), pp.73-83.

Farrington, J.W., Frew, N.M., Gschwend, P.M., & Tripp, B.W. (1977). Hydrocarbons in cores of north-western Atlantic coastal and continental marine sediments. *Estuary Coast Marine Science*, *5*, 793-808.

Farrington, J.W., & Meyer, P.A. (1975). Hydrocarbons in the marine environment. In G. Eglinton (Ed.) *Environmental Chemistry, Chemical Society*, *1*, 109-136.

Folk, R.L. (1954). The distinction between grain size and mineral composition in sedimentary rock nomenclature. *Journal of Geology*, *65*(4), 344-359.

Folk, R.L., & Ward, W.C. (1957). Brazos River bar (Texas); a study in the significance of grain size parameters. *Journal of Sedimentary Research*, 27(1), 3-26.

Fugro. (2016). Environmental baseline study, offshore UAE. Fugro Job no. 160482.

Fugro, (2019). *Environmental baseline report, offshore Qatar.* Fugro Document No.: MRQ024-V04-EBS-NF18.

Fugro. (2019). *Environmental Baseline Report North Field NF-18, State of Qatar.* Fugro Document No.: MRQ024-V04-EBS-NF18.

Fugro. (2020a). Survey results report – Cable Route 1a. From Mira Landfall to Lower Zakum Island G United Arab Emirates. Report number MRU093-Vol 2-1A.

Fugro. (2020b). Survey results report – Cable Route 1b. From Mira Landfall to Lower Zakum Island G United Arab Emirates. Report number MRU088-Vol 3-1B.

Gray, J.S. (1981). *The ecology of marine sediments. an introduction to structure and function of benthic communities.* Cambridge University Press, pp. 185.

Greve, T.M., & Binzer, T. (2004). *Which factors regulate seagrass growth and distribution. European seagrasses: an introduction to monitoring and management*, pp. 19.

Harada, N., Handa, N., Fukuchi, M., & Ishiwatari, R. (1995). Source of hydrocarbons in marine sediments in Lutzow-Holm Bay, Antarctica. *Organic Geochemistry*, *23*(3), 229-237.

International Union for Conservation of Nature [IUCN]. (2020). *The IUCN Red List of Threatened Species. Version 2020-2.* https://www.iucnredlist.org/

John, D.M., & George, J.D. (1998). Report on the marine benthic biota of the Emirate of Abu Dhabi and the impact of coastal developments upon them. In P.J. Whybrow (Ed.) *reports on marine biological studies in the Emirate of Abu Dhabi*, United Arab Emirates. Seventh report prepared for the Abu Dhabi National Oil Company and the Abu Dhabi Company for Onshore Oil Operations. London: The Natural History Museum, pp. 43.

John, D.M., & George, J.D. (2001). *The marine life of Abu Dhabi*. A report for the Abu Dhabi Company for Onshore Oil Operations. London: The National History Museum.

John, D.M., & George, J.D. (2004). *Intertidal and subtidal benthic communities in Abu Dhabi, United Arab Emirates. Marine Atlas of Abu Dhabi*. Emirates Heritage Club, Abu Dhabi, UAE, pp.94-123.

Johnston, C.S. (1980). Sources of hydrocarbons in the marine environment. In: C.S. Johnston & R.J. Morris (Eds.) *Oily Water Discharges*, Applied Science Publishers Ltd, London, pp. 41-62.

Jones, D. (1985). *The biological characteristics of the marine habitats found within the ROPME Sea area*. In Proceedings of the symposium on Regional Marine Pollution Monitoring and Research Programmes, Al-Ain (pp. 71–89).

Jones, D.A., Price, A.R.G., Al-Yamani, F., & Al-Zaidan, A. (2002). Coastal and marine ecology. In Khan et al. (Eds.) *The Gulf Ecosystem: Health and Sustainability*. Leiden, The Netherlands, pp. 65–103.

Klemas, C. (2012). Remote sensing of algal blooms: An overview with case studies. *Journal of Coastal Research, 28*(1A), pp. 34-43.

Koike I., & Sorensen, J. (1988). Nitrate reduction and denitrification in marine sediments. In: T.D. Blackburn and J. Sorensen (eds). *Nitrogen Cycling in Coastal Marine Environments*. Chichester: John Wiley and Sons Ltd.

Krastanov, A., Alexieva, Z., & Yemendzhiev, H. (2013). Microbial degradation of phenol and phenolic derivatives. *Engineering in Life Sciences*, *13*(1), 76-87.

Laflamme, R.E., & Hites, R.A. (1978). The global distribution of polycyclic aromatic hydrocarbons. *Geochimica et Cosmochimica Acta*, *42*, 289–303.

Latimer, J.S., & Zheng, J. (2003). The sources, transport and fate of PAHs in the marine environment. *PAHs: an ecotoxicological perspective*, pp. 9.

Long, D. (2006).BGS Detailed explanation of seabed sediment classification. Habitats. modified Folk Mapping European Seabed https://www.researchgate.net/publication/284511408 BGS detailed explanation of seabe d sediment modified folk classification

Macklin, S., Ellison, R., Manning, J., Farrant, A., & Lorenti, L. 2012. Engineering geological characterisation of the Barzaman Formation, with reference to coastal Dubai, UAE. *Bulletin of Engineering, Geology and the Environment, 71*, 1-35.

Meadows, P.S. (1964). Substrate selection by *Corophium* species: the particle size of substrates. *Journal of Animal Ecology*, 33, 387-394.

Meyers, P.A., & Quinn, J.G. (1973). Association of hydrocarbons and mineral particles in saline solution. *Nature*, 224, 23-24.

Myers, E.P. & Gunnerson, C.G. (1976). *Hydrocarbons in the ocean*. Washington DC: US Department of Commerce (NOAA), 42.

Mordy, C. W., Eisner, L.B., Proctor, P., Stabeno, P., Devol., A.H., Shull, D.H., Napp, J.M., & Whitledge, T. (2010). Temporary uncoupling of the marine nitrogen cycle: Accumulation of nitrite on the Bering Sea shelf. *Marine Chemistry*, *121*(1-4), 157-166.

National Petroleum Construction Company [NPCC]. (2019). *Upper Zakum pipelines replacement project phase 1 environmental baseline survey report*. Report Number E1077-SUR-300-V-0010.

Neff, J.M. (1979). *Polycyclic aromatic hydrocarbons in the aquatic environment. Sources, fates and biological effects.* Applied Science Publishers, London, pp. 1-262.

National Oceanic and Atmospheric Administration (NOAA), 1999. *Sediment quality guidelines developed for the National Status and Trends Program.*

Paez-Osuna, F., & Ruiz-Fernandez, C. (1995). Comparative bioaccumulation of trace metals in *Penaneus stylirostris* in estuarine and coastal environments. *Estuarine, Coastal and Shelf Science, 40*, 35-44.

Paparella, F., Xu, C., Vaughan, G.O., & Burt, J.A. (2019). Coral bleaching in the Persian/Arabian Gulf is modulated by summer winds. *Frontiers in Marine Science*, *6*, 205.

Parinos, C., Gogou, A., Bouloubassi, I., Pedrosa-Pames, R., Hatzianestis, I, Sanchez-Vidal, A., Rousakis, G., Velaoras, D., Krokas, G., & Lykousis, V. (2013). Occurrence, sources and transport pathways of natural and anthropogenic hydrocarbons in deep-sea sediments of the eastern Mediterranean Sea. *Biogeosciences*, *10*, 6069-6089.

Parry, M.E.V. (2019). *Guidance on assigning benthic biotopes using EUNIS or the marine habitat classification of Britain and Ireland* (revised 2019). Joint Nature Conservation Committee Report 546, ISSN 0963-8091

Quality and Conformity Council [QCC]. (2017). Abu Dhabi Specifications. Ambient and Marine Water Specifications ADS 18/2017. [online] Available at: https://www.qcc.gov.ae/-/media/Project/QCC/QCC/Documents/Quality-Infrastructure-Documents/Abu-Dhabi-Specifications/ADS-18---Ambient-Marine-Water-and-Sediments-Specification.pdf [Accessed June 2020].

Rezai, H., Wilson, S., Claereboudt, M., & Riegl, B. (2004). Coral reef status in the ROPME Sea area: Arabian/Persian Gulf, Gulf of Oman and the Arabian Sea. In *Status of Coral Reefs of the World: 2004*. Australian Institute of Marine Sciences, pp. 155-170.

Riegl, B. (2001). Inhibition of reef framework by frequent disturbance: examples from the Arabian Gulf, South Africa, and the Cayman Islands. *Palaeogeography, Palaeoclimatology, Palaeoecology*, *175*, pp.79-101.

Riegl B., Benzoi, F., Sheppard, C., & Samini-Namin, K. (2012) The Hermatypic Scleractinian (Hard) Coral Fauna of the Gulf. In B. Riegl & S.J. Purkis. (Eds.) *Coral Reefs of the Gulf. Adaptation to Climatic Extremes. Coral Reefs of the World, Vol. 3.* Springer, Dordrecht.

Santavy, D.L., Fisher, W.S., Campbell, J.G., & Quarles, R.L. (2012). *Field manual for coral reef assessments*. U.S. Environmental Protection Agency, Office of Research and Development, Gulf Ecology Division, Gulf Breeze, FL. EPA/600/R-12/029. April 2012.

Sheppard, C., Al-Husiani, M., Al-Jamali, F., Al-Yamani, F., Baldwin, R., Bishop, J., Benzoni, F., Dutrieux, E., Dulvy, N.K., Durvasula, S.R.V., Jones, D.A., Loughland, R., Medio, D., Nithyanandan, M., Pilling, G.M., Polikarpov, I., Price, A.R.G., Purkis, S., Riegl, B., Saburova, M., Namin, K.S., Taylor, O., Wilson, S., & Zainal, K. (2010). The Gulf: a young sea in decline. *Marine Pollution Bulletin, 60*, 13-38.

Sheppard, C.R.C. (1993) Physical environment of the Gulf relevant to marine pollution: an overview. *Marine Pollution Bulletin,* 27, 3–8

Shriadah, M.M.A., & Al-Ghais, S.M. (1999). Environmental characteristics of the United Arab Emirates waters along the Arabian Gulf: *Hydrographical survey and nutrient salts. Indian Journal of Marine Sciences, 28*, 225-232.

Sims, R.C., & Overcash, M.R. (1983). Fate of polynuclear aromatic compounds (PNAs) in soil plant systems. *Residue Reviews*, *88*, 1-68.

Simmonds, E.J., & Lamboeuf, M. (1981). Environmental conditions in the Gulf and the Gulf of Oman and their influence on the propagation of sound. UNDP/FAO, *Regional Fishery Survey and Development Project,* pp. 62.

Taher, M.M., Mohamed, A.R.M., & Al-Ali, A.K.H. (2012). Some ecological characteristics and ichthyofauna of surrounding Sammaliah Island, Abu Dhabi, UAE. Basrah *Journal of Science, 30*, 31-49.

Tessier, A., Campbell, P.G.C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. *Analytical Chemistry*, *51*, 844-851.

Thibodeaux, L.J., Valsaraj, K.T., John, V.T., Papadopoulos, K.D., Pratt, L.R., & Pesika, N.S. (2011). Marine oil fate: knowledge gaps, basic research, and development needs; a perspective based on the Deepwater Horizon spill. *Environmental Engineering Science*, *28*(2), 87-93.

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)		
ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	Τ	JGRO
BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	128 of 602

United Nations Environment Programme World Conservation Monitoring Centre [UNEP-WCMC]. (2014). *Checklist of CITES species.* CITES Secretariat, Geneva, Switzerland and UNEP-WCMC, Cambridge, United Kingdom.

United States Environmental Protection Agency [US EPA]. (2020). *National recommended water quality criteria*. <u>https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table</u>. [Accessed August 2020].

Wang, Z., Wang, Y., Zhao, P., Chen, L., Yan, C., Yan, Y., & Chi, Q. (2015). Metal release from contaminated coastal sediments under changing pH conditions: Implications for metal mobilization in acidified oceans. *Marine Pollution Bulletin*, *101*(2), 707-715.

Warren, L.A., & Zimmerman, A.P. (1993). Trace metal-suspended particulate matter associations in a fluvial system: Physical and chemical influences. *Particulate and matter and aquatic contaminants. Lewis Publishers, Boca Raton*, pp. 127-155.

Wentworth, C.K., 1922. A scale of grade and class terms for clastic sediments. *The Journal of Geology*, *30*(5), 377-392.

Windsor, J.G. Jr., & Hites, R.A. (1979). Polycyclic aromatic hydrocarbons in Gulf of Maine sediments and Nova Scotia soils. *Geochimica et Cosmochimica Acta*, *43*, 7-33.

Youngblood, W.W., & Blumer, M. (1975). Polycyclic aromatic hydrocarbons in the environment: homologous series in soils and recent marine sediments. *Geochimica et Cosmochimica Acta*, *39*, 1303–1314.

	ABU DH	IABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	-6	
5		ONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT SION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL		JGRO
ADNOC		BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	AD	DNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	129 of 602
		Appendices		
A.	GUID	ELINES ON USE OF REPORT		
В.	METH	HODOLOGIES		
	B.1	Laboratory Analysis of Water Samples		
	B.2	Laboratory Analysis for Sediment Samples		
	B.3	Habitat Assessment		
C.	LOGS	8		
	C.1	Survey Log		
	C.2	Grab Log		
	C.3	Video and Photographic Log		
D.	WATE	ER COLUMN PROFILE		
E.	INOR	GANIC WATER QUALITY PARAMETERS		
	E.1	Summary of Water Quality Parameters		
F.	WATE	ER COLUMN HYDROCARBONS		
	F.1	Summary of Water Column Hydrocarbon Content Analysis		
	F.2	Summary of Water Column Polycyclic Aromatic Hydrocarbon (PAH) C	Conter	nt
	F.3	Summary of Water Column Benzene, Toluene, Ethylbenzene and Xyl (BTEX) Concentrations	ene	
	F.4	Summary of Water Column Phenol Concentrations		
G.	WATE	ER COLUMN MAJOR AND TRACE ELEMENTS		
	G.1	Summary of Water Column Major and Trace Element Analysis		
Н.	SEDI	MENT CHARACTERISTICS		
	H.1	Sediment Particle Size and Grab Sample Photographs		
	H.2	Summary of Sediment Characteristics		
	H.3	Summary of Particle Size Distribution		
I.	SEDI	MENT HYDROCARBONS		
	l.1	Sediment United States Environmental Protection Agency 16 Polycyc Aromatic Hydrocarbons Concentrations	lic	
J.		MENT POLYCHLORINATED BIPHENYL (PCB) CONGENER CENTRATIONS		
	J.1	Sediment Individual Polychlorinated Biphenyl (PCB) Congener Conce	entratio	ons
K.	SEDI	MENT METALS		
	K.1	Summary of Sediment Metals Analysis		
L.	SEAE	BED PHOTOGRAPHS		

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	_	
5	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	TUGRO	
ADNOC	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	130 of 602

A. Guidelines on Use of Report

This report (the "Report") was prepared as part of the services (the "Services") provided by Fugro Survey (Middle East) Limited ("Fugro") for its client (the "Client") under terms of the relevant contract between the two parties (the "Contract"). The Services were performed by Fugro based on requirements of the Client set out in the Contract or otherwise made known by the Client to Fugro at the time.

Fugro's obligations and liabilities to the Client or any other party in respect of the Services and this Report are limited in time and value as defined in Contract (or in the absence of any express provision in the Contract as implied by the law of the Contract) and Fugro provides no other representation or warranty whether express or implied, in relation to the Services or for the use of this Report for any other purpose. Furthermore, Fugro has no obligation to update or revise this Report based on changes in conditions or information which emerge following issue of this Report unless expressly required by the Contract.

The Services were performed by Fugro exclusively for the Client and any other party identified in the Contract for the purpose set out therein. Any use and/or reliance on the Report or the Services for purposes not expressly stated in the Contract, by the Client or any other party is that party's risk and Fugro accepts no liability whatsoever for any such use and/or reliance.

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	Tugro	
5	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT		
ADNOC	PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	131 of 602
	Mathadalawiaa		
В.	Methodologies		
1			

S	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	_	
	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	TUGRO	
ADNOC	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	132 of 602

B.1 Laboratory Analysis of Water Samples

B.1.1 Water Quality

pH was determined using the method APHA 4500 H + B: pH Value in Water by Potentiometry Using a Standard Hydrogen Electrode.

Total suspended solids (TSS) were determined by method APHA 2540 D: D: Total Suspended Solids Dried at 103 °C to 105 °C.

Total dissolved solids (TDS) were determined by the method APHA 2540 C: Total Dissolved Solids Dried at 180 °C.

Turbidity was analysed using method APHA 2130 B: Nephelometric Method.

Nitrogen (ammonia) and ammonium were analysed using method HACH 8155: Salicylate Method. Ammonia compounds combined with chlorine to form monochloramine. Monochloramine reacted with salicylate to form 5-aminosalicylate. The 5-aminosalicylate was oxidised in the presence of a sodium nitroprusside catalyst to form a blue coloured compound. The blue colour was masked by the yellow colour from the excess reagent present to give a final green-coloured solution which was measured colorimetrically.

Sulphide was determined by method APHA 4500 S2- F: Sulphide by lodometry.

Total nitrogen was analysed using method ASTM D5176: Standard Test Method for Total Chemically Bound Nitrogen in Water by Pyrolysis and Chemiluminescence Detection. The sample of water was introduced into a stream of oxygen or inert gas/oxygen mix flowing through a quartz pyrolysis tube. Oxidative pyrolysis converted chemically bound nitrogen to nitric oxide (NO). The gas stream was dried and the NO was contacted with ozone (O₃) producing metastable nitrogen dioxide (NO₂*). As the NO₂* decayed, light was emitted and detected by a photomultiplier tube. The resulting signal was a measure of the total chemically bound nitrogen in the sample.

Total cyanide was analysed by a modified version of method US EPA method OIA-1667: Available Cyanide by Flow Injection, Ligand Exchange and Amperometry.

Nitrate was analysed by method HACH 8039: Cadmium Reduction Method. Cadmium metal reduced nitrates in the sample to nitrite. The nitrite ion reacted in an acidic medium with sulfanilic acid to form an intermediate diazonium salt. The salt coupled with gentisic acid to form an amber coloured solution. The measurement wavelength was 500 nm for spectrophotometers or 520 nm for colorimeters.

Nitrite was determined using method HACH 8507: Nitrite method. Nitrite in the sample reacted with sulfanilic acid to form an intermediate diazonium salt. This coupled with

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	_	
5	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	Τ	JGRO
NOC	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	133 of 602

chromotropic acid to produce a pink coloured complex directly proportional to the amount of nitrite present. Test results were measured at 507 nm.

Phosphorus was analysed using the method APHA 3125: Metals by Inductively Coupled Plasma Mass Spectrometry (2017).

Orthophosphate was analysed using method HACH 8048: Phosphorus, Reactive (Orthophosphate). Orthophosphate reacted with molybdate in an acid medium to produce a mixed phosphate/molybdate complex. Ascorbic acid then reduced the complex, which gave an intense molybdenum blue colour. The measurement wavelength was 880 nm (DR 1900:710 nm) for spectrophotometers or 610 nm for colorimeters.

Sulphate was determined by method APHA 4500 SO42- C: Gravimetric Analysis with Ignition of Residue. Sulphate was precipitated in an HCl solution as barium sulphate by the addition of barium chloride. The precipitation was carried out near the boiling temperature, and after a period of digestion, the precipitate was filtered, washed with water until free of chloride, ignited or dried, and weighed as barium sulphate.

Chloride was determined by method APHA 4500 Cl- B: lodometric Method I. Chlorine liberates free iodine from potassium iodide (KI) solutions at pH 8 or less. The liberated iodine was titrated with a standard solution of sodium thiosulfate ($Na_2S_2O_3$) with starch as the indicator. Titrate at pH 3 to 4 because the reaction is not stoichiometric at neutral pH due to partial oxidation of thiosulphate to sulphate.

Silicon was determined by method APHA 3125: inductively coupled plasma-mass spectrometry (ICP-MS).

Chemical oxygen demand (COD) was determined by method APHA 5220 B: Closed Reflux, Colorimetric Method. The sample was digested, resulting in the dichromate ion oxidising COD material in the sample. This resulted in the change of chromium from the hexavalent (VI) state to the trivalent (III) state. Both the chromium species were coloured and absorb in the visible region of the spectrum.

Total organic carbon (TOC) was determined by method APHA 5310 B: High-Temperature Combustion Method. The sample was homogenised and diluted as necessary and a micro portion was injected into a heated reaction chamber packed with an oxidative catalyst such as cobalt oxide, platinum group metals or barium chromate. The water was vaporised, and the organic carbon and inorganic carbon was oxidised to CO_2 and H_2O . The CO_2 was transported in the carrier-gas stream and was measured by means of a nondispersive infrared analyser or titrated colormetrically.

Biochemical oxygen demand (BOD) was analysed using method APHA 5210 B: 5-Day BOD Test. The method consisted of filling an airtight bottle of the specified size with sample to overflowing and incubating it at the specified temperature for 5 days. Dissolved oxygen was measured initially and after incubation and the BOD was computed from the difference between the initial and final dissolved oxygen (DO) value.

Total coliforms were determined using method APHA 9222 B: Membrane Filter Technique for Members of the Coliform Group 9222B. The sample was filtered through a membrane filter in the field immediately after collection. The filter was placed in the transport medium and shipped to the laboratory in a sealed container. The membrane was transferred to les-ENDO or m-ENDO agar containing basic Fuchsin as the indicator. This was incubated at 35 °C +/- 0.5 °C for 20 h to 22 h. Red colonies with a metallic (golden) sheen were coliform positive.

B.1.2 Hydrocarbon Content

Volatile petroleum hydrocarbons (C_5 - C_{10}) were analysed using the method EPA 8015B: Nonhalogenated Organics Using GC-FID.

Extractable petroleum hydrocarbons were analysed for the n-alkane range nC_{10} to nC_{40} , using the method EPA 8015B: Nonhalogenated Organics Using GC-FID.

Dissolved and emulsified oil and free oil were analysed using the method: APHA 5520B: Oil and Grease by Partition-Gravimetric Method.

B.1.3 Polycyclic Aromatic Hydrocarbons (PAHs)

Concentrations of US EPA 16 PAHs in water were analysed using US EPA method 8270D: Semivolatile Organic Compounds by GC-MS.

B.1.4 Benzene, Toluene, Ethylbenzene and Xylene (BTEX)

Concentrations of BTEX were analysed using the method EPA 8015B: Nonhalogenated Organics Using GC-FID.

B.1.5 Phenols

Phenol concentrations were analysed using the US EPA method 528: Determination of Phenols in Drinking Water.

Analytes and surrogates were extracted by passing a 1 L water sample through a solid phase extraction cartridge containing 0.5g of a modified polystyrene divinyl benzene copolymer.

The organic compounds were eluted from the solid phase with a small quantity of methylene chloride. The sample components were separated, identified, and measured by injecting an aliquot of the concentrated extract into a high resolution fused silica capillary column of a GC-MS system. Compounds eluting from the GC column were identified by comparing their measured mass spectra and retention times to reference spectra and retention times in a data base.

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)		
5	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	TUGRO	
ADNOC	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	135 of 602

B.1.6 Major and Trace Elements

Water samples were analysed using the method APHA 3125: Metals by Inductively Coupled Plasma-Mass Spectrometry (2017).

Water samples collected from the survey area were analysed for selected elements: aluminium, arsenic, barium, cadmium, chromium, copper, iron, lead, mercury, silver, silicon, vanadium and zinc using ICP-MS.

B.2 Laboratory Analysis for Sediment Samples

B.2.1 Sediment Characterisation

B.2.1.1 Particle Size Distribution

Dry Sieve Analysis

Particle size distribution (PSD) analysis was undertaken in accordance with Fugro GB Marine Limited (FGBML) in house methods based on the National Marine Biological Association Quality Control (NMBAQC) scheme's best practice guidance document – Particle Size Analysis (PSA) for Supporting Biological Analysis, and BS1377: Parts 1: 2016 and 2: 1990.

Representative material > 1 mm was split from the bulk subsample and oven dried before sieving through a series of sieves with apertures corresponding to 0.5 phi intervals between 63 mm and 1 mm as described by the Wentworth scale (Wentworth, 1922). The weight of the sediment fraction retained on each mesh was subsequently measured and recorded.

Laser Diffraction

Particle size distribution (PSD) analysis was undertaken in accordance with FGBML in house methods based on the National Marine Biological Association Quality Control (NMBAQC) scheme's best practice guidance document – Particle Size Analysis (PSA) for Supporting Biological Analysis, and BS ISO 13320: 2009.

Representative material < 1 mm was removed from the bulk subsample for laser analysis, a minimum of three triplicate analyses (mixed samples) or one triplicate analyses (sands) were analysed using the laser sizer at 0.5 phi intervals between < 1 mm to < 3.9μ m. Laser diffraction was carried out using a Malvern Mastersizer 2000 with a Hydro 2000G dispersion unit.

Outputs and Deliverables

Sieve and laser data are merged and entered into GRADISTAT to derive statistics including mass and percentage retained within each size fraction, mean and median grain size, bulk

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	_	
5	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	TUGRO	
DNOC	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	136 of 602
		•.	

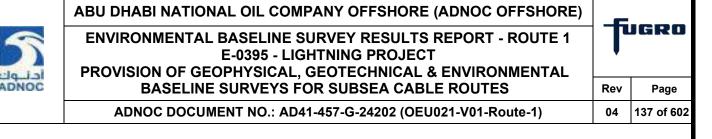
sediment classes (percentage gravel, sand and silt/clay), skewness, sorting coefficients and Folk classification.

B.2.1.2 Calcium Carbonate

A pre-dried aliquot of the sediment was weighed and then treated with hydrochloric acid to remove inorganic carbon in the form of carbonate. Fresh acid was added until all effervescence ceased; the sediment was then washed over a glass-fibre filter and the residue dried to a constant weight before being ignited in a muffle furnace at 600 °C for 2 hours. The organic content of the sediment is then calculated using the weight difference from the original dry weight to the ignited residue (taking into account the loss of carbonate).

B.2.1.3 Total Organic Content

Sediment samples were analysed for total organic carbon (TOC) by Element Materials Technology. The dry, homogenised sample was treated with hydrochloric acid, then rinsed with deionised water to remove mineral carbon. The sample was then combusted in an Eltra TOC furnace/analyser in the presence of oxygen. Organic carbon was oxidised to CO2 and measured by non-dispersive infrared analysis. This method does not quantify volatile organic carbon, which should be determined by another technique. The limit of detection for this method was < 0.02 % w/w.


B.2.1.4 Sediment Nutrients

Total cyanide was determined on wet sediment by segmented flow analysis with colormetric detection. Total nitrogen was determined on an air dried and ground sediment sample by an elemental analyser. Silicon, sulphates and phosphorus were determined on an air dried and ground sample following an aqua regia digest with analysis by ICP- OES. Fluoride was determined using an ion selective electrode. Phosphates were determined by ion selective spectrometry.

B.2.2 Sediment Hydrocarbons

B.2.2.1 Total Hydrocarbons by Gas Chromatography–Flame Ionisation Detection (GC-FID)

The total hydrocarbon material (C_{10} - C_{40}) present was quantified using response factors calculated from the analysis of mixed oil standard solutions over an appropriate range. The unresolved complex mixture was determined by subtracting the area of all the resolved peaks from the total hydrocarbon area and applying the total hydrocarbon response factor. The minimum reporting value (MRV) is 0.5 µg/g dry weight.

B.2.2.2 Oil and grease

Samples would have been extracted using n-hexane then following EPA 9071B for n-hexane extractable material. The procedure below would have been followed if data had not been derived from the THC method. Samples were homogenised by mixing, and a representative sample (approximately 10 g) weighed and blended with approximately 10 g of anhydrous sodium sulphate. The sediments were then extracted in a glass wool thimble by Soxhlet extraction for 4 hours using 90 mL of n-hexane. The extract was transferred to a 250 mL round-bottom flask and evaporated to dryness using a rotary evaporator. The round bottom flask was then placed in a desiccator for 30 minutes and the weight recorded every 30 minutes until it remained constant. The water content of the sediment was determined by drying a subsample of the homogenised sediment to constant weight at 105 °C.

B.2.2.3 Polycyclic Aromatic Hydrocarbons (PAHs)

The US EPA range of 16 polycyclic aromatic hydrocarbon (PAH) quantified as specified by Department of Trade and Industry (DTI) regulations (DTI, 1993).

Calibration was undertaken using a range of PAH standard solutions, a number of alkylated PAH, dibenzothiophene and a range of suitable internal standards. Individual response factors were calculated for each of the compounds present in the calibration solution. Response factors for the non calibrated alkylated PAH were taken to be equivalent to closely related compounds. The MRV of individual and alkylated PAHs is 0.1 ng/g.

B.2.2.4 Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)

BTEX analysis of sediments was carried out by FGBML.

General Precautions

To effectively eliminate all possible sources of BTEX contamination from the analysis the following precautionary measures were taken prior to sample work-up:

- All solvents were purchased as high purity grade. Each batch was checked for purity by concentrating approximately 400 mL down to a small volume (< 1 mL) and analysing by gas chromatography (GC);
- All water used was distilled through an all glass still;
- All glassware was cleaned using an acid/base machine wash. The glassware was rinsed with acetone then finally with dichloromethane prior to use.

BTEX Analysis in Sediment

The BTEX compounds are concentrated in the headspace above the sediment sample containing distilled water and internal standards in a sealed vial. A subsample of the headspace is then analysed by GC-MS.

Sediment samples were thawed, homogenised and accurately weighed into a 20 mL headspace vial. A solution containing an appropriate amount of the following internal standards was added to each sample using a microsyringe.

BTEX Standards
d ₆ Benzene
d ₈ Toluene
d ₁₀ Ethylbenzene
d ₁₀ P-xylene
d ₁₀ O-xylene

Distilled water (10 mL) was added to the headspace vial and the vial was sealed using a crimped cap.

Correction factors for wet/dry sediments were obtained by drying a subsample of the homogenised sediment to constant weight at 105 °C.

BTEX Analysis by Gas Chromatography–Mass Spectrometry Detection (GC-MS)

Calibration was undertaken using a range of BTEX standard solutions containing the BTEX compounds, and a range of suitable internal standards. Individual response factors were calculated for each of the BTEX present in the calibration solution. The minimum reporting value of individual BTEX is 0.5 ng/g dry weight.

Instrument Conditions for BTEX Analysis

GC Injector	Split
Injector Temperature	250 °C
Injection Volume	100 μL manual injection
Purge Valve	Off
Carrier Gas	Helium
Column Flow	0.4 mL/min
Split Flow	32 mL/min
Oven Temperature	40 °C – 3 min; 40 °C to 200 °C at 20 °C/min
Transfer Line Temperature	325 °C
Tune File	ATUNE.U
Acquisition Mode	SIM
Source Temperature	300 °C

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)		
ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	Ţ	JGRO
BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	139 of 602

SIM Groups Dwell Time	0.03 sec
SIM Width	0.3
Resolution	Low
Group lons	78, 84, 92, 100, 106, 116

B.2.2.5 Sediment Polychlorinated Biphenyls

Microwave Digestion Extraction Procedure

Sediment samples were thawed and added into a Teflon sample vessel. Sediment samples were accurately weighed into the cells and a known quantity of hexabromobiphenyl added as internal standard. The cells were extracted using hexane:acetone (1:1, v:v). as the extraction solvent at 120 °C and 1800 W.

Clean-up of Sediment Extracts by Column Chromatography

Sample extracts are cleaned up by column chromatography using 40 % (w/w) acid silica. The silica gel used was 70 to 230 mesh, muffled at 400 °C for at least 4 hours to remove impurities and activate it then stored at 200 °C. Prior to use, acid silica is prepared by the addition of sulphuric acid to silica. The sediment extract was added to the silica gel column, containing 5 g of adsorbent and eluted with 30 mL of hexane. The eluent was reduced in volume using the evaporator to approximately 2 mL before being further reduced under a gentle stream of nitrogen to an appropriate volume, approximately 1 g of activated copper powder (for removal of free sulphur) before being concentrated to 0.5 mL for analysis.

GC-µECD Analysis of WHO12 PCBs

Sample extracts were analysed by GC- μ ECD for the WHO12 Congeners (PCBs 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169 and 189). The instrument parameters are shown on the following table.

	Gas Chromatography [GC]
Instrument	HP 6890N Series GC with 7683B autoinjector
Column	8 %-phenyl polysilphenylene-siloxane bonded fused silica, 50 m, 0.25 μm film thickness, 0.25 mm internal diameter
Carrier Gas	Hydrogen (constant flow 2.1 mL/min)
Injector	On–column (1 µL injection)
Oven Temperature Programme	60 °C - 1 min
	60 °C to 190 °C at 35 °C/min
	190 °C to 300 °C at 3 °C/min
	300 °C to 330 °C at 45 °C/min
	330 °C - 8 min
Detector Temperature	340 °C (μECD)

E-0395 - LIGHTNING PROJECT **PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES**

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

UGRO **ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1** Rev Page 04 140 of 602

VOC Analysis in Soil B.2.2.6

VOCs were determined using static headspace sampling and analysis by GC-MS.

B.2.2.7 Sediment Metals

Sediment samples were dried at 40 °C and then sieved to the required size fraction (2000 µm). Samples were subjected to an aqua regia microwave digestion. This acid mixture allows a partial dissolution of metals, predominately releasing those associated with the sediment fines.

The resulting digests were then analysed for aluminium, barium, iron and vanadium by coupled plasma-optical emission spectrometry (ICP-OES) and analysed for antimony, arsenic, cadmium, chromium, cobalt, copper, lead, mercury, molybdenum, nickel, selenium, silver and zinc by using inductively coupled plasma-mass spectrometry (ICP-MS).

B.3 Habitat Assessment

B.3.1 Seabed Habitat Classification

To assess the habitats present within the survey area, acquired video footage was reviewed by experienced Fugro marine biologists/taxonomists. Changes in sediment type and/or morphology of the seabed in conjunction with the associated faunal community were logged. Interpretive logs for the stations surveyed during the survey are provided in Appendix C.

The habitat classification in the current study followed that outlined in 'The Marine Life of the Emirate of Abu Dhabi' (John & George, 2001). This document provides information on Abu Dhabi's inshore environment that included the biodiversity and distribution of its marine flora and fauna and encompasses all of the principal habitat types known in the Arabian Gulf.

This system adopts a hierarchical approach, beginning with the major habitat type at the highest level and finishing with the sub-biotope (or variant) at the lowest. Major habitats (Levels 1 and 2) are defined on gross physical/chemical features, habitat complexes by major differences in species or community form (Level 3), biotope complexes by broad biological groups (Level 4) and biotopes by dominant taxa (Level 5).

An example hierarchy from the MLEAD classification system is provided in Table B.1.

Major habitats are defined on gross physical/chemical features, habitat complexes by major differences in species or community form, biotope complexes by broad biological or habitat species, biotopes by dominant species or taxa linked to distinctive habitat characteristics, and the sub-biotope (variant) by sub-species.

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1
E-0395 - LIGHTNING PROJECT
PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL
BASELINE SURVEYS FOR SUBSEA CABLE ROUTES
ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Biotope codes are defined for habitat complexes, biotopes and variants using the habitat complex code, a full stop and then the biotope code. As far as possible, the codes used within the Marine Life of the Emirate of Abu Dhabi, follow those adopted by the Marine Nature Conservation Review (MNCR) for the British Isles.

Table B.1: Example	hierarchy from	the MLEAD	classification system
rabie bili Example	inclusion in one	CITC TVILL/ (D	classification system

Level	Example Classification Name	Example Classification Code
1. Depth Zone	Sublittoral Zone	SL
2. Substratum	Mixed Deposit	MXD
3. Life Forms	Sponges Ascidians	SPAS
4. Functional Groups	Macroalgae	MACA
5. Taxa	Epibiota dominated by sponges, ascidians and seasonal flushes of macroalgae on small unstable sand embedded hard surfaces	SL.MXD.SP.AS.MACA

In addition to the classification defined by MLEAD, habitats were also classified in accordance with the 'Abu Dhabi Emirate Habitat Classification and Protection Guideline' (Al Dhaheri et al., 2017).

Although, theoretically a biotope can be assigned to any sized area of seabed, for the purposes of this assessment, the commonly accepted minimum habitat size of 25 m2 (Parry, 2019) was adopted for the designation of the biotopes encountered within the survey area.

B.3.2 Seabed Habitat Assessment

B.3.2.1 Coral Assessment

A hard-coral habitat assessment was undertaken based on the guidance outlined in the United States Environmental Protection Agency (US EPA) Field Manual for Coral Reef Assessment (Santavy et al., 2012) and the Det Norsk Veritas (DNV) visual benthic mapping guidelines (DNV, 2019). To assess the quality of coral habitats found within the survey area a classification scheme that classifies data based on the presence of live coral and dead reef structures was derived. This system was loosely based on that used by DNV (2019), but the classification and ranges for live coral cover have been adapted to make them appropriate for the coral communities of the Arabian Gulf. Habitats with percentage cover of live coral greater than 50 have the potential to be classified as reef.

The assessment criteria followed in the current study are summarised in Table B.2.

Video data have been utilised to estimate the percentage cover of living coral colonies. The occurrence and extent of any adverse health conditions, such as bleaching, disease or overgrowth by boring sponges have also been recorded to assess the relative health of living coral colonies.

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

 Rev
 Page

 04
 142 of 602

Table B.2: Hard coral assessment criteria

Classification	Live Coral Cover [%]	Description
No Coral	< 1	Areas with no living coral or very sporadic small corals. No evidence of dead reef structures
Coral Rubble	< 1	Fragments of coral, detached from reef structures or other hard substrates. Little or no living coral
Dead Coral Framework	< 1	Reef structure, clearly of coralline origin and attached to hard substrata. Little or no living coral
Low Live Coral Cover	1 – < 10	Sparse (< 10 % cover) live corals on dead coral framework or other hard substrata
Moderate Live Coral Cover	10 - 50	Abundant (10 % to 50 % cover) live corals on dead coral framework or other hard substrata
High Live Coral Cover	> 50	Reef structure comprising predominantly live corals (e.g. healthy <i>Acropora</i> or <i>Porites</i> reef)

A similar classification system was used to assess soft coral abundance within the survey area, which is summarised in Table B.3.

Table B.3: Soft coral assessment criteria

Classification	Live Coral Cover [%]	Description
No Coral	< 1	Areas with no living soft coral (or sea whips) or very sporadic small soft corals
Low Live Coral Cover	1 – < 10	Sparse (< 10 % cover) live soft corals (or sea whips)
Moderate Live Coral Cover	10 - 50	Common (10 % to 50 % cover) live soft corals (or sea whips)
High Live Coral Cover	> 50	Abundant (> 50 % cover) live soft corals (or sea whips)

B.3.2.2 Seagrass Assessment

A seagrass assessment, based on the method described in the EAD's 'Abu Dhabi Emirate Habitat Classification and Protection Guideline' (Al Dhaheri et al., 2017), has been performed on the habitats that contained seagrasses. The video data were analysed to estimate if the cover of rooted vascular seagrass taxa was greater than 10 %.

Video data have been utilised to estimate the percentage cover of seagrass. The assessment criteria followed in the current study are summarised in Table B.4.

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE) ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev Page
 04 143 of 602

fugro

Table B.4: Seagrass assessment criteria

Classification	Seagrass [%]	Description
No Seagrass	< 1 %	Areas with no living seagrass or very sporadic small patches of seagrass
Low Seagrass Cover	1 – < 10	Sparse (< 10 % cover) live seagrass
Seagrass Bed	10 %	Abundant (10 % cover) live seagrass forming

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)					
5	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1	TUGRO				
ADNOC	E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	·				
ADNOC	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page			
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	144 of 602			
C.	logs					
С.	Logs					

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)					
	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL					
ADNOC	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	Rev Page 04 145 of 602				
	ADNOC DOCOMENT NO.: AD41-457-0-24202 (OE0021-001-Roule-1)	04 145 01 002				
C .1	Survey Log					

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	146 of 602

Date [UTC]	T :	Transect/ Station		Comple Day (Water	Proposed Location		Actual Location		
			Ivne	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
14/04/2020	06:02:39	R1_ENV_001	WP	YSI Exo2	53	12.9	751 800.5	2 669 184.1	751 807.2	2 669 199.8	
14/04/2020	06:18:18	R1_ENV_002	WP	YSI Exo2	54	11.3	752 765.9	2 669 444.8	752 783.7	2 669 432.0	
14/04/2020	06:36:58	R1_ENV_003	WP	YSI Exo2	55	5.6	753 732.2	2 669 702.4	753 735.0	2 669 708.6	
14/04/2020	06:45:40	R1_ENV_004	WP	YSI Exo2	56	6.0	754 698.0	2 669 961.5	754 710.5	2 669 978.4	
14/04/2020	06:54:39	R1_ENV_005	WP	YSI Exo2	57	6.3	755 664.9	2 670 216.9	755 680.9	2 670 220.5	
14/04/2020	07:03:55	R1_ENV_006	WP	YSI Exo2	58	6.3	756 631.1	2 670 474.6	756 639.8	2 670 468.7	
14/04/2020	07:14:06	R1_ENV_007	WP	YSI Exo2	59	6.2	757 597.3	2 670 732.2	757 609.8	2 670 732.5	
14/04/2020	07:26:23	R1_ENV_008	WP	YSI Exo2	60	6.4	758 565.9	2 670 981.4	758 548.5	2 670 998.9	
14/04/2020	07:37:05	R1_ENV_009	WP	YSI Exo2	61	6.8	759 529.8	2 671 247.5	759 530.0	2 671 244.5	
14/04/2020	07:46:29	R1_ENV_010	WP	YSI Exo2	62	4.6	760 496.1	2 671 505.1	760 505.6	2 671 505.6	
14/04/2020	08:03:05	R1_ENV_011	WP	YSI Exo2	63	4.3	761 468.0	2 671 740.2	761 481.4	2 671 748.2	
14/04/2020	08:15:03	R1_ENV_012	WP	YSI Exo2	64	3.3	762 431.8	2 672 008.6	762 420.4	2 671 996.4	
14/04/2020	08:44:29	R1_ENV_014	WP	YSI Exo2	66	5.7	764 370.7	2 672 508.5	764 388.2	2 672 525.4	
14/04/2020	08:55:03	R1_ENV_015	WP	YSI Exo2	67	6.7	764 666.3	2 673 463.8	764 684.1	2 673 473.0	
14/04/2020	09:10:42	R1_ENV_013	WP	YSI Exo2	65	3.4	763 402.3	2 672 259.4	763 390.6	2 672 236.0	
14/04/2020	09:23:56	R1_ENV_016	WP	YSI Exo2	68	11.6	764 873.6	2 674 442.1	764 880.6	2 674 449.5	
14/04/2020	09:37:27	R1_ENV_017	WP	YSI Exo2	69	6.0	765 082.2	2 675 420.1	765 102.2	2 675 438.8	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	147 of 602

	T :	Transect/ Station		Sample Rep/		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]		Туре	Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
14/04/2020	09:48:42	R1_ENV_018	WP	YSI Exo2	70	3.9	765 298.5	2 676 396.4	765 290.1	2 676 418.2	
14/04/2020	10:42:52	R1_ENV_020	WP	YSI Exo2	72	4.7	765 711.4	2 678 353.3	765 714.4	2 678 344.2	
14/04/2020	10:57:30	R1_ENV_021	WP	YSI Exo2	73	6.6	766 221.4	2 679 183.1	766 207.0	2 679 178.5	
14/04/2020	11:03:00	R1_ENV_019	WP	YSI Exo2	71	2.5	765 502.2	2 677 375.5	765 506.5	2 677 379.7	
14/04/2020	11:11:43	R1_ENV_022	WP	YSI Exo2	74	5.8	766 890.2	2 679 926.5	766 916.0	2 679 915.3	
14/04/2020	11:23:27	R1_ENV_023	WP	YSI Exo2	75	7.2	767 564.6	2 680 664.9	767 579.9	2 680 645.2	
16/04/2020	04:48:00	R1_ENV_001	WS	BOT	76	9.5	751 800.5	2 669 184.1	751 799.1	2 669 198.9	
16/04/2020	05:17:00	R1_ENV_001	WS	ТОР	77	1.0	751 800.5	2 669 184.1	751 799.1	2 669 198.9	
16/04/2020	05:40:00	R1_ENV_002	WS	BOT	78	11.0	752 765.9	2 669 444.8	752 779.7	2 669 441.6	
16/04/2020	05:53:00	R1_ENV_002	WS	MID	79	6.0	752 765.9	2 669 444.8	752 779.7	2 669 441.6	
16/04/2020	06:21:00	R1_ENV_002	WS	ТОР	80	1.0	752 765.9	2 669 444.8	752 779.7	2 669 441.6	
16/04/2020	06:42:00	R1_ENV_003	WS	BOT	81	6.0	753 732.2	2 669 702.4	753 734.6	2 669 700.5	
16/04/2020	07:01:00	R1_ENV_003	WS	ТОР	82	1.0	753 732.2	2 669 702.4	753 734.6	2 669 700.5	
16/04/2020	07:25:00	R1_ENV_004	WS	BOT	83	5.0	754 698.0	2 669 961.5	754 694.5	2 669 957.8	
16/04/2020	07:42:00	R1_ENV_004	WS	ТОР	84	1.0	754 698.0	2 669 961.5	754 694.5	2 669 957.8	
16/04/2020	08:07:00	R1_ENV_005	WS	BOT	85	5.0	755 664.9	2 670 216.9	755 666.3	2 670 215.3	
16/04/2020	08:26:00	R1_ENV_005	WS	ТОР	86	1.0	755 664.9	2 670 216.9	755 666.3	2 670 215.3	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	148 of 602

	T :	Turner at /		Comple Day (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
16/04/2020	08:59:00	R1_ENV_006	WS	BOT	87	5.5	756 631.1	2 670 474.6	756 636.4	2 670 472.9	
16/04/2020	09:15:00	R1_ENV_006	WS	ТОР	88	1.0	756 631.1	2 670 474.6	756 636.4	2 670 472.9	
16/04/2020	09:36:00	R1_ENV_007	WS	BOT	89	6.0	757 597.3	2 670 732.2	757 596.2	2 670 730.4	
16/04/2020	09:50:00	R1_ENV_007	WS	ТОР	90	1.0	757 597.3	2 670 732.2	757 596.2	2 670 730.4	
17/04/2020	04:20:00	R1_ENV_008	WS	BOT	91	6.5	758 565.9	2 670 981.4	758 557.1	2 671 023.0	
17/04/2020	04:40:00	R1_ENV_008	WS	ТОР	92	1.0	758 565.9	2 670 981.4	758 557.1	2 671 023.0	
17/04/2020	05:07:00	R1_ENV_009	WS	BOT	93	6.0	759 529.8	2 671 247.5	759 522.8	2 671 328.8	
17/04/2020	05:34:00	R1_ENV_009	WS	ТОР	94	1.0	759 529.8	2 671 247.5	759 522.8	2 671 328.8	
17/04/2020	06:00:00	R1_ENV_010	WS	BOT	95	4.5	760 496.1	2 671 505.1	760 497.7	2 671 501.7	
17/04/2020	06:14:00	R1_ENV_010	WS	ТОР	96	1.0	760 496.1	2 671 505.1	760 497.7	2 671 501.7	
17/04/2020	06:34:00	R1_ENV_011	WS	вот	97	5.0	761 468.0	2 671 740.2	761 469.8	2 671 735.7	
17/04/2020	06:55:00	R1_ENV_011	WS	ТОР	98	1.0	761 468.0	2 671 740.2	761 469.8	2 671 735.7	
17/04/2020	07:25:00	R1_ENV_012	WS	MID	99	2.5	762 431.8	2 672 008.6	762 365.0	2 671 999.7	
17/04/2020	07:43:00	R1_ENV_013	WS	MID	100	1.7	763 402.3	2 672 259.4	763 399.3	2 672 270.6	
17/04/2020	08:08:00	R1_ENV_014	WS	BOT	101	5.5	764 370.7	2 672 508.5	764 357.1	2 672 491.3	
17/04/2020	08:35:00	R1_ENV_014	WS	ТОР	102	1.0	764 370.7	2 672 508.5	764 357.1	2 672 491.3	
17/04/2020	09:14:00	R1_ENV_015	WS	вот	103	5.0	764 666.3	2 673 463.8	764 659.3	2 673 442.7	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	149 of 602

	Time	Transect/		Commis Dom (Water	Propose	d Location	Actual Location		
Date	Time [UTC]		Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
17/04/2020	09:35:00	R1_ENV_015	WS	ТОР	104	1.0	764 666.3	2 673 463.8	764 659.3	2 673 442.7	
17/04/2020	10:25:00	R1_ENV_016	WS	BOT	105	11.0	764 873.6	2 674 442.1	764 864.3	2 674 442.2	
17/04/2020	10:47:00	R1_ENV_016	WS	MID	106	5.5	764 873.6	2 674 442.1	764 864.3	2 674 442.2	
17/04/2020	11:00:00	R1_ENV_016	WS	ТОР	107	1.0	764 873.6	2 674 442.1	764 864.3	2 674 442.2	
17/04/2020	11:16:00	R1_ENV_017	WS	BOT	108	4.5	765 082.2	2 675 420.1	765 086.2	2 675 416.4	
17/04/2020	11:40:00	R1_ENV_017	WS	ТОР	109	1.0	765 082.2	2 675 420.1	765 086.2	2 675 416.4	
17/04/2020	12:01:00	R1_ENV_018	WS	MID	110	2.5	765 298.5	2 676 396.4	765 316.6	2 676 381.1	
17/04/2020	12:20:00	R1_ENV_019	WS	MID	111	1.0	765 502.2	2 677 375.5	765 485.6	2 677 370.6	
17/04/2020	12:45:00	R1_ENV_020	WS	MID	112	2.5	765 711.4	2 678 353.3	765 710.8	2 678 333.2	
17/04/2020	13:10:00	R1_ENV_021	WS	вот	113	5.5	766 221.4	2 679 183.1	766 219.4	2 679 177.0	
17/04/2020	13:40:00	R1_ENV_021	WS	ТОР	114	1.0	766 221.4	2 679 183.1	766 219.4	2 679 177.0	
18/04/2020	04:16:00	R1_ENV_022	WS	вот	115	6.0	766 890.2	2 679 926.5	766 874.4	2 679 920.1	
18/04/2020	05:00:00	R1_ENV_022	WS	ТОР	116	1.0	766 890.2	2 679 926.5	766 874.4	2 679 920.1	
18/04/2020	05:25:00	R1_ENV_023	WS	BOT	117	6.0	767 564.6	2 680 664.9	767 561.1	2 680 670.4	
18/04/2020	05:54:00	R1_ENV_023	WS	ТОР	118	1.0	767 564.6	2 680 664.9	767 561.1	2 680 670.4	
18/04/2020	06:25:00	R1_ENV_024	WS	вот	119	8.0	768 867.9	2 681 362.2	768 882.8	2 681 291.1	
18/04/2020	06:51:00	R1_ENV_024	WS	ТОР	120	1.0	768 867.9	2 681 362.2	768 882.8	2 681 291.1	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	150 of 602

	T :	Turner at (Comula Don (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
18/04/2020	08:20:00	R1_ENV_025	WS	вот	121	11.0	768 797.8	2 682 774.6	768 670.1	2 682 683.6	
18/04/2020	08:44:00	R1_ENV_025	WS	MID	122	6.0	768 797.8	2 682 774.6	768 670.1	2 682 683.6	
18/04/2020	09:10:00	R1_ENV_025	WS	ТОР	123	1.0	768 797.8	2 682 774.6	768 670.1	2 682 683.6	
18/04/2020	09:40:00	R1_ENV_026	WS	BOT	124	9.5	770 226.2	2 683 071.7	770 196.9	2 683 091.4	
18/04/2020	10:19:00	R1_ENV_026	WS	MID	125	5.0	770 226.2	2 683 071.7	770 196.9	2 683 091.4	
18/04/2020	10:37:00	R1_ENV_026	WS	ТОР	126	1.0	770 226.2	2 683 071.7	770 196.9	2 683 091.4	
18/04/2020	11:17:00	R1_ENV_027	WS	BOT	127	11.0	769 598.4	2 684 338.9	769 571.3	2 684 365.2	
18/04/2020	12:10:00	R1_ENV_027	WS	MID	128	5.5	769 598.4	2 684 338.9	769 571.3	2 684 365.2	
18/04/2020	12:27:00	R1_ENV_027	WS	ТОР	129	1.0	769 598.4	2 684 338.9	769 571.3	2 684 365.2	
14/05/2020	15:37:33	R1_ENV_030	WP	YSI Exo2	262	12.5	771 505.1	2 686 861.7	771 502.7	2 686 861.7	
14/05/2020	16:08:28	R1_ENV_030	WS	BOT	263	12.5	771 505.1	2 686 861.7	771 505.2	2 686 860.7	
14/05/2020	16:30:47	R1_ENV_030	WS	MID	264	12.5	771 505.1	2 686 861.7	771 505.0	2 686 860.4	
14/05/2020	16:48:24	R1_ENV_030	WS	ТОР	265	12.6	771 505.1	2 686 861.7	771 504.7	2 686 861.8	
14/05/2020	17:15:52	R1_ENV_030	VV	PC	266	12.5	771 505.1	2 686 861.7	771 505.4	2 686 863.6	
14/05/2020	17:54:42	R1_ENV_031	VV	PC	267	13.2	770 877.3	2 688 128.9	770 878.2	2 688 129.6	
14/05/2020	18:25:43	R1_ENV_031	WS	BOT	268	13.2	770 877.3	2 688 128.9	770 878.3	2 688 125.8	
14/05/2020	18:50:09	R1_ENV_031	WS	MID	269	13.3	770 877.3	2 688 128.9	770 877.1	2 688 131.4	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	151 of 602

	Time	Troncott				Water	Propose	ed Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
14/05/2020	19:08:51	R1_ENV_031	WS	ТОР	270	13.2	770 877.3	2 688 128.9	770 874.7	2 688 128.2	
14/05/2020	19:34:40	R1_ENV_031	WP	YSI Exo2	271	13.2	770 877.3	2 688 128.9	770 875.9	2 688 128.7	
14/05/2020	20:22:02	R1_ENV_032	WP	YSI Exo2	272	11.9	772 144.5	2 688 756.7	772 143.0	2 688 757.1	
14/05/2020	20:38:30	R1_ENV_032	WS	BOT	273	11.9	772 144.5	2 688 756.7	772 145.3	2 688 754.8	
14/05/2020	20:53:59	R1_ENV_032	WS	MID	274	11.9	772 144.5	2 688 756.7	772 145.7	2 688 756.9	
14/05/2020	21:08:42	R1_ENV_032	WS	ТОР	275	11.9	772 144.5	2 688 756.7	772 144.2	2 688 756.0	
14/05/2020	21:23:07	SO_R1_004	VV	NS	276	11.9	772 144.5	2 688 756.7	772 146.0	2 688 757.2	
14/05/2020	21:35:49	R1_ENV_032	VV	NS	277	11.9	772 144.5	2 688 756.7	772 145.5	2 688 757.1	
14/05/2020	21:42:32	R1_ENV_032	VV	NS	278	11.9	772 144.5	2 688 756.7	772 146.9	2 688 757.8	
14/05/2020	21:50:25	R1_ENV_032	VV	NS	279	11.9	772 144.5	2 688 756.7	772 142.5	2 688 767.0	
14/05/2020	22:16:38	R1_ENV_033	VV	NS	280	10.6	771 516.7	2 690 024.0	771 517.3	2 690 024.6	
14/05/2020	22:21:08	R1_ENV_033	VV	NS	281	10.6	771 516.7	2 690 024.0	771 517.2	2 690 034.6	
14/05/2020	22:26:38	R1_ENV_033	VV	NS	282	10.6	771 516.7	2 690 024.0	771 517.0	2 690 015.3	
14/05/2020	22:41:55	R1_ENV_033	WS	NS	283	10.6	771 516.7	2 690 024.0	771 517.4	2 690 022.0	
14/05/2020	22:48:47	R1_ENV_033	WS	BOT	284	10.6	771 516.7	2 690 024.0	771 517.1	2 690 024.1	
14/05/2020	23:04:48	R1_ENV_033	WS	NS	285	10.6	771 516.7	2 690 024.0	771 517.5	2 690 024.8	
14/05/2020	23:12:30	R1_ENV_033	WS	MID	286	10.7	771 516.7	2 690 024.0	771 518.4	2 690 024.4	Only one bottle closed

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	152 of 602

	T :	Turner at /		Comula Dan (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
14/05/2020	23:29:07	R1_ENV_033	WS	MID	287	10.7	771 516.7	2 690 024.0	771 517.8	2 690 023.5	
14/05/2020	23:37:55	R1_ENV_033	WS	ТОР	288	10.7	771 516.7	2 690 024.0	771 516.1	2 690 025.7	
14/05/2020	23:55:43	R1_ENV_033	WP	YSI Exo2	289	10.7	771 516.7	2 690 024.0	771 515.9	2 690 025.0	
15/05/2020	05:12:30	R1_ENV_025	VV	NS	365	10.9	768 797.8	2 682 774.6	768 799.7	2 682 786.9	
15/05/2020	05:28:26	R1_ENV_025	VV	NS	366	10.8	768 797.8	2 682 774.6	768 798.5	2 682 777.9	Grab not locked
15/05/2020	05:32:44	R1_ENV_025	VV	NS	367	10.8	768 797.8	2 682 774.6	768 795.0	2 682 780.9	
15/05/2020	05:43:12	R1_ENV_025	VV	NS	368	10.9	768 797.8	2 682 774.6	768 811.5	2 682 780.4	
15/05/2020	06:03:45	R1_ENV_024	VV	Partial Sample	369	9.1	768 867.9	2 681 362.2	768 866.7	2 681 374.1	PSD only
15/05/2020	06:27:51	R1_ENV_024	VV	NS	370	9.0	768 867.9	2 681 362.2	768 877.7	2 681 368.6	
15/05/2020	06:35:41	R1_ENV_024	VV	NS	371	8.9	768 867.9	2 681 362.2	768 864.7	2 681 355.2	
15/05/2020	06:42:05	SO_R1_003	VV	SOIL	372	8.9	768 867.9	2 681 362.2	768 878.1	2 681 357.4	
15/05/2020	07:01:15	R1_ENV_023	VV	NS	373	7.1	767 564.6	2 680 664.9	767 571.1	2 680 671.7	
15/05/2020	07:07:45	R1_ENV_023	VV	NS	374	7.1	767 564.6	2 680 664.9	767 570.0	2 680 662.2	
15/05/2020	07:13:47	R1_ENV_023	VV	NS	375	7.1	767 564.6	2 680 664.9	767 553.9	2 680 669.0	
15/05/2020	07:27:11	R1_ENV_022	VV	NS	376	6.3	766 890.2	2 679 926.5	766 903.0	2 679 925.0	
15/05/2020	07:33:10	R1_ENV_022	VV	NS	377	6.3	766 890.2	2 679 926.5	766 896.8	2 679 935.4	
15/05/2020	07:38:09	R1_ENV_022	VV	NS	378	6.4	766 890.2	2 679 926.5	766 889.4	2 679 927.1	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	153 of 602

	T :	Turner at (Comula Day (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
15/05/2020	07:57:18	R1_ENV_021	VV	NS	379	6.6	766 221.4	2 679 183.1	766 231.8	2 679 193.7	
15/05/2020	08:03:55	R1_ENV_021	VV	NS	380	6.9	766 221.4	2 679 183.1	766 217.8	2 679 180.0	
15/05/2020	08:12:06	R1_ENV_021	VV	NS	381	6.7	766 221.4	2 679 183.1	766 219.2	2 679 192.2	
15/05/2020	08:28:09	R1_ENV_020	VV	NS	382	4.8	765 711.4	2 678 353.3	765 725.9	2 678 345.0	
15/05/2020	08:34:12	R1_ENV_020	VV	NS	383	5.4	765 711.4	2 678 353.3	765 715.8	2 678 365.1	
15/05/2020	08:39:41	R1_ENV_020	VV	NS	384	5.2	765 711.4	2 678 353.3	765 697.9	2 678 357.5	
15/05/2020	08:52:45	R1_ENV_019	VV	NS	385	3.0	765 502.2	2 677 375.5	765 506.1	2 677 376.8	
15/05/2020	09:02:23	R1_ENV_019	VV	NS	386	3.1	765 502.2	2 677 375.5	765 501.0	2 677 382.1	
15/05/2020	09:10:52	R1_ENV_019	VV	NS	387	3.2	765 502.2	2 677 375.5	765 498.4	2 677 369.6	
15/05/2020	09:24:00	R1_ENV_018	VV	NS	388	4.0	765 298.5	2 676 396.4	765 310.0	2 676 410.6	
15/05/2020	09:27:29	R1_ENV_018	VV	NS	389	3.8	765 298.5	2 676 396.4	765 287.6	2 676 403.8	
15/05/2020	09:35:50	R1_ENV_018	VV	NS	390	3.8	765 298.5	2 676 396.4	765 308.4	2 676 395.9	
15/05/2020	09:53:58	R1_ENV_017	VV	NS	391	7.3	765 082.2	2 675 420.1	765 081.3	2 675 435.3	
15/05/2020	09:57:33	R1_ENV_017	VV	NS	392	8.2	765 082.2	2 675 420.1	765 085.1	2 675 424.8	
15/05/2020	10:01:36	R1_ENV_017	VV	NS	393	7.5	765 082.2	2 675 420.1	765 079.9	2 675 413.3	
15/05/2020	10:13:50	R1_ENV_016	VV	NS	394	11.4	764 873.6	2 674 442.1	764 876.8	2 674 429.1	
15/05/2020	10:20:33	R1_ENV_016	VV	NS	395	11.4	764 873.6	2 674 442.1	764 888.2	2 674 451.3	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	154 of 602

	T :	Turner at /		Sample Rep/		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Type Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
15/05/2020	10:27:55	R1_ENV_016	VV	NS	396	11.3	764 873.6	2 674 442.1	764 859.0	2 674 451.6	
15/05/2020	10:43:40	SO_R1_002	VV	NS	397	11.7	764 873.6	2 674 442.1	764 883.2	2 674 457.7	
15/05/2020	11:28:57	R1_TR03	Video	SOL	398	6.2	764 727.5	2 673 927.2	764 719.3	2 673 923.9	
15/05/2020	11:29:18	R1_TR03	Still	R1_TR03_001	399	5.9	-	-	764 735.8	2 673 924.7	
15/05/2020	11:29:31	R1_TR03	Still	R1_TR03_002	400	5.2	-	-	764 744.8	2 673 924.7	
15/05/2020	11:29:46	R1_TR03	Still	R1_TR03_003	401	5.2	-	-	764 752.2	2 673 926.7	
15/05/2020	11:29:53	R1_TR03	Still	R1_TR03_004	402	5.2	-	-	764 756.6	2 673 927.0	
15/05/2020	11:30:27	R1_TR03	Still	R1_TR03_005	403	5.2	-	-	764 772.5	2 673 934.0	
15/05/2020	11:30:54	R1_TR03	Still	R1_TR03_006	404	4.8	-	-	764 788.3	2 673 939.4	
15/05/2020	11:31:18	R1_TR03	Still	R1_TR03_007	405	4.7	-	-	764 801.0	2 673 945.5	
15/05/2020	11:31:33	R1_TR03	Still	R1_TR03_008	406	5.1	-	-	764 811.1	2 673 947.2	
15/05/2020	11:32:04	R1_TR03	Still	R1_TR03_009	407	6.5	-	-	764 831.5	2 673 947.2	
15/05/2020	11:32:25	R1_TR03	Still	R1_TR03_010	408	6.9	-	-	764 844.1	2 673 948.6	
15/05/2020	11:32:32	R1_TR03	Video	EOL	409	6.9	764 845.6	2 673 959.7	764 847.7	2 673 949.4	
15/05/2020	19:36:56	R1_ENV_027	WP	YSI Exo2	290	11.8	769 598.4	2 684 338.9	769 596.7	2 684 339.9	
15/05/2020	19:46:06	R1_ENV_027	WS	BOT	291	11.8	769 598.4	2 684 338.9	769 599.4	2 684 339.8	
15/05/2020	20:00:04	R1_ENV_027	WS	NS	292	11.8	769 598.4	2 684 338.9	769 598.9	2 684 338.7	Bottle open

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	155 of 602

	T :	Turner at (Comula Day (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
15/05/2020	20:08:48	R1_ENV_027	WS	MID	293	11.8	769 598.4	2 684 338.9	769 599.2	2 684 340.1	
15/05/2020	20:18:40	R1_ENV_027	WS	ТОР	294	11.8	769 598.4	2 684 338.9	769 599.5	2 684 339.2	
15/05/2020	20:30:58	R1_ENV_027	VV	NS	295	11.8	769 598.4	2 684 338.9	769 600.7	2 684 339.0	
15/05/2020	20:37:37	R1_ENV_027	VV	NS	296	11.8	769 598.4	2 684 338.9	769 596.6	2 684 348.7	
15/05/2020	20:43:13	R1_ENV_027	VV	NS	297	11.8	769 598.4	2 684 338.9	769 603.1	2 684 330.3	
15/05/2020	21:16:02	R1_ENV_029	VV	PC	298	11.7	770 237.8	2 686 233.9	770 239.1	2 686 236.2	
15/05/2020	21:29:51	R1_ENV_029	WS	BOT	299	11.7	770 237.8	2 686 233.9	770 234.6	2 686 234.2	
15/05/2020	21:41:42	R1_ENV_029	WS	MID	300	11.6	770 237.8	2 686 233.9	770 239.4	2 686 234.7	
15/05/2020	21:57:38	R1_ENV_029	WS	ТОР	301	11.6	770 237.8	2 686 233.9	770 238.4	2 686 234.7	
15/05/2020	22:09:16	R1_ENV_029	WP	YSI Exo2	302	11.6	770 237.8	2 686 233.9	770 239.0	2 686 231.5	
15/05/2020	23:08:21	R1_ENV_034	WP	YSI Exo2	303	11.7	772 783.5	2 690 650.6	772 782.3	2 690 650.4	
15/05/2020	23:18:33	R1_ENV_034	WS	BOT	304	11.7	772 783.5	2 690 650.6	772 785.9	2 690 648.9	
15/05/2020	23:29:36	R1_ENV_034	WS	MID	305	11.7	772 783.5	2 690 650.6	772 783.7	2 690 650.7	
15/05/2020	23:37:52	R1_ENV_034	WS	ТОР	306	11.8	772 783.5	2 690 650.6	772 785.3	2 690 649.4	
15/05/2020	23:46:15	R1_ENV_034	VV	NS	307	11.8	772 783.5	2 690 650.6	772 786.3	2 690 650.0	
15/05/2020	23:51:11	R1_ENV_034	VV	NS	308	11.8	772 783.5	2 690 650.6	772 782.3	2 690 662.0	
15/05/2020	23:55:30	R1_ENV_034	VV	NS	309	11.8	772 783.5	2 690 650.6	772 784.0	2 690 641.7	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	156 of 602

	Time	Transatt		Comple Don (Water	Propose	ed Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
16/05/2020	00:18:53	R1_ENV_035	VV	NS	310	13.8	772 156.1	2 691 919.0	772 157.7	2 691 919.4	
16/05/2020	00:23:46	R1_ENV_035	VV	NS	311	13.8	772 156.1	2 691 919.0	772 156.7	2 691 929.5	
16/05/2020	00:28:20	R1_ENV_035	VV	NS	312	13.7	772 156.1	2 691 919.0	772 159.1	2 691 910.2	
16/05/2020	00:35:39	R1_ENV_035	WS	BOT	313	13.8	772 156.1	2 691 919.0	772 156.6	2 691 919.2	One bottle open
16/05/2020	00:46:02	R1_ENV_035	WS	BOT	314	13.8	772 156.1	2 691 919.0	772 158.9	2 691 919.4	
16/05/2020	00:53:42	R1_ENV_035	WS	MID	315	13.8	772 156.1	2 691 919.0	772 157.0	2 691 920.7	One bottle open
16/05/2020	01:04:43	R1_ENV_035	WS	MID	316	13.8	772 156.1	2 691 919.0	772 157.4	2 691 918.3	
16/05/2020	01:09:11	R1_ENV_035	WS	ТОР	317	13.8	772 156.1	2 691 919.0	772 156.1	2 691 919.0	
16/05/2020	01:19:19	R1_ENV_035	WP	YSI Exo2	318	13.8	772 156.1	2 691 919.0	772 155.9	2 691 919.7	
16/05/2020	05:27:48	R1_TR02	Video	SOL	416	3.8	762 897.0	2 672 216.3	762 923.0	2 672 225.9	
16/05/2020	05:29:02	R1_TR02	Still	R1_TR02_001	-	3.9	-	-	762 871.8	2 672 205.9	
16/05/2020	05:29:09	R1_TR02	Still	R1_TR02_002	417	3.8	-	-	762 866.9	2 672 204.2	
16/05/2020	05:29:10	R1_TR02	Still	R1_TR02_003	418	3.8	-	-	762 866.2	2 672 203.9	
16/05/2020	05:29:22	R1_TR02	Still	R1_TR02_004	419	3.6	-	-	762 858.1	2 672 199.5	
16/05/2020	05:29:35	R1_TR02	Still	R1_TR02_005	420	3.8	-	-	762 848.2	2 672 199.3	
16/05/2020	05:29:46	R1_TR02	Still	R1_TR02_006	421	3.6	-	-	762 840.0	2 672 198.7	
16/05/2020	05:30:00	R1_TR02	Still	R1_TR02_007	422	3.8	-	-	762 830.2	2 672 195.7	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	157 of 602

	T :	Turner at (Comple Day (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
6/05/2020	05:30:23	R1_TR02	Still	R1_TR02_008	423	3.8	-	-	762 813.7	2 672 189.5	
16/05/2020	05:30:40	R1_TR02	Still	R1_TR02_009	424	3.8	-	-	762 801.0	2 672 182.3	
16/05/2020	05:30:52	R1_TR02	Still	R1_TR02_010	425	3.9	-	-	762 792.1	2 672 181.5	
16/05/2020	05:31:01	R1_TR02	Still	R1_TR02_011	-	3.9	-	-	762 785.6	2 267 179.8	
16/05/2020	05:31:09	R1_TR02	Video	EOL	426	3.8	762 782.8	2 672 177.5	762 779.9	2 672 177.4	
16/05/2020	05:50:11	R1_TR01	Video	SOL	427	6.1	760 273.9	2 671 448.8	760 295.3	2 671 460.7	
16/05/2020	05:50:37	R1_TR01	Still	R1_TR01_001	428	6.3	-	-	760 272.8	2 671 452.7	
16/05/2020	05:50:47	R1_TR01	Still	R1_TR01_002	-	6.4	-	-	760 264.2	2 671 448.9	
16/05/2020	05:50:48	R1_TR01	Still	R1_TR01_003	429	6.4	-	-	760 263.4	2 671 448.4	
16/05/2020	05:50:54	R1_TR01	Still	R1_TR01_004	430	6.4	-	-	760 258.6	2 671 445.6	
16/05/2020	05:51:13	R1_TR01	Still	R1_TR01_005	431	6.7	-	-	760 242.6	2 671 438.3	
16/05/2020	05:51:18	R1_TR01	Still	R1_TR01_006	-	6.7	-	-	760 239.4	2 671 435.6	
16/05/2020	05:51:22	R1_TR01	Still	R1_TR01_007	-	6.7	-	-	760 236.7	2 671 433.4	
16/05/2020	05:51:31	R1_TR01	Still	R1_TR01_008	432	6.7	-	-	760 229.3	2 671 429.8	
16/05/2020	05:51:47	R1_TR01	Still	R1_TR01_009	433	6.9	-	-	760 216.6	2 671 422.9	
16/05/2020	05:52:01	R1_TR01	Still	R1_TR01_010	434	7.0	-	-	760 204.3	2 671 418.0	
16/05/2020	05:52:24	R1_TR01	Still	R1_TR01_011	-	7.0	-	-	760 183.8	2 671 409.4	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	158 of 602

	T :	Trenes et /		Comula Day (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Type Still No.	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
16/05/2020	05:52:24	R1_TR01	Still	R1_TR01_012	-	7.0	-	-	760 183.8	2 671 409.4	
16/05/2020	05:52:32	R1_TR01	Still	R1_TR01_013	435	7.1	-	-	760 175.9	2 671 407.9	
16/05/2020	05:52:39	R1_TR01	Video	EOL	436	7.1	760 273.9	2 671 448.8	760 168.6	2 671 405.4	
16/05/2020	06:14:58	R1_ENV_006	VV	NS	437	6.8	756 631.1	2 670 474.6	756 625.7	2 670 486.6	
16/05/2020	06:54:54	R1_ENV_006	VV	NS	438	6.6	756 631.1	2 670 474.6	756 628.8	2 670 476.3	
16/05/2020	07:04:26	R1_ENV_006	VV	NS	439	6.6	756 631.1	2 670 474.6	756 614.1	2 670 467.4	
16/05/2020	07:18:51	R1_ENV_007	VV	NS	440	6.6	757 597.3	2 670 732.2	757 582.6	2 670 742.1	
16/05/2020	07:23:37	R1_ENV_007	VV	NS	441	6.5	757 597.3	2 670 732.2	757 592.0	2 670 733.2	
16/05/2020	07:30:11	R1_ENV_007	VV	NS	442	6.5	757 597.3	2 670 732.2	757 602.5	2 670 722.1	
16/05/2020	07:43:08	R1_ENV_008	VV	NS	443	6.7	758 565.9	2 670 981.4	758 562.8	2 670 969.3	
16/05/2020	07:49:49	R1_ENV_008	VV	NS	444	6.8	758 565.9	2 670 981.4	758 562.9	2 670 991.2	
16/05/2020	07:55:59	R1_ENV_008	VV	NS	445	6.7	758 565.9	2 670 981.4	758 565.1	2 670 982.2	
16/05/2020	08:00:17	SO_R1_001	VV	NS	446	6.8	758 565.9	2 670 981.4	758 576.5	2 670 992.4	
16/05/2020	08:12:49	R1_ENV_009	VV	NS	447	6.9	759 529.8	2 671 247.5	759 515.6	2 671 249.6	
16/05/2020	08:17:32	R1_ENV_009	VV	NS	448	7.0	759 529.8	2 671 247.5	759 527.7	2 671 258.5	
16/05/2020	08:25:02	R1_ENV_009	VV	NS	449	6.9	759 529.8	2 671 247.5	759 529.0	2 671 243.4	
16/05/2020	08:38:05	R1_ENV_010	VV	NS	450	4.8	760 496.1	2 671 505.1	760 490.2	2 671 490.7	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	159 of 602

	T :	Transect/		Sample Rep/		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]		Type	Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
16/05/2020	08:42:58	R1_ENV_010	VV	NS	451	5.0	760 496.1	2 671 505.1	760 487.7	2 671 508.8	
16/05/2020	08:47:44	R1_ENV_010	VV	NS	452	5.0	760 496.1	2 671 505.1	760 508.6	2 671 495.0	
16/05/2020	09:05:43	R1_ENV_012	VV	NS	453	3.9	762 431.8	2 672 008.6	762 438.6	2 672 006.6	
16/05/2020	09:09:53	R1_ENV_012	VV	NS	454	3.6	762 431.8	2 672 008.6	762 419.4	2 672 001.4	
16/05/2020	09:15:31	R1_ENV_012	VV	NS	455	3.5	762 431.8	2 672 008.6	762 431.2	2 672 023.3	
16/05/2020	09:26:08	R1_ENV_013	VV	NS	456	4.0	763 402.3	2 672 259.4	763 400.0	2 672 262.6	
16/05/2020	09:30:16	R1_ENV_013	VV	NS	457	3.8	763 402.3	2 672 259.4	763 414.1	2 672 267.8	
16/05/2020	09:34:41	R1_ENV_013	VV	NS	458	3.9	763 402.3	2 672 259.4	763 403.5	2 672 250.8	
16/05/2020	09:46:40	R1_ENV_014	VV	NS	459	5.9	764 370.7	2 672 508.5	764 372.5	2 672 495.9	
16/05/2020	09:54:09	R1_ENV_014	VV	PC	460	6.1	764 370.7	2 672 508.5	764 373.4	2 672 513.5	
16/05/2020	10:13:40	R1_ENV_015	VV	NS	461	7.1	764 666.3	2 673 463.8	764 654.5	2 673 479.1	
16/05/2020	10:23:05	R1_ENV_015	VV	NS	462	7.0	764 666.3	2 673 463.8	764 679.8	2 673 470.7	
16/05/2020	10:30:39	R1_ENV_015	VV	NS	463	6.9	764 666.3	2 673 463.8	764 665.0	2 673 460.1	
16/05/2020	13:55:03	R1_ENV_036	WP	YSI Exo2	319	12.6	773 423.4	2 692 546.8	773 421.1	2 692 547.7	
16/05/2020	14:34:27	R1_ENV_036	WS	BOT	320	12.8	773 423.4	2 692 546.8	773 423.4	2 692 546.5	
16/05/2020	14:43:34	R1_ENV_036	WS	MID	321	12.8	773 423.4	2 692 546.8	773 425.4	2 692 548.0	
16/05/2020	14:50:29	R1_ENV_036	WS	ТОР	322	12.8	773 423.4	2 692 546.8	773 423.7	2 692 547.7	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	160 of 602

	T :	Transati		Comula Don (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station		Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
16/05/2020	15:00:05	R1_ENV_036	VV	NS	323	12.9	773 423.4	2 692 546.8	773 423.8	2 692 547.0	
16/05/2020	15:05:48	R1_ENV_036	VV	NS	324	13.0	773 423.4	2 692 546.8	773 426.0	2 692 538.3	
16/05/2020	15:09:50	R1_ENV_036	VV	NS	325	13.0	773 423.4	2 692 546.8	773 420.8	2 692 556.2	
16/05/2020	17:06:28	R1_ENV_037	VV	NS	326	12.6	772 795.6	2 693 814.0	772 795.9	2 693 813.5	
16/05/2020	17:12:04	R1_ENV_037	VV	NS	327	12.6	772 795.6	2 693 814.0	772 792.6	2 693 823.2	
16/05/2020	17:15:19	R1_ENV_037	VV	NS	328	12.6	772 795.6	2 693 814.0	772 799.4	2 693 805.3	
16/05/2020	17:19:56	R1_ENV_037	WS	BOT	329	12.6	772 795.6	2 693 814.0	772 795.4	2 693 814.0	
16/05/2020	17:27:46	R1_ENV_037	WS	MID	330	12.6	772 795.6	2 693 814.0	772 795.3	2 693 813.5	
16/05/2020	17:34:34	R1_ENV_037	WS	ТОР	331	12.6	772 795.6	2 693 814.0	772 795.3	2 693 813.0	
16/05/2020	17:44:26	R1_ENV_037	WP	YSI Exo2	332	12.6	772 795.6	2 693 814.0	772 792.8	2 693 813.7	
22/05/2020	03:50:17	R1_ENV_114	WP	YSI Exo2	691	17.4	783 859.2	2 761 244.2	783 859.9	2 761 245.0	
22/05/2020	04:20:57	R1_ENV_114	WS	BOT	692	17.5	783 859.2	2 761 244.2	783 859.1	2 761 249.7	
22/05/2020	05:16:27	R1_ENV_114	WS	MID	693	17.6	783 859.2	2 761 244.2	783 858.7	2 761 244.0	
22/05/2020	05:30:09	R1_ENV_114	WS	ТОР	694	17.6	783 859.2	2 761 244.2	783 861.7	2 761 245.3	
22/05/2020	05:49:17	R1_ENV_114	VV	NS	695	17.6	783 859.2	2 761 244.2	783 859.1	2 761 243.9	
22/05/2020	05:54:47	R1_ENV_114	VV	NS	696	17.6	783 859.2	2 761 244.2	783 848.8	2 761 246.0	
22/05/2020	06:01:15	R1_ENV_114	VV	NS	697	17.8	783 859.2	2 761 244.2	783 867.9	2 761 246.8	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	161 of 602

	T :	Transact/		Comula Day (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station		Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
22/05/2020	06:36:22	R1_ENV_115	WP	YSI Exo2	698	18.1	782 782.9	2 760 393.0	782 784.3	2 760 390.6	
22/05/2020	06:55:46	R1_ENV_115	VV	NS	699	18.1	782 782.9	2 760 393.0	782 784.4	2 760 393.8	
22/05/2020	07:01:25	R1_ENV_115	VV	NS	700	18.1	782 782.9	2 760 393.0	782 791.1	2 760 388.4	
22/05/2020	07:07:41	R1_ENV_115	VV	NS	701	18.2	782 782.9	2 760 393.0	782 777.3	2 760 401.7	
22/05/2020	07:25:07	R1_ENV_115	WS	BOT	702	18.2	782 782.9	2 760 393.0	782 789.8	2 760 392.3	
22/05/2020	07:34:07	R1_ENV_115	WS	MID	703	18.2	782 782.9	2 760 393.0	782 790.4	2 760 392.6	
22/05/2020	07:50:02	R1_ENV_115	WS	ТОР	704	18.4	782 782.9	2 760 393.0	782 789.4	2 760 391.2	
22/05/2020	08:31:03	R1_ENV_116	WP	YSI Exo2	705	18.1	781 863.5	2 761 380.8	781 861.8	2 761 381.2	
22/05/2020	08:59:21	R1_ENV_116	WS	BOT	706	18.2	781 863.5	2 761 380.8	781 863.4	2 761 381.3	
22/05/2020	09:08:09	R1_ENV_116	WS	MID	707	18.2	781 863.5	2 761 380.8	781 863.7	2 761 381.8	
22/05/2020	09:22:07	R1_ENV_116	WS	ТОР	708	18.1	781 863.5	2 761 380.8	781 863.2	2 761 381.1	
22/05/2020	09:35:15	R1_ENV_116	VV	NS	709	18.2	781 863.5	2 761 380.8	781 864.5	2 761 381.8	
22/05/2020	09:42:06	R1_ENV_116	VV	NS	710	18.2	781 863.5	2 761 380.8	781 862.6	2 761 393.9	
22/05/2020	09:46:50	R1_ENV_116	VV	NS	711	18.2	781 863.5	2 761 380.8	781 863.8	2 761 370.9	
22/05/2020	10:11:09	R1_ENV_117	VV	NS	712	17.5	780 793.3	2 760 600.4	780 793.2	2 760 600.7	
22/05/2020	10:18:26	R1_ENV_117	VV	NS	713	17.5	780 793.3	2 760 600.4	780 794.4	2 760 611.8	
22/05/2020	10:24:16	R1_ENV_117	VV	NS	714	17.6	780 793.3	2 760 600.4	780 793.1	2 760 589.6	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	162 of 602

	Time	Transect/		Sample Rep/		Water	Propose	d Location	Actual	Location	
Date	[UTC]	Station	Туре	Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
22/05/2020	10:32:28	R1_ENV_117	WS	BOT	715	17.5	780 793.3	2 760 600.4	780 794.6	2 760 600.7	
22/05/2020	10:50:20	R1_ENV_117	WS	MID	716	17.4	780 793.3	2 760 600.4	780 793.7	2 760 601.0	
22/05/2020	10:59:09	R1_ENV_117	WS	ТОР	717	17.3	780 793.3	2 760 600.4	780 793.7	2 760 600.3	
22/05/2020	11:19:47	R1_ENV_117	WP	YSI Exo2	718	17.2	780 793.3	2 760 600.4	780 791.8	2 760 601.0	
22/05/2020	12:05:28	R1_ENV_118	WP	YSI Exo2	719	17.3	779 867.9	2 761 517.3	779 868.2	2 761 519.8	
22/05/2020	12:22:10	R1_ENV_118	WS	BOT	720	17.2	779 867.9	2 761 517.3	779 867.8	2 761 517.6	
22/05/2020	12:30:57	R1_ENV_118	WS	MID	721	17.2	779 867.9	2 761 517.3	779 868.2	2 761 516.7	
22/05/2020	12:39:05	R1_ENV_118	WS	ТОР	722	17.1	779 867.9	2 761 517.3	779 868.1	2 761 516.2	
22/05/2020	12:51:32	R1_ENV_118	VV	NS	723	17.0	779 867.9	2 761 517.3	779 868.9	2 761 516.4	
22/05/2020	12:58:22	R1_ENV_118	VV	NS	724	17.3	779 867.9	2 761 517.3	779 879.2	2 761 517.6	
22/05/2020	13:02:48	R1_ENV_118	VV	NS	725	17.3	779 867.9	2 761 517.3	779 856.1	2 761 517.2	
23/05/2020	04:51:05	R1_ENV_119	WS	ТОР	765	16.9	778 769.3	2 760 811.4	778 772.9	2 760 807.0	
23/05/2020	05:42:26	R1_ENV_119	WP	YSI Exo2	768	16.9	778 769.3	2 760 811.4	778 760.2	2 760 816.0	
23/05/2020	06:02:26	R1_ENV_119	WS	BOT	769	17.0	778 769.3	2 760 811.4	778 776.2	2 760 801.3	
23/05/2020	06:15:02	R1_ENV_119	WS	MID	770	17.3	778 769.3	2 760 811.4	778 766.0	2 760 816.6	
23/05/2020	06:23:53	R1_ENV_119	VV	NS	771	17.4	778 769.3	2 760 811.4	778 770.3	2 760 814.1	
23/05/2020	06:29:10	R1_ENV_119	VV	NS	772	17.6	778 769.3	2 760 811.4	778 784.3	2 760 815.1	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	163 of 602

	— T ime e	T		Comple Dan (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station		Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
23/05/2020	06:35:22	R1_ENV_119	VV	NS	773	17.2	778 769.3	2 760 811.4	778 758.5	2 760 816.9	
23/05/2020	07:02:04	R1_ENV_120	VV	NS	774	18.8	777 872.3	2 761 653.9	777 874.1	2 761 652.9	
23/05/2020	07:05:10	R1_ENV_120	VV	NS	775	18.7	777 872.3	2 761 653.9	777 886.1	2 761 652.1	
23/05/2020	07:15:19	R1_ENV_120	VV	NS	776	18.9	777 872.3	2 761 653.9	777 862.1	2 761 657.1	
23/05/2020	07:19:14	SO_R1_015	VV	NS	777	18.9	777 872.3	2 761 653.9	777 876.4	2 761 653.5	
23/05/2020	07:25:33	R1_ENV_120	WS	BOT	778	18.8	777 872.3	2 761 653.9	777 875.4	2 761 655.0	
23/05/2020	07:35:34	R1_ENV_120	WS	MID	779	18.8	777 872.3	2 761 653.9	777 873.9	2 761 653.9	
23/05/2020	07:43:12	R1_ENV_120	WS	ТОР	780	18.8	777 872.3	2 761 653.9	777 872.8	2 761 654.9	
23/05/2020	08:02:33	R1_ENV_120	WP	YSI Exo2	781	18.9	777 872.3	2 761 653.9	777 872.1	2 761 651.7	
23/05/2020	08:47:53	R1_ENV_121	WS	BOT	782	20.4	776 814.1	2 761 015.2	776 817.0	2 761 013.2	
23/05/2020	08:58:56	R1_ENV_121	WS	MID	783	20.4	776 814.1	2 761 015.2	776 814.5	2 761 012.5	
23/05/2020	09:06:16	R1_ENV_121	WS	ТОР	784	20.3	776 814.1	2 761 015.2	776 814.6	2 761 015.8	
23/05/2020	09:13:35	R1_ENV_121	VV	NS	785	20.4	776 814.1	2 761 015.2	776 814.0	2 761 013.9	
23/05/2020	09:15:57	R1_ENV_121	VV	NS	786	20.4	776 814.1	2 761 015.2	776 820.3	2 761 006.9	
23/05/2020	09:21:33	R1_ENV_121	VV	NS	787	20.3	776 814.1	2 761 015.2	776 802.3	2 761 024.4	
23/05/2020	09:36:57	R1_ENV_121	WP	YSI Exo2	788	20.4	776 814.1	2 761 015.2	776 818.6	2 761 013.7	
23/05/2020	10:18:46	R1_ENV_122	WP	YSI Exo2	789	21.5	775 876.6	2 761 790.4	775 872.4	2 761 792.5	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	164 of 602

	-	T		Constants Devid		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station		Sample Rep/ Still No.	Fix No.	. Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
23/05/2020	10:38:21	R1_ENV_122	VV	PC	790	21.5	775 876.6	2 761 790.4	775 873.8	2 761 791.0	
23/05/2020	11:08:32	R1_ENV_122	WS	BOT	792	21.4	775 876.6	2 761 790.4	775 879.4	2 761 789.9	
23/05/2020	11:23:43	R1_ENV_122	WS	MID	793	21.3	775 876.6	2 761 790.4	775 878.7	2 761 787.1	
23/05/2020	11:32:02	R1_ENV_122	WS	ТОР	794	21.4	775 876.6	2 761 790.4	775 874.3	2 761 790.1	
23/05/2020	12:01:42	R1_ENV_123	WS	BOT	795	21.1	775 086.9	2 760 965.0	775 087.2	2 760 961.7	
23/05/2020	12:18:01	R1_ENV_123	WS	MID	796	21.1	775 086.9	2 760 965.0	775 086.9	2 760 964.0	
23/05/2020	12:28:37	R1_ENV_123	WS	ТОР	797	21.2	775 086.9	2 760 965.0	775 085.3	2 760 966.9	
23/05/2020	12:40:10	R1_ENV_123	VV	NS	798	21.1	775 086.9	2 760 965.0	775 088.5	2 760 965.7	
23/05/2020	12:48:44	R1_ENV_123	VV	NS	799	21.0	775 086.9	2 760 965.0	775 077.0	2 760 963.4	
23/05/2020	12:52:07	R1_ENV_123	VV	NS	800	21.0	775 086.9	2 760 965.0	775 092.8	2 760 953.6	
23/05/2020	13:32:26	R1_ENV_123	WP	YSI Exo2	802	21.0	775 086.9	2 760 965.0	775 082.7	2 760 968.7	
23/05/2020	14:13:03	R1_ENV_124	WP	YSI Exo2	803	22.8	773 137.2	2 761 211.9	773 136.1	2 761 211.4	
28/05/2020	11:35:28	R1_ENV_107	WS	BOT	1055	15.0	785 725.6	2 755 221.2	785 724.8	2 755 220.2	
28/05/2020	11:55:40	R1_ENV_107	WS	MID	1056	15.1	785 725.6	2 755 221.2	785 726.5	2 755 223.2	
28/05/2020	12:03:49	R1_ENV_107	WS	ТОР	1057	15.2	785 725.6	2 755 221.2	785 723.7	2 755 221.9	
28/05/2020	12:26:05	R1_ENV_107	WP	YSI Exo2	1058	15.2	785 725.6	2 755 221.2	785 721.0	2 755 222.3	
28/05/2020	12:56:33	R1_ENV_107	VV	NS	1059	15.3	785 725.6	2 755 221.2	785 727.2	2 755 222.8	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	165 of 602

-fugro

	T :	Turner at /		Comple Day (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	LVDA	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
28/05/2020	13:16:49	R1_ENV_107	VV	NS	1060	15.2	785 725.6	2 755 221.2	785 727.6	2 755 210.0	
28/05/2020	13:26:47	R1_ENV_107	VV	NS	1061	15.3	785 725.6	2 755 221.2	785 731.3	2 755 224.7	
28/05/2020	13:49:57	R1_ENV_106	WP	YSI Exo2	1062	14.9	786 864.4	2 754 382.3	786 862.7	2 754 382.0	
28/05/2020	14:38:42	R1_ENV_106	VV	NS	1063	14.9	786 864.4	2 754 382.3	786 864.6	2 754 383.5	
28/05/2020	14:42:59	R1_ENV_106	VV	NS	1064	14.8	786 864.4	2 754 382.3	786 867.8	2 754 374.4	
28/05/2020	14:45:35	R1_ENV_106	VV	NS	1065	14.9	786 864.4	2 754 382.3	786 862.8	2 754 391.9	
28/05/2020	16:23:11	R1_ENV_094	VV	PC	1066	20.4	787 261.2	2 742 544.4	787 262.7	2 742 542.1	
28/05/2020	16:36:32	R1_ENV_094	WS	BOT	1067	20.4	787 261.2	2 742 544.4	787 259.2	2 742 546.3	
28/05/2020	16:47:40	R1_ENV_094	WS	MID	1068	20.2	787 261.2	2 742 544.4	787 259.6	2 742 544.4	
28/05/2020	16:56:07	R1_ENV_094	WS	ТОР	1069	20.3	787 261.2	2 742 544.4	787 261.1	2 742 546.8	
28/05/2020	17:10:57	R1_ENV_094	WP	YSI Exo2	1070	20.3	787 261.2	2 742 544.4	787 252.3	2 742 541.8	
28/05/2020	17:41:28	R1_ENV_093	VV	PC	1071	22.0	786 603.1	2 741 292.6	786 603.9	2 741 292.2	
28/05/2020	18:05:12	R1_ENV_093	WS	BOT	1072	22.0	786 603.1	2 741 292.6	786 602.9	2 741 292.7	
28/05/2020	18:16:44	R1_ENV_093	WS	MID	1073	22.0	786 603.1	2 741 292.6	786 602.2	2 741 292.4	
28/05/2020	18:32:36	R1_ENV_093	WS	ТОР	1074	22.1	786 603.1	2 741 292.6	786 603.6	2 741 292.8	
28/05/2020	18:46:14	R1_ENV_093	WP	YSI Exo2	1075	22.1	786 603.1	2 741 292.6	786 599.6	2 741 295.7	
28/05/2020	19:54:25	R1_ENV_092	VV	NS	1076	20.9	787 854.8	2 740 634.5	787 856.2	2 740 635.5	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	166 of 602

	T :	Turner at /		Comula Don (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station		Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
28/05/2020	19:59:04	R1_ENV_092	VV	NS	1077	21.0	787 854.8	2 740 634.5	787 858.2	2 740 626.8	
28/05/2020	20:03:14	R1_ENV_092	VV	PC	1078	21.0	787 854.8	2 740 634.5	787 853.1	2 740 641.4	
28/05/2020	20:21:58	R1_ENV_092	WS	BOT	1079	21.0	787 854.8	2 740 634.5	787 855.8	2 740 635.4	
28/05/2020	20:35:41	R1_ENV_092	WS	MID	1080	21.1	787 854.8	2 740 634.5	787 855.9	2 740 634.1	
28/05/2020	20:47:21	R1_ENV_092	WS	ТОР	1081	21.2	787 854.8	2 740 634.5	787 855.7	2 740 635.3	
28/05/2020	21:15:06	R1_ENV_092	WP	YSI Exo2	1082	21.1	787 854.8	2 740 634.5	787 853.1	2 740 637.2	
28/05/2020	21:50:36	R1_ENV_091	VV	PC	1083	19.4	787 196.7	2 739 382.7	787 198.1	2 739 382.2	
28/05/2020	22:16:03	R1_ENV_091	WS	BOT	1084	19.4	787 196.7	2 739 382.7	787 197.4	2 739 383.7	
28/05/2020	22:26:27	R1_ENV_091	WS	MID	1085	19.6	787 196.7	2 739 382.7	787 197.1	2 739 382.3	
28/05/2020	22:37:30	R1_ENV_091	WS	ТОР	1086	19.5	787 196.7	2 739 382.7	787 196.4	2 739 382.6	
28/05/2020	22:51:09	R1_ENV_091	WP	YSI Exo2	1087	19.6	787 196.7	2 739 382.7	787 198.5	2 739 381.8	
28/05/2020	23:37:46	R1_ENV_090	VV	NS	1088	20.7	788 448.5	2 738 724.6	788 447.9	2 738 724.3	
28/05/2020	23:42:02	R1_ENV_090	VV	NS	1089	20.7	788 448.5	2 738 724.6	788 448.5	2 738 733.4	
28/05/2020	23:46:39	R1_ENV_090	VV	NS	1090	20.8	788 448.5	2 738 724.6	788 441.2	2 738 717.4	
29/05/2020	00:01:10	R1_ENV_090	WS	BOT	1091	20.7	788 448.5	2 738 724.6	788 447.3	2 738 724.0	
29/05/2020	00:14:01	R1_ENV_090	WS	MID	1092	20.8	788 448.5	2 738 724.6	788 448.1	2 738 724.7	
29/05/2020	00:26:40	R1_ENV_090	WS	ТОР	1093	20.9	788 448.5	2 738 724.6	788 448.4	2 738 724.3	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	167 of 602

	T :	Turner at /		Sample Rep/		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
29/05/2020	00:52:48	R1_ENV_090	WP	YSI Exo2	1094	20.7	788 448.5	2 738 724.6	788 450.4	2 738 725.4	
29/05/2020	03:42:55	R1_ENV_112	WS	BOT	1095	18.1	785 966.0	2 760 314.7	785 966.3	2 760 315.0	
29/05/2020	03:50:04	R1_ENV_112	WS	MID	1096	18.2	785 966.0	2 760 314.7	785 964.8	2 760 316.1	
29/05/2020	03:56:48	R1_ENV_112	WS	ТОР	1097	18.0	785 966.0	2 760 314.7	785 964.5	2 760 316.4	
29/05/2020	04:38:55	R1_ENV_112	WP	YSI Exo2	1099	17.8	785 966.0	2 760 314.7	785 968.0	2 760 314.8	
29/05/2020	04:58:56	R1_ENV_112	VV	NS	1100	17.8	785 966.0	2 760 314.7	785 967.8	2 760 315.0	
29/05/2020	05:03:11	R1_ENV_112	VV	NS	1101	17.7	785 966.0	2 760 314.7	785 968.6	2 760 315.4	
29/05/2020	05:09:01	R1_ENV_112	VV	NS	1102	17.7	785 966.0	2 760 314.7	785 966.9	2 760 322.1	
29/05/2020	05:12:48	SO_R1_014	VV	NS	1103	17.7	785 966.0	2 760 314.7	785 965.2	2 760 313.4	
29/05/2020	05:37:29	R1_ENV_113	VV	NS	1104	17.7	784 772.4	2 760 185.6	784 770.9	2 760 186.4	
29/05/2020	05:41:05	R1_ENV_113	VV	NS	1105	17.7	784 772.4	2 760 185.6	784 776.9	2 760 193.3	
29/05/2020	05:45:04	R1_ENV_113	VV	NS	1106	17.7	784 772.4	2 760 185.6	784 772.9	2 760 177.1	
29/05/2020	05:54:43	R1_ENV_113	WP	YSI Exo2	1107	17.7	784 772.4	2 760 185.6	784 774.4	2 760 188.1	
29/05/2020	06:12:44	R1_ENV_113	WS	BOT	1108	17.6	784 772.4	2 760 185.6	784 773.5	2 760 185.6	
29/05/2020	06:20:21	R1_ENV_113	WS	MID	1109	17.6	784 772.4	2 760 185.6	784 772.9	2 760 186.0	
29/05/2020	06:28:50	R1_ENV_113	WS	ТОР	1110	17.6	784 772.4	2 760 185.6	784 772.7	2 760 186.3	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	168 of 602

	Time e	Turnerati		Comula Day (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
29/05/2020	08:30:50	R1_ENV_129	vv	NS	1111	13.5	772 016.8	2 756 312.8	771 972.4	2 756 202.2	Station moved as proposed location was within 200 m of infrastructure
29/05/2020	08:38:12	R1_ENV_129	VV	NS	1112	13.4	772 016.8	2 756 312.8	771 964.0	2 756 201.8	
29/05/2020	08:40:18	R1_ENV_129	VV	NS	1113	13.4	772 016.8	2 756 312.8	771 982.0	2 756 201.0	
29/05/2020	08:48:02	R1_ENV_129	WP	YSI Exo2	1114	13.4	772 016.8	2 756 312.8	771 973.7	2 756 198.0	
29/05/2020	08:59:08	R1_ENV_129	WS	вот	1115	13.5	772 016.8	2 756 312.8	771 972.9	2 756 199.9	
29/05/2020	09:10:32	R1_ENV_129	WS	MID	1116	13.5	772 016.8	2 756 312.8	771 973.7	2 756 198.6	
29/05/2020	09:17:52	R1_ENV_129	WS	ТОР	1117	13.5	772 016.8	2 756 312.8	771 973.7	2 756 200.9	
29/05/2020	09:45:56	R1_ENV_128	WS	вот	1118	15.5	772 093.6	2 757 483.3	772 192.6	2 757 600.9	Station moved as proposed location was within 200 m of infrastructure
29/05/2020	09:53:20	R1_ENV_128	WS	MID	1119	15.5	772 093.6	2 757 483.3	772 193.2	2 757 601.7	
29/05/2020	10:01:44	R1_ENV_128	WS	ТОР	1120	15.6	772 093.6	2 757 483.3	772 192.9	2 757 601.8	
29/05/2020	10:13:51	R1_ENV_128	WP	YSI Exo2	1121	15.6	772 093.6	2 757 483.3	772 192.6	2 757 600.8	
29/05/2020	10:34:35	R1_ENV_128	VV	NS	1122	15.6	772 093.6	2 757 483.3	772 192.6	2 757 603.8	
29/05/2020	10:39:41	R1_ENV_128	VV	NS	1123	15.7	772 093.6	2 757 483.3	772 202.1	2 757 600.1	
29/05/2020	10:42:25	R1_ENV_128	VV	NS	1124	15.7	772 093.6	2 757 483.3	772 185.2	2 757 606.9	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	169 of 602

	Time	Transect/		Sample Rep/		Water	Propose	d Location	Actual	Location	
Date	[UTC]	Station	Туре	Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
29/05/2020	10:45:20	SO_R1_016	vv	NS	1125	15.7	772 093.6	2 757 483.3	772 198.4	2 757 599.9	Moved as proposed location was within 200 m of infrastructure
29/05/2020	11:21:45	R1_ENV_127	VV	NS	1126	17.5	773 006.5	2 758 130.4	773 005.1	2 758 131.5	
29/05/2020	11:24:17	R1_ENV_127	VV	NS	1127	17.5	773 006.5	2 758 130.4	773 013.4	2 758 126.2	
29/05/2020	11:28:26	R1_ENV_127	VV	NS	1128	17.6	773 006.5	2 758 130.4	772 998.0	2 758 135.2	
29/05/2020	11:41:10	R1_ENV_127	WP	YSI Exo2	1129	17.5	773 006.5	2 758 130.4	773 005.5	2 758 130.0	
29/05/2020	11:57:43	R1_ENV_127	WS	вот	1130	17.6	773 006.5	2 758 130.4	773 007.0	2 758 131.3	
29/05/2020	12:06:23	R1_ENV_127	WS	MID	1131	17.6	773 006.5	2 758 130.4	773 006.3	2 758 131.3	
29/05/2020	12:13:18	R1_ENV_127	WS	ТОР	1132	17.7	773 006.5	2 758 130.4	773 007.4	2 758 130.5	
29/05/2020	12:42:23	R1_ENV_126	WS	вот	1133	21.1	772 466.7	2 759 400.9	772 467.4	2 759 400.9	
29/05/2020	12:53:50	R1_ENV_126	WS	MID	1134	21.1	772 466.7	2 759 400.9	772 467.5	2 759 402.0	
29/05/2020	13:04:29	R1_ENV_126	WS	ТОР	1135	21.2	772 466.7	2 759 400.9	772 467.5	2 759 401.5	
29/05/2020	13:17:17	R1_ENV_126	VV	Partial Sample	1137	21.1	772 466.7	2 759 400.9	772 462.1	2 759 408.7	PSD only
29/05/2020	13:21:14	R1_ENV_126	VV	NS	1138	21.1	772 466.7	2 759 400.9	772 468.2	2 759 399.4	
29/05/2020	13:24:27	R1_ENV_126	VV	NS	1139	21.1	772 466.7	2 759 400.9	772 470.7	2 759 392.6	
29/05/2020	13:40:09	R1_ENV_126	WP	YSI Exo2	1140	21.3	772 466.7	2 759 400.9	772 465.2	2 759 400.7	
29/05/2020	18:00:05	R1_ENV_089	VV	NS	1141	19.8	787 790.3	2 737 472.9	787 790.3	2 737 475.1	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	170 of 602

	T :	Transect/		Comple Day (Water	Proposed Location		Actual	Location	
Date	Time [UTC]		Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
29/05/2020	18:04:32	R1_ENV_089	VV	PC	1142	19.9	787 790.3	2 737 472.9	787 783.0	2 737 467.4	
29/05/2020	18:22:24	R1_ENV_089	WS	BOT	1143	19.7	787 790.3	2 737 472.9	787 790.1	2 737 471.1	
29/05/2020	18:33:10	R1_ENV_089	WS	MID	1144	19.8	787 790.3	2 737 472.9	787 790.0	2 737 473.9	
29/05/2020	18:42:23	R1_ENV_089	WS	ТОР	1145	19.8	787 790.3	2 737 472.9	787 790.5	2 737 472.8	
29/05/2020	19:02:37	R1_ENV_089	WP	YSI Exo2	1146	19.7	787 790.3	2 737 472.9	787 790.1	2 737 474.3	
29/05/2020	19:50:54	SO_R1_011	VV	SOIL	1147	24.8	789 042.1	2 736 814.8	789 042.6	2 736 816.0	
29/05/2020	20:08:38	R1_ENV_088	VV	PC	1148	24.9	789 042.1	2 736 814.8	789 042.8	2 736 815.3	
29/05/2020	20:36:17	R1_ENV_088	WS	NT	1149	24.9	789 042.1	2 736 814.8	789 042.3	2 736 814.9	
29/05/2020	20:56:13	R1_ENV_088	WS	BOT	1150	24.9	789 042.1	2 736 814.8	789 042.0	2 736 813.8	
29/05/2020	21:09:29	R1_ENV_088	WS	MID	1151	24.9	789 042.1	2 736 814.8	789 042.8	2 736 814.4	
29/05/2020	21:20:41	R1_ENV_088	WS	ТОР	1152	24.9	789 042.1	2 736 814.8	789 042.3	2 736 813.9	
29/05/2020	21:33:23	R1_ENV_088	WP	YSI Exo2	1153	25.0	789 042.1	2 736 814.8	789 040.6	2 736 815.4	
29/05/2020	22:16:20	R1_ENV_087	VV	NS	1154	20.7	788 384.0	2 735 563.0	788 384.6	2 735 562.9	
29/05/2020	22:20:47	R1_ENV_087	VV	PC	1155	20.8	788 384.0	2 735 563.0	788 391.8	2 735 568.2	
29/05/2020	22:45:39	R1_ENV_087	WS	BOT	1156	20.8	788 384.0	2 735 563.0	788 384.5	2 735 560.4	
29/05/2020	22:57:56	R1_ENV_087	WS	MID	1157	20.8	788 384.0	2 735 563.0	788 387.4	2 735 564.2	
29/05/2020	23:42:13	R1_ENV_085	WP	YSI Exo2	1158	18.5	788 881.5	2 733 962.3	788 880.3	2 733 964.5	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	171 of 602

		Tue in a a st /				Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	x No. Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
30/05/2020	00:00:00	R1_ENV_085	WS	вот	1159	18.6	788 881.5	2 733 962.3	788 882.1	2 733 962.4	
30/05/2020	00:09:51	R1_ENV_085	WS	MID	1160	18.5	788 881.5	2 733 962.3	788 882.7	2 733 962.8	
30/05/2020	00:20:48	R1_ENV_085	WS	ТОР	1161	18.6	788 881.5	2 733 962.3	788 882.0	2 733 961.8	
30/05/2020	00:31:48	R1_ENV_085	VV	NS	1162	18.4	788 881.5	2 733 962.3	788 881.7	2 733 961.8	
30/05/2020	00:36:25	R1_ENV_085	VV	NS	1163	18.6	788 881.5	2 733 962.3	788 890.6	2 733 959.9	
30/05/2020	00:40:02	R1_ENV_085	VV	NS	1164	18.5	788 881.5	2 733 962.3	788 874.7	2 733 967.6	
30/05/2020	00:58:23	R1_ENV_087	WS	ТОР	1165	21.0	788 384.0	2 735 563.0	788 384.0	2 735 564.2	
30/05/2020	01:01:07	R1_ENV_087	WP	YSI Exo2	1166	21.0	788 384.0	2 735 563.0	788 385.7	2 735 564.3	
30/05/2020	04:38:56	R1_ENV_125	WS	BOT	1167	21.5	774 141.5	2 759 676.9	774 141.4	2 759 677.8	
30/05/2020	04:51:20	R1_ENV_125	WS	MID	1168	21.4	774 141.5	2 759 676.9	774 141.6	2 759 677.1	
30/05/2020	05:02:57	R1_ENV_125	WS	ТОР	1169	21.3	774 141.5	2 759 676.9	774 141.2	2 759 676.9	
30/05/2020	05:42:10	R1_ENV_125	WP	YSI Exo2	1171	21.3	774 141.5	2 759 676.9	774 144.4	2 759 677.7	
30/05/2020	06:02:11	R1_ENV_125	VV	NS	1172	21.1	774 141.5	2 759 676.9	774 141.5	2 759 676.4	
30/05/2020	06:09:14	R1_ENV_125	VV	Partial Sample	1173	21.1	774 141.5	2 759 676.9	774 147.8	2 759 683.1	PSD only
30/05/2020	06:16:19	R1_ENV_125	VV	NS	1174	21.1	774 141.5	2 759 676.9	774 144.1	2 759 668.5	
30/05/2020	06:46:07	R1_ENV_124	VV	NS	1176	22.3	773 137.2	2 761 211.9	773 136.2	2 761 212.5	
30/05/2020	06:47:48	R1_ENV_124	VV	Partial Sample	1177	22.2	773 137.2	2 761 211.9	773 137.0	2 761 220.8	PSD only

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	172 of 602

	T :			Sample Rep/		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Type Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes	
30/05/2020	06:52:58	R1_ENV_124	VV	NS	1178	22.2	773 137.2	2 761 211.9	773 133.2	2 761 203.8	
30/05/2020	07:03:02	R1_ENV_124	WS	BOT	1179	22.2	773 137.2	2 761 211.9	773 137.1	2 761 208.5	
30/05/2020	07:14:09	R1_ENV_124	WS	MID	1180	22.2	773 137.2	2 761 211.9	773 136.9	2 761 210.5	
30/05/2020	07:21:47	R1_ENV_124	WS	ТОР	1181	22.2	773 137.2	2 761 211.9	773 136.4	2 761 209.7	
30/05/2020	08:56:03	R1_TR10	Video	SOL	1182	16.1	779 346.7	2 761 563.9	779 340.6	2 761 566.1	
30/05/2020	08:56:16	R1_TR10	Still	R1_TR10_001	1183	16.4	-	-	779 345.1	2 761 564.4	
30/05/2020	08:56:28	R1_TR10	Still	R1_TR10_002	1184	16.5	-	-	779 349.1	2 761 562.4	
30/05/2020	08:56:34	R1_TR10	Still	R1_TR10_003	1185	16.5	-	-	779 351.3	2 761 562.1	
30/05/2020	08:56:52	R1_TR10	Still	R1_TR10_004	1186	16.3	-	-	779 358.2	2 761 563.8	
30/05/2020	08:57:37	R1_TR10	Still	R1_TR10_005	1187	16.7	-	-	779 373.4	2 761 560.6	
30/05/2020	08:58:12	R1_TR10	Still	R1_TR10_006	1188	16.6	-	-	779 385.7	2 761 558.4	
30/05/2020	08:59:02	R1_TR10	Still	R1_TR10_007	1189	16.7	-	-	779 403.5	2 761 554.9	
30/05/2020	08:59:19	R1_TR10	Still	R1_TR10_008	1190	16.5	-	-	779 409.5	2 761 554.5	
30/05/2020	09:00:07	R1_TR10	Still	R1_TR10_009	1191	16.5	-	-	779 426.4	2 761 551.0	
30/05/2020	09:00:36	R1_TR10	Still	R1_TR10_010	1192	16.8	-	-	779 438.5	2 761 549.5	
30/05/2020	09:00:42	R1_TR10	Still	R1_TR10_011	1193	16.8	-	-	779 439.9	2 761 549.4	
30/05/2020	09:01:01	R1_TR10	Still	R1_TR10_012	1194	16.6	-	-	779 445.6	2 761 548.8	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	173 of 602

	T :	Turner at (Comula Day (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Fix No. Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
30/05/2020	09:01:51	R1_TR10	Video	EOL	1195	16.4	779 443.5	2 761 547.3	779 465.0	2 761 544.1	
30/05/2020	10:02:58	R1_ENV_111	WP	YSI Exo2	1196	16.9	785 125.7	2 759 176.0	785 126.6	2 759 173.9	
30/05/2020	10:34:26	R1_ENV_111	VV	NS	1197	17.0	785 125.7	2 759 176.0	785 125.1	2 759 175.2	
30/05/2020	10:48:04	R1_ENV_111	WS	BOT	1198	17.0	785 125.7	2 759 176.0	785 125.2	2 759 176.6	
30/05/2020	10:57:11	R1_ENV_111	WS	MID	1199	17.0	785 125.7	2 759 176.0	785 125.7	2 759 176.2	
30/05/2020	11:15:15	R1_ENV_111	WS	ТОР	1200	17.1	785 125.7	2 759 176.0	785 125.0	2 759 174.6	
30/05/2020	12:00:51	R1_ENV_111	VV	NS	1201	17.2	785 125.7	2 759 176.0	785 120.3	2 759 182.9	
30/05/2020	12:03:28	R1_ENV_111	VV	NS	1202	17.2	785 125.7	2 759 176.0	785 133.3	2 759 171.2	
30/05/2020	12:27:27	R1_ENV_110	VV	NS	1203	16.5	786 265.5	2 758 337.2	786 265.4	2 758 338.4	
30/05/2020	12:35:03	R1_ENV_110	VV	NS	1204	16.5	786 265.5	2 758 337.2	786 263.4	2 758 332.3	
30/05/2020	12:36:49	R1_ENV_110	VV	NS	1205	16.5	786 265.5	2 758 337.2	786 260.0	2 758 345.4	
30/05/2020	12:49:18	R1_ENV_110	WP	YSI Exo2	1206	16.6	786 265.5	2 758 337.2	786 263.9	2 758 335.5	
30/05/2020	13:06:46	R1_ENV_110	WS	BOT	1207	16.6	786 265.5	2 758 337.2	786 266.5	2 758 337.1	
30/05/2020	13:14:59	R1_ENV_110	WS	MID	1208	16.7	786 265.5	2 758 337.2	786 265.3	2 758 337.3	
30/05/2020	13:21:54	R1_ENV_110	WS	ТОР	1209	16.7	786 265.5	2 758 337.2	786 265.9	2 758 336.0	
30/05/2020	13:52:37	R1_ENV_109	WP	YSI Exo2	1210	17.1	785 425.7	2 757 198.6	785 424.3	2 757 197.7	
30/05/2020	14:15:46	R1_ENV_109	WS	вот	1211	17.2	785 425.7	2 757 198.6	785 426.3	2 757 198.6	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	174 of 602

	Time	Troppost (Comula Dou /		Water	Propose	d Location	Actual	Location	
Date	[UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	x No. Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
30/05/2020	14:23:33	R1_ENV_109	WS	MID	1212	17.3	785 425.7	2 757 198.6	785 427.0	2 757 198.5	
30/05/2020	14:30:18	R1_ENV_109	WS	ТОР	1213	17.3	785 425.7	2 757 198.6	785 426.3	2 757 198.1	
30/05/2020	14:36:45	R1_ENV_109	VV	NS	1214	17.3	785 425.7	2 757 198.6	785 427.9	2 757 197.9	
30/05/2020	14:40:04	R1_ENV_109	VV	Partial Sample	1215	17.3	785 425.7	2 757 198.6	785 428.8	2 757 191.4	
30/05/2020	14:46:13	R1_ENV_109	VV	Partial Sample	1216	17.3	785 425.7	2 757 198.6	785 424.2	2 757 205.9	
30/05/2020	17:30:12	R1_ENV_086	VV	PC	1217	18.7	789 635.7	2 734 904.9	789 635.0	2 734 905.0	
30/05/2020	17:47:53	R1_ENV_086	WS	BOT	1218	18.8	789 635.7	2 734 904.9	789 635.1	2 734 903.7	
30/05/2020	17:57:17	R1_ENV_086	WS	MID	1219	18.7	789 635.7	2 734 904.9	789 635.5	2 734 907.2	
30/05/2020	18:07:56	R1_ENV_086	WS	ТОР	1220	18.7	789 635.7	2 734 904.9	789 635.5	2 734 905.4	
30/05/2020	18:24:12	R1_ENV_086	WP	YSI Exo2	1221	18.7	789 635.7	2 734 904.9	789 632.9	2 734 905.2	
30/05/2020	19:15:46	R1_ENV_084	WS	BOT	1222	18.2	790 229.4	2 732 995.0	790 229.4	2 732 995.1	
30/05/2020	19:29:13	R1_ENV_084	WS	MID	1223	18.3	790 229.4	2 732 995.0	790 228.5	2 732 995.6	
30/05/2020	19:40:05	R1_ENV_084	WS	ТОР	1224	18.2	790 229.4	2 732 995.0	790 229.8	2 732 993.8	
30/05/2020	19:52:23	R1_ENV_084	VV	PC	1225	18.3	790 229.4	2 732 995.0	790 229.5	2 732 994.6	
30/05/2020	20:15:42	R1_ENV_084	WP	YSI Exo2	1226	18.3	790 229.4	2 732 995.0	790 228.2	2 732 996.8	
30/05/2020	20:52:50	R1_ENV_083	vv	PC	1227	19.2	789 571.2	2 731 743.3	789 396.8	2 732 329.4	Station moved as propose location was within 200 m of infrastructure

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	175 of 602

	T :	Turner at /		Comula Day (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
30/05/2020	21:29:09	R1_ENV_083	WS	BOT	1228	19.3	789 571.2	2 731 743.3	789 397.1	2 732 329.7	
30/05/2020	21:40:43	R1_ENV_083	WS	MID	1229	19.3	789 571.2	2 731 743.3	789 396.3	2 732 329.7	
30/05/2020	21:53:00	R1_ENV_083	WS	ТОР	1230	19.3	789 571.2	2 731 743.3	789 396.4	2 732 329.6	
30/05/2020	22:10:12	R1_ENV_083	WP	YSI Exo2	1231	19.2	789 571.2	2 731 743.3	789 396.7	2 732 328.2	
30/05/2020	22:56:47	R1_ENV_082	WS	BOT	1232	17.9	790 823.0	2 731 085.2	790 822.9	2 731 084.7	
30/05/2020	23:07:57	R1_ENV_082	WS	MID	1233	17.7	790 823.0	2 731 085.2	790 823.3	2 731 086.3	
30/05/2020	23:19:59	R1_ENV_082	WS	ТОР	1234	17.6	790 823.0	2 731 085.2	790 823.0	2 731 085.3	
30/05/2020	23:29:30	R1_ENV_082	VV	NS	1235	17.8	790 823.0	2 731 085.2	790 821.9	2 731 085.0	
30/05/2020	23:34:28	R1_ENV_082	VV	NS	1236	17.7	790 823.0	2 731 085.2	790 830.0	2 731 077.9	
30/05/2020	23:43:33	R1_ENV_082	VV	PC	1237	17.7	790 823.0	2 731 085.2	790 816.1	2 731 090.5	
31/05/2020	00:22:35	R1_ENV_082	WP	YSI Exo2	1238	17.7	790 823.0	2 731 085.2	790 823.9	2 731 086.0	
31/05/2020	00:54:58	R1_ENV_081	WS	BOT	1239	15.4	790 164.9	2 729 833.4	790 164.9	2 729 832.5	
31/05/2020	01:07:56	R1_ENV_081	WS	MID	1240	15.5	790 164.9	2 729 833.4	790 165.1	2 729 832.8	
31/05/2020	01:20:52	R1_ENV_081	WS	ТОР	1241	15.5	790 164.9	2 729 833.4	790 165.8	2 729 832.8	
31/05/2020	01:30:28	R1_ENV_081	VV	PC	1242	15.4	790 164.9	2 729 833.4	790 164.9	2 729 832.1	
31/05/2020	03:58:38	R1_ENV_097	VV	PC	1243	10.2	785 770.7	2 745 324.1	785 768.5	2 745 325.7	
31/05/2020	04:29:35	R1_ENV_097	WS	вот	1244	10.1	785 770.7	2 745 324.1	785 770.8	2 745 324.3	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	176 of 602

	T :	Transect/		Comple Day (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]			Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
31/05/2020	04:36:07	R1_ENV_097	WS	MID	1245	10.1	785 770.7	2 745 324.1	785 770.1	2 745 324.0	
31/05/2020	04:43:23	R1_ENV_097	WS	ТОР	1246	10.0	785 770.7	2 745 324.1	785 770.1	2 745 323.7	
31/05/2020	05:00:45	R1_ENV_097	WP	YSI Exo2	1247	10.0	785 770.7	2 745 324.1	785 772.0	2 745 323.5	
31/05/2020	09:10:14	R1_ENV_098	WS	BOT	1248	9.7	786 790.2	2 746 304.2	786 790.3	2 746 304.6	
31/05/2020	09:20:37	R1_ENV_098	WS	ТОР	1249	9.7	786 790.2	2 746 304.2	786 791.1	2 746 304.2	
31/05/2020	09:38:09	R1_ENV_098	WP	YSI Exo2	1250	9.7	786 790.2	2 746 304.2	786 789.2	2 746 303.3	
31/05/2020	09:48:00	R1_ENV_098	VV	NS	1251	9.7	786 790.2	2 746 304.2	786 789.3	2 746 305.6	
31/05/2020	09:54:20	R1_ENV_098	VV	NS	1252	9.6	786 790.2	2 746 304.2	786 782.9	2 746 297.5	
31/05/2020	09:57:30	R1_ENV_098	VV	NS	1253	9.7	786 790.2	2 746 304.2	786 794.0	2 746 312.5	
31/05/2020	10:26:46	R1_ENV_099	VV	PC	1254	8.9	785 810.1	2 747 323.7	785 809.0	2 747 324.1	
31/05/2020	10:51:53	R1_ENV_099	WS	BOT	1255	9.0	785 810.1	2 747 323.7	785 811.1	2 747 323.5	
31/05/2020	10:59:41	R1_ENV_099	WS	ТОР	1256	9.0	785 810.1	2 747 323.7	785 810.2	2 747 324.1	
31/05/2020	11:36:17	R1_ENV_099	WP	YSI Exo2	1258	9.2	785 810.1	2 747 323.7	785 809.0	2 747 321.4	
31/05/2020	12:17:18	R1_ENV_101	WS	BOT	1259	10.2	785 849.5	2 749 323.3	785 849.1	2 749 323.1	
31/05/2020	12:28:07	R1_ENV_101	WS	MID	1260	10.3	785 849.5	2 749 323.3	785 847.8	2 749 322.1	
31/05/2020	12:37:31	R1_ENV_101	WS	ТОР	1261	10.3	785 849.5	2 749 323.3	785 849.1	2 749 323.2	
31/05/2020	12:58:55	R1_ENV_101	WP	YSI Exo2	1262	10.3	785 849.5	2 749 323.3	785 848.3	2 749 323.5	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	177 of 602

	-	T		Constants Devel		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
31/05/2020	13:11:48	R1_ENV_101	VV	NS	1263	10.3	785 849.5	2 749 323.3	785 851.4	2 749 324.7	
31/05/2020	13:19:10	R1_ENV_101	VV	NS	1264	10.4	785 849.5	2 749 323.3	785 844.9	2 749 331.6	
31/05/2020	13:23:15	R1_ENV_101	VV	NS	1265	10.4	785 849.5	2 749 323.3	785 852.0	2 749 315.1	
31/05/2020	14:52:04	R1_ENV_095	VV	PC	1266	16.6	786 009.4	2 743 202.5	786 009.9	2 743 200.7	
31/05/2020	14:56:21	R1_ENV_095	WS	BOT	1267	16.6	786 009.4	2 743 202.5	786 009.1	2 743 199.9	
31/05/2020	15:09:07	R1_ENV_095	WS	MID	1268	16.6	786 009.4	2 743 202.5	786 009.6	2 743 201.1	
31/05/2020	21:31:00	R1_ENV_081	WP	YSI Exo2	1269	14.9	790 164.9	2 729 833.4	790 167.0	2 729 833.9	
31/05/2020	22:03:17	SO_R1_010	VV	NS	1270	20.4	791 416.6	2 729 175.3	791 415.3	2 729 176.5	
31/05/2020	22:08:03	SO_R1_010	VV	SOIL	1271	20.5	791 416.6	2 729 175.3	791 412.5	2 729 165.9	
31/05/2020	22:23:02	R1_ENV_080	VV	PC	1272	20.4	791 416.6	2 729 175.3	791 415.2	2 729 175.1	
31/05/2020	22:45:05	R1_ENV_080	WS	BOT	1273	20.4	791 416.6	2 729 175.3	791 415.9	2 729 175.3	
31/05/2020	22:58:18	R1_ENV_080	WS	MID	1274	20.5	791 416.6	2 729 175.3	791 415.3	2 729 175.2	
31/05/2020	23:11:49	R1_ENV_080	WS	ТОР	1275	20.4	791 416.6	2 729 175.3	791 415.8	2 729 176.1	
31/05/2020	23:23:47	R1_ENV_080	WP	YSI Exo2	1276	20.5	791 416.6	2 729 175.3	791 417.5	2 729 173.6	
01/06/2020	00:05:37	R1_ENV_079	VV	PC	1277	19.9	790 758.5	2 727 923.5	790 757.8	2 727 923.5	
01/06/2020	00:22:38	R1_ENV_079	WS	BOT	1278	19.9	790 758.5	2 727 923.5	790 757.9	2 727 924.6	
01/06/2020	00:32:31	R1_ENV_079	WS	MID	1279	19.9	790 758.5	2 727 923.5	790 758.2	2 727 923.5	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	178 of 602

	T :	Turner at /		Comple Day (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
01/06/2020	00:43:12	R1_ENV_079	WS	ТОР	1280	19.9	790 758.5	2 727 923.5	790 757.6	2 727 923.6	
01/06/2020	02:52:13	R1_ENV_095	WS	ТОР	1281	16.6	786 009.4	2 743 202.5	786 010.0	2 743 203.2	
01/06/2020	03:44:01	R1_ENV_095	WP	YSI Exo2	1283	16.7	786 009.4	2 743 202.5	786 012.0	2 743 206.2	
01/06/2020	04:32:35	R1_TR09	Video	SOL	1284	12.7	786 713.4	2 744 250.3	786 709.7	2 744 249.1	
01/06/2020	04:32:49	R1_TR09	Still	R1_TR09_001	1285	12.6	-	-	786 711.7	2 744 251.7	
01/06/2020	04:33:34	R1_TR09	Still	R1_TR09_002	1286	12.6	-	-	786 722.0	2 744 256.0	
01/06/2020	04:33:40	R1_TR09	Still	R1_TR09_003	1287	12.7	-	-	786 723.0	2 744 256.5	
01/06/2020	04:33:41	R1_TR09	Still	R1_TR09_004	1288	12.7	-	-	786 723.7	2 744 257.0	
01/06/2020	04:33:48	R1_TR09	Still	R1_TR09_005	1289	12.6	-	-	786 725.4	2 744 258.1	
01/06/2020	04:33:55	R1_TR09	Still	R1_TR09_006	1290	12.7	-	-	786 727.0	2 744 259.5	
01/06/2020	04:34:21	R1_TR09	Still	R1_TR09_007	1291	12.6	-	-	786 735.7	2 744 263.4	
01/06/2020	04:34:27	R1_TR09	Still	R1_TR09_008	1292	12.6	-	-	786 736.5	2 744 263.7	
01/06/2020	04:34:49	R1_TR09	Still	R1_TR09_009	1293	12.6	-	-	786 740.6	2 744 266.7	
01/06/2020	04:35:13	R1_TR09	Still	R1_TR09_010	1294	12.6	-	-	786 745.0	2 744 270.1	
01/06/2020	04:35:20	R1_TR09	Still	R1_TR09_011	1295	12.6	-	-	786 746.3	2 744 277.4	
01/06/2020	04:35:58	R1_TR09	Still	R1_TR09_012	1296	12.6	-	-	786 754.7	2 744 274.7	
01/06/2020	04:36:37	R1_TR09	Still	R1_TR09_013	1297	12.6	-	-	786 762.3	2 744 278.7	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	179 of 602

	T :	Turner at (Sample Rep/		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
01/06/2020	04:36:42	R1_TR09	Still	R1_TR09_014	1298	12.6	-	-	786 763.5	2 744 279.6	
01/06/2020	04:37:01	R1_TR09	Still	R1_TR09_015	1299	12.6	-	-	786 768.3	2 744 283.1	
01/06/2020	04:37:05	R1_TR09	Still	R1_TR09_016	1300	12.6	-	-	786 769.5	2 744 283.4	
01/06/2020	04:37:33	R1_TR09	Still	R1_TR09_017	1301	12.6	-	-	786 776.8	2 744 288.2	
01/06/2020	04:37:38	R1_TR09	Still	R1_TR09_018	1302	12.6	-	-	786 777.4	2 744 288.9	
01/06/2020	04:37:54	R1_TR09	Still	R1_TR09_019	1303	12.6	-	-	786 782.2	2 744 289.8	
01/06/2020	04:38:27	R1_TR09	Still	R1_TR09_020	1304	12.6	-	-	786 788.4	2 744 294.5	
01/06/2020	04:38:56	R1_TR09	Still	R1_TR09_021	1305	12.5	-	-	786 794.7	2 744 298.3	
01/06/2020	04:38:59	R1_TR09	Still	R1_TR09_022	1306	12.5	-	-	786 795.4	2 744 298.6	
01/06/2020	04:39:06	R1_TR09	Still	R1_TR09_023	1307	12.6	-	-	786 797.2	2 744 299.3	
01/06/2020	04:39:59	R1_TR09	Still	R1_TR09_024	1308	12.3	-	-	786 809.4	2 744 306.0	
01/06/2020	04:40:05	R1_TR09	Video	EOL	1309	12.5	786 810.6	2 744 305.3	786 810.8	2 744 306.9	
01/06/2020	04:59:31	R1_ENV_096	WS	вот	1310	12.1	786 750.8	2 744 304.6	786 749.7	2 744 305.5	
01/06/2020	05:06:05	R1_ENV_096	WS	MID	1311	12.2	786 750.8	2 744 304.6	786 747.0	2 744 301.8	
01/06/2020	05:12:09	R1_ENV_096	WS	ТОР	1312	12.2	786 750.8	2 744 304.6	786 748.3	2 744 302.9	
01/06/2020	05:26:00	R1_ENV_096	WP	YSI Exo2	1313	12.0	786 750.8	2 744 304.6	786 749.3	2 744 302.9	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	180 of 602

	Time	Transect/		Comple Don/		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Station	Туре	Sample Rep/ Still No.	Fix No.	. Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
01/06/2020	05:44:28	R1_ENV_096	VV	PC	1314	11.3	786 750.8	2 744 304.6	786 757.9	2 744 407.7	Moved due to seabed gas seeps
01/06/2020	10:53:35	R1_ENV_108	VV	NS	1315	14.7	786 565.0	2 756 359.7	786 566.4	2 756 361.7	
01/06/2020	10:57:10	R1_ENV_108	VV	NS	1316	14.9	786 565.0	2 756 359.7	786 558.6	2 756 366.6	
01/06/2020	11:01:27	R1_ENV_108	VV	NS	1317	14.6	786 565.0	2 756 359.7	786 572.6	2 756 355.4	
01/06/2020	11:12:20	R1_ENV_108	WP	YSI Exo2	1318	14.7	786 565.0	2 756 359.7	786 565.4	2 756 359.3	
01/06/2020	11:27:27	R1_ENV_108	WS	BOT	1319	14.7	786 565.0	2 756 359.7	786 565.4	2 756 359.6	
01/06/2020	11:38:07	R1_ENV_108	WS	MID	1320	14.8	786 565.0	2 756 359.7	786 566.4	2 756 359.8	
01/06/2020	11:49:04	R1_ENV_108	WS	ТОР	1321	14.7	786 565.0	2 756 359.7	786 567.0	2 756 359.2	
01/06/2020	12:19:44	R1_ENV_106	WS	BOT	1322	14.2	786 864.4	2 754 382.3	786 864.1	2 754 382.9	
01/06/2020	12:26:45	R1_ENV_106	WS	MID	1323	13.9	786 864.4	2 754 382.3	786 866.0	2 754 382.6	
01/06/2020	12:36:46	R1_ENV_106	WS	ТОР	1324	14.0	786 864.4	2 754 382.3	786 865.2	2 754 382.0	
01/06/2020	13:00:48	R1_ENV_105	WS	BOT	1325	13.5	785 928.2	2 753 314.2	785 929.1	2 753 313.6	
01/06/2020	13:06:57	R1_ENV_105	WS	MID	1326	13.5	785 928.2	2 753 314.2	785 927.9	2 753 313.8	
01/06/2020	13:12:57	R1_ENV_105	WS	ТОР	1327	13.5	785 928.2	2 753 314.2	785 927.8	2 753 315.1	
01/06/2020	13:20:53	R1_ENV_105	VV	NS	1328	13.4	785 928.2	2 753 314.2	785 927.8	2 753 316.1	
01/06/2020	13:22:48	R1_ENV_105	VV	NS	1329	13.4	785 928.2	2 753 314.2	785 923.2	2 753 322.5	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	181 of 602

	T :	Transati		Sample Rep/		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Type Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
01/06/2020	13:28:00	R1_ENV_105	VV	NS	1330	13.5	785 928.2	2 753 314.2	785 931.4	2 753 306.7	
01/06/2020	13:42:52	R1_ENV_105	WP	YSI Exo2	1331	13.6	785 928.2	2 753 314.2	785 926.6	2 753 312.4	
01/06/2020	14:43:58	R1_ENV_104	WS	BOT	1332	15.2	786 908.3	2 752 303.1	786 908.8	2 752 302.9	
01/06/2020	14:55:56	R1_ENV_104	WS	MID	1333	15.1	786 908.3	2 752 303.1	786 910.4	2 752 301.5	
01/06/2020	17:58:16	R1_ENV_079	WP	YSI Exo2	1334	20.2	790 758.5	2 727 923.5	790 760.1	2 727 922.4	Data not accepted
01/06/2020	18:24:13	R1_ENV_079a	WP	YSI Exo2	1335	20.2	790 758.5	2 727 923.5	790 761.1	2 727 921.7	
01/06/2020	19:02:57	R1_ENV_078	WS	BOT	1336	20.1	792 010.3	2 727 265.4	792 012.1	2 727 266.5	
01/06/2020	19:11:16	R1_ENV_078	WS	MID	1337	20.1	792 010.3	2 727 265.4	792 013.8	2 727 264.6	
01/06/2020	19:19:08	R1_ENV_078	WS	ТОР	1338	20.1	792 010.3	2 727 265.4	792 009.7	2 727 264.2	
01/06/2020	19:27:29	R1_ENV_078	VV	NS	1339	20.2	792 010.3	2 727 265.4	792 009.5	2 727 264.3	
01/06/2020	19:35:47	R1_ENV_078	VV	PC	1340	20.0	792 010.3	2 727 265.4	792 019.0	2 727 262.8	
01/06/2020	19:57:36	R1_ENV_078	WP	YSI Exo2	1341	20.0	792 010.3	2 727 265.4	792 010.2	2 727 268.4	
01/06/2020	20:41:57	R1_ENV_077	VV	Partial Sample	1342	18.2	791 352.1	2 726 013.7	791 351.9	2 726 012.6	PSD only
01/06/2020	20:47:21	R1_ENV_077	VV	NS	1343	18.2	791 352.1	2 726 013.7	791 345.3	2 726 019.7	
01/06/2020	20:50:24	R1_ENV_077	VV	Partial Sample	1344	18.2	791 352.1	2 726 013.7	791 357.8	2 726 005.4	PSD only
01/06/2020	21:02:02	R1_ENV_077	WS	BOT	1345	18.1	791 352.1	2 726 013.7	791 351.3	2 726 012.6	
01/06/2020	21:13:26	R1_ENV_077	WS	MID	1346	18.1	791 352.1	2 726 013.7	791 352.0	2 726 013.8	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	182 of 602

	T :	Turner at /		Comple Day (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
01/06/2020	21:25:41	R1_ENV_077	WS	ТОР	1347	18.1	791 352.1	2 726 013.7	791 352.2	2 726 013.4	
01/06/2020	21:39:22	R1_ENV_077	WP	YSI Exo2	1348	18.1	791 352.1	2 726 013.7	791 353.2	2 726 014.0	
01/06/2020	22:20:41	R1_ENV_076	VV	PC	1349	22.1	792 603.9	2 725 355.5	792 603.9	2 725 355.0	
01/06/2020	22:43:01	R1_ENV_076	WS	BOT	1350	22.1	792 603.9	2 725 355.5	792 604.1	2 725 355.4	
01/06/2020	22:56:51	R1_ENV_076	WS	MID	1351	22.1	792 603.9	2 725 355.5	792 604.0	2 725 355.0	
01/06/2020	23:06:01	R1_ENV_076	WS	ТОР	1352	22.0	792 603.9	2 725 355.5	792 604.0	2 725 355.3	
01/06/2020	23:18:46	R1_ENV_076	WP	YSI Exo2	1353	22.0	792 603.9	2 725 355.5	792 603.7	2 725 355.2	
01/06/2020	23:59:09	R1_ENV_075	VV	PC	1354	23.1	791 945.8	2 724 103.8	791 945.4	2 724 102.9	
02/06/2020	00:26:12	R1_ENV_075	WS	BOT	1355	23.1	791 945.8	2 724 103.8	791 946.6	2 724 103.1	
02/06/2020	00:42:18	R1_ENV_075	WS	MID	1356	23.2	791 945.8	2 724 103.8	791 946.0	2 724 103.2	
02/06/2020	00:55:08	R1_ENV_075	WS	ТОР	1357	23.1	791 945.8	2 724 103.8	791 945.9	2 724 103.0	
02/06/2020	01:07:03	R1_ENV_075	WP	YSI Exo2	1358	23.3	791 945.8	2 724 103.8	791 947.3	2 724 104.9	
02/06/2020	01:42:24	R1_ENV_074	WP	YSI Exo2	1359	24.4	793 197.5	2 723 445.7	793 199.8	2 723 444.9	
02/06/2020	02:34:41	R1_ENV_074	WS	BOT	1360	24.5	793 197.5	2 723 445.7	793 196.8	2 723 445.3	
02/06/2020	02:44:29	R1_ENV_074	WS	MID	1361	24.5	793 197.5	2 723 445.7	793 197.5	2 723 448.2	
02/06/2020	02:55:37	R1_ENV_074	WS	ТОР	1362	24.6	793 197.5	2 723 445.7	793 196.7	2 723 444.9	
02/06/2020	03:09:32	R1_ENV_074	VV	PC	1363	24.5	793 197.5	2 723 445.7	793 197.0	2 723 444.5	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	183 of 602

	Time	Transect/		Comple Don/		Water	Propose	d Location	Actual	Location	
Date	[UTC]	Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
02/06/2020	03:51:36	R1_ENV_073	VV	PC	1364	23.8	792 073.9	2 722 461.2	792 073.3	2 722 462.6	
02/06/2020	09:57:47	R1_ENV_073	WP	YSI Exo2	1365	23.1	792 073.9	2 722 461.2	792 073.8	2 722 459.7	Data not accepted
02/06/2020	11:14:21	R1_ENV_073a	WP	YSI Exo2	1366	23.2	792 073.9	2 722 461.2	792 072.3	2 722 461.1	Data not accepted
02/06/2020	12:14:28	R1_ENV_073b	WP	YSI Exo2	1367	23.1	792 073.9	2 722 461.2	792 073.1	2 722 459.3	Data not accepted
02/06/2020	12:34:05	R1_ENV_073c	WP	YSI Exo2	1368	23.1	792 073.9	2 722 461.2	792 072.4	2 722 459.7	Data not accepted
02/06/2020	12:54:51	R1_ENV_073d	WP	YSI Exo2	1369	23.1	792 073.9	2 722 461.2	792 071.4	2 722 462.8	
02/06/2020	13:22:21	R1_ENV_073	WS	BOT	1370	23.3	792 073.9	2 722 461.2	792 075.0	2 722 460.8	
02/06/2020	13:30:32	R1_ENV_073	WS	MID	1371	23.3	792 073.9	2 722 461.2	792 075.0	2 722 459.9	
02/06/2020	13:37:56	R1_ENV_073	WS	ТОР	1372	23.4	792 073.9	2 722 461.2	792 073.5	2 722 461.1	
02/06/2020	14:47:40	R1_ENV_072	VV	PC	1373	25.4	792 783.6	2 721 237.9	792 783.9	2 721 238.6	
02/06/2020	15:12:22	SO_R1_009	VV	SOIL	1374	25.4	792 783.6	2 721 237.9	792 783.7	2 721 238.9	
02/06/2020	15:36:02	R1_ENV_072	WS	BOT	1375	25.5	792 783.6	2 721 237.9	792 783.6	2 721 239.0	
02/06/2020	15:47:34	R1_ENV_072	WS	MID	1376	25.5	792 783.6	2 721 237.9	792 783.2	2 721 238.3	
02/06/2020	15:58:05	R1_ENV_072	WS	ТОР	1377	25.5	792 783.6	2 721 237.9	792 783.7	2 721 237.7	
02/06/2020	16:21:41	R1_ENV_072	WP	YSI Exo2	1378	25.6	792 783.6	2 721 237.9	792 781.5	2 721 238.2	
02/06/2020	17:07:38	R1_ENV_071	VV	NS	1379	23.3	791 560.3	2 720 528.3	791 558.9	2 720 528.1	
02/06/2020	17:14:03	R1_ENV_071	VV	PC	1380	23.4	791 560.3	2 720 528.3	791 561.8	2 720 521.1	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	184 of 602

		Tue in a a at (Comple Don (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
02/06/2020	17:38:11	R1_ENV_071	WS	BOT	1381	23.4	791 560.3	2 720 528.3	791 560.0	2 720 529.0	
02/06/2020	17:46:57	R1_ENV_071	WS	MID	1382	23.4	791 560.3	2 720 528.3	791 560.4	2 720 528.6	
02/06/2020	17:54:57	R1_ENV_071	WS	ТОР	1383	23.5	791 560.3	2 720 528.3	791 561.3	2 720 528.0	
02/06/2020	18:08:19	R1_ENV_071	WP	YSI Exo2	1384	23.5	791 560.3	2 720 528.3	791 558.4	2 720 529.3	
02/06/2020	19:05:19	R1_ENV_070	VV	NS	1385	24.1	792 269.9	2 719 305.0	792 270.2	2 719 304.6	
02/06/2020	19:08:46	R1_ENV_070	VV	PC	1386	24.1	792 269.9	2 719 305.0	792 262.3	2 719 300.8	
02/06/2020	19:29:45	R1_ENV_070	WS	BOT	1387	24.0	792 269.9	2 719 305.0	792 269.4	2 719 304.7	
02/06/2020	19:39:24	R1_ENV_070	WS	MID	1388	24.0	792 269.9	2 719 305.0	792 270.1	2 719 304.3	
02/06/2020	19:49:18	R1_ENV_070	WS	ТОР	1389	24.0	792 269.9	2 719 305.0	792 269.2	2 719 304.0	
02/06/2020	20:02:00	R1_ENV_070	WP	YSI Exo2	1390	24.0	792 269.9	2 719 305.0	792 268.5	2 719 304.2	Data not accepted
02/06/2020	20:24:08	R1_ENV_070a	WP	YSI Exo2	1391	23.9	792 269.9	2 719 305.0	792 271.1	2 719 307.3	
02/06/2020	21:06:01	R1_ENV_069	VV	NS	1392	20.8	791 046.6	2 718 595.3	791 046.0	2 718 594.1	
02/06/2020	21:10:03	R1_ENV_069	VV	PC	1393	20.9	791 046.6	2 718 595.3	791 038.4	2 718 601.0	
02/06/2020	21:32:13	R1_ENV_069	WS	BOT	1394	20.7	791 046.6	2 718 595.3	791 046.3	2 718 594.4	One bottle open
02/06/2020	21:42:36	R1_ENV_069	WS	BOT	1395	20.7	791 046.6	2 718 595.3	791 046.5	2 718 595.2	
02/06/2020	21:50:49	R1_ENV_069	WS	MID	1396	20.6	791 046.6	2 718 595.3	791 046.9	2 718 594.9	
02/06/2020	21:58:33	R1_ENV_069	WS	ТОР	1397	20.5	791 046.6	2 718 595.3	791 047.1	2 718 595.2	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	185 of 602

		Transect/		Sample Rep/		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Station	Туре	Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
02/06/2020	22:11:52	R1_ENV_069	WP	YSI Exo2	1398	20.6	791 046.6	2 718 595.3	791 048.0	2 718 595.3	
02/06/2020	22:54:32	R1_ENV_068	VV	NS	1399	22.4	791 756.3	2 717 372.1	791 755.8	2 717 371.0	
02/06/2020	22:58:13	R1_ENV_068	VV	PC	1400	22.5	791 756.3	2 717 372.1	791 751.4	2 717 380.0	
02/06/2020	23:27:01	R1_ENV_068	WS	BOT	1401	22.3	791 756.3	2 717 372.1	791 756.0	2 717 371.1	
02/06/2020	23:37:06	R1_ENV_068	WS	MID	1402	22.3	791 756.3	2 717 372.1	791 755.4	2 717 371.5	
02/06/2020	23:45:55	R1_ENV_068	WS	ТОР	1403	22.2	791 756.3	2 717 372.1	791 755.7	2 717 370.6	
02/06/2020	23:58:49	R1_ENV_068	WP	YSI Exo2	1404	22.1	791 756.3	2 717 372.1	791 759.1	2 717 372.2	
03/06/2020	00:45:17	R1_ENV_067	VV	NS	1405	19.4	790 533.0	2 716 662.4	790 532.1	2 716 661.1	
03/06/2020	00:48:46	R1_ENV_067	VV	PC	1406	19.4	790 533.0	2 716 662.4	790 533.9	2 716 672.0	
03/06/2020	01:09:05	R1_ENV_067	WS	BOT	1407	19.5	790 533.0	2 716 662.4	790 531.9	2 716 662.9	
03/06/2020	01:21:20	R1_ENV_067	WS	MID	1408	19.3	790 533.0	2 716 662.4	790 530.2	2 716 662.0	
03/06/2020	01:28:52	R1_ENV_067	WS	ТОР	1409	19.4	790 533.0	2 716 662.4	790 532.6	2 716 663.1	
03/06/2020	01:41:08	R1_ENV_067	WP	YSI Exo2	1410	19.4	790 533.0	2 716 662.4	790 533.6	2 716 660.6	
03/06/2020	03:04:47	R1_ENV_066	VV	NS	1411	21.9	791 242.6	2 715 439.1	791 241.9	2 715 438.2	
03/06/2020	03:08:07	R1_ENV_066	VV	NS	1412	22.0	791 242.6	2 715 439.1	791 238.8	2 715 430.2	
03/06/2020	03:12:38	R1_ENV_066	VV	PC	1413	21.9	791 242.6	2 715 439.1	791 246.4	2 715 446.9	
03/06/2020	03:40:17	R1_ENV_066	WS	вот	1414	22.1	791 242.6	2 715 439.1	791 241.3	2 715 439.8	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	186 of 602

	T :	Turner at (Sample Rep/		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
03/06/2020	03:48:04	R1_ENV_066	WS	MID	1415	22.1	791 242.6	2 715 439.1	791 242.3	2 715 439.1	
03/06/2020	03:56:13	R1_ENV_066	WS	ТОР	1416	22.1	791 242.6	2 715 439.1	791 242.1	2 715 439.1	
03/06/2020	04:12:57	R1_ENV_066	WP	YSI Exo2	1417	22.1	791 242.6	2 715 439.1	791 244.3	2 715 437.4	Data not accepted
03/06/2020	04:37:09	R1_ENV_066a	WP	YSI Exo2	1418	22.2	791 242.6	2 715 439.1	791 242.4	2 715 437.2	
03/06/2020	05:25:51	R1_ENV_065	WS	BOT	1419	20.1	790 019.3	2 714 729.5	790 020.0	2 714 730.2	
03/06/2020	05:33:15	R1_ENV_065	WS	MID	1420	20.2	790 019.3	2 714 729.5	790 019.6	2 714 731.9	
03/06/2020	05:38:56	R1_ENV_065	WS	ТОР	1421	20.3	790 019.3	2 714 729.5	790 017.3	2 714 731.9	
03/06/2020	05:50:00	R1_ENV_065	VV	NS	1422	20.2	790 019.3	2 714 729.5	790 017.3	2 714 727.3	
03/06/2020	05:51:59	R1_ENV_065	VV	PC	1423	20.2	790 019.3	2 714 729.5	790 026.1	2 714 734.2	
03/06/2020	06:45:55	R1_ENV_065	WP	YSI Exo2	1424	20.3	790 019.3	2 714 729.5	790 019.8	2 714 727.6	Data not accepted
03/06/2020	13:04:09	R1_ENV_065a	WP	YSI Exo2	1425	19.3	790 019.3	2 714 729.5	790 017.6	2 714 728.2	
03/06/2020	13:53:33	R1_ENV_064	VV	PC	1426	20.6	790 729.0	2 713 506.2	790 729.1	2 713 506.2	
03/06/2020	14:50:31	SO_R1_008	VV	NS	1427	20.8	790 729.0	2 713 506.2	790 727.7	2 713 503.3	
03/06/2020	14:55:35	SO_R1_008	VV	NS	1428	20.8	790 729.0	2 713 506.2	790 737.2	2 713 500.9	
03/06/2020	15:06:18	SO_R1_008	VV	SOIL	1429	20.6	790 729.0	2 713 506.2	790 722.2	2 713 510.2	
03/06/2020	15:32:44	R1_ENV_064	WS	BOT	1430	20.7	790 729.0	2 713 506.2	790 728.9	2 713 505.9	
03/06/2020	15:41:01	R1_ENV_064	WS	MID	1431	20.8	790 729.0	2 713 506.2	790 730.1	2 713 505.7	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	187 of 602

	T :	Turner at (Comula Don (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	LVD0	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
)3/06/2020	15:47:07	R1_ENV_064	WS	ТОР	1432	20.8	790 729.0	2 713 506.2	790 728.3	2 713 505.3	
03/06/2020	16:05:49	R1_ENV_064	WP	YSI Exo2	1433	20.9	790 729.0	2 713 506.2	790 730.9	2 713 506.5	
03/06/2020	17:30:39	R1_ENV_063	WS	BOT	1434	19.4	789 224.5	2 713 318.9	789 222.5	2 713 319.4	
03/06/2020	17:38:20	R1_ENV_063	WS	MID	1435	19.4	789 224.5	2 713 318.9	789 223.3	2 713 318.4	
03/06/2020	17:48:41	R1_ENV_063	WS	ТОР	1436	19.4	789 224.5	2 713 318.9	789 224.7	2 713 317.8	
03/06/2020	17:57:39	R1_ENV_063	VV	NS	1437	19.4	789 224.5	2 713 318.9	789 224.4	2 713 320.5	
03/06/2020	18:06:56	R1_ENV_063	VV	NS	1438	19.4	789 224.5	2 713 318.9	789 214.3	2 713 313.0	
03/06/2020	18:11:11	R1_ENV_063	VV	NS	1439	19.7	789 224.5	2 713 318.9	789 231.0	2 713 324.1	
03/06/2020	18:19:13	R1_ENV_063	VV	NS	1440	19.7	789 224.5	2 713 318.9	789 225.9	2 713 320.3	
03/06/2020	18:33:28	R1_ENV_063	WP	YSI Exo2	1441	19.7	789 224.5	2 713 318.9	789 222.6	2 713 316.1	
03/06/2020	19:30:59	R1_ENV_062	WS	BOT	1442	14.6	789 123.8	2 711 908.3	789 125.0	2 711 908.4	
03/06/2020	19:40:55	R1_ENV_062	WS	MID	1443	14.6	789 123.8	2 711 908.3	789 124.0	2 711 908.3	
03/06/2020	19:48:18	R1_ENV_062	WS	ТОР	1444	14.6	789 123.8	2 711 908.3	789 122.7	2 711 909.5	
05/06/2020	00:12:00	R1_ENV_060	WS	BOT	1445	19.4	787 612.4	2 710 598.3	787 612.1	2 710 599.3	
05/06/2020	00:20:12	R1_ENV_060	WS	MID	1446	19.3	787 612.4	2 710 598.3	787 611.7	2 710 599.3	
05/06/2020	00:30:12	R1_ENV_060	WS	ТОР	1447	19.4	787 612.4	2 710 598.3	787 612.7	2 710 599.4	
05/06/2020	00:39:39	R1_ENV_060	VV	РС	1448	19.4	787 612.4	2 710 598.3	787 611.7	2 710 598.3	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	188 of 602

	T :	Turner at (Comula Dom (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
05/06/2020	01:03:34	R1_ENV_060	WP	YSI Exo2	1449	19.1	787 612.4	2 710 598.3	787 613.0	2 710 595.8	
05/06/2020	01:35:03	R1_ENV_062	WP	YSI Exo2	1450	12.5	789 123.8	2 711 908.3	789 124.4	2 711 907.0	
05/06/2020	01:48:08	R1_ENV_062	VV	Partial Sample	1451	12.9	789 123.8	2 711 908.3	789 124.0	2 711 909.4	PSD only
05/06/2020	01:53:26	R1_ENV_062	VV	NS	1452	12.8	789 123.8	2 711 908.3	789 133.6	2 711 909.0	
05/06/2020	01:56:58	R1_ENV_062	VV	NS	1453	12.9	789 123.8	2 711 908.3	789 114.2	2 711 908.4	
05/06/2020	02:38:49	R1_ENV_061	VV	Partial Sample	1454	18.6	787 713.1	2 712 009.0	787 713.6	2 712 013.0	HC and HM
05/06/2020	03:03:12	R1_ENV_061	VV	Partial Sample	1455	18.8	787 713.1	2 712 009.0	787 712.8	2 712 011.0	PSD only
05/06/2020	03:17:10	R1_ENV_061	WS	вот	1456	18.7	787 713.1	2 712 009.0	787 715.5	2 712 013.1	
05/06/2020	03:23:57	R1_ENV_061	WS	MID	1457	18.8	787 713.1	2 712 009.0	787 713.2	2 712 011.5	
05/06/2020	03:30:42	R1_ENV_061	WS	ТОР	1458	18.7	787 713.1	2 712 009.0	787 712.9	2 712 009.3	
05/06/2020	03:51:53	R1_ENV_061	WP	YSI Exo2	1459	18.6	787 713.1	2 712 009.0	787 713.8	2 712 008.3	
05/06/2020	04:46:24	R1_ENV_059	WS	BOT	1460	18.5	786 201.8	2 710 699.0	786 201.7	2 710 699.6	
05/06/2020	04:53:02	R1_ENV_059	WS	MID	1461	18.6	786 201.8	2 710 699.0	786 202.0	2 710 699.4	
05/06/2020	05:00:49	R1_ENV_059	WS	ТОР	1462	18.6	786 201.8	2 710 699.0	786 201.8	2 710 699.1	
05/06/2020	05:07:34	R1_ENV_059	VV	PC	1463	18.5	786 201.8	2 710 699.0	786 201.3	2 710 700.1	
05/06/2020	05:41:17	R1_ENV_059	WP	YSI Exo2	1464	18.7	786 201.8	2 710 699.0	786 201.8	2 710 696.2	
05/06/2020	06:29:42	R1_ENV_058	VV	Partial Sample	1465	18.7	786 101.1	2 709 288.4	786 103.8	2 709 289.1	HC only

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	189 of 602

	T :	Turner at /		Sample Rep/		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
05/06/2020	06:38:47	R1_ENV_058	VV	Partial Sample	1466	18.6	786 101.1	2 709 288.4	786 109.8	2 709 286.6	HM and PSD
05/06/2020	06:48:27	R1_ENV_058	VV	NS	1467	18.7	786 101.1	2 709 288.4	786 095.5	2 709 295.1	
05/06/2020	06:58:14	R1_ENV_058	WS	вот	1468	18.8	786 101.1	2 709 288.4	786 103.3	2 709 289.4	
05/06/2020	07:04:06	R1_ENV_058	WS	MID	1469	18.7	786 101.1	2 709 288.4	786 103.3	2 709 288.6	
05/06/2020	07:10:33	R1_ENV_058	WS	ТОР	1470	18.7	786 101.1	2 709 288.4	786 100.5	2 709 288.7	
05/06/2020	07:25:07	R1_ENV_058	WP	YSI Exo2	1471	19.0	786 101.1	2 709 288.4	786 099.0	2 709 286.9	
05/06/2020	08:29:12	R1_ENV_057	WS	вот	1472	19.1	784 690.5	2 709 389.1	784 689.8	2 709 388.3	
05/06/2020	08:35:56	R1_ENV_057	WS	MID	1473	19.1	784 690.5	2 709 389.1	784 688.7	2 709 390.1	
05/06/2020	08:42:30	R1_ENV_057	WS	ТОР	1474	19.1	784 690.5	2 709 389.1	784 689.7	2 709 390.2	
05/06/2020	08:56:19	R1_ENV_057	VV	Partial Sample	1475	19.1	784 690.5	2 709 389.1	784 689.4	2 709 390.7	HC only
05/06/2020	09:05:01	R1_ENV_057	VV	Partial Sample	1476	19.2	784 690.5	2 709 389.1	784 696.3	2 709 382.9	HM only
05/06/2020	09:15:37	R1_ENV_057	VV	Partial Sample	1477	19.0	784 690.5	2 709 389.1	784 683.4	2 709 395.5	PSD only
05/06/2020	09:29:55	R1_ENV_057	WP	YSI Exo2	1478	19.0	784 690.5	2 709 389.1	784 689.5	2 709 387.6	
05/06/2020	10:08:40	R1_ENV_056	VV	PC	1479	18.6	784 589.8	2 707 978.5	784 591.0	2 707 980.0	
05/06/2020	10:24:47	SO_R1_007	VV	NS	1480	18.5	784 589.8	2 707 978.5	784 589.7	2 707 978.8	
05/06/2020	10:28:09	SO_R1_007	VV	SOIL	1481	18.7	784 589.8	2 707 978.5	784 582.9	2 707 985.5	
05/06/2020	10:42:59	R1_ENV_056	WS	вот	1482	18.6	784 589.8	2 707 978.5	784 589.8	2 707 977.4	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	190 of 602

	T :	Turner at (Sample Rep/		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
05/06/2020	10:49:52	R1_ENV_056	WS	MID	1483	18.8	784 589.8	2 707 978.5	784 589.8	2 707 976.7	
05/06/2020	10:58:09	R1_ENV_056	WS	ТОР	1484	18.6	784 589.8	2 707 978.5	784 589.6	2 707 977.0	
05/06/2020	11:13:34	R1_ENV_056	WP	YSI Exo2	1485	18.6	784 589.8	2 707 978.5	784 590.9	2 707 979.8	
05/06/2020	12:03:40	R1_ENV_055	WS	вот	1486	19.5	783 179.2	2 708 079.2	783 177.4	2 708 079.6	
05/06/2020	12:12:19	R1_ENV_055	WS	MID	1487	19.6	783 179.2	2 708 079.2	783 178.3	2 708 077.7	
05/06/2020	12:18:09	R1_ENV_055	WS	ТОР	1488	19.4	783 179.2	2 708 079.2	783 178.8	2 708 079.5	
05/06/2020	12:23:53	R1_ENV_055	VV	РС	1489	19.4	783 179.2	2 708 079.2	783 178.6	2 708 079.3	
05/06/2020	12:46:46	R1_ENV_055	WP	YSI Exo2	1490	19.4	783 179.2	2 708 079.2	783 181.2	2 708 080.5	
06/06/2020	05:25:38	R1_ENV_054	VV	NS	1491	16.8	783 078.5	2 706 668.6	783 079.4	2 706 670.3	
06/06/2020	05:31:11	R1_ENV_054	VV	Partial Sample	1492	16.9	783 078.5	2 706 668.6	783 071.0	2 706 673.9	HC and HM
06/06/2020	05:46:37	R1_ENV_054	VV	Partial Sample	1493	17.7	783 078.5	2 706 668.6	783 087.9	2 706 666.4	PSD only
06/06/2020	06:02:55	R1_ENV_054	WS	BOT	1494	17.2	783 078.5	2 706 668.6	783 081.6	2 706 670.9	
06/06/2020	06:09:55	R1_ENV_054	WS	MID	1495	17.1	783 078.5	2 706 668.6	783 079.1	2 706 668.7	
06/06/2020	06:16:29	R1_ENV_054	WS	ТОР	1496	17.2	783 078.5	2 706 668.6	783 078.4	2 706 667.6	
06/06/2020	06:48:29	R1_ENV_054	WP	YSI Exo2	1497	17.6	783 078.5	2 706 668.6	783 077.6	2 706 667.1	
06/06/2020	07:45:35	R1_ENV_053	WS	BOT	1498	18.3	781 667.8	2 706 769.3	781 670.1	2 706 769.2	
06/06/2020	07:50:36	R1_ENV_053	WS	MID	1499	18.3	781 667.8	2 706 769.3	781 671.1	2 706 768.4	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	191 of 602

	T :	Turner et (Comula Dom (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
06/06/2020	07:57:36	R1_ENV_053	WS	ТОР	1500	18.4	781 667.8	2 706 769.3	781 666.7	2 706 770.3	
06/06/2020	08:03:55	R1_ENV_053	VV	Partial Sample	1501	18.3	781 667.8	2 706 769.3	781 665.7	2 706 771.1	PSD only
06/06/2020	08:12:06	R1_ENV_053	VV	Partial Sample	1502	18.3	781 667.8	2 706 769.3	781 659.5	2 706 773.2	HC and HM
06/06/2020	08:23:39	R1_ENV_053	VV	NS	1503	18.2	781 667.8	2 706 769.3	781 675.5	2 706 764.9	
06/06/2020	08:40:34	R1_ENV_053	WP	YSI Exo2	1504	18.4	781 667.8	2 706 769.3	781 666.6	2 706 768.7	
06/06/2020	09:26:43	R1_ENV_052	VV	Partial Sample	1505	18.6	781 567.1	2 705 358.7	781 567.6	2 705 358.4	PSD only
06/06/2020	09:35:49	R1_ENV_052	VV	Partial Sample	1506	18.7	781 567.1	2 705 358.7	781 562.2	2 705 364.4	HC and HM
06/06/2020	09:47:43	R1_ENV_052	VV	NS	1507	18.7	781 567.1	2 705 358.7	781 573.1	2 705 351.1	
06/06/2020	09:51:50	R1_ENV_052	WS	BOT	1508	18.6	781 567.1	2 705 358.7	781 566.7	2 705 359.2	
06/06/2020	09:59:18	R1_ENV_052	WS	MID	1509	18.6	781 567.1	2 705 358.7	781 566.8	2 705 358.7	
06/06/2020	10:05:12	R1_ENV_052	WS	ТОР	1510	18.6	781 567.1	2 705 358.7	781 567.2	2 705 358.6	
06/06/2020	10:19:06	R1_ENV_052	WP	YSI Exo2	1511	18.6	781 567.1	2 705 358.7	781 564.8	2 705 358.1	
06/06/2020	11:09:55	R1_ENV_051	WS	BOT	1512	13.7	780 156.5	2 705 459.4	780 156.5	2 705 459.5	
06/06/2020	11:16:35	R1_ENV_051	WS	MID	1513	13.6	780 156.5	2 705 459.4	780 156.9	2 705 458.7	
06/06/2020	11:24:21	R1_ENV_051	WS	ТОР	1514	13.6	780 156.5	2 705 459.4	780 156.6	2 705 459.4	
06/06/2020	11:30:43	R1_ENV_051	VV	NS	1515	13.5	780 156.5	2 705 459.4	780 156.2	2 705 460.4	
06/06/2020	11:38:12	R1_ENV_051	VV	NS	1516	13.6	780 156.5	2 705 459.4	780 150.6	2 705 466.8	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	192 of 602

		Trence at /		Sample Rep/		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
06/06/2020	11:41:36	R1_ENV_051	VV	NS	1517	13.6	780 156.5	2 705 459.4	780 162.0	2 705 453.1	
06/06/2020	11:57:42	R1_ENV_051	WP	YSI Exo2	1518	13.6	780 156.5	2 705 459.4	780 154.6	2 705 457.5	
06/06/2020	12:31:38	R1_ENV_050	VV	NS	1519	17.3	780 062.6	2 704 040.9	780 062.0	2 704 042.0	
06/06/2020	12:35:56	R1_ENV_050	VV	PC	1520	17.2	780 062.6	2 704 040.9	780 056.3	2 704 048.2	
06/06/2020	13:04:43	R1_ENV_050	WS	BOT	1521	17.3	780 062.6	2 704 040.9	780 062.8	2 704 041.3	
06/06/2020	13:10:50	R1_ENV_050	WS	MID	1522	17.3	780 062.6	2 704 040.9	780 062.4	2 704 041.6	
06/06/2020	13:19:03	R1_ENV_050	WS	ТОР	1523	17.2	780 062.6	2 704 040.9	780 062.2	2 704 042.3	
06/06/2020	13:33:32	R1_ENV_050	WP	YSI Exo2	1524	17.1	780 062.6	2 704 040.9	780 060.8	2 704 040.8	
06/06/2020	14:41:06	R1_ENV_049	VV	NS	1525	17.2	778 638.4	2 704 157.3	778 642.3	2 704 155.7	
06/06/2020	14:50:33	R1_ENV_049	VV	PC	1526	17.3	778 638.4	2 704 157.3	778 645.1	2 704 149.8	
06/06/2020	15:14:07	R1_ENV_049	WS	BOT	1527	17.3	778 638.4	2 704 157.3	778 639.3	2 704 157.3	
06/06/2020	15:23:27	R1_ENV_049	WS	MID	1528	17.1	778 638.4	2 704 157.3	778 638.5	2 704 157.9	
06/06/2020	15:31:39	R1_ENV_049	WS	ТОР	1529	17.2	778 638.4	2 704 157.3	778 637.5	2 704 156.1	
06/06/2020	16:04:38	R1_ENV_049	WP	YSI Exo2	1530	17.2	778 638.4	2 704 157.3	778 639.9	2 704 154.8	
06/06/2020	17:02:35	R1_ENV_048	WP	YSI Exo2	1531	16.8	778 544.5	2 702 738.8	778 548.1	2 702 734.8	
08/06/2020	21:33:20	SO_R1_006	VV	SOIL	1532	17.4	778 544.5	2 702 738.8	778 545.0	2 702 736.6	
08/06/2020	21:43:44	R1_ENV_048	VV	PC	1533	17.6	778 544.5	2 702 738.8	778 544.1	2 702 738.6	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	193 of 602

	T :	Transect/		Sample Rep/		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]		Туре	Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
08/06/2020	21:57:28	R1_ENV_048	WS	вот	1534	17.5	778 544.5	2 702 738.8	778 545.6	2 702 738.2	
08/06/2020	22:09:10	R1_ENV_048	WS	MID	1535	17.6	778 544.5	2 702 738.8	778 544.0	2 702 739.9	
08/06/2020	22:16:28	R1_ENV_048	WS	ТОР	1536	17.6	778 544.5	2 702 738.8	778 544.4	2 702 738.9	
08/06/2020	22:40:01	R1_ENV_047	WS	BOT	1537	15.9	777 133.9	2 702 839.5	777 135.0	2 702 837.8	
08/06/2020	22:46:56	R1_ENV_047	WS	MID	1538	15.9	777 133.9	2 702 839.5	777 133.4	2 702 841.1	
08/06/2020	22:53:03	R1_ENV_047	WS	ТОР	1539	15.9	777 133.9	2 702 839.5	777 133.8	2 702 840.1	
08/06/2020	23:01:04	R1_ENV_047	VV	NS	1540	15.9	777 133.9	2 702 839.5	777 133.4	2 702 840.3	
08/06/2020	23:05:21	R1_ENV_047	VV	Partial Sample	1541	16.2	777 133.9	2 702 839.5	777 128.9	2 702 846.7	
08/06/2020	23:09:32	R1_ENV_047	VV	NS	1542	16.2	777 133.9	2 702 839.5	777 138.8	2 702 831.1	
08/06/2020	23:20:43	R1_ENV_047	WP	YSI Exo2	1543	16.0	777 133.9	2 702 839.5	777 135.8	2 702 840.1	
08/06/2020	23:50:26	R1_ENV_046	VV	PC	1544	19.0	777 033.2	2 701 428.9	777 033.2	2 701 429.0	
09/06/2020	00:02:29	R1_ENV_046	WS	BOT	1545	18.9	777 033.2	2 701 428.9	777 033.1	2 701 428.9	
09/06/2020	00:09:37	R1_ENV_046	WS	MID	1546	18.9	777 033.2	2 701 428.9	777 033.0	2 701 428.4	
09/06/2020	00:15:54	R1_ENV_046	WS	ТОР	1547	18.9	777 033.2	2 701 428.9	777 033.4	2 701 428.5	
09/06/2020	00:28:28	R1_ENV_046	WP	YSI Exo2	1548	18.9	777 033.2	2 701 428.9	777 031.8	2 701 428.7	
09/06/2020	00:59:32	R1_ENV_045	VV	NS	1549	17.1	775 622.5	2 701 529.6	775 622.5	2 701 528.3	
09/06/2020	01:02:58	R1_ENV_045	VV	РС	1550	17.1	775 622.5	2 701 529.6	775 614.5	2 701 524.1	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	194 of 602

	T :	Turner at /		Sample Rep/		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	pe Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
09/06/2020	01:19:30	R1_ENV_045	WS	вот	1551	17.0	775 622.5	2 701 529.6	775 622.4	2 701 530.2	
09/06/2020	01:25:59	R1_ENV_045	WS	MID	1552	17.0	775 622.5	2 701 529.6	775 622.4	2 701 529.8	
09/06/2020	01:32:46	R1_ENV_045	WS	ТОР	1553	17.0	775 622.5	2 701 529.6	775 622.7	2 701 529.3	
09/06/2020	02:38:15	R1_ENV_045	WP	YSI Exo2	1554	16.3	775 622.5	2 701 529.6	775 622.4	2 701 530.0	
09/06/2020	03:18:29	R1_ENV_044	WS	вот	1555	14.8	775 981.1	2 700 126.9	775 981.1	2 700 127.3	
09/06/2020	03:24:37	R1_ENV_044	WS	MID	1556	14.7	775 981.1	2 700 126.9	775 980.1	2 700 127.9	
09/06/2020	03:30:30	R1_ENV_044	WS	ТОР	1557	14.8	775 981.1	2 700 126.9	775 978.7	2 700 127.2	
09/06/2020	03:36:27	R1_ENV_044	VV	NS	1558	14.7	775 981.1	2 700 126.9	775 980.2	2 700 128.2	
09/06/2020	03:45:42	R1_ENV_044	VV	Partial Sample	1559	14.7	775 981.1	2 700 126.9	775 972.8	2 700 121.8	HC only
09/06/2020	04:00:49	R1_ENV_044	VV	Partial Sample	1560	14.4	775 981.1	2 700 126.9	775 987.3	2 700 134.1	HM and PSD
09/06/2020	04:21:58	R1_ENV_044	WP	YSI Exo2	1561	14.3	775 981.1	2 700 126.9	775 980.8	2 700 125.8	
09/06/2020	04:59:57	R1_ENV_043	VV	PC	1562	14.6	774 713.9	2 699 499.1	774 713.7	2 699 499.7	
09/06/2020	05:19:33	R1_ENV_043	WS	BOT	1563	14.6	774 713.9	2 699 499.1	774 714.2	2 699 499.2	
09/06/2020	05:31:31	R1_ENV_043	WS	MID	1564	14.6	774 713.9	2 699 499.1	774 713.1	2 699 500.0	
09/06/2020	05:39:56	R1_ENV_043	WS	ТОР	1565	14.6	774 713.9	2 699 499.1	774 713.8	2 699 500.0	
09/06/2020	05:59:01	R1_ENV_043	WP	YSI Exo2	1566	14.6	774 713.9	2 699 499.1	774 711.6	2 699 498.3	
09/06/2020	06:33:32	R1_ENV_042	WS	вот	1567	12.6	775 341.7	2 698 231.9	775 343.2	2 698 231.5	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Page
195 of 602

-fugro

Rev

	Time	Turnerst		Comula Don (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
09/06/2020	06:44:01	R1_ENV_042	WS	MID	1568	12.7	775 341.7	2 698 231.9	775 341.2	2 698 232.9	
09/06/2020	06:49:31	R1_ENV_042	WS	ТОР	1569	12.6	775 341.7	2 698 231.9	775 341.7	2 698 232.7	
09/06/2020	07:01:21	R1_ENV_042	VV	NS	1570	12.7	775 341.7	2 698 231.9	775 342.7	2 698 234.5	
09/06/2020	07:05:41	R1_ENV_042	VV	NS	1571	12.6	775 341.7	2 698 231.9	775 337.7	2 698 241.2	
09/06/2020	07:09:57	R1_ENV_042	VV	NS	1572	12.8	775 341.7	2 698 231.9	775 347.5	2 698 224.1	
09/06/2020	07:24:06	R1_ENV_042	WP	YSI Exo2	1573	12.8	775 341.7	2 698 231.9	775 340.5	2 698 231.9	
09/06/2020	08:12:34	R1_ENV_041	VV	PC	1574	14.4	774 074.4	2 697 604.1	774 074.8	2 697 605.5	
09/06/2020	08:34:08	R1_ENV_041	WS	BOT	1575	14.5	774 074.4	2 697 604.1	774 075.3	2 697 603.7	
09/06/2020	08:41:07	R1_ENV_041	WS	MID	1576	14.5	774 074.4	2 697 604.1	774 074.7	2 697 604.7	
09/06/2020	08:46:32	R1_ENV_041	WS	ТОР	1577	14.5	774 074.4	2 697 604.1	774 075.1	2 697 603.9	
09/06/2020	09:05:29	R1_ENV_041	WP	YSI Exo2	1578	14.6	774 074.4	2 697 604.1	774 072.7	2 697 603.8	
09/06/2020	09:40:54	R1_ENV_040	WS	BOT	1579	15.2	774 702.2	2 696 336.8	774 703.1	2 696 337.4	
09/06/2020	09:47:51	R1_ENV_040	WS	MID	1580	15.2	774 702.2	2 696 336.8	774 703.1	2 696 337.3	
09/06/2020	09:54:00	R1_ENV_040	WS	ТОР	1581	15.2	774 702.2	2 696 336.8	774 702.4	2 696 337.6	
09/06/2020	10:03:09	SO_R1_005	VV	Partial Sample	1582	15.3	774 702.2	2 696 336.8	774 702.9	2 696 337.3	
09/06/2020	10:15:30	SO_R1_005	VV	Partial Sample	1583	15.3	774 702.2	2 696 336.8	774 710.7	2 696 343.2	
09/06/2020	10:25:39	R1_ENV_040	VV	Partial Sample	1585	15.4	774 702.2	2 696 336.8	774 703.5	2 696 337.3	HC only

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	196 of 602

	T :	Turner at /		Sample Rep/		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
09/06/2020	10:34:37	R1_ENV_040	VV	Partial Sample	1586	15.4	774 702.2	2 696 336.8	774 707.1	2 696 329.5	HM and PSD
09/06/2020	10:48:47	R1_ENV_040	VV	NS	1587	15.5	774 702.2	2 696 336.8	774 699.3	2 696 346.7	
09/06/2020	11:00:07	R1_ENV_040	WP	YSI Exo2	1588	15.5	774 702.2	2 696 336.8	774 700.6	2 696 335.9	
09/06/2020	11:42:11	R1_ENV_039	VV	PC	1589	15.3	773 435.0	2 695 709.0	773 435.0	2 695 709.8	
09/06/2020	12:00:24	R1_ENV_039	WS	вот	1590	15.4	773 435.0	2 695 709.0	773 435.2	2 695 708.8	
09/06/2020	12:16:45	R1_ENV_039	WS	MID	1591	15.4	773 435.0	2 695 709.0	773 435.5	2 695 709.4	
09/06/2020	12:32:11	R1_ENV_039	WS	ТОР	1592	15.4	773 435.0	2 695 709.0	773 433.0	2 695 708.5	
09/06/2020	12:36:24	R1_ENV_039	WP	YSI Exo2	1593	15.5	773 435.0	2 695 709.0	773 432.2	2 695 709.7	
09/06/2020	13:45:44	R1_ENV_030	WS	MID	1594	12.4	771 505.1	2 686 861.7	771 505.2	2 686 861.3	
09/06/2020	17:23:23	R1_TR05	Video	SOL	1595	12.6	771 193.4	2 689 055.8	771 189.9	2 689 043.3	
09/06/2020	17:24:11	R1_TR05	Still	R1_TR05_001	1596	12.7	-	-	771 193.2	2 689 057.9	
09/06/2020	17:24:35	R1_TR05	Still	R1_TR05_002	-	12.7	-	-	771 194.8	2 689 066.0	
09/06/2020	17:24:45	R1_TR05	Still	R1_TR05_003	1597	12.7	-	-	771 195.6	2 689 068.9	
09/06/2020	17:25:08	R1_TR05	Still	R1_TR05_004	1598	12.6	-	-	771 197.1	2 689 075.9	
09/06/2020	17:25:28	R1_TR05	Still	R1_TR05_005	1599	12.6	-	-	771 198.0	2 689 081.7	
09/06/2020	17:25:44	R1_TR05	Still	R1_TR05_006	1600	12.6	-	-	771 199.0	2 689 086.2	
09/06/2020	17:25:55	R1_TR05	Still	R1_TR05_007	1601	12.7	-	-	771 199.4	2 689 089.3	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	197 of 602

	T :	Turner at /		Sample Rep/		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
09/06/2020	17:26:23	R1_TR05	Still	R1_TR05_008	1602	12.7	-	-	771 201.2	2 689 097.0	
09/06/2020	17:26:39	R1_TR05	Still	R1_TR05_009	1603	12.7	-	-	771 202.1	2 689 101.1	
09/06/2020	17:27:05	R1_TR05	Still	R1_TR05_010	1604	12.7	-	-	771 203.3	2 689 107.6	
09/06/2020	17:27:29	R1_TR05	Still	R1_TR05_011	1605	12.7	-	-	771 204.3	2 689 113.6	
09/06/2020	17:27:50	R1_TR05	Still	R1_TR05_012	1606	12.7	-	-	771 205.0	2 689 118.8	
09/06/2020	17:28:08	R1_TR05	Still	R1_TR05_013	1607	12.7	-	-	771 206.4	2 689 123.3	
09/06/2020	17:28:33	R1_TR05	Still	R1_TR05_014	1608	12.7	-	-	771 207.6	2 689 130.3	
09/06/2020	17:29:08	R1_TR05	Still	R1_TR05_015	1609	12.7	-	-	771 210.2	2 689 140.7	
09/06/2020	17:29:30	R1_TR05	Still	R1_TR05_016	1610	12.8	-	-	771 211.5	2 689 147.2	
09/06/2020	17:30:03	R1_TR05	Still	R1_TR05_017	1611	12.8	-	-	771 214.4	2 689 157.0	
09/06/2020	17:30:32	R1_TR05	Still	R1_TR05_018	1612	12.8	-	-	771 215.9	2 689 165.9	
09/06/2020	17:31:01	R1_TR05	Video	EOL	1613	12.8	771 217.7	2 689 171.2	771 218.2	2 689 174.7	
10/06/2020	07:53:05	R1_ENV_038	VV	Partial Sample	469	9.1	774 062.8	2 694 441.8	774 060.2	2 694 439.4	HC only
10/06/2020	08:23:21	R1_ENV_038	VV	Partial Sample	470	9.4	774 062.8	2 694 441.8	774 058.1	2 694 441.7	HM and PSD
10/06/2020	08:43:25	R1_ENV_038	VV	NS	471	9.3	774 062.8	2 694 441.8	774 057.4	2 694 442.0	
10/06/2020	10:10:11	R1_ENV_038	WS	BOT	472	9.6	774 062.8	2 694 441.8	774 064.2	2 694 441.0	
10/06/2020	10:26:01	R1_ENV_038	WS	ТОР	473	9.7	774 062.8	2 694 441.8	774 066.1	2 694 441.8	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	198 of 602

	T :	Transect/		Sample Rep/		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]		Туре	Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
10/06/2020	10:33:35	R1_ENV_038	WP	YSI Exo2	474	9.7	774 062.8	2 694 441.8	774 064.9	2 694 438.5	
10/06/2020	11:53:35	R1_ENV_028	WS	BOT	475	10.0	770 865.6	2 684 966.7	770 862.5	2 684 956.8	
10/06/2020	11:53:35	R1_ENV_028	WP	YSI Exo2	475	10.0	770 865.6	2 684 966.7	770 862.5	2 684 956.8	
10/06/2020	12:14:29	R1_ENV_028	WS	ТОР	476	10.0	770 865.6	2 684 966.7	770 875.8	2 684 958.6	
10/06/2020	12:44:03	R1_ENV_026	WS	BOT	477	11.0	770 226.2	2 683 071.7	770 223.0	2 683 068.2	
10/06/2020	12:44:03	R1_ENV_026	WP	YSI Exo2	477	11.0	770 226.2	2 683 071.7	770 223.0	2 683 068.2	
10/06/2020	13:08:15	R1_ENV_026	VV	NS	478	10.9	770 226.2	2 683 071.7	770 226.3	2 683 065.2	
10/06/2020	13:24:22	R1_ENV_026	VV	NS	479	11.0	770 226.2	2 683 071.7	770 232.2	2 683 069.0	
10/06/2020	13:32:55	R1_ENV_026	VV	NS	480	11.1	770 226.2	2 683 071.7	770 221.4	2 683 064.6	
10/06/2020	19:30:27	R1_TR08	Video	SOL	1614	19.8	791 736.9	2 713 316.5	791 742.9	2 713 308.7	
10/06/2020	19:30:44	R1_TR08	Still	R1_TR08_001	1615	19.6	-	-	791 739.5	2 713 311.6	
10/06/2020	19:31:14	R1_TR08	Still	R1_TR08_002	1616	19.6	-	-	791 734.3	2 713 317.1	
10/06/2020	19:31:27	R1_TR08	Still	R1_TR08_003	1617	19.6	-	-	791 731.4	2 713 319.3	
10/06/2020	19:31:47	R1_TR08	Still	R1_TR08_004	1618	19.7	-	-	791 728.7	2 713 324.2	
10/06/2020	19:32:08	R1_TR08	Still	R1_TR08_005	1619	19.6	-	-	791 725.8	2 713 329.4	
10/06/2020	19:32:28	R1_TR08	Still	R1_TR08_006	1620	19.6	-	-	791 722.1	2 713 333.8	
10/06/2020	19:32:49	R1_TR08	Still	R1_TR08_007	1621	19.6	-	-	791 717.9	2 713 338.4	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	199 of 602

	T :	Treesest/		Sample Rep/		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
10/06/2020	19:33:25	R1_TR08	Still	R1_TR08_008	1622	19.6	-	-	791 710.8	2 713 345.1	
10/06/2020	19:33:57	R1_TR08	Still	R1_TR08_009	1623	19.6	-	-	791 706.3	2 713 351.3	
10/06/2020	19:34:16	R1_TR08	Still	R1_TR08_010	1624	19.6	-	-	791 704.5	2 713 356.0	
10/06/2020	19:34:50	R1_TR08	Still	R1_TR08_011	1625	19.6	-	-	791 698.2	2 713 361.7	
10/06/2020	19:35:30	R1_TR08	Still	R1_TR08_012	1626	19.4	-	-	791 690.0	2 713 368.7	
10/06/2020	19:35:57	R1_TR08	Still	R1_TR08_013	1627	19.4	-	-	791 685.0	2 713 374.6	
10/06/2020	19:36:30	R1_TR08	Still	R1_TR08_014	1628	19.5	-	-	791 677.1	2 713 381.9	
10/06/2020	19:36:52	R1_TR08	Still	R1_TR08_015	1629	19.5	-	-	791 673.5	2 713 387.5	
10/06/2020	19:37:37	R1_TR08	Still	R1_TR08_016	1630	19.6	-	-	791 668.6	2 713 397.3	
10/06/2020	19:38:12	R1_TR08	Still	R1_TR08_017	1631	19.6	-	-	791 664.8	2 713 401.9	
10/06/2020	19:38:48	R1_TR08	Still	R1_TR08_018	1632	19.6	-	-	791 648.4	2 713 415.4	
10/06/2020	19:39:38	R1_TR08	Still	R1_TR08_019	1633	19.6	-	-	791 647.9	2 713 416.0	
10/06/2020	19:40:11	R1_TR08	Still	R1_TR08_020	1634	19.7	-	-	791 644.5	2 713 422.1	
10/06/2020	19:40:46	R1_TR08	Video	EOL	1635	19.7	791 645.3	2 713 424.6	791 638.0	2 713 427.6	
10/06/2020	20:14:32	R1_TR08A	Video	SOL	1636	19.8	791 645.3	2 713 424.6	791 639.0	2 713 431.6	
10/06/2020	20:14:49	R1_TR08A	Still	R1_TR08A_001	1637	19.9	-	-	791 640.8	2 713 428.9	
10/06/2020	20:15:16	R1_TR08A	Still	R1_TR08A_002	1638	19.8	-	-	791 644.2	2 713 424.8	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Page
200 of 602

-fugro

Rev

	T :	Transect/		Sample Rep/		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]		Туре	Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
10/06/2020	20:15:45	R1_TR08A	Still	R1_TR08A_003	1639	19.8	-	-	791 648.3	2 713 420.1	
10/06/2020	20:16:29	R1_TR08A	Still	R1_TR08A_004	1640	19.7	-	-	791 654.4	2 713 412.8	
10/06/2020	20:16:58	R1_TR08A	Still	R1_TR08A_005	1641	19.7	-	-	791 660.4	2 713 408.3	
10/06/2020	20:17:50	R1_TR08A	Still	R1_TR08A_006	1642	19.8	-	-	791 666.4	2 713 400.0	
10/06/2020	20:18:16	R1_TR08A	Still	R1_TR08A_007	1643	19.7	-	-	791 668.9	2 713 395.9	
10/06/2020	20:18:42	R1_TR08A	Still	R1_TR08A_008	1644	19.8	-	-	791 672.7	2 713 392.4	
10/06/2020	20:19:31	R1_TR08A	Still	R1_TR08A_009	1645	19.8	-	-	791 679.4	2 713 384.1	
10/06/2020	20:20:24	R1_TR08A	Still	R1_TR08A_010	1646	19.8	-	-	791 688.2	2 713 374.3	
10/06/2020	20:20:48	R1_TR08A	Still	R1_TR08A_011	1647	19.8	-	-	791 692.0	2 713 370.5	
10/06/2020	20:21:26	R1_TR08A	Still	R1_TR08A_012	1648	20.0	-	-	791 696.5	2 713 365.0	
10/06/2020	20:22:04	R1_TR08A	Still	R1_TR08A_013	1649	19.8	-	-	791 700.9	2 713 360.6	
10/06/2020	20:22:34	R1_TR08A	Still	R1_TR08A_014	1650	19.8	-	-	791 702.3	2 713 355.4	
10/06/2020	20:23:22	R1_TR08A	Still	R1_TR08A_015	1651	19.8	-	-	791 710.1	2 713 349.2	
10/06/2020	20:24:25	R1_TR08A	Still	R1_TR08A_016	1652	19.9	-	-	791 718.7	2 713 336.4	
10/06/2020	20:24:53	R1_TR08A	Still	R1_TR08A_017	1653	19.8	-	-	791 723.5	2 713 331.7	
10/06/2020	20:25:43	R1_TR08A	Still	R1_TR08A_018	1654	19.9	-	-	791 729.3	2 713 325.5	
10/06/2020	20:26:18	R1_TR08A	Still	R1_TR08A_019	1655	19.9	-	-	791 732.2	2 713 321.4	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	201 of 602

	T :	Turner at (Comula Dom (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
10/06/2020	20:27:07	R1_TR08A	Video	EOL	1656	19.9	791 736.9	2 713 316.5	791 738.5	2 713 314.5	
10/06/2020	21:21:27	R1_ENV_REF	VV	Partial Sample	1657	20.1	791 692.6	2 713 369.3	791 693.4	2 713 369.5	
10/06/2020	21:27:36	R1_ENV_REF	VV	Partial Sample	1658	19.9	791 692.6	2 713 369.3	791 695.5	2 713 360.3	
10/06/2020	21:32:08	R1_ENV_REF	VV	NS	1659	19.9	791 692.6	2 713 369.3	791 692.4	2 713 379.2	
10/06/2020	21:35:49	SO_R1_REF	VV	NS	1660	20.0	791 692.6	2 713 369.3	791 694.9	2 713 361.0	
10/06/2020	22:04:17	R1_ENV_REF	WP	YSI Exo2	1661	20.0	791 692.6	2 713 369.3	791 692.8	2 713 369.7	
11/06/2020	05:41:51	R1_ENV_001	WS	MID	482	9.9	751 800.5	2 669 184.1	751 797.8	2 669 184.1	
11/06/2020	05:41:51	R1_ENV_001a	WP	YSI Exo2	482	9.9	751 800.5	2 669 184.1	751 797.8	2 669 184.1	
11/06/2020	05:59:16	R1_ENV_001	VV	РС	483	9.7	751 800.5	2 669 184.1	751 795.0	2 669 186.9	
11/06/2020	06:31:45	R1_ENV_002	VV	РС	484	11.0	752 765.9	2 669 444.8	752 759.6	2 669 445.5	
11/06/2020	07:11:46	R1_ENV_002a	WP	YSI Exo2	485	10.7	752 765.9	2 669 444.8	752 759.8	2 669 448.3	
11/06/2020	07:28:07	R1_ENV_003	VV	NS	486	5.4	753 732.2	2 669 702.4	753 729.0	2 669 706.1	
11/06/2020	07:35:05	R1_ENV_003	VV	NS	487	5.3	753 732.2	2 669 702.4	753 730.1	2 669 700.9	
11/06/2020	07:39:00	R1_ENV_003	VV	NS	488	5.6	753 732.2	2 669 702.4	753 727.9	2 669 698.4	
11/06/2020	07:49:57	R1_ENV_004	VV	NS	489	5.7	754 698.0	2 669 961.5	754 693.8	2 669 961.6	
11/06/2020	07:54:20	R1_ENV_004	VV	NS	490	5.8	754 698.0	2 669 961.5	754 691.9	2 669 955.1	
11/06/2020	08:00:05	R1_ENV_004	VV	NS	491	5.6	754 698.0	2 669 961.5	754 693.3	2 669 965.7	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	202 of 602

		Trencet/				Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
1/06/2020	08:09:40	R1_ENV_005	VV	NS	492	6.0	755 664.9	2 670 216.9	755 664.4	2 670 218.0	
11/06/2020	08:17:33	R1_ENV_005	VV	NS	493	6.0	755 664.9	2 670 216.9	755 661.7	2 670 225.2	
11/06/2020	08:22:05	R1_ENV_005	VV	NS	494	6.0	755 664.9	2 670 216.9	755 666.8	2 670 211.9	
11/06/2020	09:28:45	R1_ENV_011	VV	NS	495	4.3	761 468.0	2 671 740.2	761 460.5	2 671 736.9	
11/06/2020	09:32:57	R1_ENV_011	VV	NS	496	4.3	761 468.0	2 671 740.2	761 467.9	2 671 741.2	
11/06/2020	09:37:20	R1_ENV_011	VV	NS	497	4.4	761 468.0	2 671 740.2	761 465.2	2 671 732.8	
11/06/2020	10:32:08	R1_TR04	Video	SOL	500	5.0	764 987.8	2 675 363.7	764 971.1	2 675 367.4	
11/06/2020	10:32:14	R1_TR04	Still	R1_TR04_001	501	2.8	-	-	764 982.3	2 675 359.2	
11/06/2020	10:32:47	R1_TR04	Still	R1_TR04_002	502	6.7	-	-	765 009.5	2 675 356.6	
11/06/2020	10:33:05	R1_TR04	Still	R1_TR04_003	503	7.0	-	-	765 031.1	2 675 358.8	
11/06/2020	10:33:12	R1_TR04	Still	R1_TR04_004	504	6.8	-	-	765 039.9	2 675 360.2	
11/06/2020	10:33:18	R1_TR04	Still	R1_TR04_005	505	6.8	-	-	765 047.5	2 675 360.1	
11/06/2020	10:33:28	R1_TR04	Still	R1_TR04_006	506	6.7	-	-	765 057.6	2 675 356.1	
11/06/2020	10:33:41	R1_TR04	Still	R1_TR04_007	507	6.7	-	-	765 067.2	2 675 350.7	
11/06/2020	10:33:45	R1_TR04	Still	R1_TR04_008	508	6.8	-	-	765 069.1	2 675 349.7	
11/06/2020	10:33:52	R1_TR04	Still	R1_TR04_009	509	6.8	-	-	765 071.9	2 675 347.9	
11/06/2020	10:33:59	R1_TR04	Still	R1_TR04_010	510	6.8	-	-	765 074.4	2 675 346.4	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	203 of 602

	T :	Transat/		Comple Day (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
11/06/2020	10:34:19	R1_TR04	Still	R1_TR04_011	511	6.8	-	-	765 083.8	2 675 348.7	
11/06/2020	10:34:21	R1_TR04	Video	EOL	512	6.7	765 082.0	2 675 363.3	765 085.6	2 675 349.1	
11/06/2020	10:55:19	R1_ENV_019	WP	YSI Exo2	513	3.5	765 502.2	2 677 375.5	765 499.6	2 677 367.7	
11/06/2020	11:52:13	R1_ENV_026	WS	MID	514	10.5	770 226.2	2 683 071.7	770 227.1	2 683 066.5	
11/06/2020	12:06:41	R1_ENV_026	WS	ТОР	515	10.6	770 226.2	2 683 071.7	770 224.3	2 683 070.8	
11/06/2020	12:31:27	R1_ENV_028	VV	NS	516	9.9	770 865.6	2 684 966.7	770 858.9	2 684 964.9	
11/06/2020	12:42:00	R1_ENV_028	VV	NS	517	9.9	770 865.6	2 684 966.7	770 862.8	2 684 962.4	
11/06/2020	12:48:17	R1_ENV_028	VV	NS	518	9.9	770 865.6	2 684 966.7	770 863.8	2 684 969.8	
11/06/2020	15:39:10	R1_TR05A	Video	SOL	1662	12.8	771 193.4	2 689 055.8	771 190.9	2 689 048.2	
11/06/2020	15:39:26	R1_TR05A	Still	R1_TR05A_001	1663	12.8	-	-	771 191.3	2 689 051.4	
11/06/2020	15:40:05	R1_TR05A	Still	R1_TR05A_002	1664	12.8	-	-	771 192.9	2 689 059.1	
11/06/2020	15:40:24	R1_TR05A	Still	R1_TR05A_003	1665	12.8	-	-	771 194.0	2 689 062.9	
11/06/2020	15:41:01	R1_TR05A	Still	R1_TR05A_004	1666	12.8	-	-	771 195.7	2 689 070.0	
11/06/2020	15:41:21	R1_TR05A	Still	R1_TR05A_005	1667	12.8	-	-	771 196.2	2 689 074.2	
11/06/2020	15:42:06	R1_TR05A	Still	R1_TR05A_006	1668	12.9	-	-	771 197.9	2 689 083.3	
11/06/2020	15:42:51	R1_TR05A	Still	R1_TR05A_007	1669	12.8	-	-	771 199.4	2 689 092.2	
11/06/2020	15:43:11	R1_TR05A	Still	R1_TR05A_008	1670	12.9	-	-	771 200.3	2 689 096.1	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	204 of 602

	-	T		Course Doord		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
1/06/2020	15:43:59	R1_TR05A	Still	R1_TR05A_009	1671	12.9	-	-	771 202.9	2 689 105.8	
11/06/2020	15:44:39	R1_TR05A	Still	R1_TR05A_010	1672	12.8	-	-	771 204.4	2 689 113.7	
11/06/2020	15:45:32	R1_TR05A	Still	R1_TR05A_011	1673	12.8	-	-	771 206.5	2 689 124.6	
11/06/2020	15:46:36	R1_TR05A	Still	R1_TR05A_012	1674	12.9	-	-	771 209.7	2 689 137.1	
11/06/2020	15:47:20	R1_TR05A	Still	R1_TR05A_013	1675	12.9	-	-	771 211.4	2 689 146.0	
11/06/2020	15:48:24	R1_TR05A	Still	R1_TR05A_014	1676	12.9	-	-	771 213.7	2 689 158.9	
11/06/2020	15:49:40	R1_TR05A	Video	EOL	1677	12.8	771 217.7	2 689 171.2	771 217.1	2 689 174.4	
11/06/2020	17:37:20	R1_TR06	Video	SOL	1678	14.4	777 340.1	2 701 657.1	777 336.0	2 701 650.7	
11/06/2020	17:37:37	R1_TR06	Still	R1_TR06_001	1679	14.5	-	-	777 337.9	2 701 653.7	
11/06/2020	17:38:04	R1_TR06	Still	R1_TR06_002	1680	14.4	-	-	777 341.2	2 701 358.9	
11/06/2020	17:38:27	R1_TR06	Still	R1_TR06_003	1681	14.5	-	-	777 342.9	2 701 663.8	
11/06/2020	17:39:16	R1_TR06	Still	R1_TR06_004	1682	14.7	-	-	777 347.7	2 701 673.7	
11/06/2020	17:40:10	R1_TR06	Still	R1_TR06_005	1683	15.3	-	-	777 353.0	2 701 685.1	
11/06/2020	17:40:59	R1_TR06	Still	R1_TR06_006	1684	15.9	-	-	777 357.7	2 701 6941	
11/06/2020	17:41:27	R1_TR06	Still	R1_TR06_007	1685	16.1	-	-	777 360.1	2 701 698.8	
11/06/2020	17:41:59	R1_TR06	Still	R1_TR06_008	1686	16.2	-	-	777 363.0	2 701 704.4	
11/06/2020	17:42:50	R1_TR06	Still	R1_TR06_009	1687	16.1	-	-	777 368.0	2 701 714.1	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev Page 205 of 602

04

	Time	Troppost /		Sample Rep/		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
11/06/2020	17:43:24	R1_TR06	Still	R1_TR06_010	1688	16.1	-	-	777 371.6	2 701 720.9	
11/06/2020	17:44:14	R1_TR06	Still	R1_TR06_011	1689	16.1	-	-	777 376.5	2 701 731.7	
11/06/2020	17:45:09	R1_TR06	Still	R1_TR06_012	1690	16.0	-	-	777 381.9	2 701 742.5	
11/06/2020	17:45:32	R1_TR06	Still	R1_TR06_013	1691	16.0	-	-	777 383.3	2 701 746.1	
11/06/2020	17:46:20	R1_TR06	Still	R1_TR06_014	1692	16.1	-	-	777 387.7	2 701 752.6	
11/06/2020	17:47:02	R1_TR06	Still	R1_TR06_015	1693	16.2	-	-	777 391.3	2 701 760.4	
11/06/2020	17:47:58	R1_TR06	Still	R1_TR06_016	1694	16.3	-	-	777 396.6	2 701 772.3	
11/06/2020	17:48:30	R1_TR06	Still	R1_TR06_017	1695	16.4	-	-	777 399.3	2 701 778.9	
11/06/2020	17:48:53	R1_TR06	Video	EOL	1696	16.4	777 401.5	2 701 779.7	777 401.6	2 701 783.0	
15/06/2020	08:59:39	SO_R1_012	VV	SOIL	1697	10.5	786 750.8	2 744 304.6	786 759.1	2 744 406.9	Moved due to potential presence of shallow gas
15/06/2020	09:37:27	R1_ENV_100	VV	NS	1698	9.4	786 829.6	2 748 303.8	786 828.6	2 748 302.7	
15/06/2020	09:41:10	R1_ENV_100	VV	NS	1699	9.5	786 829.6	2 748 303.8	786 829.5	2 748 302.1	
15/06/2020	09:44:35	R1_ENV_100	VV	NS	1700	9.6	786 829.6	2 748 303.8	786 822.0	2 748 308.7	
15/06/2020	09:48:27	R1_ENV_100	WS	BOT	1701	9.6	786 829.6	2 748 303.8	786 828.9	2 748 303.3	
15/06/2020	09:59:20	R1_ENV_100	WS	ТОР	1702	9.5	786 829.6	2 748 303.8	786 829.1	2 748 304.6	
15/06/2020	10:12:18	R1_ENV_100	WP	YSI Exo2	1703	9.5	786 829.6	2 748 303.8	786 831.3	2 748 305.5	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev Page 206 of 602

04

	T :	Treasest		Comple Day (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
15/06/2020	10:50:37	R1_ENV_102	VV	NS	1704	12.0	786 868.9	2 750 303.4	786 870.6	2 750 301.9	
15/06/2020	10:56:01	R1_ENV_102	VV	NS	1705	11.9	786 868.9	2 750 303.4	786 863.9	2 750 310.7	
15/06/2020	11:00:33	R1_ENV_102	VV	NS	1706	12.1	786 868.9	2 750 303.4	786 875.7	2 750 296.2	
15/06/2020	11:03:49	R1_ENV_102	WS	BOT	1707	11.9	786 868.9	2 750 303.4	786 870.7	2 750 302.6	
15/06/2020	11:09:53	R1_ENV_102	WS	MID	1708	12.1	786 868.9	2 750 303.4	786 869.4	2 750 302.1	
15/06/2020	11:15:43	R1_ENV_102	WS	ТОР	1709	12.0	786 868.9	2 750 303.4	786 869.8	2 750 301.9	
15/06/2020	11:23:45	R1_ENV_102	WP	YSI Exo2	1710	11.9	786 868.9	2 750 303.4	786 871.4	2 750 303.6	
15/06/2020	11:54:50	R1_ENV_103	WS	BOT	1711	12.1	785 888.8	2 751 322.9	785 889.2	2 751 322.1	
15/06/2020	11:56:33	R1_ENV_103	WP	YSI Exo2	1712	12.3	785 888.8	2 751 322.9	785 891.1	2 751 322.5	
15/06/2020	12:00:35	R1_ENV_103	WS	MID	1713	12.3	785 888.8	2 751 322.9	785 889.6	2 751 322.1	
15/06/2020	12:06:53	R1_ENV_103	WS	ТОР	1714	12.3	785 888.8	2 751 322.9	785 888.8	2 751 323.0	
15/06/2020	12:12:47	R1_ENV_103	VV	NS	1715	12.3	785 888.8	2 751 322.9	785 888.1	2 751 322.5	
15/06/2020	12:17:31	R1_ENV_103	VV	NS	1716	12.4	785 888.8	2 751 322.9	785 880.0	2 751 325.8	
15/06/2020	12:19:13	R1_ENV_103	VV	NS	1717	12.3	785 888.8	2 751 322.9	785 895.7	2 751 315.4	
15/06/2020	13:00:09	SO_R1_013	VV	SOIL	1718	14.5	786 908.3	2 752 303.1	786 910.1	2 752 301.8	
15/06/2020	13:02:23	R1_ENV_104	VV	Partial Sample	1719	14.6	786 908.3	2 752 303.1	786 910.7	2 752 302.1	HM only
15/06/2020	13:10:29	R1_ENV_104	VV	Partial Sample	1720	14.4	786 908.3	2 752 303.1	786 902.0	2 752 308.9	HC only

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	207 of 602

	T :	Turner at /		Comple Day (Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
15/06/2020	13:13:41	R1_ENV_104	VV	NS	1721	14.5	786 908.3	2 752 303.1	786 916.2	2 752 295.9	
15/06/2020	13:19:16	R1_ENV_104	WS	ТОР	1722	14.3	786 908.3	2 752 303.1	786 907.2	2 752 302.1	
15/06/2020	13:28:54	R1_ENV_104	WP	YSI Exo2	1723	14.6	786 908.3	2 752 303.1	786 908.6	2 752 305.1	
15/06/2020	18:55:17	R1_ENV_REF	WS	BOT	1724	19.3	791 692.6	2 713 369.3	791 694.0	2 713 367.7	
15/06/2020	19:04:55	R1_ENV_REF	WS	MID	1725	19.2	791 692.6	2 713 369.3	791 692.3	2 713 368.7	
15/06/2020	19:13:30	R1_ENV_REF	WS	ТОР	1726	19.3	791 692.6	2 713 369.3	791 693.6	2 713 368.4	
15/06/2020	21:07:26	R1_TR04B	Video	SOL	1727	16.5	788 932.0	2 711 776.1	788 940.4	2 711 779.3	
15/06/2020	21:08:23	R1_TR04B	Still	R1_TR04B_001	1728	16.3	-	-	788 935.5	2 711 767.5	
15/06/2020	21:08:34	R1_TR04B	Still	R1_TR04B_002	1729	16.3	-	-	788 933.3	2 711 767.6	
15/06/2020	21:08:57	R1_TR04B	Still	R1_TR04B_003	1730	16.4	-	-	788 929.1	2 711 766.9	
15/06/2020	21:09:30	R1_TR04B	Still	R1_TR04B_004	1731	16.1	-	-	788 927.4	2 711 761.6	
15/06/2020	21:09:56	R1_TR04B	Still	R1_TR04B_005	1732	16.1	-	-	788 923.8	2 711 760.7	
15/06/2020	21:10:50	R1_TR04B	Still	R1_TR04B_006	1733	16.0	-	-	788 920.3	2 711 754.7	
15/06/2020	21:11:29	R1_TR04B	Still	R1_TR04B_007	1734	15.9	-	-	788 918.4	2 711 749.3	
15/06/2020	21:12:02	R1_TR04B	Still	R1_TR04B_008	1735	15.9	-	-	788 913.5	2 711 749.5	
15/06/2020	21:12:31	R1_TR04B	Still	R1_TR04B_009	1736	15.7	-	-	788 911.6	2 711 746.4	
15/06/2020	21:13:58	R1_TR04B	Still	R1_TR04B_010	1737	15.2	-	-	788 898.6	2 711 739.2	

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

 Rev
 Page

 04
 208 of 602

	Time	Troppost (Comula Dou /		Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
15/06/2020	21:15:22	R1_TR04B	Still	R1_TR04B_011	1738	15.3	-	-	788 892.8	2 711 732.3	
15/06/2020	21:15:40	R1_TR04B	Still	R1_TR04B_012	1739	15.4	-	-	788 890.7	2 711 730.4	
15/06/2020	21:17:23	R1_TR04B	Still	R1_TR04B_013	1740	15.9	-	-	788 873.6	2 711 712.3	
15/06/2020	21:18:17	R1_TR04B	Still	R1_TR04B_014	1741	16.1	-	-	788 863.6	2 711 700.7	
15/06/2020	21:19:10	R1_TR04B	Still	R1_TR04B_015	1742	16.3	-	-	788 855.9	2 711 690.6	
15/06/2020	21:20:49	R1_TR04B	Still	R1_TR04B_016	1743	16.5	-	-	788 837.3	2 711 679.2	
15/06/2020	21:21:04	R1_TR04B	Still	R1_TR04B_017	1744	16.5	-	-	788 834.6	2 711 677.3	
15/06/2020	21:22:04	R1_TR04B	Still	R1_TR04B_018	1745	16.5	-	-	788 825.6	2 711 667.9	
15/06/2020	21:22:53	R1_TR04B	Video	EOL	1746	16.5	788 820.3	2 711 668.3	788 817.7	2 711 661.5	
15/06/2020	22:57:27	R1_TR07	Video	SOL	1747	22.6	793 049.3	2 722 052.6	793 050.8	2 722 048.5	
15/06/2020	22:57:41	R1_TR07	Still	R1_TR07_001	-	22.7	-	-	793 047.5	2 722 051.2	
15/06/2020	22:57:47	R1_TR07	Still	R1_TR07_002	-	22.7	-	-	793 047.0	2 722 052.6	
15/06/2020	22:57:52	R1_TR07	Still	R1_TR07_003	-	22.6	-	-	793 046.8	2 722 053.9	
15/06/2020	22:57:53	R1_TR07	Still	R1_TR07_004	-	22.8	-	-	793 047.0	2 722 054.2	
15/06/2020	22:57:59	R1_TR07	Still	R1_TR07_005	-	22.7	-	-	793 046.8	2 272 055.7	
15/06/2020	22:58:00	R1_TR07	Still	R1_TR07_006	1748	22.7	-	-	793 046.7	2 722 055.7	
15/06/2020	22:58:06	R1_TR07	Still	R1_TR07_007	-	22.7	-	-	793 046.1	2 722 057.1	

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE) **ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1** E-0395 - LIGHTNING PROJECT **PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS** FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Clarke 1880	(Mod) Sphe	eroid, Nahrwan 196	57 Datum, U	۲M Projection, Zoı	ne 39 Nort	h, CM 51° Ea	st				
	<u></u>	- ./				Water	Propose	d Location	Actual	Location	
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes
15/06/2020	22:58:17	R1_TR07	Still	R1_TR07_008	-	22.6	-	-	793 044.8	2 722 059.0	
15/06/2020	22:58:21	R1_TR07	Still	R1_TR07_009	-	22.7	-	-	793 044.5	2 722 059.9	
15/06/2020	22:58:24	R1_TR07	Still	R1_TR07_010	-	22.6	-	-	793 044.4	2 722 060.1	
15/06/2020	22:58:35	R1_TR07	Still	R1_TR07_011	-	22.6	-	-	793 044.1	2 722 062.0	
15/06/2020	23:59:09	R1_TR07	Still	R1_TR07_012	-	22.7	-	-	793 043.9	2 722 067.6	
15/06/2020	23:00:42	R1_TR07	Still	R1_TR07_013	-	22.9	-	-	793 034.9	2 722 084.1	
15/06/2020	23:01:10	R1_TR07	Still	R1_TR07_014	-	23.1	-	-	793 033.1	2 722 088.9	
15/06/2020	23:02:33	R1_TR07	Still	R1_TR07_015	1754	23.3	-	-	793 026.8	2 722 102.7	
15/06/2020	23:05:10	R1_TR07	Still	R1_TR07_016	-	25.2	-	-	793 015.4	2 722 132.9	
15/06/2020	23:05:31	R1_TR07	Still	R1_TR07_017	1756	25.3	-	-	793 013.6	2 722 137.0	

Notes

15/06/2020

15/06/2020

15/06/2020

UTC = Coordinated Universal Time

23:06:00

23:08:33

23:09:26

R1 TR07

R1 TR07

R1_TR07

Still

Still

Video

R1_TR07_018

R1 TR07 019

EOL

1757

1758

1759

25.5

26.0

26.0

-

_

792 993.1

_

2 722 185.5

793 011.8

792 995.7

792 992.7

2 722 142.6

2 722 176.1

2 722 187.8

BSL = Below sea level

VV = Single van Veen grab

NS = No sample

PC = Physico-chemical sample

HM = Heavy metal sample

HC = Hydrocarbon sample

-fugro

Page

209 of 602

Rev

							-		-			-քս	IGRO
5		PROVISION		MENTAL BAS E-0 IYSICAL, GE0	395 - LIC	GHTNING	PROJECT			'EYS		ļ	
ADNOC						CABLE R						Rev	Page
			ADNO	DC DOCUMENT	NO.: AD	41-457-G-2	4202 (OEU0	21-V01-Route	e-1)			04	210 of 602
Clarke 1880) (Mod) Sph	eroid, Nahrwan 1	967 Datum, U ⁻	TM Projection, Zo	ne 39 Nort	th, CM 51° Ea	st						
	Time	Trancast/		Comple Don/		Water	Propose	d Location	Actual	Location			
Date	Time [UTC]	Transect/ Station	Туре	Sample Rep/ Still No.	Fix No.	Depth [m BSL]	Easting [m]	Northing [m]	Easting [m]	Northing [m]	Notes		
PSD = Partic SOL = Start o		ition						1					
EOL = End of TOP = Surfac	fline	le											
MID = Mid w		ater sample											
WP = Water WS = Water	profile												
WS - Water	Sumple												

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	-	
	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	Ţ	IGRO
ADNOC	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	211 of 602
C.2	Grab Log		

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

					Sample	_			Sediment D	escription (including stratig	raphy)	Comments (fauna,
Date	Time [UTC]	Station	Sample	Fix No.	Depth [cm]	Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	smell, bioturbation, debris)
14/05/2020	17:15	R1_ENV_030	PC	266	8	-	-	-	gS	Gravelly coarse sand with shell fragments	Grey	
14/05/2020	17:54	R1_ENV_031	PC	267	7	-	-	-	gS	Gravelly coarse sand with shell fragments	Grey	
14/05/2020	21:23	SO_R1_004	NS	276	4	-	-	-	gS	Gravelly coarse sand	Grey	
14/05/2020	21:35	R1_ENV_032	NS	277	4	-	-	-	gS	Gravelly coarse sand	Grey	
14/05/2020	21:42	R1_ENV_032	NS	278	2	-	-	-	gS	Gravelly coarse sand	Grey	
14/05/2020	21:50	R1_ENV_032	NS	279	2	-	-	-	gS	Gravelly coarse sand	Grey	
14/05/2020	22:16	R1_ENV_033	NS	280	< 1	-	-	-	gS	Gravelly coarse sand	Grey	
14/05/2020	22:21	R1_ENV_033	NS	281	< 1	-	-	-	gS	Gravelly coarse sand	Grey	Bryozoa
14/05/2020	22:26	R1_ENV_033	NS	282	2	-	-	-	gS	Gravelly coarse sand	Grey	
15/05/2020	05:12	R1_ENV_025	NS	365	< 2	-	-	-	gS	Gravelly coarse sand with shell fragments	Pale yellow (2.5Y 8/6)	
15/05/2020	05:32	R1_ENV_025	NS	367	< 2	-	-	-	gS	Gravelly coarse sand with shell fragments	Pale yellow (2.5Y 8/6)	
15/05/2020	05:43	R1_ENV_025	NS	368	< 2	-	-	-	gS	Gravelly coarse sand with shell fragments	Pale yellow (2.5Y 8/6)	
15/05/2020	06:03	R1_ENV_024	NS	369	4	32	233	8	mS	Muddy coarse sand with shell fragments	Pale yellow (2.5Y 8/4)	
15/05/2020	06:27	R1_ENV_024	NS	370	< 2	-	-	-	S	Sand	Pale yellow	

-fugro

Page

212 of 602

Rev

FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

					Sample				Sediment D	escription (including stratig	ıraphy)	Comments (fauna,
Date	Time [UTC]	Station	Sample	Fix No.	Depth [cm]	Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	smell, bioturbation, debris)
15/05/2020	06:35	R1_ENV_024	NS	371	< 1	-	-	-	S	Sand	Pale yellow	
15/05/2020	06:42	SO_R1_003	PC	372	< 1	-	-	-	S	Sand	Pale yellow	
15/05/2020	07:01	R1_ENV_023	NS	373	< 1	-	-	-	S	Sand	Pale yellow	
15/05/2020	07:07	R1_ENV_023	NS	374	< 1	-	-	-	S	Sand	Pale yellow	
15/05/2020	07:13	R1_ENV_023	NS	375	< 1	-	-	-	S	Sand	Pale yellow	
15/05/2020	07:27	R1_ENV_022	NS	376	< 1	-	-	-	S	Sand	Pale yellow	Seagrass
15/05/2020	07:33	R1_ENV_022	NS	377	0	-	-	-				
15/05/2020	07:38	R1_ENV_022	NS	378	2	-	-	-	S	Sand	Pale yellow	Algae in jaws
15/05/2020	07:57	R1_ENV_021	NS	379	3	-	-	-	S	Sand	Pale yellow	Seagrass and algae
15/05/2020	08:03	R1_ENV_021	NS	380	< 1	-	-	-	S	Sand	Pale yellow	
15/05/2020	08:12	R1_ENV_021	NS	381	< 1	-	-	-	S	Sand	Pale yellow	
15/05/2020	08:28	R1_ENV_020	NS	382	< 1	-	-	-	mS	Sand with coral rubble	Pale yellow	
15/05/2020	08:34	R1_ENV_020	NS	383	< 1	-	-	-	S	Sand	Pale yellow	
15/05/2020	08:39	R1_ENV_020	NS	384	2	-	-	-	S	Sand	Pale yellow	
15/05/2020	08:52	R1_ENV_019	NS	385	0	-	-	-				
15/05/2020	09:02	R1_ENV_019	NS	386	0	-	-	-				
15/05/2020	09:10	R1_ENV_019	NS	387	2	-	-	-	gS	Coarse sand and gravel, coral rubble		

-fugro

Page

213 of 602

Rev

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE) ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT

PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

Rev Page

-fugro

-	5
04	214 of 602

					Sample	_			Sediment D	escription (including strati	graphy)	Comments (fauna,
Date	Time [UTC]	Station	Sample	Fix No.	Depth [cm]	Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	smell, bioturbation, debris)
15/05/2020	09:24	R1_ENV_018	NS	388	0	-	-	-				
15/05/2020	09:27	R1_ENV_018	NS	389	0	-	-	-				
15/05/2020	09:35	R1_ENV_018	NS	390	0	-	-	-				
15/05/2020	09:53	R1_ENV_017	NS	391	< 1	-	-	-	s	Coarse sand and shell fragments	Yellow	
15/05/2020	09:57	R1_ENV_017	NS	392		-	-	-				
15/05/2020	10:01	R1_ENV_017	NS	393	0	-	-	-				
15/05/2020	10:13	R1_ENV_016	NS	394	0	-	-	-				
15/05/2020	10:20	R1_ENV_016	NS	395	< 1	-	-	-	S	Coral rubble and fine sand		
15/05/2020	10:27	R1_ENV_016	NS	396	0	-	-	-				
15/05/2020	10:43	SO_R1_002	NS	397	< 1	-	-	-	S	Sand	Yellow	
15/05/2020	20:30	R1_ENV_027	NS	295	< 2	-	-	-	s	Coarse sand with shell fragments		
15/05/2020	20:37	R1_ENV_027	NS	296	< 2	-	-	-	S	Coarse sand with shell fragments		
15/05/2020	20:43	R1_ENV_027	NS	297	0	-	-	-				
15/05/2020	21:16	R1_ENV_029	РС	298	8	-	-	-		Coarse sand with shell fragments		-
15/05/2020	23:46	R1_ENV_034	NS	307	1	-	-	-	gS	Gravelly sand		Echinoidea

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

					Sample				Sediment D	Description (including strati	graphy)	Comments (fauna,
Date	Time [UTC]	Station	Sample	Fix No.	Depth [cm]	Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	smell, bioturbation, debris)
15/05/2020	23:51	R1_ENV_034	NS	308	2	-	-	-	gS	Gravelly sand		
15/05/2020	23:55	R1_ENV_034	NS	309	3	-	-	-	gS	Gravelly sand		
16/05/2020	00:18	R1_ENV_035	NS	310	1	-	-	-	gS	Gravelly sand		
16/05/2020	00:23	R1_ENV_035	NS	311	1	-	-	-	gS	Gravelly sand		
16/05/2020	00:28	R1_ENV_035	NS	312	2	-	-	-	gS	Sandy gravel		
16/05/2020	06:14	R1_ENV_006	NS	437	< 1	-	-	-	S	Sand		Seagrass
16/05/2020	06:54	R1_ENV_006	NS	438	< 1	-	-	-	S	Sand		
16/05/2020	07:04	R1_ENV_006	NS	439	< 1	-	-	-				
16/05/2020	07:18	R1_ENV_007	NS	440	< 1	-	-	-	S	Coarse sand		Seagrass
16/05/2020	07:23	R1_ENV_007	NS	441	< 1	-	-	-	S	Coarse sand		
16/05/2020	07:30	R1_ENV_007	NS	442	< 1	-	-	-				
16/05/2020	07:43	R1_ENV_008	NS	443	0	-	-	-				
16/05/2020	07:49	R1_ENV_008	NS	444	0	-	-	-				
16/05/2020	07:55	R1_ENV_008	NS	445	0	-	-	-				
16/05/2020	08:00	SO_R1_001	NS	446	0	-	-	-				
16/05/2020	08:12	R1_ENV_009	NS	447	0	-	-	-				
16/05/2020	08:17	R1_ENV_009	NS	448	0	-	-	-				
16/05/2020	08:25	R1_ENV_009	NS	449	< 1	-	-	-	S	Sand		

-fugro

Page

215 of 602

Rev

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

					Sample				Sediment D	escription (including stration	graphy)	Comments (fauna,
Date	Time [UTC]	Station	Sample	Fix No.	Depth [cm]	Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	smell, bioturbation, debris)
16/05/2020	08:38	R1_ENV_010	NS	450	< 1	-	-	-	S	Coarse sand		
16/05/2020	08:42	R1_ENV_010	NS	451	< 1	-	-	-	S	Coarse sand		
16/05/2020	08:47	R1_ENV_010	NS	452	< 1	-	-	-	S	Coarse sand		
16/05/2020	09:05	R1_ENV_012	NS	453	< 1	-	-	-	S	Coarse sand		
16/05/2020	09:09	R1_ENV_012	NS	454	< 1	-	-	-				
16/05/2020	09:15	R1_ENV_012	NS	455	< 1	-	-	-	S	Sand		
16/05/2020	09:26	R1_ENV_013	NS	456	< 1	-	-	-	S	Sand		
16/05/2020	09:30	R1_ENV_013	NS	457	< 1	-	-	-	S	Sand		
16/05/2020	09:34	R1_ENV_013	NS	458	< 1	-	-	-	S	Sand		
16/05/2020	09:46	R1_ENV_014	NS	459	3	-	-	-	mS	Muddy coarse sand		
16/05/2020	09:54	R1_ENV_014	РС	460	9	29	233	8	mS	Muddy coarse sand		
16/05/2020	10:13	R1_ENV_015	NS	461	0	-	-	-				
16/05/2020	10:23	R1_ENV_015	NS	462	0	-	-	-	S	Coarse sand		
16/05/2020	10:30	R1_ENV_015	NS	463	0	-	-	-	S	Coarse sand		
16/05/2020	15:00	R1_ENV_036	NS	323	2	-	-	-	gS	Gravelly sand with shell fragments		
16/05/2020	15:05	R1_ENV_036	NS	324	1	-	-	-	gS	Gravelly sand with shell fragments		Brittlestar (Ophiuroidea)
16/05/2020	15:09	R1_ENV_036	NS	325	3	-	-	-	gS	Gravelly sand		

-fugro

Page

216 of 602

Rev

Rev Page

217 of 602

04

-fugro

					Sample				Sediment D	escription (including stratig	raphy)	Comments (fauna,
Date	Time [UTC]	Station	Sample	Fix No.	Depth [cm]	Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	smell, bioturbation, debris)
16/05/2020	17:06	R1_ENV_037	NS	326	3	-	-	-	gS	Gravelly sand		
16/05/2020	17:12	R1_ENV_037	NS	327	3	-	-	-	gS	Gravelly sand		
16/05/2020	17:15	R1_ENV_037	NS	328	< 1	-	-	-	S	Sand		
22/05/2020	05:49	R1_ENV_114	NS	695	0	-	-	-	S	Coarse sand		Starfish (Asteroidea)
22/05/2020	05:54	R1_ENV_114	NS	696	0	-	-	-				
22/05/2020	06:01	R1_ENV_114	NS	697	0	-	-	-				
22/05/2020	06:55	R1_ENV_115	NS	699	0	-	-	-		Large shell fragments and coral rubble		
22/05/2020	07:01	R1_ENV_115	NS	700	2	-	-	-	S	Sand with shell fragments and coral rubble	Olive yellow (5Y 6/6)	
22/05/2020	07:07	R1_ENV_115	NS	701	< 1	-	-	-				
22/05/2020	09:35	R1_ENV_116	NS	709	0	-	-	-				
22/05/2020	09:42	R1_ENV_116	NS	710	0	-	-	-				
22/05/2020	09:46	R1_ENV_116	NS	711	0	-	-	-				
22/05/2020	10:11	R1_ENV_117	NS	712	0	-	-	-				
22/05/2020	10:18	R1_ENV_117	NS	713	0	-	-	-				
22/05/2020	10:24	R1_ENV_117	NS	714	0	-	-	-				
22/05/2020	10:24	R1_ENV_117	NS	714	0	-	-	-				

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE) ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT

PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

Rev Page

218 of 602

04

-fugro

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

					Sample				Sediment D	escription (including stratig	raphy)	Comments (fauna,
Date	Time [UTC]	Station	Sample	Fix No.	Depth [cm]	Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	smell, bioturbation, debris)
22/05/2020	12:51	R1_ENV_118	NS	723	0	-	-	-				
22/05/2020	12:58	R1_ENV_118	NS	724	< 1	-	-	-				
22/05/2020	13:02	R1_ENV_118	NS	725	0	-	-	-				
23/05/2020	06:23	R1_ENV_119	NS	771	0	-	-	-				
23/05/2020	06:29	R1_ENV_119	NS	772	< 1	-	-	-	gS	Coarse sand and gravels with coral rubble		
23/05/2020	06:35	R1_ENV_119	NS	773	0	-	-	-				
23/05/2020	07:02	R1_ENV_120	NS	774	< 1	-	-	-		Coarse sand and gravels with coral rubble		
23/05/2020	07:05	R1_ENV_120	NS	775	0	-	-	-				
23/05/2020	07:15	R1_ENV_120	NS	776	0	-	-	-				
23/05/2020	07:19	SO_R1_015	NS	777	0	-	-	-				
23/05/2020	09:13	R1_ENV_121	NS	785	0	-	-	-				
23/05/2020	09:15	R1_ENV_121	NS	786	0	-	-	-				
23/05/2020	09:21	R1_ENV_121	NS	787	2	-	-	-	S	Coarse sand	Olive yellow (2.5Y 6/8)	

23/05/2020

10:38

R1 ENV 122

PC

790

5

27

8

S

Coarse sand

277

Olive yellow

(2.5Y 6/8)

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	219 of 602

					Sample				Sediment D	escription (including stratic	graphy)	Comments (fauna,
Date	Time [UTC]	Station	Sample	Fix No.	Depth [cm]	Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	smell, bioturbation, debris)
23/05/2020	12:40	R1_ENV_123	NS	798	1	-	-	-	gS	Coarse sand with gravel and infrequent shell fragments		Hermit crab (Paguridae)
23/05/2020	12:48	R1_ENV_123	NS	799	0	-	-	-	s	Coarse and shell fragments	Yellow	
23/05/2020	12:52	R1_ENV_123	NS	800	0	-	-	-	s	Coarse and shell fragments		
28/05/2020	12:56	R1_ENV_107	NS	1059	< 1	-	-	-	S	Sand		
28/05/2020	13:16	R1_ENV_107	NS	1060	< 1	-	-	-	S	Sand		Sea urchin (Echinoidea)
28/05/2020	13:26	R1_ENV_107	NS	1061	< 1	-	-	-	S	Sand		
28/05/2020	14:38	R1_ENV_106	NS	1062	0	-	-	-				
28/05/2020	14:42	R1_ENV_106	NS	1063	0	-	-	-				
28/05/2020	14:45	R1_ENV_106	NS	1064	0	-	-	-				
28/05/2020	16:23	R1_ENV_094	PC	1065	11	-	-	-	М	Mud/clay		
28/05/2020	17:41	R1_ENV_093	PC	1071	16	-	-	-	М	Mud/clay		
28/05/2020	19:54	R1_ENV_092	NS	1076	< 1	-	-	-	mS	Muddy sand		
28/05/2020	19:59	R1_ENV_092	NS	1077	0	-	-	-				
28/05/2020	20:03	R1_ENV_092	PC	1078	6	-	-	-	(g)mS	Gravelly muddy sand		

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

					Sample				Sediment D	escription (including strati	graphy)	Comments (fauna,
Date	Time [UTC]	Station	Sample	Fix No.	Depth [cm]	Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	smell, bioturbation, debris)
28/05/2020	21:50	R1_ENV_091	PC	1083	5	-	-	-	(g)mS	Gravelly muddy sand		Crab (Brachyura)
28/05/2020	23:37	R1_ENV_090	NS	1088	0	-	-	-				
28/05/2020	23:42	R1_ENV_090	NS	1089	4	-	-	-	(g)mS	Gravelly muddy sand		
28/05/2020	23:46	R1_ENV_090	NS	1090	4	-	-	-	(g)mS	Gravelly muddy sand		
29/05/2020	04:58	R1_ENV_112	NS	1100	< 1	-	-	-	S	Sand		
29/05/2020	05:03	R1_ENV_112	NS	1101	< 1	-	-	-	S	Sand		Bivalvia and sea urchin (Echinoidea)
29/05/2020	05:09	R1_ENV_112	NS	1102	0	-	-	-				Coral rubble
29/05/2020	05:12	SO_R1_014	NS	1103	< 1	-	-	-				Soft coral
29/05/2020	05:37	R1_ENV_113	NS	1104	< 1	-	-	-	S	Sand		
29/05/2020	05:41	R1_ENV_113	NS	1105	< 1	-	-	-	s	Sand		Sea urchin (Echinoidea)
29/05/2020	05:45	R1_ENV_113	NS	1106	< 1	-	-	-	S	Sand		Sea snail (Gastropoda)
29/05/2020	08:30	R1_ENV_129	NS	1111	< 1	-	-	-	S	Coarse sand		
29/05/2020	08:38	R1_ENV_129	NS	1112	< 1	-	-	-				
29/05/2020	08:40	R1_ENV_129	NS	1113	< 1	-	-	-				
29/05/2020	10:34	R1_ENV_128	NS	1122	0	-	-	-				
29/05/2020	10:39	R1_ENV_128	NS	1123	0	-	-	-				

-fugro

Page

220 of 602

Rev

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE) ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT

PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

Rev Page

-fugro

04	221 of 602

					Sample	_	Distr		Sediment D	escription (including stratig	raphy)	Comments (fauna, smell, bioturbation, debris)
Date	Time [UTC]	Station	Sample	Fix No.	Depth [cm]	Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	
29/05/2020	10:42	R1_ENV_128	NS	1124	0	-	-	-				
29/05/2020	10:45	SO_R1_016	NS	1125	0	-	-	-				
29/05/2020	11:21	R1_ENV_127	NS	1126	< 1	-	-	-	S	Sand with shell fragments		Hermit crab (Paguridae)
29/05/2020	11:24	R1_ENV_127	NS	1127	< 1	-	-	-	S	Sand		
29/05/2020	11:28	R1_ENV_127	NS	1128	< 1	-	-	-	S	Sand		
29/05/2020	13:17	R1_ENV_126	PC	1137	2	-	-	-	S	Coarse sand		
29/05/2020	13:21	R1_ENV_126	NS	1138	1	-	-	-	S	Coarse sand with shell fragments		
29/05/2020	13:24	R1_ENV_126	NS	1139	< 1	-	-	-	S	Coarse sand		
29/05/2020	18:00	R1_ENV_089	NS	1141	0	-	-	-	S			
29/05/2020	18:04	R1_ENV_089	PC	1142	4.5	29	130	4	(g)mS	Gravelly muddy sand		
29/05/2020	19:50	SO_R1_011	PC	1147	17	-	-	-	М	Mud/clay		
29/05/2020	20:08	R1_ENV_088	PC	1148	19	29	65	6	М	Mud/clay		
29/05/2020	22:16	R1_ENV_087	NS	1154	< 1	-	-	-	gS	Gravelly coarse sand		
29/05/2020	22:20	R1_ENV_087	PC	1155	5	29	225	4	gS	Gravelly coarse sand with shell fragments		
30/05/2020	00:31	R1_ENV_085	NS	1162	< 1	-	-	-	S	Coarse sand and coral rubble		

Rev Page

-fugro

	. ugo
04	222 of 602

					Sample		Desta		Sediment D	escription (including stratig	raphy)	Comments (fauna,
Date	Time [UTC]	Station	Sample	Fix No.	Depth [cm]	Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	smell, bioturbation, debris)
30/05/2020	00:36	R1_ENV_085	NS	1163	< 1	-	-	-	S	Coarse sand		
30/05/2020	00:40	R1_ENV_085	NS	1164	< 1	-	-	-	S	Coarse sand and coral rubble		
30/05/2020	06:02	R1_ENV_125	NS	1172	< 1	-	-	-				
30/05/2020	06:09	R1_ENV_125	NS	1173	2	-	-	-	gS	Gravelly coarse sand with occasional large shell fragments		
30/05/2020	06:16	R1_ENV_125	NS	1174	2	-	-	-	S	Coarse sand		
30/05/2020	06:46	R1_ENV_124	NS	1176	0	-	-	-				
30/05/2020	06:47	R1_ENV_124	NS	1177	< 1	-	-	-	gS	Gravelly coarse sand with shell fragments		
30/05/2020	06:52	R1_ENV_124	NS	1178	< 1	-	-	-				
30/05/2020	10:34	R1_ENV_111	NS	1197	< 1	-	-	-	S	Coarse sand and shell		
30/05/2020	12:00	R1_ENV_111	NS	1201	< 1	-	-	-	S	Sand and shell		
30/05/2020	12:03	R1_ENV_111	NS	1202	< 1	-	-	-	S	Coarse sand and shell		
30/05/2020	12:27	R1_ENV_110	NS	1203	< 1	-	-	-	S	Sand		
30/05/2020	12:35	R1_ENV_110	NS	1204	< 1	-	-	-	S	Sand		Sea urchin (Echinoidea)
30/05/2020	12:36	R1_ENV_110	NS	1205	0	-	-	-				Coral in jaws
30/05/2020	14:36	R1_ENV_109	NS	1214	0	-	-	-				

Rev Page

223 of 602

04

-fugro

					Sample	_	Redox		Sediment D	escription (including stratig	raphy)	Comments (fauna, smell, bioturbation, debris)
Date	Time [UTC]	Station	Sample	Fix No.	Depth [cm]	Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	
30/05/2020	14:40	R1_ENV_109	NS	1215	2	-	-	-	S	Sand		Sea urchin (Echinoidea)
30/05/2020	14:46	R1_ENV_109	NS	1216	2	-	-	-	gS	Gravelly sand with shell fragments		Bivalvia
30/05/2020	17:30	R1_ENV_086	PC	1217	5	30	120	7	S	Coarse sand		
30/05/2020	20:52	R1_ENV_083	PC	1227	4.5	29.3	169	6.1	gS	Gravelly coarse sand		
30/05/2020	21:52	R1_ENV_084	PC	1225	4	29.3	158	6.3	gS	Gravelly coarse sand with shell fragments		
30/05/2020	23:29	R1_ENV_082	NS	1235	0	-	-	-				
30/05/2020	23:34	R1_ENV_082	NS	1236	3	-	-	-	S	Coarse sand with shell fragments		
30/05/2020	23:43	R1_ENV_082	PC	1237	4	29.7	234	6.3	S	Coarse sand with shell fragments		
31/05/2020	01:30	R1_ENV_081	PC	1242	9	29.9	262	6.1	S	Coarse sand		
31/05/2020	03:58	R1_ENV_097	РС	1243	8	27.1	432	6.3	S	Very coarse sand with shell fragments	Light grey (10YR 7/2)	
31/05/2020	09:48	R1_ENV_098	NS	1251	< 1	-	-	-	S	Sand		
31/05/2020	09:54	R1_ENV_098	NS	1252	2	-	-	-	S	Sand with shell		
31/05/2020	09:57	R1_ENV_098	NS	1253	3	-	-	-	S	Sand		

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE) ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT

PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

Rev Page

224 of 602

04

-fugro

					Sample Depth [cm]				Sediment D	raphy)	Comments (fauna,	
Date	Time [UTC]	Station	Sample	Fix No.		Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	smell, bioturbation, debris)
31/05/2020	10:26	R1_ENV_099	РС	1254	7	32.2	256	6.1	S	Coarse sand with shell fragments	Pale brown (2.5Y 8/9)	
31/05/2020	13:11	R1_ENV_101	NS	1263	< 1	-	-	-	S	Coarse sand		
31/05/2020	13:19	R1_ENV_101	NS	1264	0	-	-	-				
31/05/2020	13:23	R1_ENV_101	NS	1265	0	-	-	-				
31/05/2020	14:52	R1_ENV_095	РС	1266	9	30.0	-210	7.1	sM	Sandy mud		
31/05/2020	22:03	SO_R1_010	NS	1270	0	-	-	-				
31/05/2020	22:08	SO_R1_010	РС	1271	12	-	-	-	М	Mud/clay		
31/05/2020	22:23	R1_ENV_080	РС	1272	11	29.9	-147	6.9	М	Mud/clay		
01/06/2020	00:05	R1_ENV_079	РС	1277	7	29.1	-180	6.9	gМ	Gravelly mud		
01/06/2020	05:44	R1_ENV_096	РС	1314	9.5	25.8	111	7.6	S	Sand with occasional shell fragments	Grey	
01/06/2020	10:53	R1_ENV_108	NS	1315	< 1	-	-	-	S	Coarse sand		
01/06/2020	10:57	R1_ENV_108	NS	1316	< 1	-	-	-	S	Coarse sand		
01/06/2020	11:01	R1_ENV_108	NS	1317	< 1	-	-	-	S	Coarse sand		
01/06/2020	13:20	R1_ENV_105	NS	1328	< 1	-	-	-	S	Coarse sand		
01/06/2020	13:22	R1_ENV_105	NS	1329	0	-	-	-				

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE) ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

Rev Page

225 of 602

04

-fugro

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

					Sample				Sediment D	escription (including stration	graphy)	Comments (fauna,
Date	Time [UTC]	Station	Sample	Fix No.	Depth [cm]	Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	smell, bioturbation, debris)
01/06/2020	13:28	R1_ENV_105	NS	1330	< 1	-	-	-	S	Coarse sand		
01/06/2020	19:27	R1_ENV_078	NS	1339	3	-	-	-	(g)sM	Gravelly sandy mud		
01/06/2020	19:35	R1_ENV_078	PC	1340	4.5	30.0	125	6.1	(g)sM	Gravelly sandy mud		
01/06/2020	20:41	R1_ENV_077	NS	1342	< 1	-	-	-	gS	Gravelly sand		
01/06/2020	20:47	R1_ENV_077	NS	1343	0	-	-	-				
01/06/2020	20:50	R1_ENV_077	NS	1344		-	-	-	gS	Gravelly sand		
01/06/2020	22:20	R1_ENV_076	PC	1349	16	30.0	-80	6.9	м	Very soft mud/clay		
01/06/2020	23:59	R1_ENV_075	PC	1354	18	30.0	-140	5.6	м	Very soft mud/clay		
02/06/2020	03:09	R1_ENV_074	РС	1363	18	28.9	-120	5.7	М	Slightly sandy mud	Gley 2 5/5PB (Bluish gray)	Anoxic smell
02/06/2020	03:51	R1_ENV_073	РС	1364	18	29.8	-156	6.0	sM	Sandy mud	Gley 2 5/5PB (Bluish gray)	
02/06/2020	14:47	R1_ENV_072	PC	1373	14	30.0	-130	4.8	м	Soft mud/clay		
02/06/2020	15:12	SO_R1_009	РС	1374	15	-	-	-	(g)M	Gravelly soft mud/clay		
02/06/2020	17:07	R1_ENV_071	NS	1379	0	-	-	-				
02/06/2020	17:14	R1_ENV_071	PC	1380	17	29.9	-240	6.9	М	Very soft mud/clay		
02/06/2020	19:05	R1_ENV_070	NS	1385	0	-	-	-				
02/06/2020	19:08	R1_ENV_070	PC	1386	18	29.5	-110	5.6	М	Very soft mud/clay		

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE) ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

Rev Page

226 of 602

04

-fugro

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

					Sample				Sediment D	Description (including stratig	raphy)	Comments (fauna,
Date	Time [UTC]	Station	Sample	Fix No.	Depth [cm]	Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	smell, bioturbation, debris)
02/06/2020	21:06	R1_ENV_069	NS	1392	0	-	-	-				
02/06/2020	21:10	R1_ENV_069	PC	1393	5	29.4	-158	5.7	gM	Gravelly mud		
02/06/2020	22:54	R1_ENV_068	NS	1399	0	-	-	-				
02/06/2020	22:58	R1_ENV_068	PC	1400	19	30.0	-20	5.9	М	Very soft mud/clay		
03/06/2020	00:45	R1_ENV_067	NS	1405	0	-	-	-				
03/06/2020	00:48	R1_ENV_067	PC	1406	6	29.9	-147	6.9	(g)sM	Gravelly sandy mud with shell fragments		
03/06/2020	03:04	R1_ENV_066	NS	1411	< 1	-	-	-	sM	Sandy mud		
03/06/2020	03:08	R1_ENV_066	NS	1412	< 1	-	-	-				
03/06/2020	03:12	R1_ENV_066	РС	1413	10.6	30.1	-21	6.7	sM	Sandy mud/clay	Grey (10YR 5/1)	
03/06/2020	05:50	R1_ENV_065	NS	1422	0	-	-	-				
03/06/2020	05:51	R1_ENV_065	РС	1423	7.5	29.7	93	7.2	(g)sM	Gravelly sandy mud	Grey 10YR 5/1	
03/06/2020	13:53	R1_ENV_064	РС	1426	7	29.6	423	2.3				
03/06/2020	14:50	SO_R1_008	NS	1427	0	-	-	-				
03/06/2020	14:55	SO_R1_008	NS	1428	0	-	-	-				
03/06/2020	15:06	SO_R1_008	PC	1429	6	-	-	-	(g)sM	Gravelly sandy mud		

03/06/2020

17:57

R1_ENV_063

NS

1437

< 1

S

Sand

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE) ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS

FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	227 of 602

-fugro

					Sample				Sediment D	Description (including strati	graphy)	Comments (fauna,
Date	Time [UTC]	Station	Sample	Fix No.	Depth [cm]	Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	smell, bioturbation, debris)
03/06/2020	18:06	R1_ENV_063	NS	1438	< 1	-	-	-	S	Sand		
03/06/2020	18:11	R1_ENV_063	NS	1439	1	-	-	-	S	Sand		
03/06/2020	18:19	R1_ENV_063	NS	1440	0	-	-	-	S			
05/06/2020	00:39	R1_ENV_060	PC	1448	8	32.1	-77	6.8	(g)mS	Gravelly muddy sand		
05/06/2020	01:48	R1_ENV_062	NS	1451	1	-	-	-	S	Sand		
05/06/2020	01:53	R1_ENV_062	NS	1452	0	-	-	-				Coral rubble in jaws
05/06/2020	01:56	R1_ENV_062	NS	1453	0	-	-	-				
05/06/2020	02:38	R1_ENV_061	Partial sample	1454	4.5	27.7	277	7.2	(g)sM	Gravelly muddy sand	Reddish gray (7.5R 5/1)	
05/06/2020	03:03	R1_ENV_061	Partial sample	1455	3	27.9	22	7.1	(g)sM	Gravelly muddy sand	Reddish gray (7.5R 5/1)	
05/06/2020	05:07	R1_ENV_059	РС	1463	8.5	30.5	59	6.0	(g)sM	Sandy slightly gravelly mud	Blue gray (5Y 5/2)	
05/06/2020	06:29	R1_ENV_058	Partial sample	1465	3	32.3	2	6.4	(g)sM	Gravelly sandy mud	Gray (2.5Y 6/1)	
05/06/2020	06:38	R1_ENV_058	Partial sample	1466	4	32.1	17	6.6	(g)sM	Gravelly sandy mud	Gray (2.5Y 6/1)	
05/06/2020	06:48	R1_ENV_058	NS	1467	3	-	-	-	(g)sM	Gravelly sandy mud	Gray (2.5Y 6/1)	
05/06/2020	08:56	R1_ENV_057	Partial sample	1475	4	32.2	126	6.8	(g)sM	Muddy gravelly sand	Gray (2.5Y 5/1)	

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

					Sample	_			Sediment D	Description (including stratig	raphy)	Comments (fauna,	
Date	Time [UTC]	Station	Sample	Fix No.	Depth [cm]	Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	smell, bioturbation, debris)	
05/06/2020	09:05	R1_ENV_057	Partial sample	1476	4	32.3	118	6.7	(g)sM	Muddy gravelly sand	Gray (2.5Y 5/1)		
05/06/2020	09:15	R1_ENV_057	Partial sample	1477	3	32.2	233	6.2	(g)sM	Muddy gravelly sand	Gray (2.5Y 5/1)		
05/06/2020	10:08	R1_ENV_056	РС	1479	6.5	32.7	180	7.2	gS	Gravelly muddy sand with shell fragments	Gray (2.5Y 6/1)		
05/06/2020	10:24	SO_R1_03	NS	1480	0	-	-	-					
05/06/2020	10:28	SO_R1_03	РС	1481	6.5	32.7	207	7.0	gS	Gravelly muddy sand with shell fragments	Gray (2.5Y 6/1)		
05/06/2020	12:23	R1_ENV_055	РС	1489	7	31.6	39	6.8	(g)sM	Sandy gravelly mud with infrequent shell fragments	Grayish brown (2.5Y 5/2)		
06/06/2020	05:25	R1_ENV_054	NS	1491	0	-	-	-					
06/06/2020	05:31	R1_ENV_054	Partial sample	1492	4	29.9	44	7.3	(g)sM	Gravelly sandy mud with shell fragments	Pale brown (2.5Y 8/3)		
06/06/2020	05:46	R1_ENV_054	Partial sample	1493	4	32.1	47	7.2	(g)sM	Gravelly sandy mud with shell fragments	Pale brown (2.5Y 8/3)		
06/06/2020	08:03	R1_ENV_053	Partial sample	1501	3.5	32.7	-32	6.5	(g)sM	Sandy gravelly mud with infrequent shell fragments	Light brownish gray (2.5Y 6/2)		

-fugro

Page

228 of 602

Rev

			ABU DH/		DNAL OI		PANY C)FFSH		IOC OFFSHORE)		_	
5		PROVIS			E-039	95 - LIG	HTNING	g pro	JECT	ORT - ROUTE 1 TAL BASELINE SURVE	YS	Ť	JGRO
ADNOC					FOR S	UBSEA	A CABL	E ROL	JTES			Rev	Page
			ADI		JMENT N	0.: AD4	1-457-G	-24202	(OEU021-V	/01-Route-1)		04	229 of 602
					Comple				Sediment [Description (including stratic	Iraphy)	Commente	6
Date	Time [UTC]	Station	Sample	Fix No.	Sample Depth [cm]	Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	Comments (smell, biotur debris)	
06/06/2020	08:12	R1_ENV_053	Partial sample	1502	4	31.6	203	6	(g)sM	Sandy gravelly mud with infrequent shell fragments	Light brownish gray (2.5Y 6/2)		
06/06/2020	08:23	R1_ENV_053	NS	1503	4	-	-	-					
06/06/2020	09:26	R1_ENV_052	Partial sample	1505	3	32.8	26	6.5	mS	Muddy sand	Light brownish gray (2.5Y 6/2)		
06/06/2020	09:35	R1_ENV_052	Partial sample	1506	4	32.7	94	5.8	mS	Muddy sand	Light brownish gray (2.5Y 6/2)		
06/06/2020	09:47	R1_ENV_052	NS	1507	4	-	-	-					
06/06/2020	11:30	R1_ENV_051	NS	1515	< 1	-	-	-	gS	Gravelly sand with shell fragments	Very pale brown (10YR 8/3)		
06/06/2020	11:38	R1_ENV_051	NS	1516	< 1	-	-	-	gS	Gravelly sand with shell fragments	Very pale brown (10YR 8/3)		
06/06/2020	11:41	R1_ENV_051	NS	1517	< 1	-	-	-	gS	Gravelly sand with shell fragments	Very pale brown (10YR 8/3)		

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

					Sample				Sediment D	escription (including strati	graphy)	Comments (fauna,
Date	Time [UTC]	Station	Sample	Fix No.	Depth [cm]	Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	smell, bioturbation, debris)
06/06/2020	12:31	R1_ENV_050	NS	1519	4	33.6	170	6.8	mS	Muddy coarse sand	Pale brown (2.5Y 8/2)	
06/06/2020	12:35	R1_ENV_050	РС	1520	7	32.9	159	6.7	mS	Muddy coarse sand	Pale brown (2.5Y 8/2)	
06/06/2020	14:41	R1_ENV_049	NS	1525	0	-	-	-				
06/06/2020	14:50	R1_ENV_049	NS	1526	5	32.1	-82	5.1	(g)mS	Gravelly muddy sand	Gray (2.5Y 6/1)	
06/06/2020	21:33	SO_R1_006	SO	1532	5	-	-	-	(g)mS	Muddy gravelly sand	Gley 1 (6/10Y)	
08/06/2020	21:43	R1_ENV_048	РС	1533	6	31.9	40	6.9	(g)mS	Muddy gravelly sand	Gley 1 (6/10Y)	
08/06/2020	23:01	R1_ENV_047	NS	1540	< 1	-	-	-	S	Sand		
08/06/2020	23:05	R1_ENV_047	NS	1541	< 1	-	-	-	S	Sand	Pale yellow (2.5Y 7/3)	
08/06/2020	23:09	R1_ENV_047	NS	1542	< 1	-	-	-	S	Sand		
08/06/2020	23:50	R1_ENV_046	PC	1544	8	31.9	100	6.9	(g)mS	Gravelly muddy sand	Gley 1 (5/10Y)	
09/06/2020	00:59	R1_ENV_045	NS	1549	2	-	-	-	(g)mS	Gravelly muddy sand		
09/06/2020	01:02	R1_ENV_045	РС	1550	6	31.9	100	6.9	(g)mS	Gravelly muddy sand	Reddish gray (2.5Y 6/1)	
09/06/2020	03:36	R1_ENV_044	NS	1558	1.5	26.1	12	7.3	(g)sM	Muddy gravelly sand	Gray (2.5Y 5/1)	

-fugro

Page

230 of 602

Rev

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE) ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT

PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

Rev Page

04

-fugro

231 of 602

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

					Sample				Sediment D	Description (including stratig	raphy)	Comments (fauna,
Date	Time [UTC]	Station	Sample	Fix No.	Depth [cm]	Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	smell, bioturbation, debris)
09/06/2020	03:45	R1_ENV_044	Partial sample	1559	3.5	31.4	-3	7.3	(g)sM	Muddy gravelly sand	Gray (2.5Y 5/1)	
09/06/2020	04:00	R1_ENV_044	Partial sample	1560	4	31.9	31	6.8	(g)sM	Muddy gravelly sand	Gray (2.5Y 5/1)	
09/06/2020	04:59	R1_ENV_043	РС	1562	6	32.6	128	7.2	mS	Muddy coarse sand	Dark grey (2.5Y 4/1)	
09/06/2020	07:01	R1_ENV_042	NS	1570	< 1	-	-	-	S	Coarse sand	Light yellow brown (2.5Y 6/4)	
09/06/2020	07:05	R1_ENV_042	NS	1571	< 1	-	-	-	S	Coarse sand	Light yellow brown (2.5Y 6/4)	
09/06/2020	07:09	R1_ENV_042	NS	1572	< 1	-	-	-	S	Coarse sand	Light yellow brown (2.5Y 6/4)	
09/06/2020	08:12	R1_ENV_041	PC	1574	5.5	30.5	109	7.2	mS	Muddy coarse sand with shell fragments	Light brownish gray (2.5Y 6/2)	
09/06/2020	10:03	SO_R1_005	Partial sample	1582	3	30.1	138	8.6	mS	Muddy coarse sand with shell fragments	Olive yellow (5Y 6/6)	
09/06/2020	10:15	SO_R1_005	Partial sample	1583	5.5	30.9	124	8.1	mS	Muddy coarse sand with shell fragments	Olive yellow (5Y 6/6)	

									•	OC OFFSHORE)		-6	JGRO
5		PROVISI			E-039 L, GEO	5 - LIG TECHN	HTNING	G PRO	JECT RONMENT	DRT - ROUTE 1 AL BASELINE SURVE	YS	ļ	
ADNOC												Rev	Page
			ADN			0.: AD4	1-457-G	-24202	(OEU021-V	01-Route-1)		04	232 of 602
					Sample	_			Sediment D	escription (including stratig	raphy)	Comments	fauna,
Date	Time [UTC]	Station	Sample	Fix No.	Depth [cm]	Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	smell, biotu debris)	
09/06/2020	10:25	R1_ENV_040	РС	1585	2	30.7	119	7.8	mS	Muddy coarse sand with shell fragments	Olive yellow (5Y 6/6)		
09/06/2020	10:34	R1_ENV_040	РС	1586	4	30.9	79	8.5	mS	Muddy coarse sand with shell fragments	Olive yellow (5Y 6/6)		
09/06/2020	10:48	R1_ENV_040	NS	1587	3	-	-	-	mS	Muddy coarse sand with shell fragments	Olive yellow (5Y 6/6)		
09/06/2020	11:42	R1_ENV_039	PC	1589	5	31.2	163	7.9	gS	Gravelly sand with frequent shell fragments	Light yellow brown (2.5Y 6/4)		
10/06/2020	07:53	R1_ENV_038	Partial sample	469	3.5	32.8	169	7.4	gS	Gravelly coarse sand	Light yellow brown (2.5Y 6/4)		
10/06/2020	08:23	R1_ENV_038	Partial sample	470	3	32.8	171	7.2	gS	Gravelly coarse sand	Light yellow brown (2.5Y 6/4)		
10/06/2020	08:43	R1_ENV_038	NS	471	1	-	-	-	gS	Gravelly coarse sand	Light yellow brown (2.5Y 6/4)		
10/06/2020	13:08	R1_ENV_026	NS	478	0	-	-	-					
10/06/2020	13:24	R1_ENV_026	NS	479	< 1	-	-	-		Coarse sand		Seagrass	
10/06/2020	13:32	R1_ENV_026	NS	480	< 1	-	-	-		Coarse sand		Seagrass	

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)

ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

					Sample	_	_		Sediment D	escription (including stratig	raphy)	Comments (fauna,
Date	Time [UTC]	Station	Sample	Fix No.	Depth [cm]	Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	smell, bioturbation, debris)
10/06/2020	21:21	R1_ENV_REF	NS	1657	< 1	-	-	-		Sand	Light gray (2.5Y 7/2)	
10/06/2020	21:27	R1_ENV_REF	NS	1658	2	-	-	-		Sand	Light gray (2.5Y 7/2)	
10/06/2020	21:32	R1_ENV_REF	NS	1659	0	-	-	-		Sand	Light gray (2.5Y 7/2)	
10/06/2020	21:35	R1_ENV_REF	NS	1660	0	-	-	-		Sand	Light gray (2.5Y 7/2)	
11/06/2020	05:59	R1_ENV_001	PC	483	8	32.3	114	7.7	sM	Sandy mud with occasional small shell fragments	Light brown (7.5YR 6/3)	
11/06/2020	06:31	R1_ENV_002	PC	484	8	33.6	-109	7.6	sM	Very fine sandy mud with occasional small shell fragments	Light brown (7.5YR 6/3)	
11/06/2020	07:28	R1_ENV_003	NS	486	< 1	-	-	-	mS	Muddy sand		Seagrass
11/06/2020	07:35	R1_ENV_003	NS	487	0	-	-	-				
11/06/2020	07:39	R1_ENV_003	NS	488	0	-	-	-				
11/06/2020	07:49	R1_ENV_004	NS	489	0	-	-	-				
11/06/2020	07:54	R1_ENV_004	NS	490	< 1	-	-	-	mS	Muddy sand		
11/06/2020	08:00	R1_ENV_004	NS	491	0	-	-	-	mS	Muddy sand		
11/06/2020	08:09	R1_ENV_005	NS	492	0	-	-	-				

-fugro

Page

233 of 602

Rev

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE) ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1

E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

Rev	Page
04	234 of 602

-fugro

					Sample				Sediment D	Description (including stration	graphy)	Comments (fauna,
Date	Time [UTC]	Station	Sample	Fix No.	Depth [cm]	Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	smell, bioturbation, debris)
11/06/2020	08:17	R1_ENV_005	NS	493	0	-	-	-				
11/06/2020	08:22	R1_ENV_005	NS	494	0	-	-	-				
11/06/2020	09:28	R1_ENV_011	NS	495	< 1	-	-	-	S	Muddy sand		Seagrass
11/06/2020	09:32	R1_ENV_011	NS	496	< 2	-	-	-	S	Muddy sand		Seagrass
11/06/2020	09:37	R1_ENV_011	NS	497	< 1	-	-	-	S	Muddy sand		Seagrass
11/06/2020	12:31	R1_ENV_028	NS	516	< 1	-	-	-	S	Coarse sand		
11/06/2020	12:42	R1_ENV_028	NS	517	< 1	-	-	-	S	Coarse sand		
11/06/2020	12:48	R1_ENV_028	NS	518	0	-	-	-				
15/06/2020	08:59	SO_R1_012	PC	1697	0	27.8	110	7.2	S	Sand	Very pale brown (2.5Y 8/4)	
15/06/2020	09:37	R1_ENV_100	NS	1698	0	-	-	-				
15/06/2020	09:41	R1_ENV_100	NS	1699	< 1	-	-	-	S	Coarse sand		
15/06/2020	09:44	R1_ENV_100	NS	1700	< 1	-	-	-	S	Coarse sand		
15/06/2020	10:50	R1_ENV_102	NS	1704	< 1	-	-	-	S	Coarse sand		
15/06/2020	10:56	R1_ENV_102	NS	1705	< 1	-	-	-	S	Coarse sand and coral rubble		
15/06/2020	11:00	R1_ENV_102	NS	1706	< 1	-	-	-	S	Coarse sand		
15/06/2020	12:12	R1_ENV_103	NS	1715	0	-	-	-	S	Coarse sand		

ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE) ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL BASELINE SURVEYS FOR SUBSEA CABLE ROUTES

Rev Page

235 of 602

04

-fugro

ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)

					Sample				Sediment D	escription (including stratig	raphy)	Comments (fauna,
Date	Time [UTC]	Station	Sample	Fix No.	Depth [cm]	Temp [°C]	Redox [mV]	рН	Sediment Type	Sediment Description	Munsell colour	smell, bioturbation, debris)
15/06/2020	12:17	R1_ENV_103	NS	1716	0	-	-	-	S	Coral rubble		
15/06/2020	12:19	R1_ENV_103	NS	1717	< 1	-	-	-	S	Sand and shell fragments		
15/06/2020	13:00	SO_R1_013	PC	1718	< 2	-	-	-	S	Coarse sand and shell fragments		
15/06/2020	13:02	R1_ENV_104	NS	1719	< 2	31.6	97	6.8	S	Coarse gravelly sand	Pale brown (2.5Y 8/2)	
15/06/2020	13:10	R1_ENV_104	NS	1720	3	31.2	89	6.4	S	Coarse gravelly sand	Pale brown (2.5Y 8/2)	
15/06/2020	13:13	R1_ENV_104	NS	1721	< 1	-	-	-	S	Coarse gravelly sand	Pale brown (2.5Y 8/2)	

Notes

UTC = Coordinated Universal Time

PC = Physico-chemical sample

NS = No sample

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	-
5	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	TUGRO
ADNOC	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev Page
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04 236 of 602
C.3	Video and Photographic Log	

2		PPOVIS	El	NVIRONI	IENTAL E	BASELI E-0395	NE S - LIG	URVEY RESU HTNING PRO	ORE (ADNOC OFFSHORE) LTS REPORT - ROUTE 1 JECT RONMENTAL BASELINE SURVEYS			fugro
ادنوان ADNOC		r kovio		GLOFT				CABLE ROU			Re	ev Page
				ADNOC		NT NO.	: AD4	1-457-G-24202	(OEU021-V01-Route-1)		04	4 237 of 602
Clarke 1880	(Mod) Sph	eroid, Nahrwan	1967 Dat	um. UTM P	Proiection. Zo	one 39 N	orth. C	CM 51° East				
					pordinates						Hard	
Data	Transect	Video File	Time [UTC]	Easting [m]	Northing [m]	Length [m]	Still Nos.	Sediment Description	Fauna/Bioturbation/Debris	Soft Coral Cover	Coral Cover	Seagrass
16/05/2020	TR01	E0395_R1_TR01	09:50:12	760 298.4	2 671 461.1	137	13	Sand	Seagrass (Halodule uninervis, possible Halophila stipulacea and Halophila ovalis	No coral	No coral	Seagrass bed
,			09:52:36	760 172.1	2 671 406.8				complex), macroalgae, red algae (Rhodophyta, ? <i>Chondria dasyphylla</i>)	(< 1 %)	(< 1 %)	(10 %)
			09:27:48	762 923.0	2 672 225.9				Seagrass (<i>Halodule uninervis,</i> <i>Halophila stipulacea</i> and <i>Halophila ovalis</i> complex), peacock weed	No coral	No coral	Seagrass
			09:28:52	762 878.9	2 672 209.2	47	2	Sand	(<i>Padina boergesenil</i>), red algae (Rhodophyta, ? <i>Chondria dasyphylla</i>), sponges (Porifera), ascidians (Ascidiacaea, including ? <i>Didemnum</i> sp.)	(< 1 %)	(< 1 %)	bed (10 %)
				762 878.9	2 672 209.2				Low density patches of seagrass			Low seagrass
16/05/2020	TR02	E0395_R1_TR02		762 870.4	2 672 205.5	9	-	Sand	(Halodule uninervis, Halophila stipulacea and Halophila ovalis complex), peacock weed (?Padina boergesenil)	No coral (< 1 %)	No coral (< 1 %)	cover (1 to 10 %
			09:29:04	762 870.4	2 672 205.5	 			Seagrass (Halodule uninervis, Halophila stipulacea and Halophila ovalis complex), ascidian (Ascidiacea), sponge	No coral	No coral	Seagrass
			09:31:09	762 779.9	2 672 177.4	95	9	Sand	(Porifera), macroalgae, red algae (Rhodophyta, ? <i>Chondria dasyphylla</i>), peacock weed (<i>Padina boergesenil</i>)	(< 1 %)	(< 1 %)	bed (10 %)

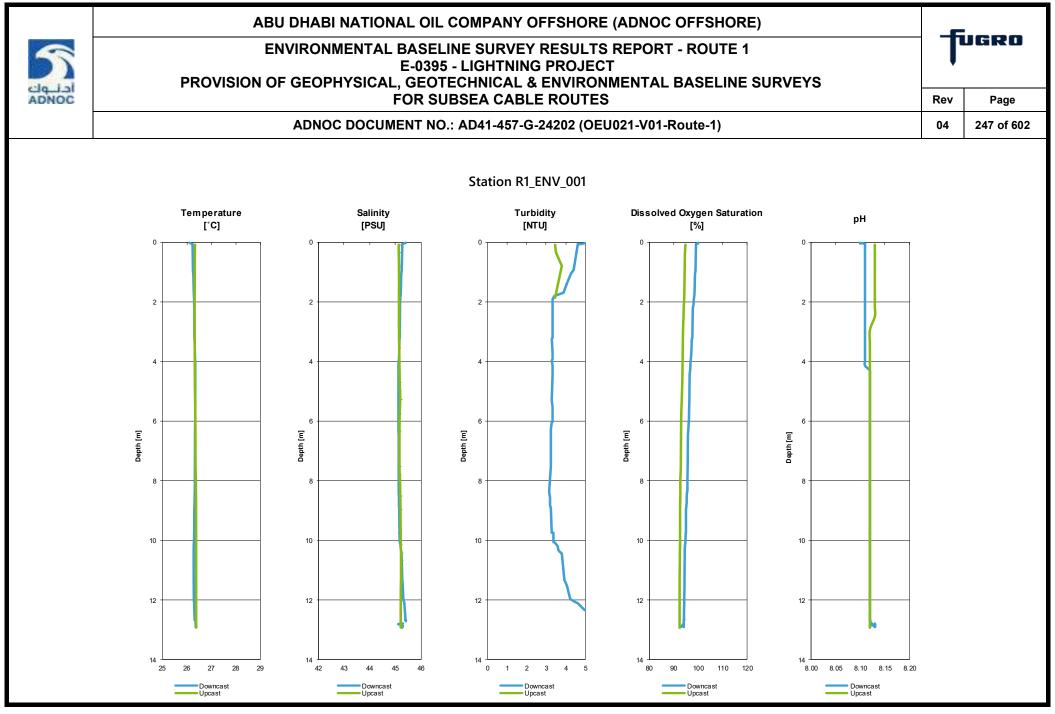
5		PROVI	E	ENVIRO	NMENTA	L BAS E-03	ELIN 895 - 1	E SURVEY RESU LIGHTNING PRO	ORE (ADNOC OFFSHORE) ILTS REPORT - ROUTE 1 JECT RONMENTAL BASELINE SURVEY	٩		fugro
أدنــوك ADNOC								SEA CABLE ROU		.	Re	ev Page
				ADN		MENT I	NO.: A	AD41-457-G-24202	(OEU021-V01-Route-1)		0	4 238 of 602
Clarke 1880	(Mod) Spl	heroid Nahrwa	n 1967 D	atum UTI	M Projection	70ne 3		th, CM 51° East				
					oordinates							
Date	Transect	Video File	Time [UTC]	Easting [m]	Northing [m]	Length [m]		Sediment Description	Fauna/Bioturbation/Debris	Soft Coral Cover	Hard Coral Cover	Seagrass
					2 673 924.0 2 673 924.8	23	1	Sand	Seagrass (Halodule uninervis, Halophila stipulacea and Halophila ovalis complex), sponges (Porifera), epiphytic branching sponges/ascidians (Porifera/Ascidiacea), peacock weed (Padina boergesenil), red algae (Rhodophyta, ?Chondria dasyphylla)	No coral (< 1 %)	No coral (< 1 %)	Seagrass bed (10 %)
					2 673 924.8 2 673 926.8	13	2	Sand with shell and coral rubble fragments	Low density patches of seagrass (possible Halodule uninervis, Halophila stipulacea and Halophila ovalis complex), red algae (Rhodophyta), algal turf, fish (Pisces)	No coral (< 1 %)	No coral (< 1 %)	Low seagrass cover (1 to 10 %)
15/05/2020	TR03	E0395_R1_TR03			2 673 926.8 2 673 942.1	41	3	Sand with shell and coral rubble fragments	Seagrass (Halodule uninervis, Halophila stipulacea and Halophila ovalis complex), faunal burrows, fish (Pisces)	No coral (< 1 %)	No coral (< 1 %)	Seagrass bed (10 %)
			15:31:04	764 793.0	2 673 942.1		3	Rippled sand with shell and coral	Low density patches of seagrass (possible Halodule uninervis, Halophila stipulacea and Halophila ovalis complex), peacock	No coral	No coral	Low seagrass
			15:32:09	764 834.7	2 673 947.4	42 3 .4	rubble fragments	weed (<i>Padina boergesenil</i>), red algae (Rhodophyta, ? <i>Chondria dasyphylla</i>), goby (<i>Cryptocentrus</i> sp.), fish (Pisces)	(< 1 %)	(< 1 %)	cover (1 to 10 %)	
					2 673 947.4 2 673 949.4	13	1	Sand with shell and coral rubble fragments	Seagrass (possible Halodule uninervis, Halophila stipulacea and Halophila ovalis complex), peacock weed (Padina boergesenil), red algae (Rhodophyta, ?Chondria dasyphylla)	No coral (< 1 %)	No coral (< 1 %)	Seagrass bed (10 %)

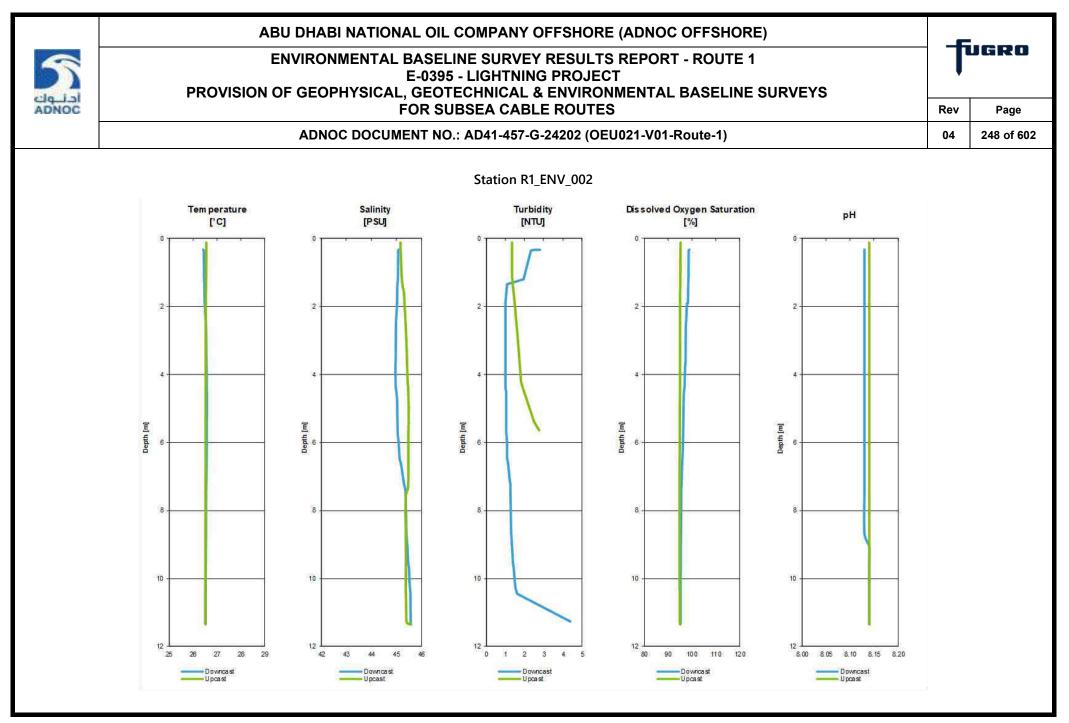
5		PROVIS	E	NVIRON	MENTAL	BASE E-039	LINE 5 - L	SURVEY RESULT	E (ADNOC OFFSHORE) S REPORT - ROUTE 1 CT IMENTAL BASELINE SURVEYS	5		fugro
ADNOC						•		A CABLE ROUTES		-	Re	v Page
				ADNC		IENT NO	0.: AI	041-457-G-24202 (OE	EU021-V01-Route-1)		04	238 of 602
Clarke 1880	(Mod) Spl	heroid, Nahrwan	1967 Da	tum, UTM	Projection,	Zone 39	North	n, CM 51° East				
					ordinates							
Date	Transect	Video File	Time [UTC]	Easting [m]	Northing [m]	Length [m]	Still Nos.	Sediment Description	Fauna/Bioturbation/Debris	Soft Coral Cover	Hard Coral Cover	Seagrass
			01:07:26	788 940.4	2 711 779.3			Gravelly sand with shell fragments and coral rubble veneer	Finger corals (<i>Porites</i> sp.), sea urchins (<i>Echinometra mathei</i>), sponge (Porifera), ascidian (Phallusia nigra), faunal turf (Bryozoa/Hydrozoa), hermit crab (Paguroidea), pearl oyster (<i>Pinctada</i> sp.), hammer oysters	No coral	No coral	No
			01:15:36	788 891.3	2 711 730.7	69	11	overlying calcarenite. Occasional calcarenite outcrops	(<i>Malleus</i> sp.), shrimps (Caridea), sea snails (Gastropoda), sand dollar (Clypeasteroidea inc.? <i>Echinodiscus</i> sp.), peacock weed (<i>Padina boergesenii</i>), algal turf, emperor fish (<i>Lethrinus</i> sp.), unidentified fish (Pisces)	(< 1 %)	(< 1 %)	seagrass (< 1 %)
16/06/2020	TR04B	E0395_R1_TR04b	01:15:36	788 891.3	2 711 730.7	9	1	Gravelly sand with shell fragments and coral rubble veneer	Boulder corals (Faviidae), plate coral (<i>Turbinaria</i> sp.), finger corals (<i>Porites</i> sp.), sea urchins (<i>Echinometra mathei</i>),	No coral	Low coral	No seagrass
			01:16:16	788 885.1	2 711 724.6			overlying calcarenite. Occasional calcarenite outcrops	sponge (Porifera), hammer oysters (<i>Malleus</i> sp.), starfish (Asteroidea)	(< 1 %)	(1 – 10 %)	(< 1 %)
			01:16:16	788 885.1	2 711 724.6			Gravelly sand with shell fragments and coral rubble veneer	Boulder corals (Faviidae), finger corals (<i>Porites</i> sp.), sea urchins (<i>Echinometra</i> <i>mathei</i>), sponge (Porifera), ascidian (<i>Phallusia nigra</i>), faunal turf	No coral	No coral	No
			01:20:07	788 844.9	2 711 684.7	57	3	overlying calcarenite. Occasional calcarenite outcrops	(Bryozoa/Hydrozoa), hermit crab (Paguroidea), crab (Decapoda), pearl oyster (<i>Pinctada</i> sp.), hammer oysters (<i>Malleus</i> sp.), shrimps (Caridea), unidentified fish (Pisces)	(< 1 %)	(< 1 %)	seagrass (< 1 %)

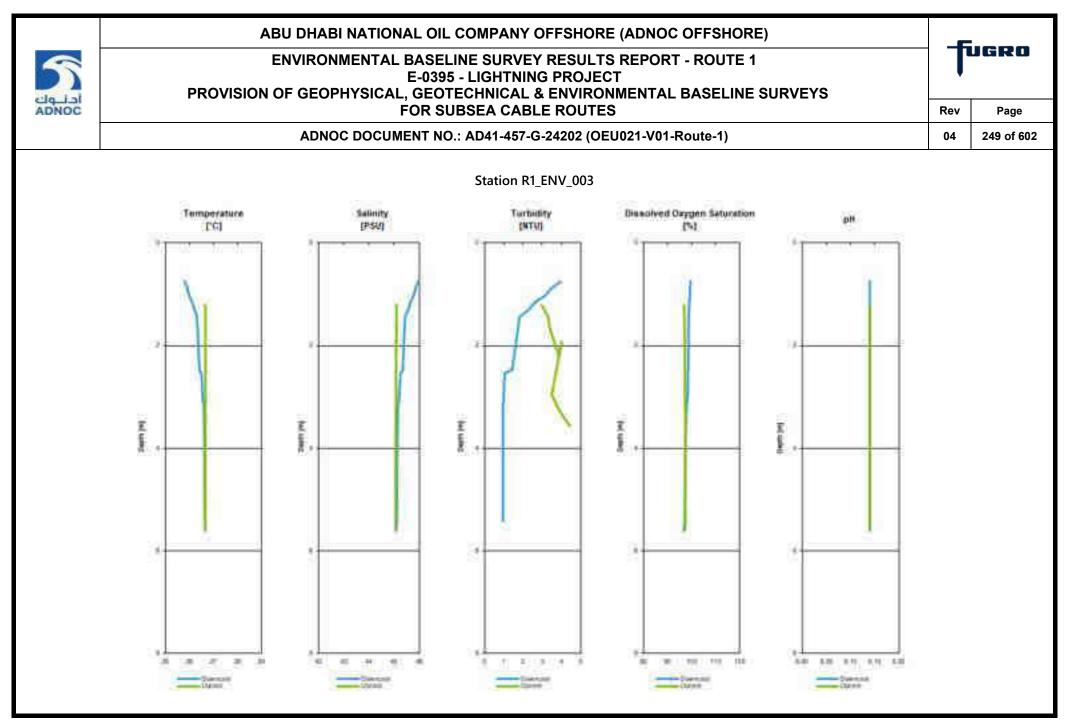
5		PROVIS	E	NVIRON	IMENTAL	BASE E-039	LINE 95 - L	SURVEY RESUL	PRE (ADNOC OFFSHORE) TS REPORT - ROUTE 1 ECT ONMENTAL BASELINE SURVEYS			UGRO
ADNOC								EA CABLE ROUT			Re	/ Page
				ADNC			0.: AI	D41-457-G-24202 ((OEU021-V01-Route-1)		04	238 of 602
Clarke 1880	(Mod) Spl	heroid, Nahrwan	1967 Da	tum, UTM	Projection,	Zone 39	North	n, CM 51° East				
Date	Transect	Video File	Time [UTC]		oordinates Northing [m]	Length [m]	Still	Sediment Description	Fauna/Bioturbation/Debris	Soft Coral Cover	Hard Coral Cover	Seagrass
			01:20:07		2 711 684.7			Gravelly sand with shell fragments and	Boulder corals (Faviidae), finger corals (Porites sp.), sea urchins (<i>Echinometra mathei</i>), sponge (Porifera),	No coral	Low coral	No
16/06/2020			01:20:54	788 836.4	2 711 678.6	10	1	coral rubble veneer overlying calcarenite	ascidian (<i>Phallusia nigra</i>), faunal turf (Bryozoa/Hydrozoa), hammer oysters (<i>Malleus</i> sp.)	(< 1 %)	(1-10 %)	seagrass (< 1 %)
16/06/2020	TR04B	E0395_R1_TR04b		788 836.4	2 711 678.6			Gravelly sand with shell fragments and		No coral No c	No coral	No
			01:22:53	788 817.8	2 711 661.5	25	2	coral rubble veneer overlying calcarenite	(<i>Pinctada</i> sp.), hammer oysters (<i>Malleus</i> sp.), sand dollar (Clypeasteroidea), pearly goatfish (<i>Parupeneus margaritatus</i>), unidentified fish (Pisces)	(< 1 %)	(< 1 %)	seagrass (< 1 %)
				771 190.9	2 689 048.2			Gravelly sand with	Seagrass (possible <i>Halophila stipulacea</i> and <i>Halophila ovalis</i> complex), sponges (Porifera), faunal turf (Hydrozoa/ Bryozoa), sand dollar (Clypeasteroidea), red algae	No coral	No coral	Seagrass
11/06/2020	TR05A	E0395_R1_TR05a		771 217.1	2 689 174.4	129	14	shell fragment deposits	(Rhodophyta), goatfish (Mullidae inc. Upeneus sp.), yellowstripe scad (Selaroides leptolepis), pink ear emperor (Lethrinus lentjan), mojarra fish (Gerreidae)	(< 1 %)	(< 1 %)	bed (10 %)

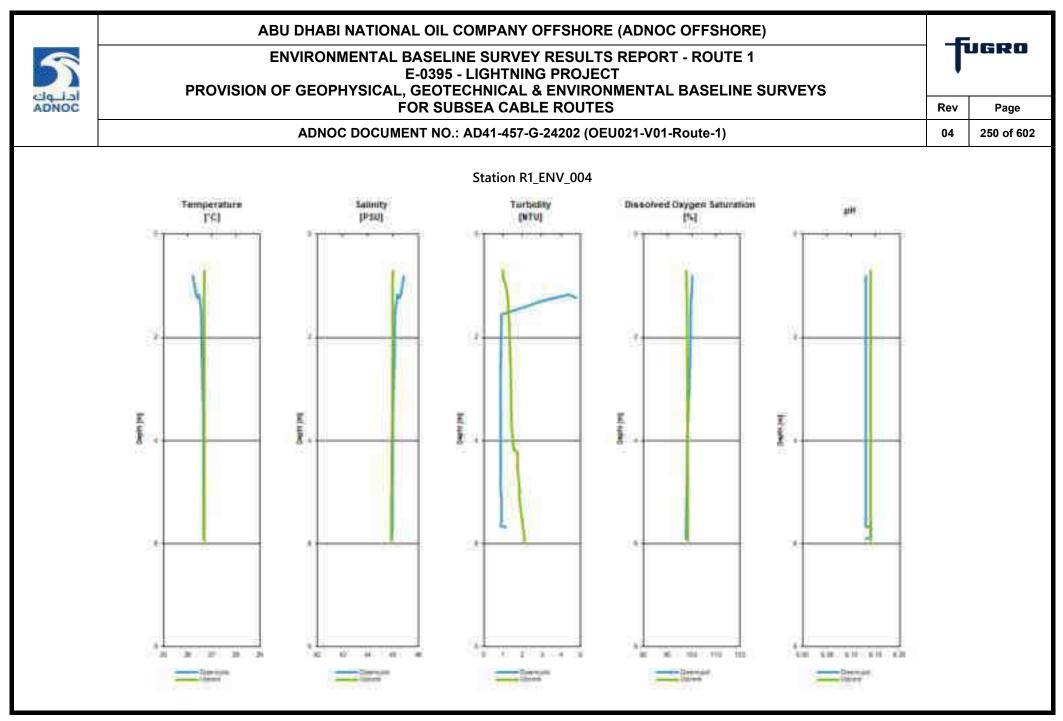
			E	NVIRON	MENTAL	BASEL E-039	LINE S 5 - LIG	SURVEY RESULT	E (ADNOC OFFSHORE) S REPORT - ROUTE 1 CT NMENTAL BASELINE SURVEYS			Tugro	
ADNOC		FROM						A CABLE ROUTE			Re	v Page	
				ADNO	C DOCUM	ENT NO).: AD4	41-457-G-24202 (OI	EU021-V01-Route-1)		04	239 of 602	
Clarke 1880	(Mod) Spl	neroid, Nahrwai	n 1967 Da	itum, UTM	Projection, 2	Zone 39	North,	CM 51° East					
				Video Co	oordinates						Hard		
Date	Transect	Video File	Time [UTC]	Easting [m]	Northing [m]	Length [m]	Still Nos.	Sediment Description	Fauna/Bioturbation/Debris	Soft Coral Cover	Coral Cover	Seagrass	
		E0395_R1_TR06	21:37:20	777 336.0	2 701 650.7	53 5 5 94 12		Calcarenite with a veneer of sand, relict coral and coral rubble	 (Bivalvia), ascidian (<i>Phallusia nigra</i>), starfish (<i>Astropecten polyacanthus</i> <i>phragmorus</i>), coralline algae (Corallinales), pink ear emperor fish (<i>Lethrinus lentjan</i>), snapper (<i>Lutjanus</i> sp.), arabian monocle bream (<i>Scolopsis</i> <i>ghanam</i>), black-streaked monocle bream (<i>Scolopsis taeniatus</i>) Sponge (Porifera), finger corals (<i>Porites</i> sp.), fanshell (<i>Pinna muricata</i>), hermit crab (Paguroidea), sea urchins (<i>Echinometra mathei</i>), brittlestar 		Moderate	No	
11/06/202 0	TR06			777 359.9	2 701 698.5						coral (10 to 50 %)	seagrass (< 1 %)	
			21:41:25	777 359.9	2 701 698.5						Coral	No	
			21:48:53	777 401.6	2 701 783.0		gravelly sand veneer, relict coral and coral rubble	(Ophiuroidea), hydroids (Hydrozoa), sand dollar (<i>Clypeaster humilis</i>), ascidian (<i>Phallusia niara</i>), shrimps		rubble (< 1 %)	seagrass (< 1 %)		

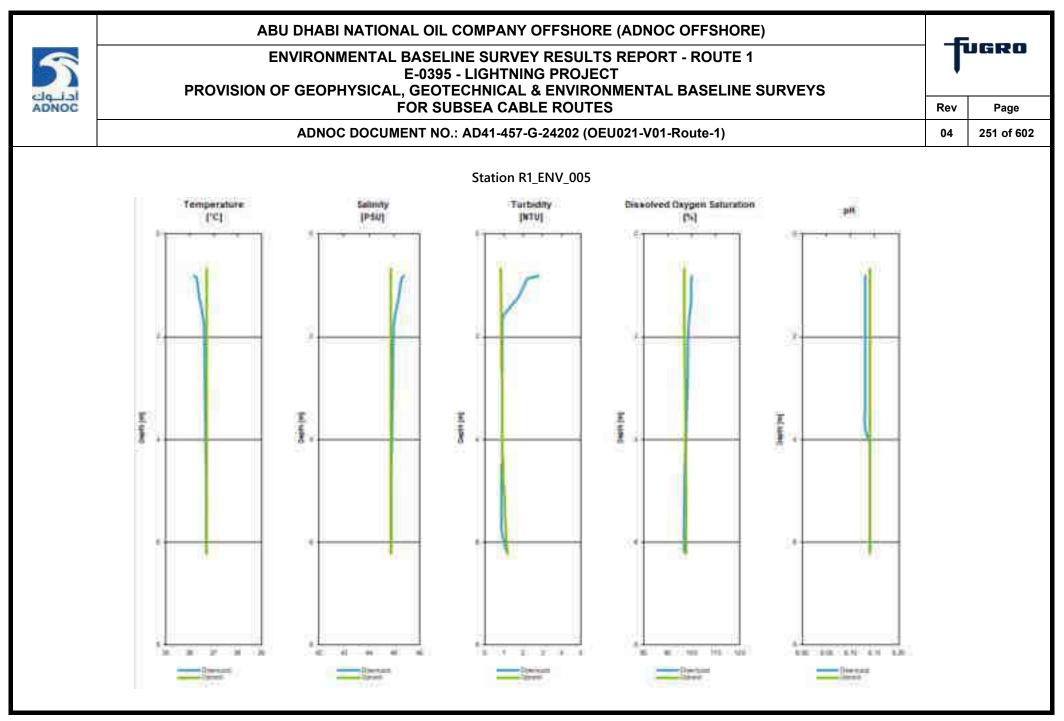
5			E	NVIRON	IMENTAL	BASE E-039	LINE 95 - L	SURVEY RESUL	RE (ADNOC OFFSHORE) .TS REPORT - ROUTE 1 ECT DNMENTAL BASELINE SURVEYS			T UGRO
ADNOC								A CABLE ROUT			R	ev Page
				ADNC		IENT N	0.: AI	041-457-G-24202 (0	DEU021-V01-Route-1)		0	4 240 of 602
Clarke 1880	(Mod) Spl	neroid, Nahrwan	1967 Da	tum, UTM	Projection,	Zone 39	North	, CM 51° East				
			T	Video Co	oordinates	1 1	C.''II			Soft Coral	Hard	
Date	Transect	Video File	Time [UTC]	Easting [m]	Northing [m]	Length [m]		Sediment Description	Fauna/Bioturbation/Debris	Cover	Coral Cover	Seagrass
			02:57:27	793 050.8	2 722 048.5			Sand, shell fragments and coral	Starfish (Pentaceraster mammillatus), fanshells (Pinna muricata), brittlestars (Ophiuroidea possible Ophiothela sp.), gorgonian (?Subergorgia suberosa), encrusting sponges (Porifera), ascidian	No corol	No coral	No
16/06/2020	TR07	E0395_R1_TR07	03:09:26	792 992.7	7 2 722 187.8	151		overlying possible calcarenite	(<i>Phallusia nigra</i>), blackspot snapper (<i>Lutjanus fulviflamma</i>), arabian monocle bream (<i>Scolopsis ghanam</i>), orange spot grouper (<i>Epinephelus coioides</i>), small scale terapon (<i>Terapon puta</i>), scad (Carangidae), unidentified fish (Pisces)	No coral (< 1 %)	(< 1 %)	seagrass (< 1 %)
			00:14:33	791 639.1	2 713 431.5			Muddy, gravelly sand with shell	Sponges (Porifera), hydroid (Hydrozoa), ascidians (<i>Phallusia nigra</i> , <i>Didemnum</i> sp.), sea urchin (Echinoidea), hermit crabs (Paguroidea), crab (Decapoda), decorator crab (Majoidea), conid shells (Conidae), shell (Bivalvia), star fish			No
10/06/2020	TR08A	E0395_R1_TR08a		791 738.5	2 713 314.5	153	19	fragments and coral rubble veneer overlying calcarenite	(<i>Aquilonastra</i> burtoni), small scale Terapon (<i>Terapon puta</i>), yellowstripe goatfish (<i>Mulloidichthys flavolineatus</i>), yellowstripe scad (<i>Selaroides leptolepis</i>), anchovies (Clupeiformes), mojarra fish (Gerreidae), cardinal fish (Apogonidae), faunal tracks, anthropogenic debris	No coral (< 1 %)	No coral (< 1 %)	seagrass (< 1 %)

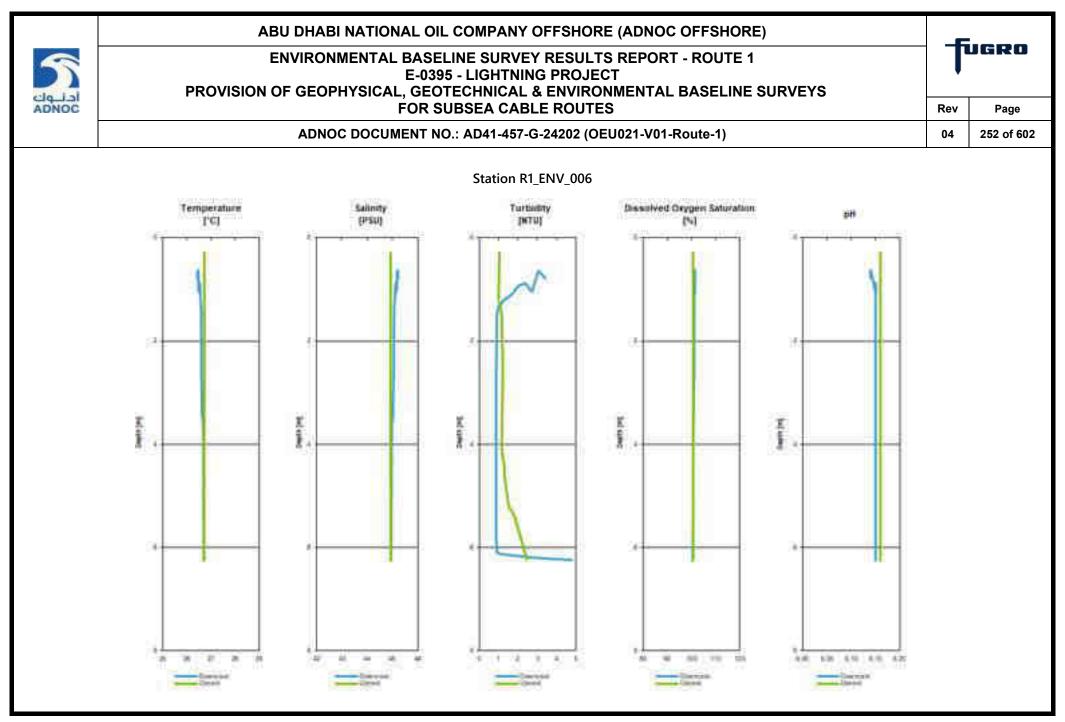

5		PPOVI	E	NVIRON	MENTAL	BASEL E-039	LINE S 5 - LIC	SURVEY RESU GHTNING PRO	ORE (ADNOC OFFSHORE) JLTS REPORT - ROUTE 1 JECT RONMENTAL BASELINE SURVEYS			UGRO
ADNOC		FRUM						A CABLE ROU			Rev	/ Page
				ADNO	C DOCUM).: AD	41-457-G-24202	(OEU021-V01-Route-1)		04	241 of 602
Clarke 1880	(Mod) Spl	neroid, Nahrwai	n 1967 Da	tum UTM	Projection	Zono 30	North	CM-51° Fact				
					pordinates							
Date	Transect	Video File	Time [UTC]	Easting [m]	Northing [m]	Length [m]	Still Nos.	Sediment Description	Fauna/Bioturbation/Debris	Soft Coral Cover	Hard Coral Cover	Seagrass
			08:32:36	786 709.8	2 744 249.5	15	2	Sand	Hermit crabs (Paguroidea), faunal	No coral	No coral	No
			08:33:37	786 722.7	2 744 256.4	15	2	Sanu	burrows and tracks	(< 1 %)	(< 1 %)	seagrass (< 1 %)
			08:33:37	786 722.7	2 744 256.4	7	4	Cond	Seagrass (Halophila stipulacea and Halophila ovalis complex), hermit crabs	No coral	No coral	Seagrass
		-	08:34:01	786 728.5	2 744 260.6	/	4	Sand	(Paguroidea), goatfish (Mullidae)	(< 1 %)	(< 1 %)	bed (10 %)
			08:34:01	786 728.5	2 744 260.6	5	0	Sand	Hermit crabs (Paguroidea), faunal	No coral	No coral	No
			08:34:19	786 733.1	2 744 263.3	5	0	Sanu	burrows and tracks	(< 1 %)	(< 1 %)	seagrass (< 1 %)
			08:34:19	786 733.1	2 744 263.3	4	1	Sand	Seagrass (Halophila stipulacea and Halophila ovalis complex), hermit crabs	No coral	No coral	Seagrass bed
				786 737.4	2 744 263.9	4	1	Sanu	(Paguroidea)	(< 1 %)	(< 1 %)	(10 %)
1/06/2020	TR09	E0395_R1_TR09	08:34:33	786 737.4	2 744 263.9	9	1	Sand	Hermit crabs (Paguroidea), faunal	No coral	No coral	No seagrass
			08:35:11	786 744.7	2 744 269.9		'	Sanu	burrows and tracks	(< 1 %)	(< 1 %)	(< 1 %)
			08:35:11	786 744.7	2 744 269.9	5	1	Sand	Seagrass (Halophila stipulacea and Halophila ovalis complex), hermit crabs	No coral	No coral	Seagrass bed
			08:35:33	786 748.8	2 744 272.0		1	Sanu	(Paguroidea)	(< 1 %)	(< 1 %)	(10 %)
			08:35:33	786 748.8	2 744 272.0	23	4	Sand	Hermit crabs (Paguroidea), faunal	No coral	No coral	No seagrass
			08:37:04	786 769.3	2 744 283.3	23	-	5410	burrows and tracks	(< 1 %)	(< 1 %)	(< 1 %)
					2 744 283.3 2 744 283.7	3	1	Sand	Seagrass (<i>Halophila stipulacea</i> and <i>Halophila ovalis</i> complex), hermit crabs (Paguroidea)	No coral (< 1 %)	No coral (< 1 %)	Seagrass bed (10 %)

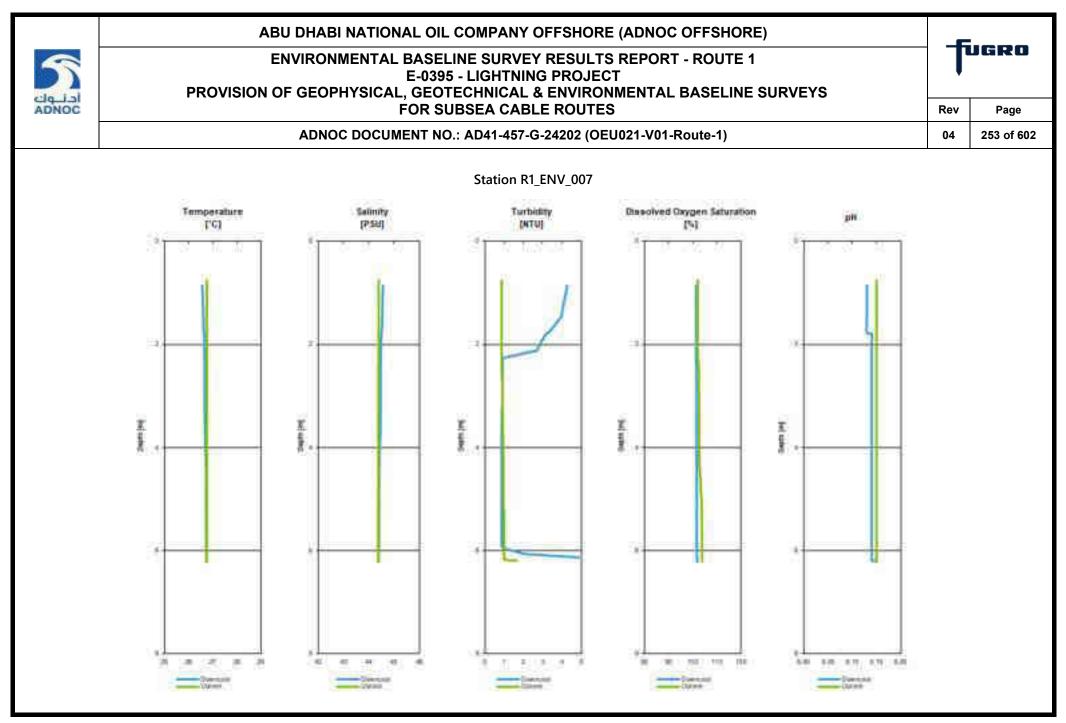

5		PROVI	E	NVIRON	IMENTAL	BASE E-039	LINE 95 - LI	SURVEY RESUL GHTNING PROJI	RE (ADNOC OFFSHORE) TS REPORT - ROUTE 1 ECT DNMENTAL BASELINE SURVEYS			ſ	IGRO
أحلموك ADNOC						FOR SI	UBSE	A CABLE ROUT	ES			Rev	Page
				ADNO			0.: AD)41-457-G-24202 (C	DEU021-V01-Route-1)			04	242 of 602
Clarke 1880	(Mod) Spł	neroid, Nahrwai	n 1967 Da	itum, UTM	Projection,	Zone 39	North	, CM 51° East	-				
Date	Transect	Video File	Time [UTC]	Video Co Easting [m]	oordinates Northing [m]	Length [m]	Still Nos.	Sediment Description	Fauna/Bioturbation/Debris	Soft Coral Cover	Hard Coral Cover	s	eagrass
					2 744 283.7 2 744 288.0	6	0	Sand	Hermit crabs (Paguroidea), faunal burrows and tracks	No coral (< 1 %)	No cora (< 1 %)	S	lo eagrass < 1 %)
			08:38:00		2 744 288.0 2 744 290.9	7	3	Sand	Seagrass (<i>Halophila stipulacea</i> and <i>Halophila ovalis</i> complex), hermit crabs (Paguroidea)	No coral (< 1 %)	No cora (< 1 %)	b	eagrass bed [10 %)
01/06/2020	TR09	E0395_R1_TR09	08:38:00		2 744 290.9 2 744 305.0	28	4	Sand	Hermit crabs (Paguroidea), faunal burrows and tracks	No coral (< 1 %)	No cora (< 1 %)	S	lo eagrass < 1 %)
					2 744 305.0 2 744 306.9	4	1	Sand	Seagrass (<i>Halophila stipulacea</i> and <i>Halophila ovalis</i> complex), hermit crabs (Paguroidea)	No coral (< 1 %)	No cora (< 1 %)	b	eagrass ed 10 %)

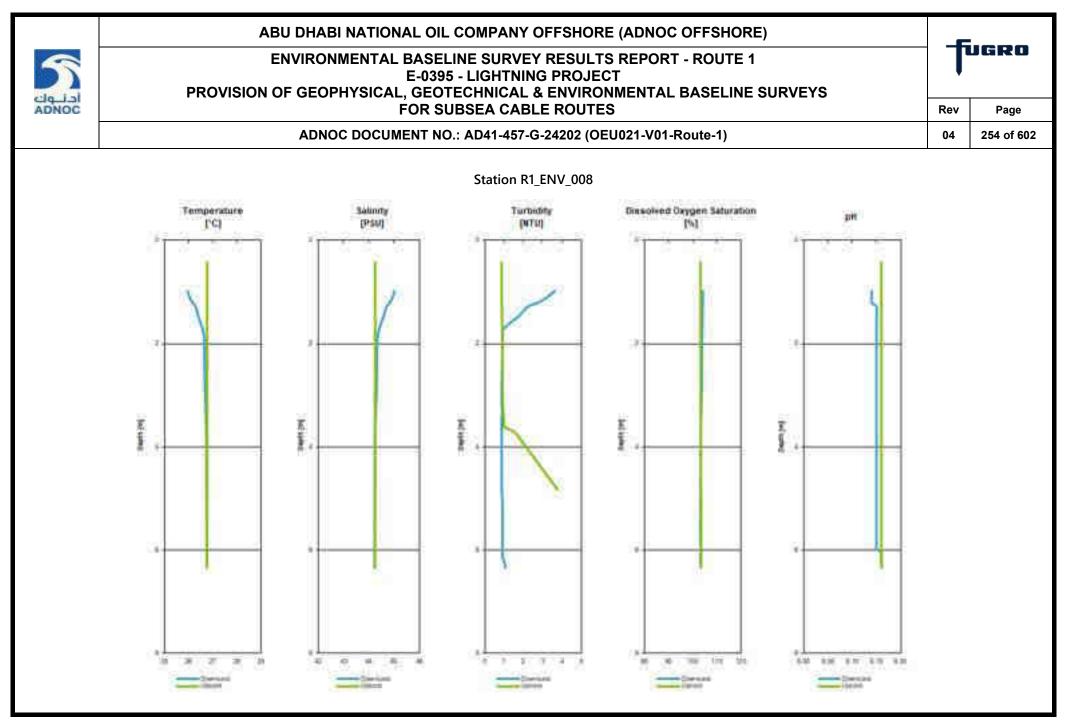

5		PROVIS	E	ENVIRO	NMENTAI	L BASE E-03	ELINE 895 - L	E SURVEY RESUI	DRE (ADNOC OFFSHORE) LTS REPORT - ROUTE 1 JECT CONMENTAL BASELINE SURVEYS			UGRO
ADNOC								EA CABLE ROUT			Re	v Page
				ADN			10.: A	D41-457-G-24202 ((OEU021-V01-Route-1)		04	243 of 602
Clarke 1880	(Mod) Sph	neroid, Nahrwan	1967 D	atum UTN	4 Projection	7 7 one 3	9 Nort	h_CM 51° Fast				
				1	oordinates						Hard	
Date	Transect	Video File	Time [UTC]	Easting [m]	Northing [m]	Length [m]	Nos.	Sediment Description	Fauna/Bioturbation/Debris	Soft Coral Cover	Coral Cover	Seagrass
			12:56:03	779 340.6	52 761 566.1			Gravelly sand and shell fragments veneer overlying	Boulder corals (Faviidae), finger corals (<i>Porites</i> sp.), plate corals (<i>Turbinaria</i> sp.), gorgonians (Alcyonacea), pencil urchins (<i>Phyllacanthus imperialis</i>), sea urchin (<i>Echinometra mathei</i>), long spined urchin (<i>Diadema setosum</i>), starfish (<i>Linckia</i> sp.), hydroids (Hydrozoa), turf algae, encrusting sponge (Porifera), coralline			
80/05/2020	TR10	E0395_R1_TR10		779 465.0	2 761 544.1	126	13	calcarenite, coral rubble. Calcarenite subcrops and calcarenite reef overhangs	algae (Corallinales), pearly goatfish (<i>Parupeneus margaritatus</i>), black spot snapper (<i>Lutjanus</i> sp.), arabian monacle bream (<i>Scolopsis ghanam</i>), parrotfish (<i>Chlorurus sordidus</i>), yellowband angel fish (<i>Pomacanthus maculosus</i>), blackspotted rubber lip (<i>Plectorhinchus gaterinus</i>), double bar bream (<i>Acanthopagrus</i> <i>bifasciatus</i>), goby (Gobiidae), unidentified fish (Pisces). Occasional evidence of coral bleaching and/or coral death.	(< 1 %)	Low coral (1-10 %)	No seagrass (< 1 %)

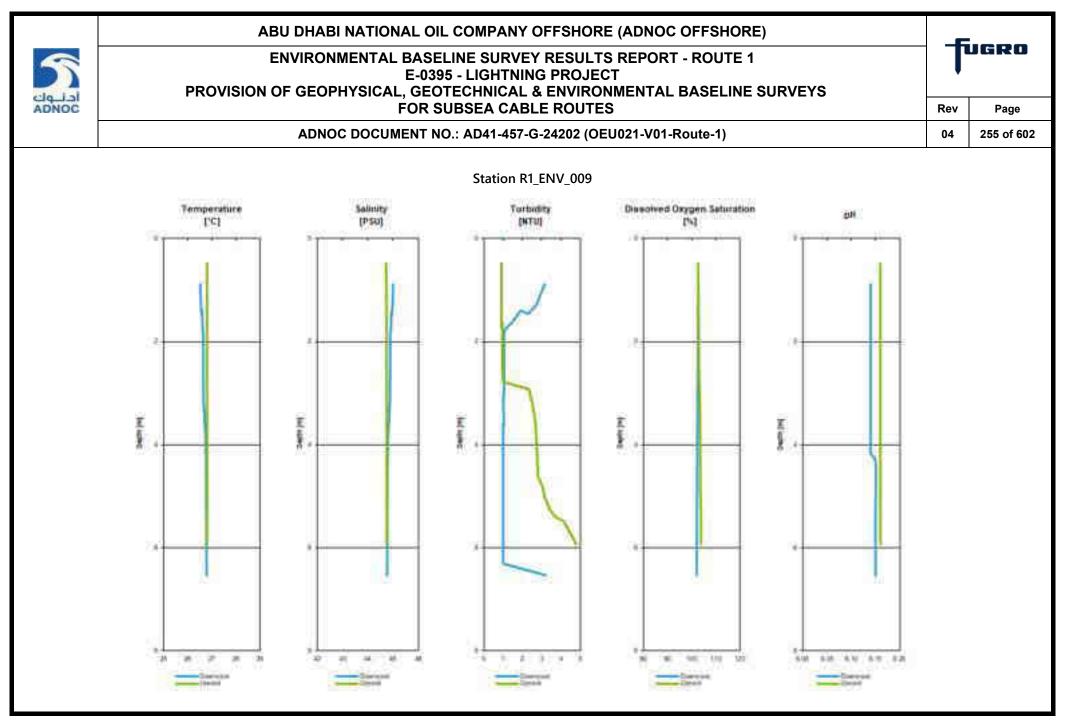

	ABU DHABI NATIONAL OIL COMPANY OFFSHORE (ADNOC OFFSHORE)	_	
5	ENVIRONMENTAL BASELINE SURVEY RESULTS REPORT - ROUTE 1 E-0395 - LIGHTNING PROJECT PROVISION OF GEOPHYSICAL, GEOTECHNICAL & ENVIRONMENTAL	Ţ	JGRO
ADNOC	BASELINE SURVEYS FOR SUBSEA CABLE ROUTES	Rev	Page
	ADNOC DOCUMENT NO.: AD41-457-G-24202 (OEU021-V01-Route-1)	04	246 of 602

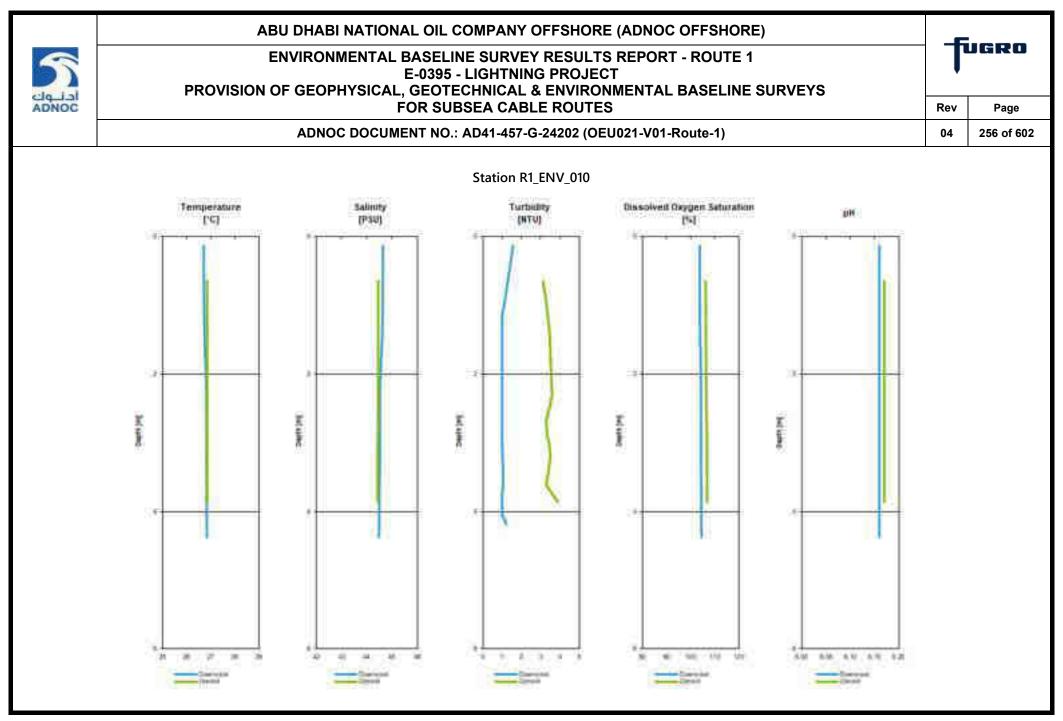

D. Water Column Profile

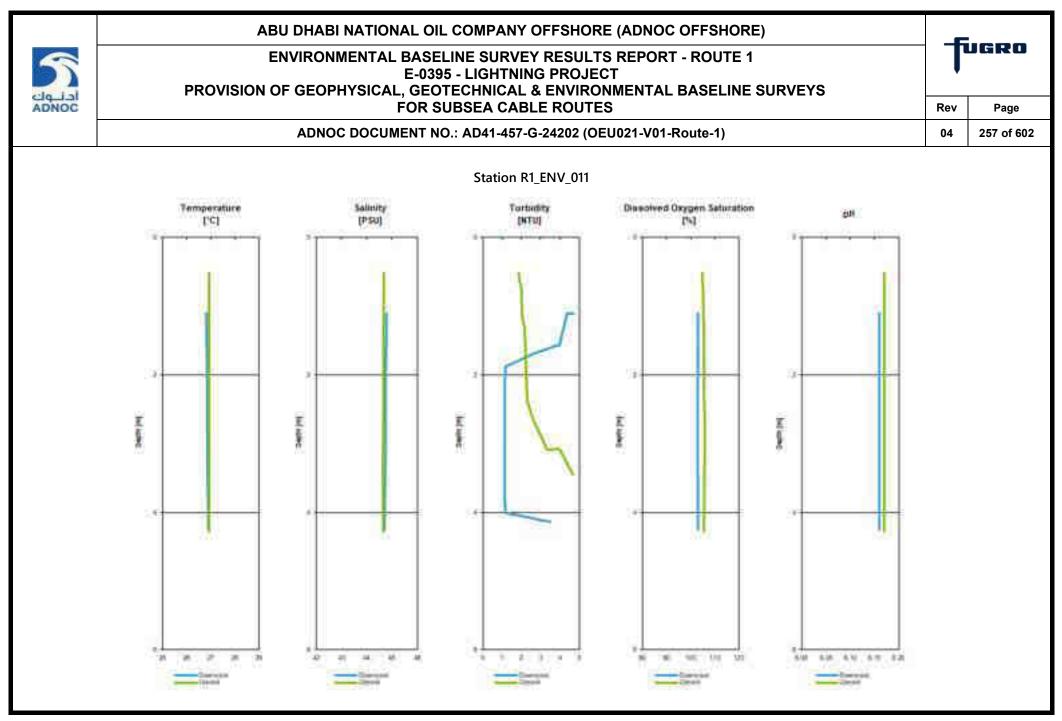


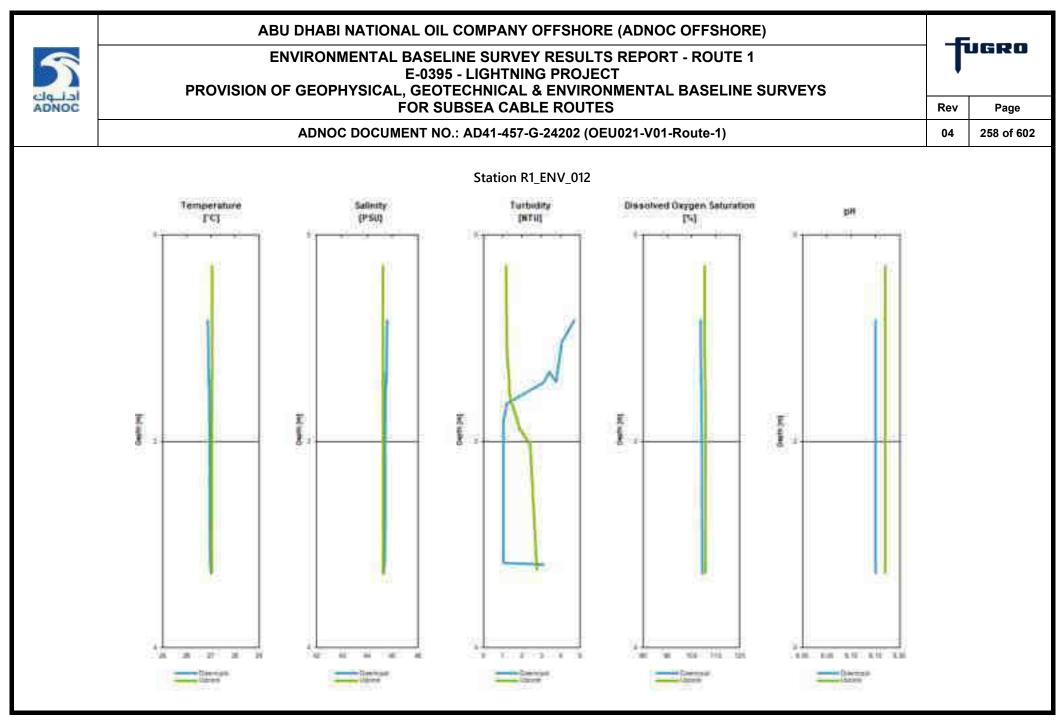


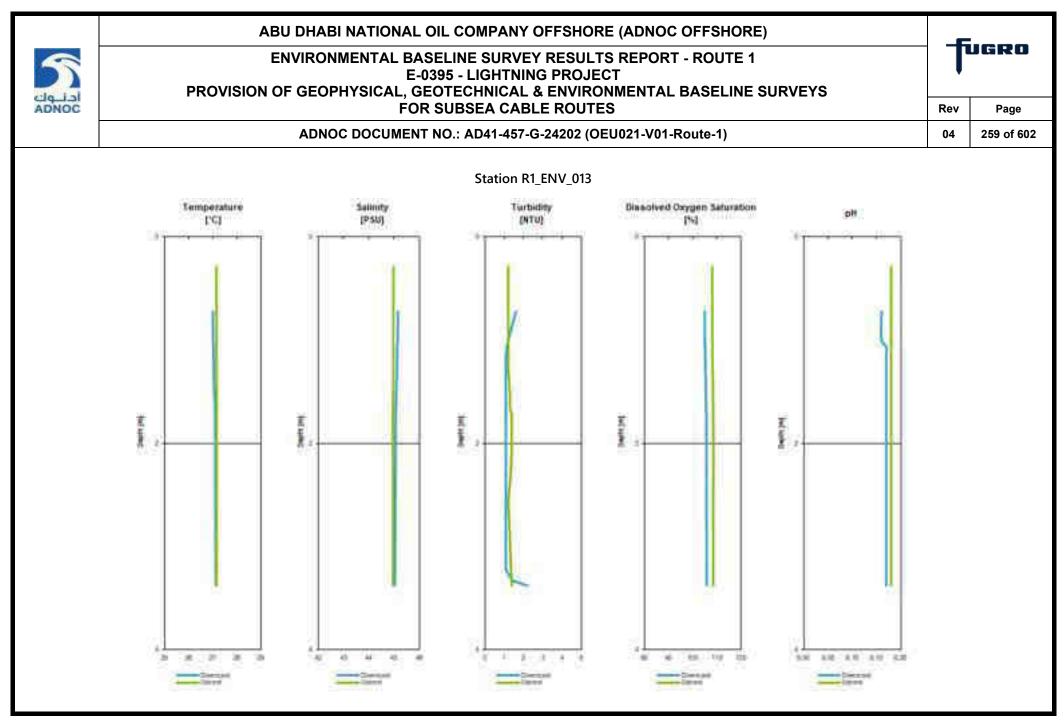


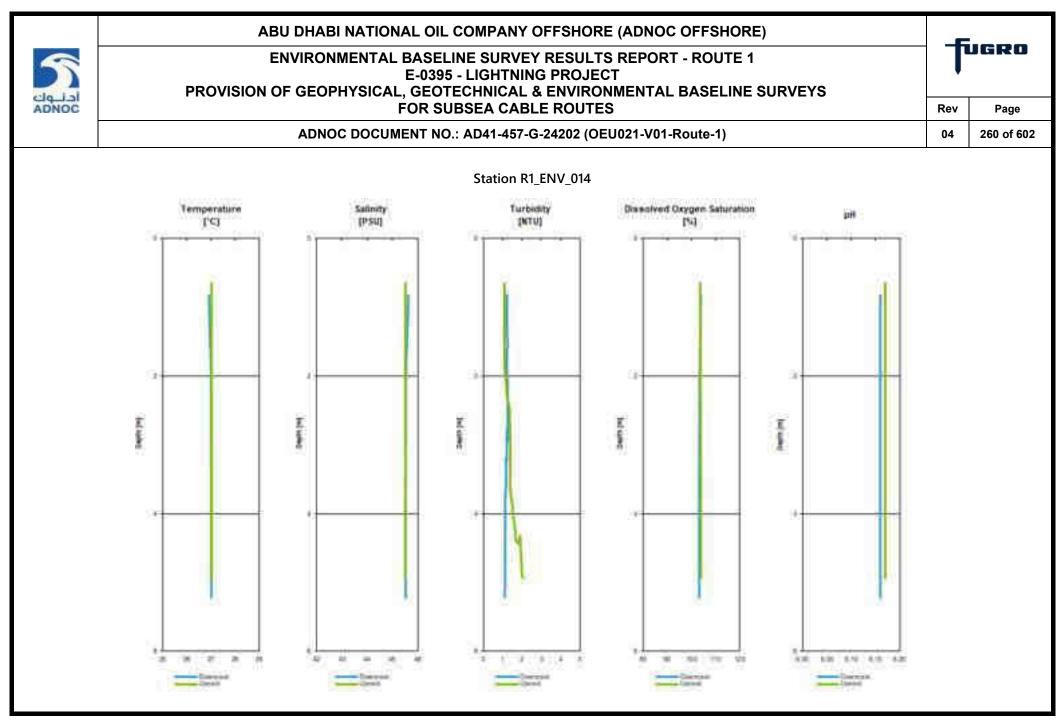


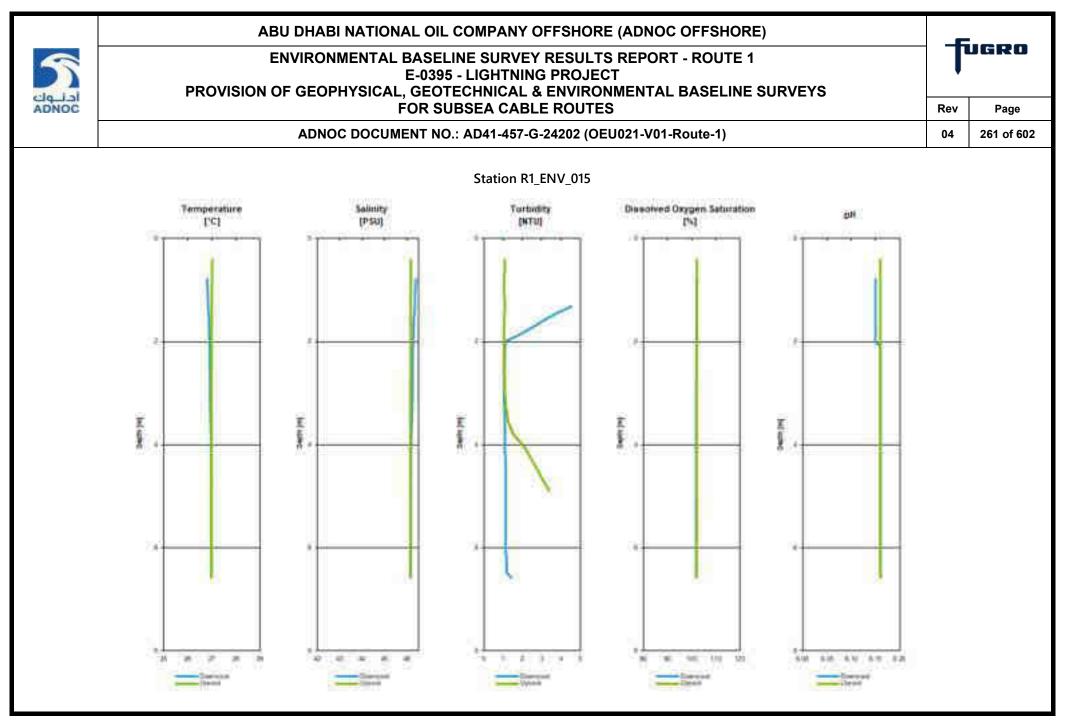


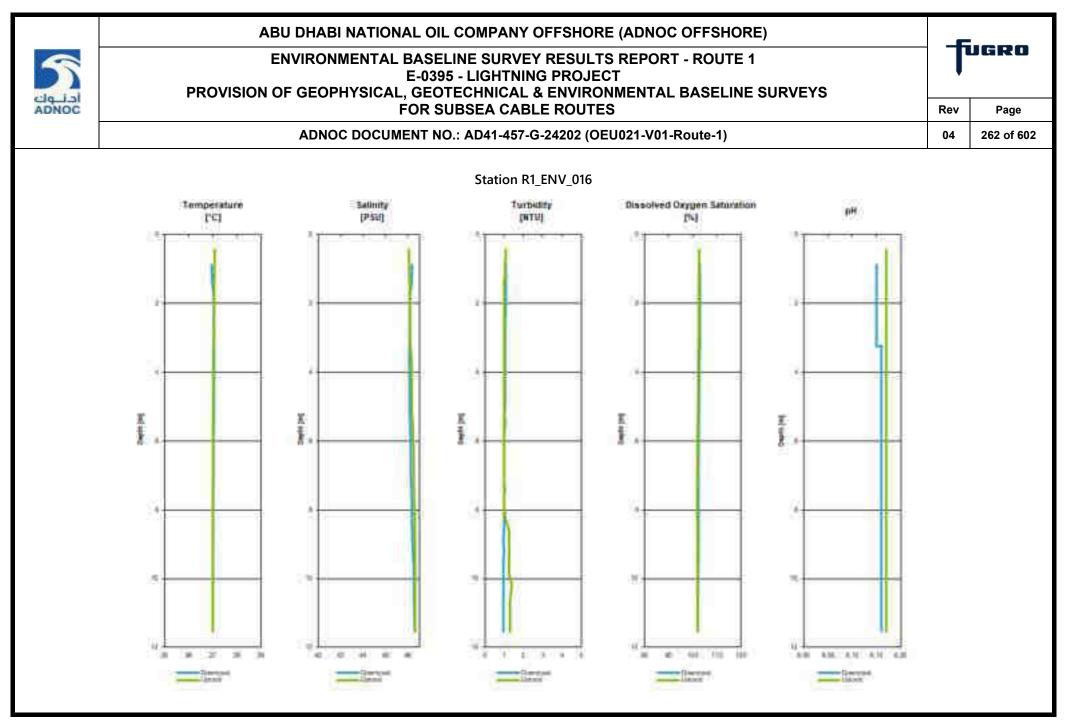


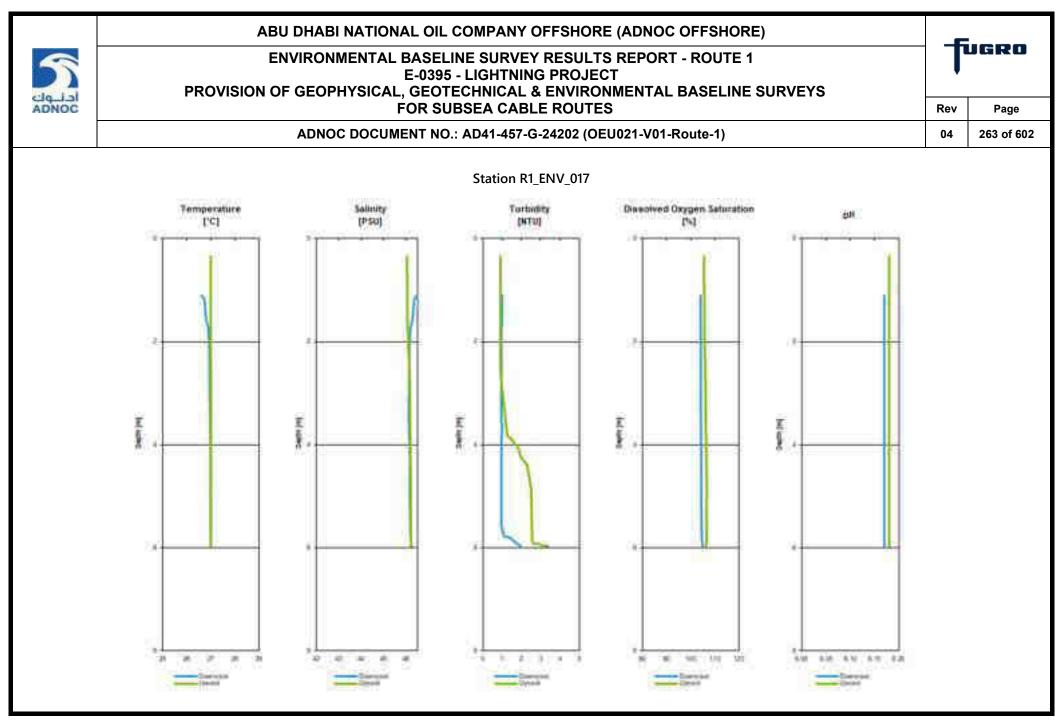


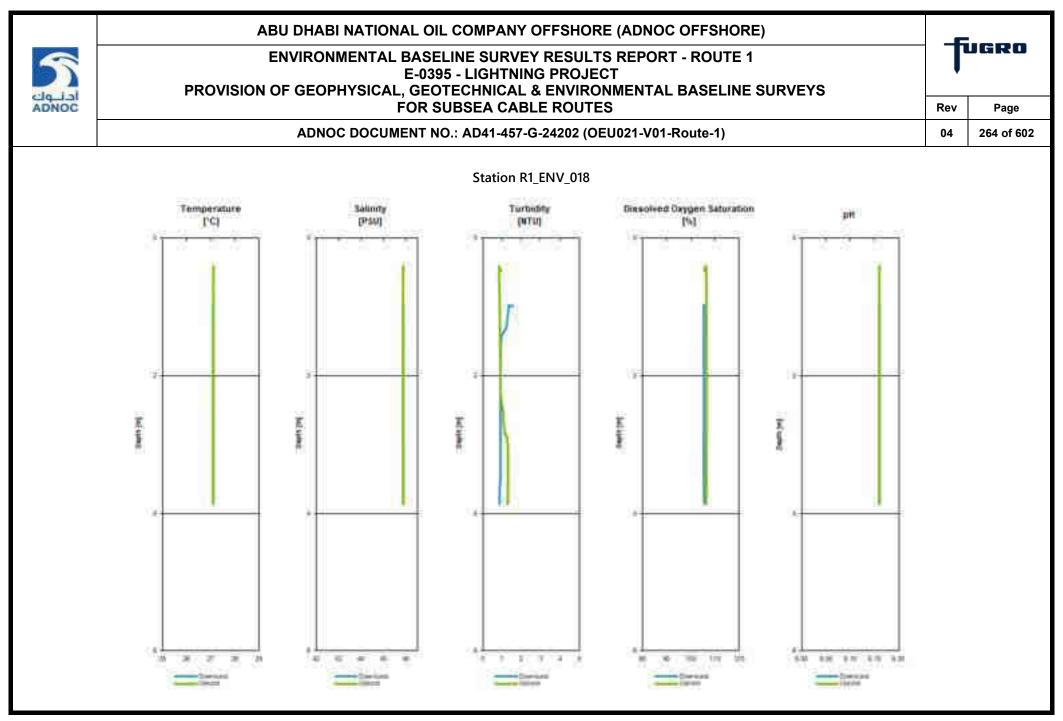


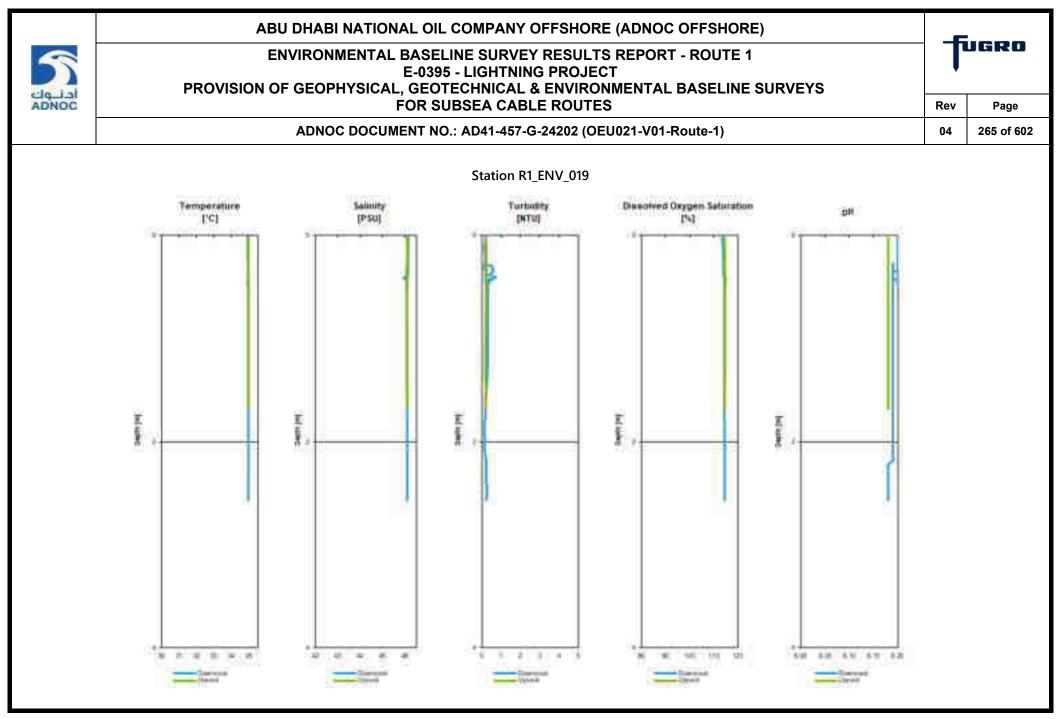


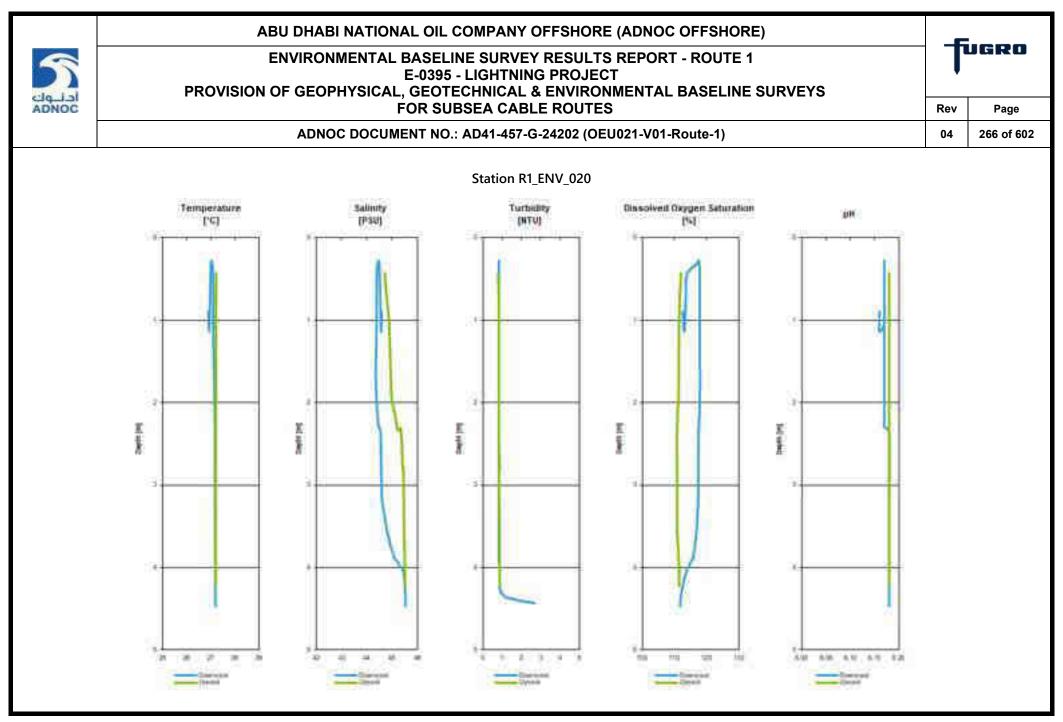


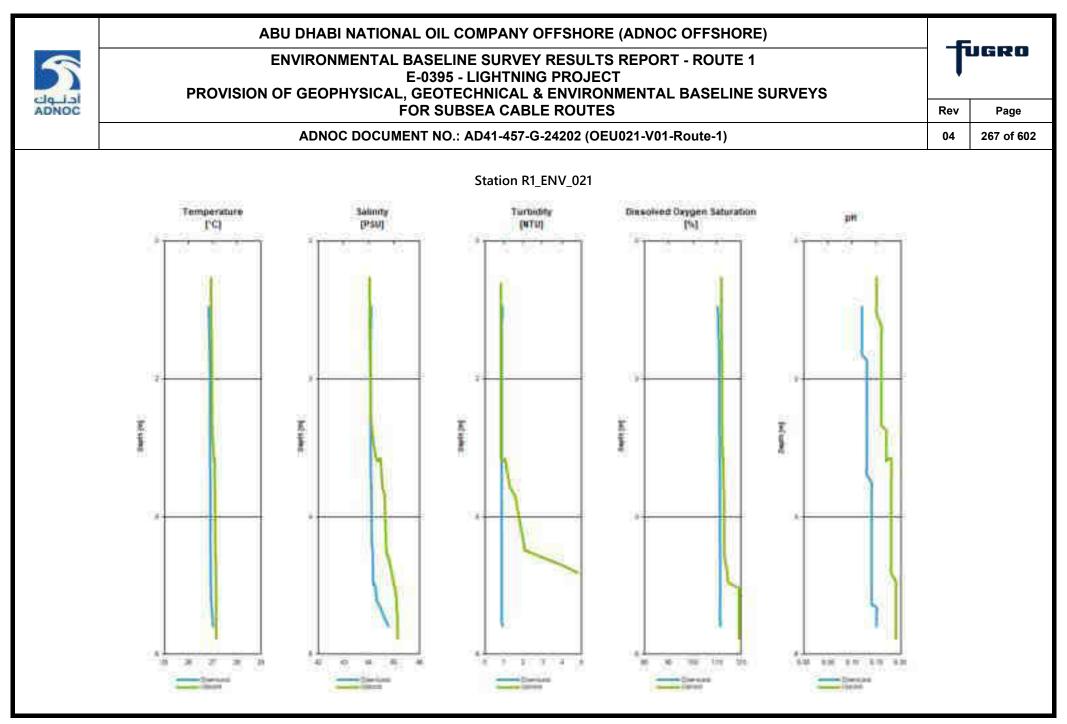


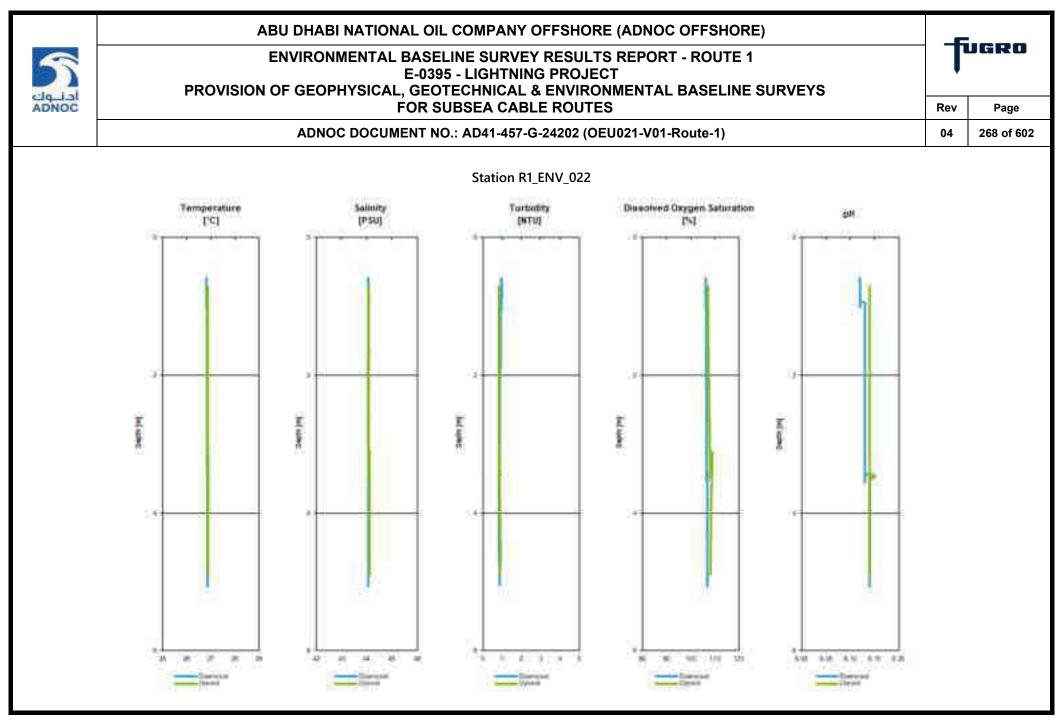


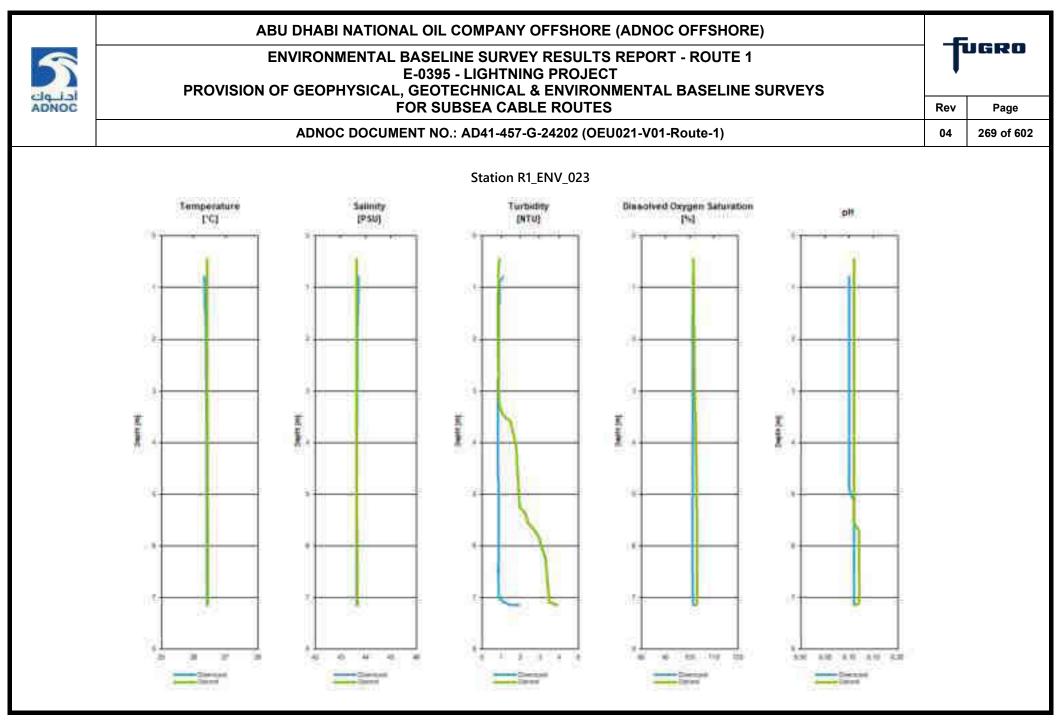


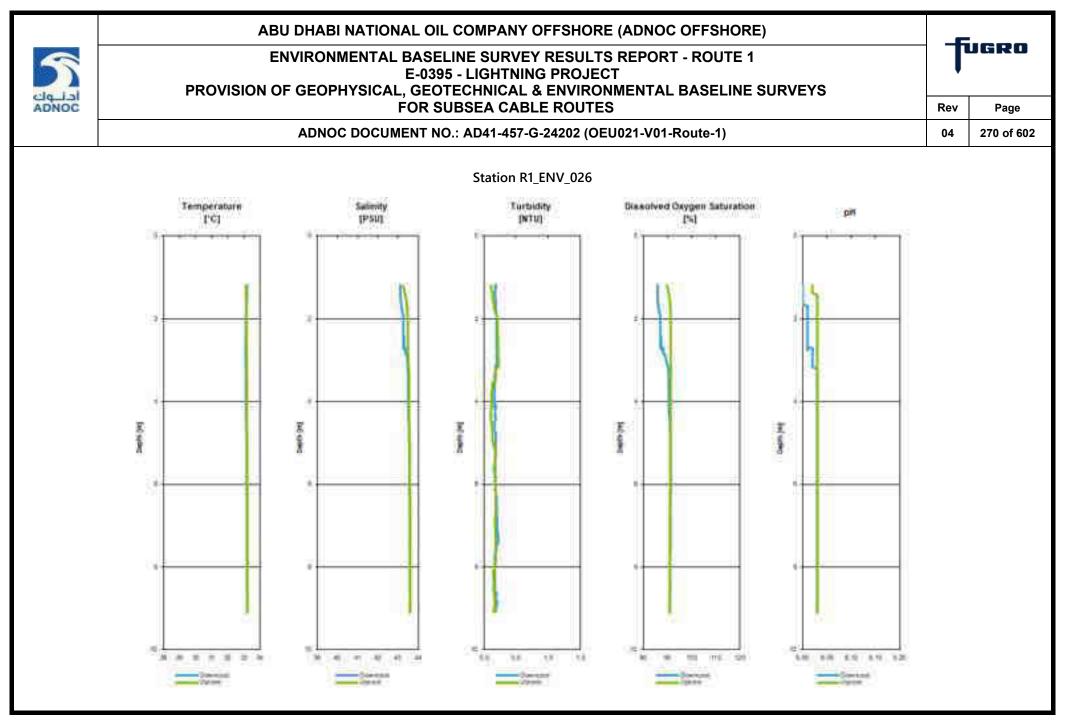


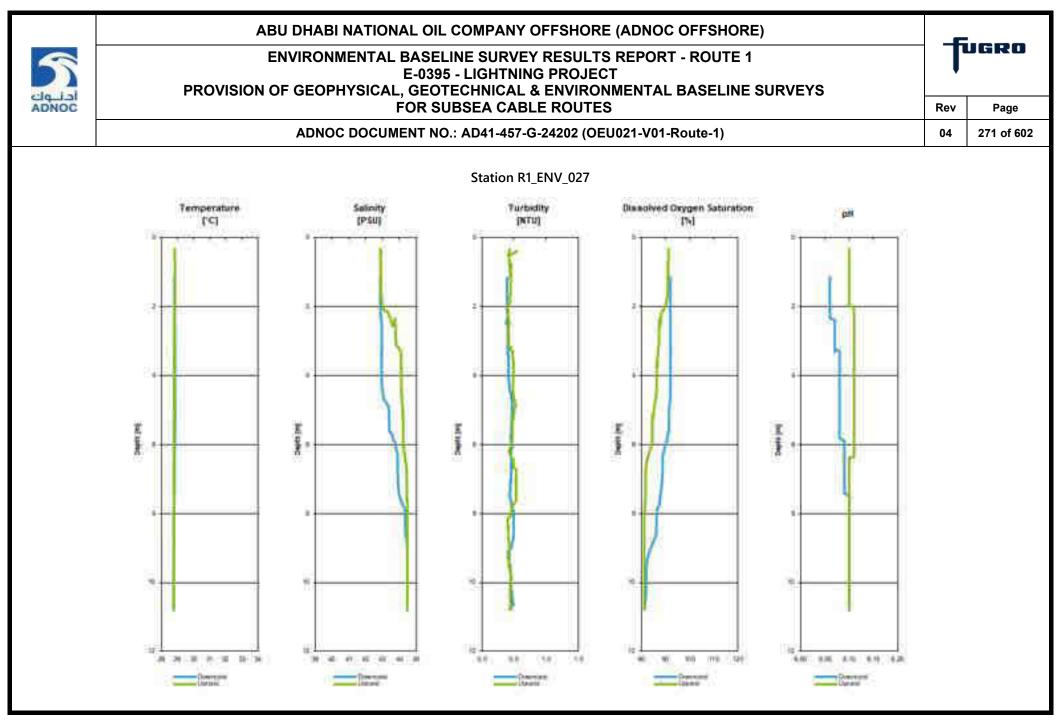


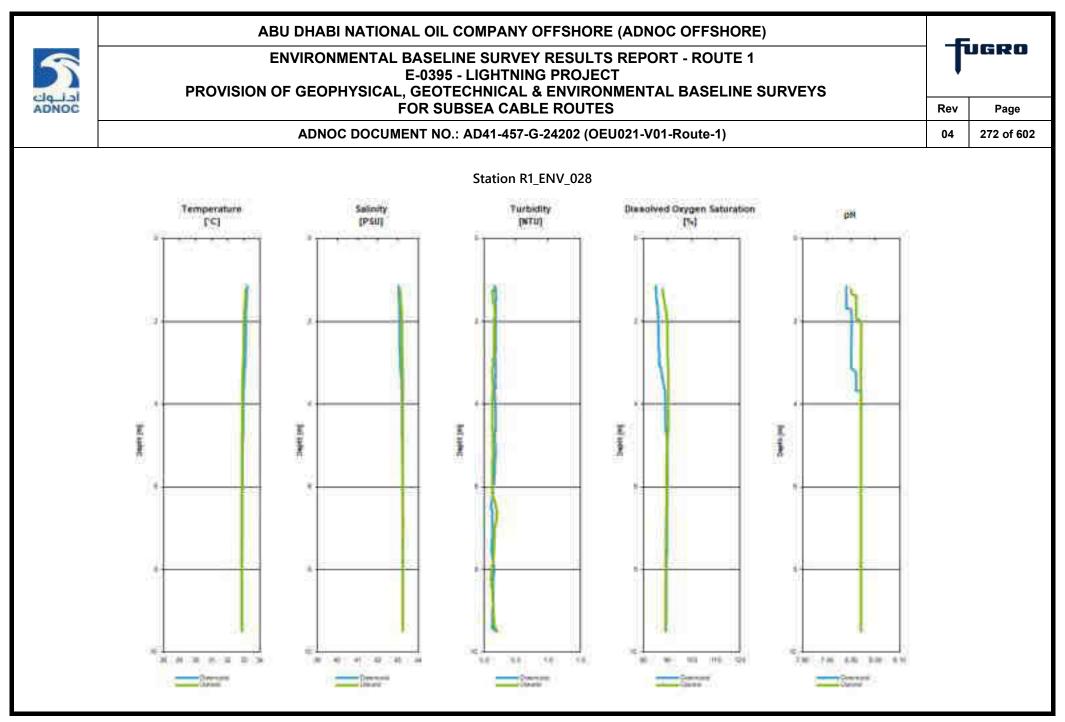


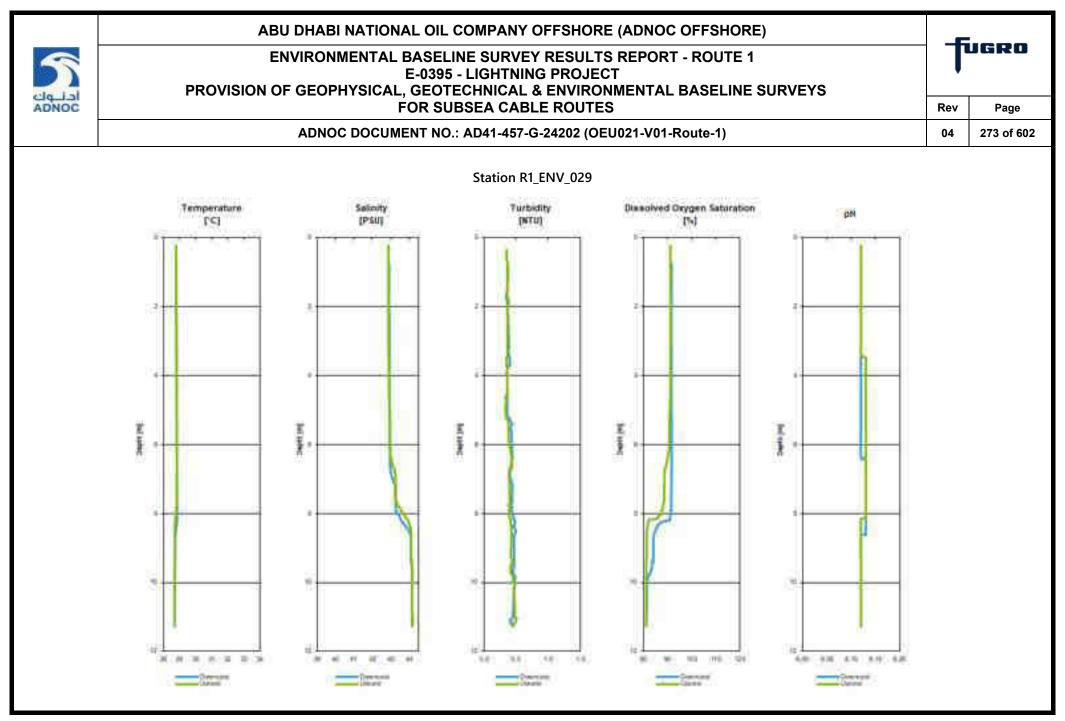


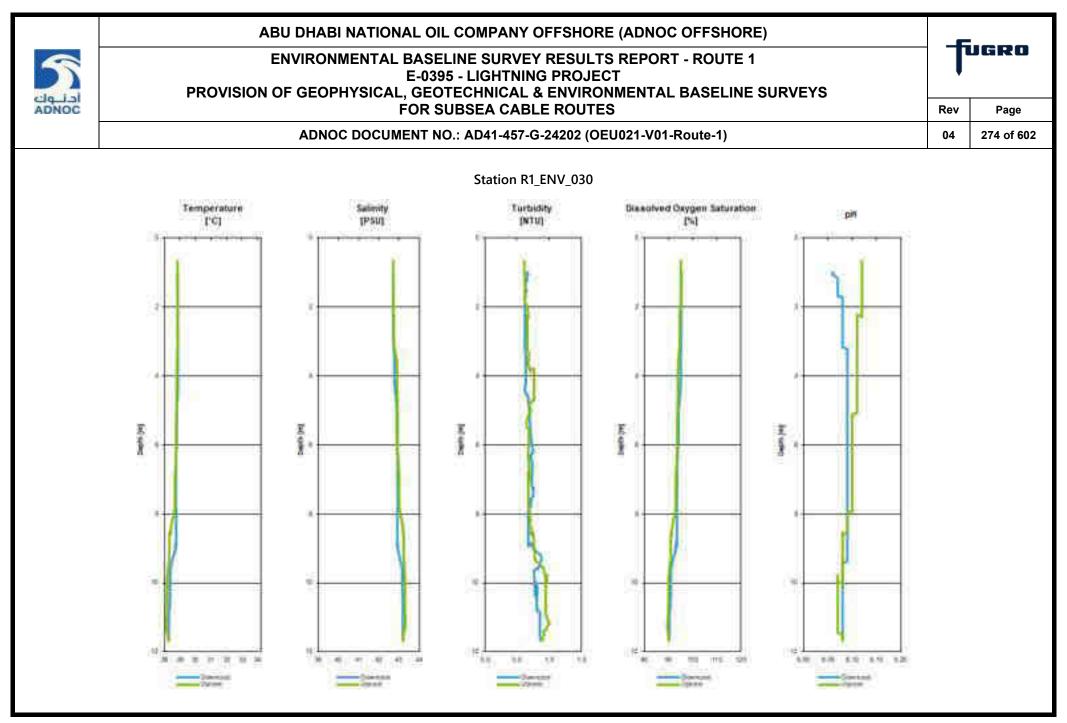


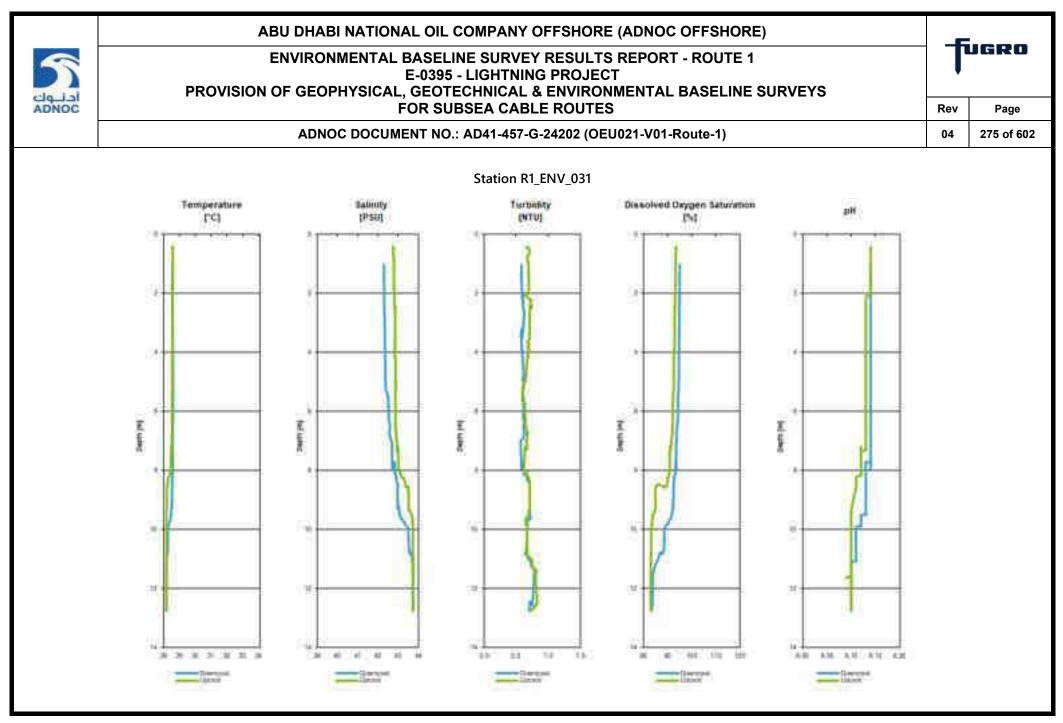


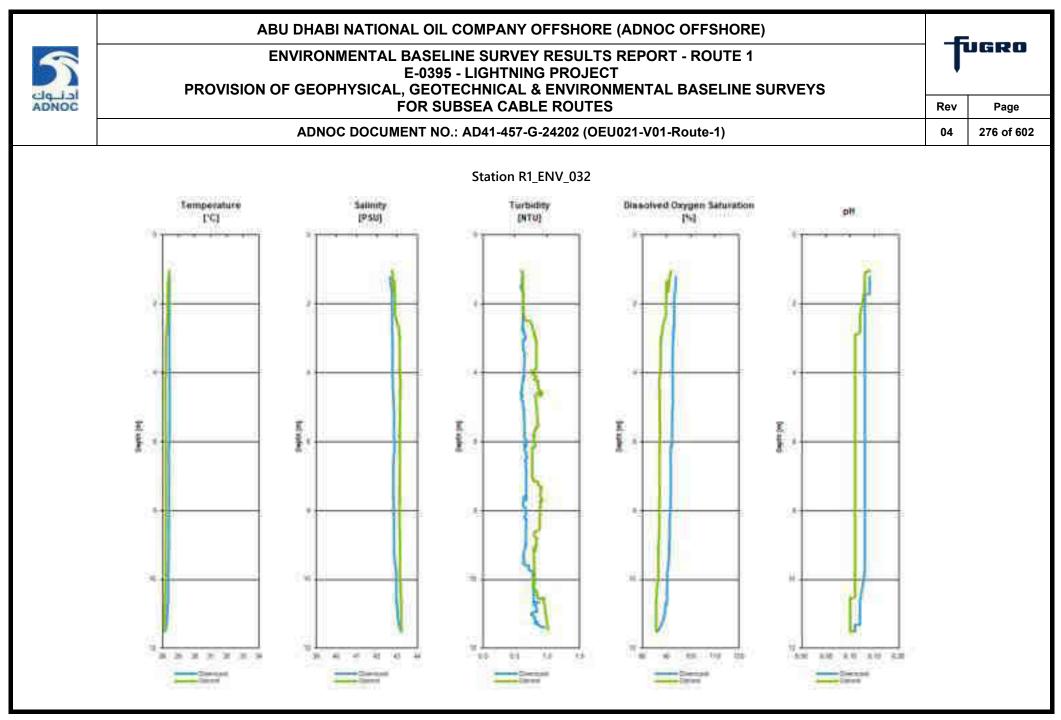


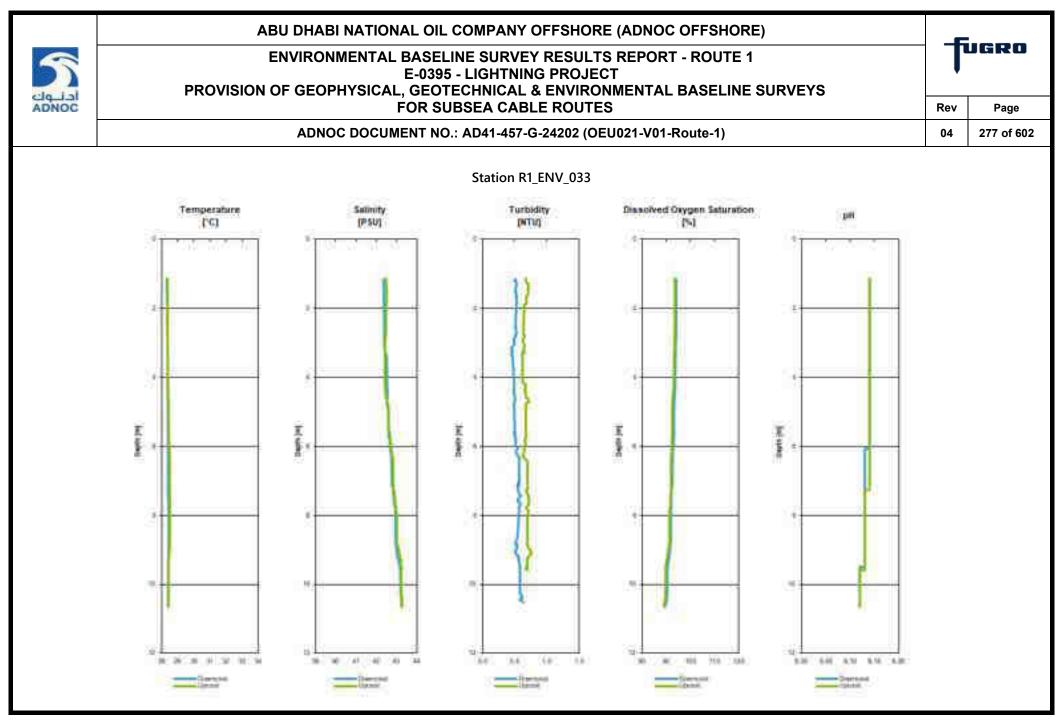


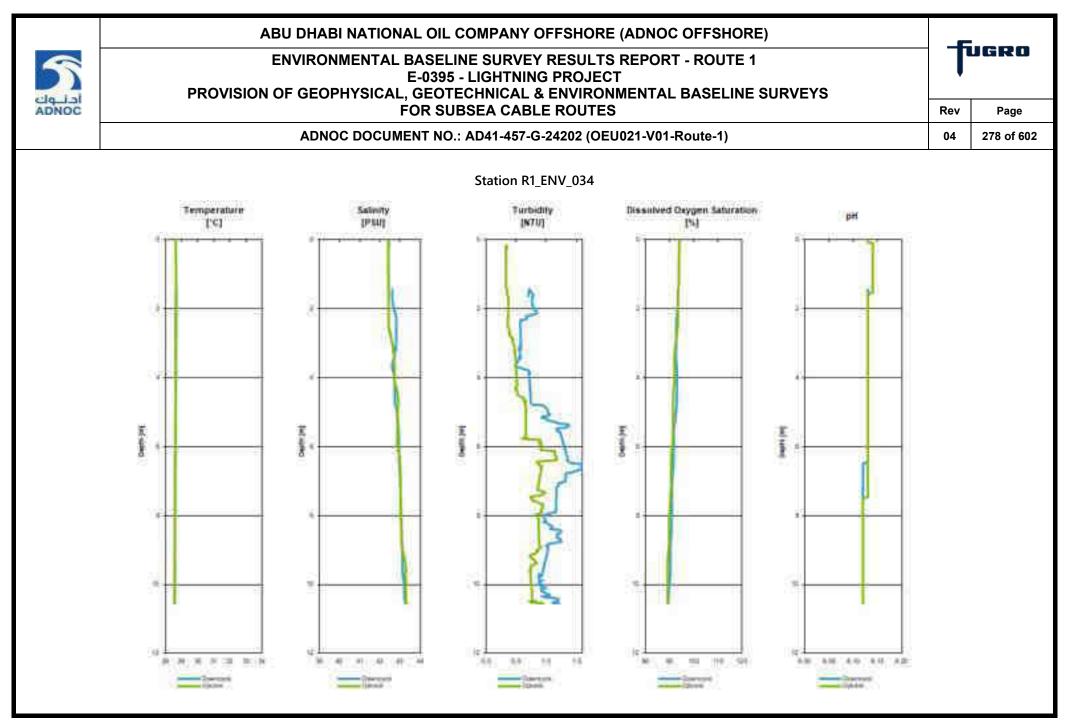


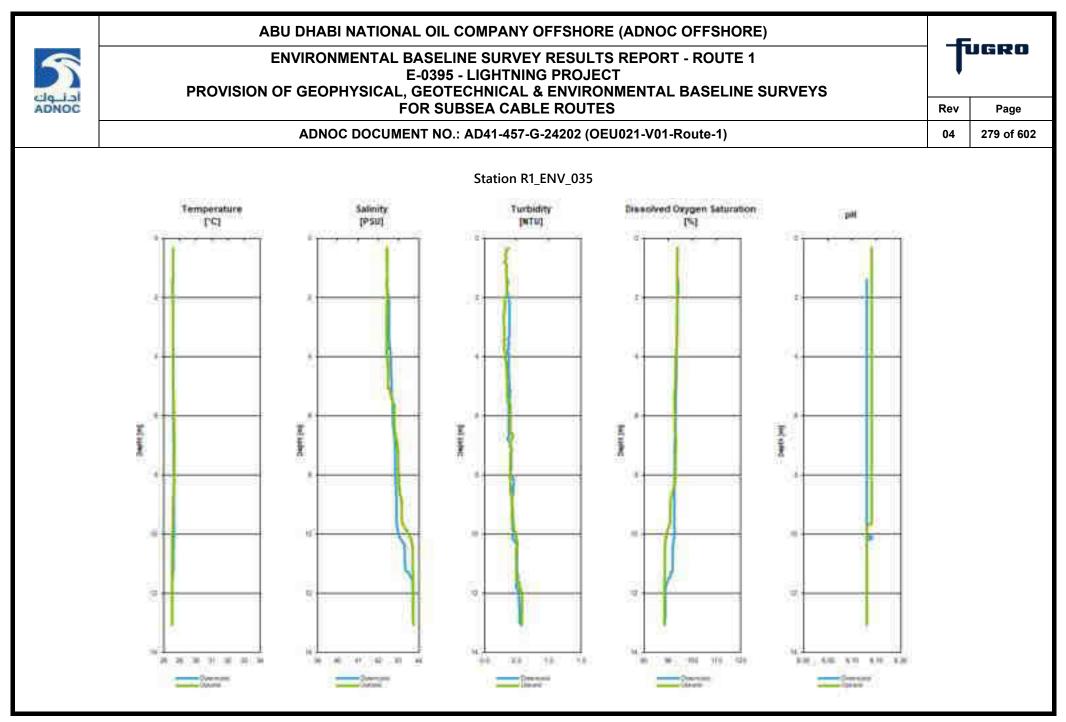


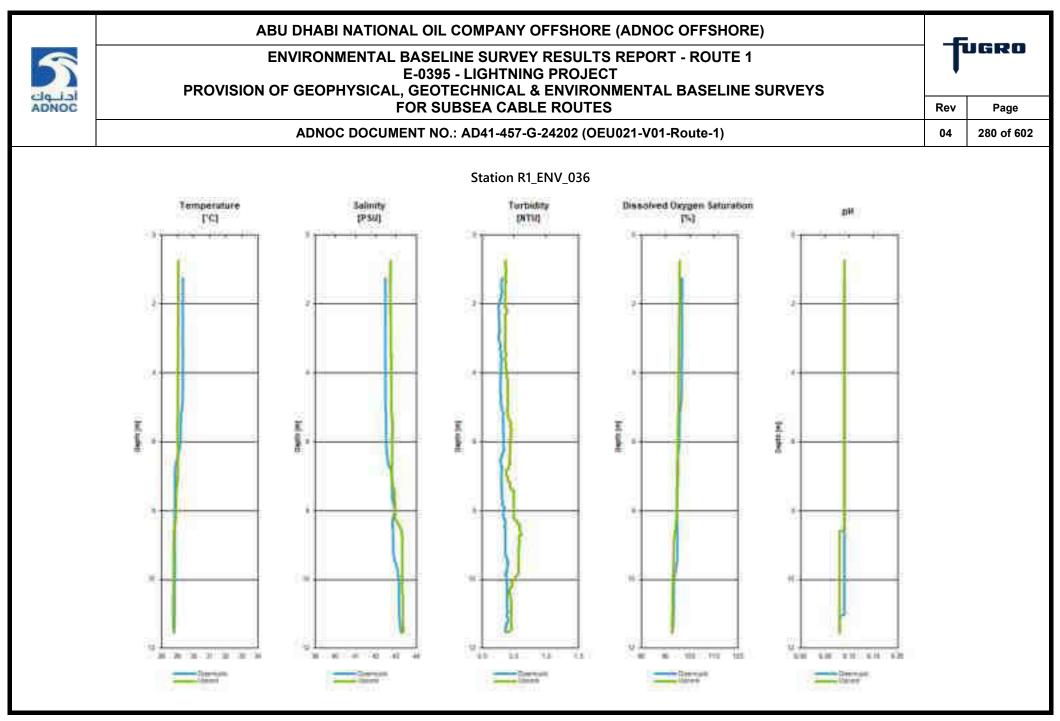


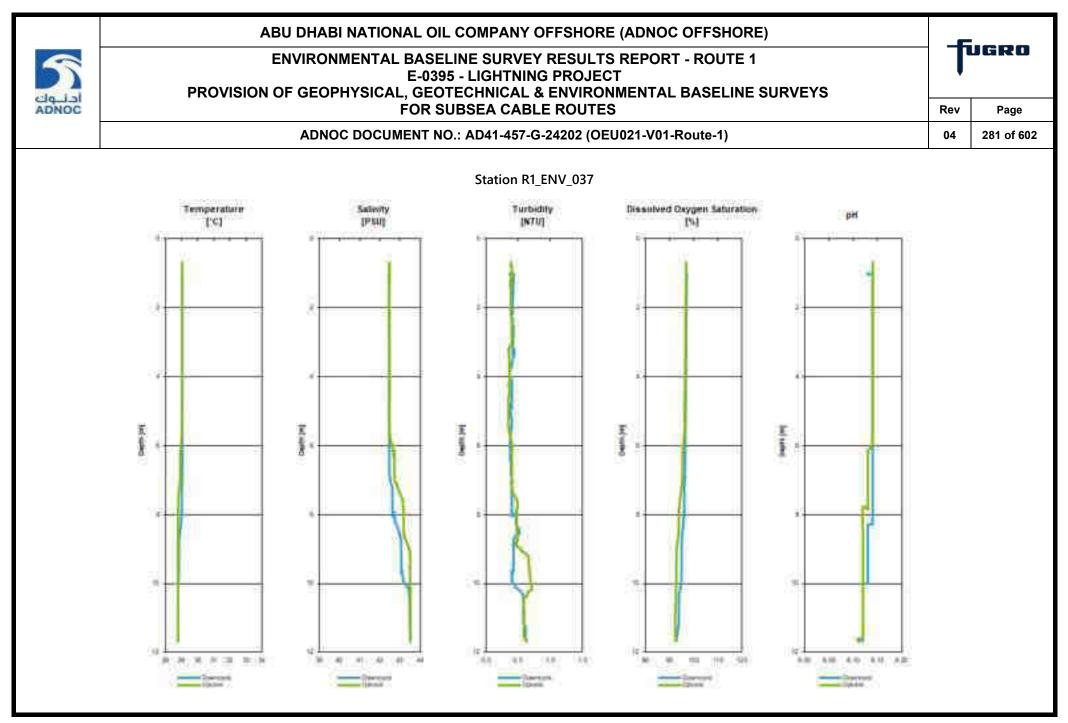


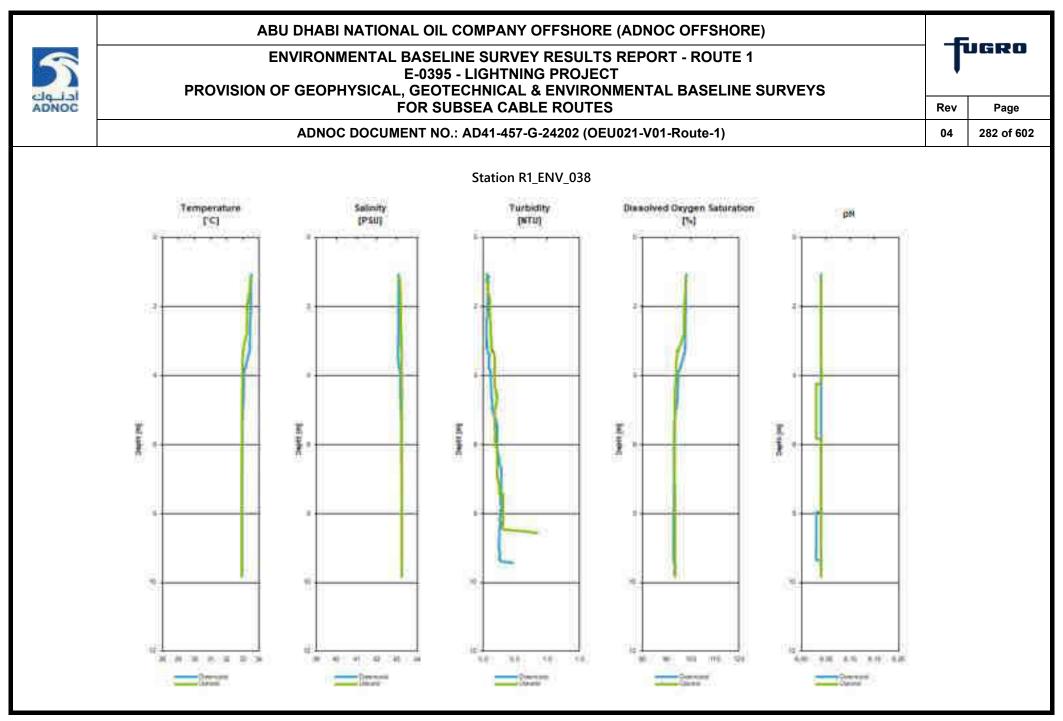


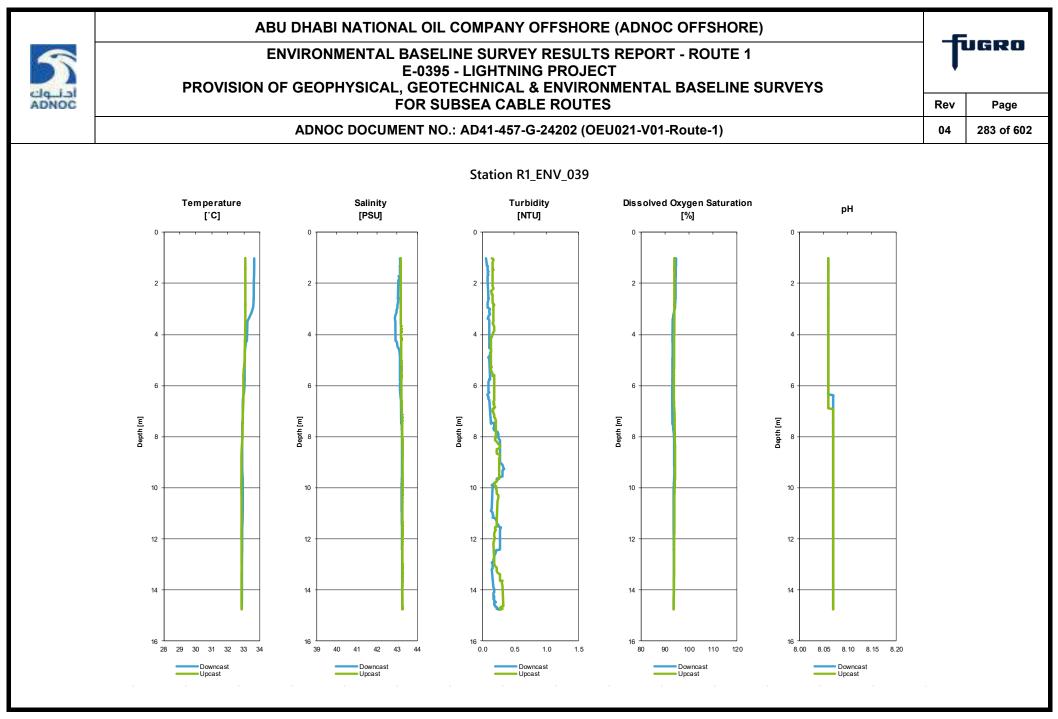


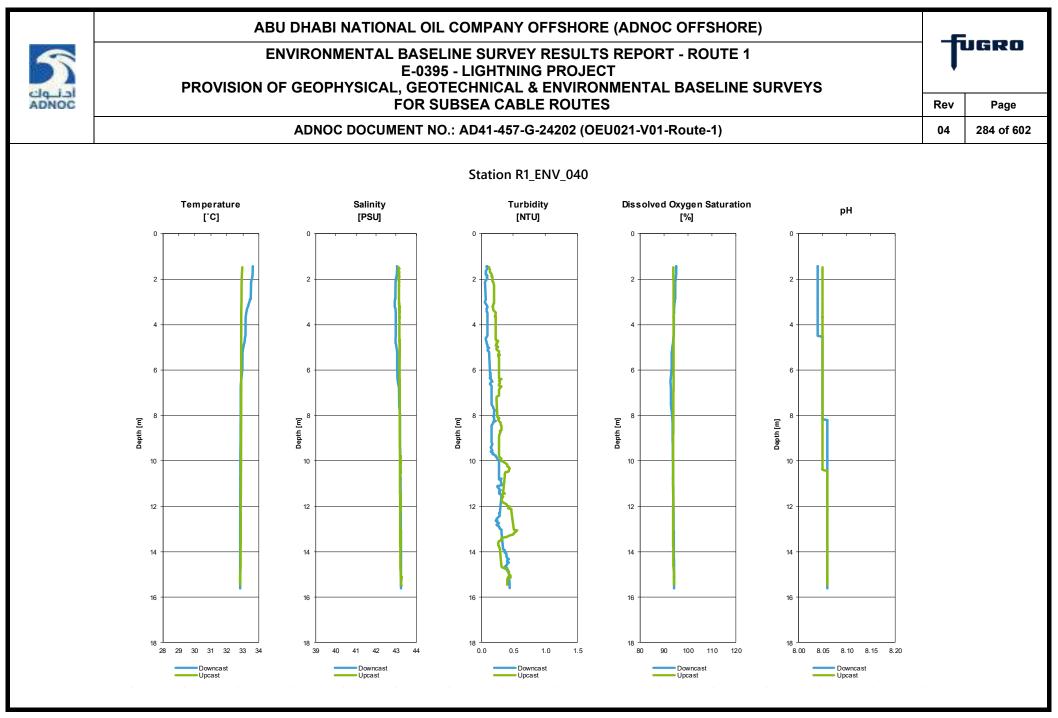


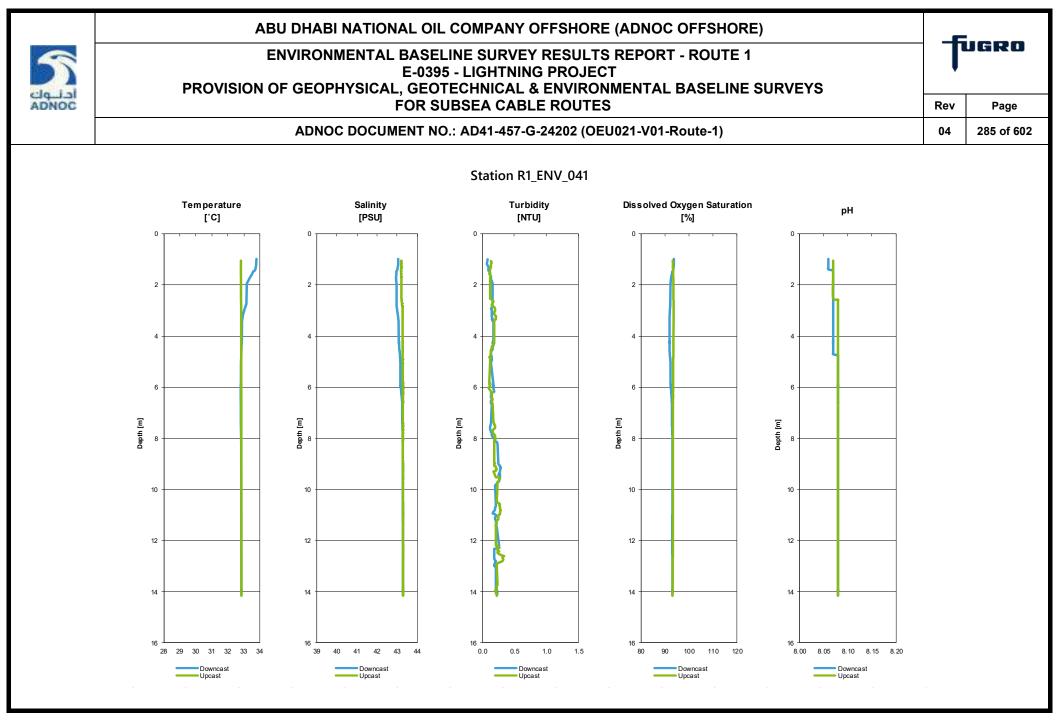


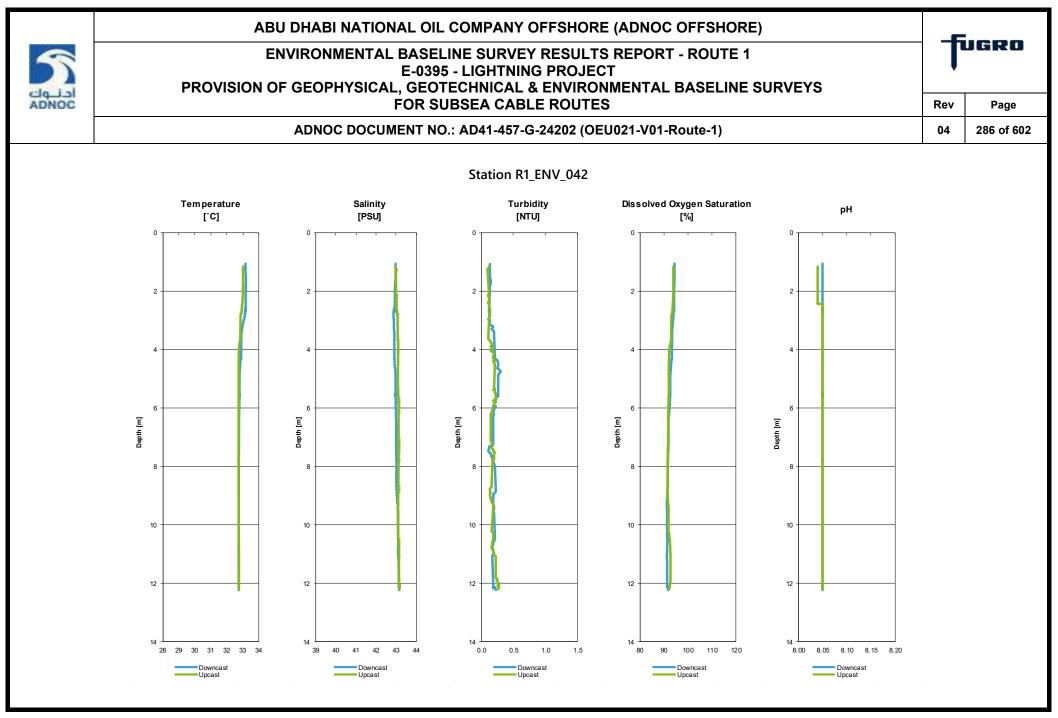


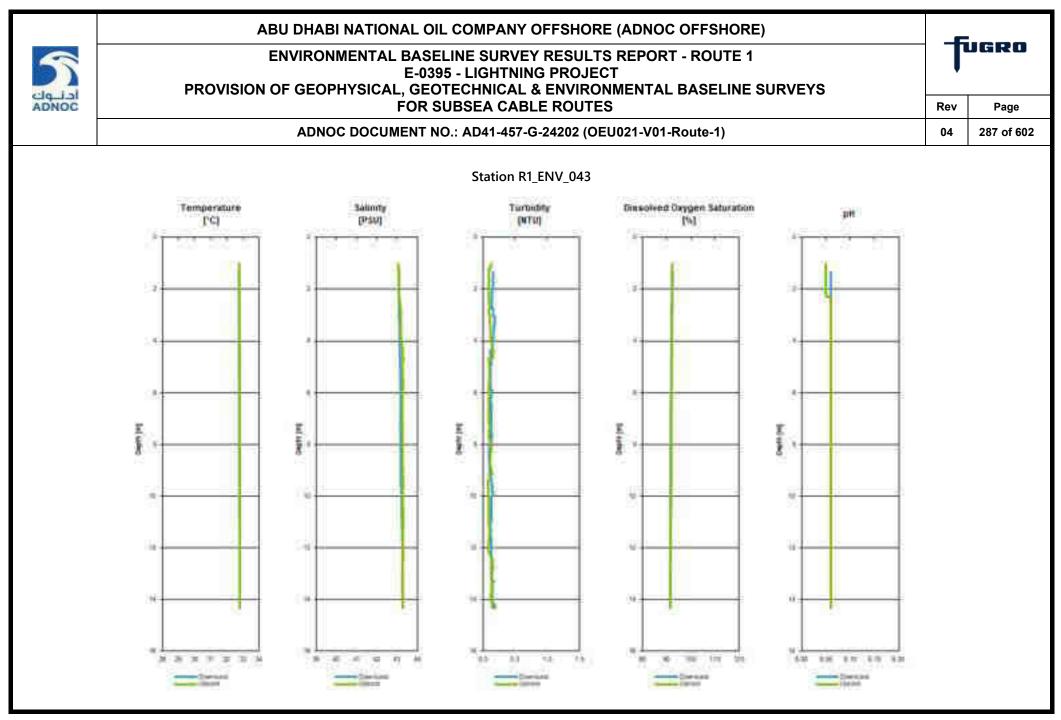


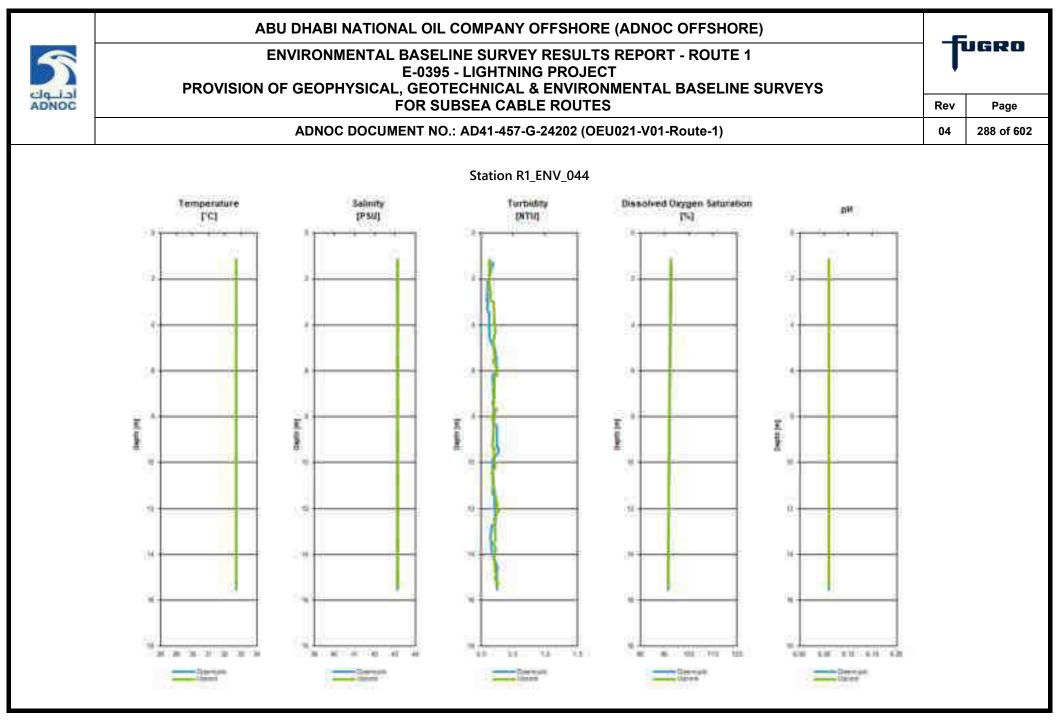


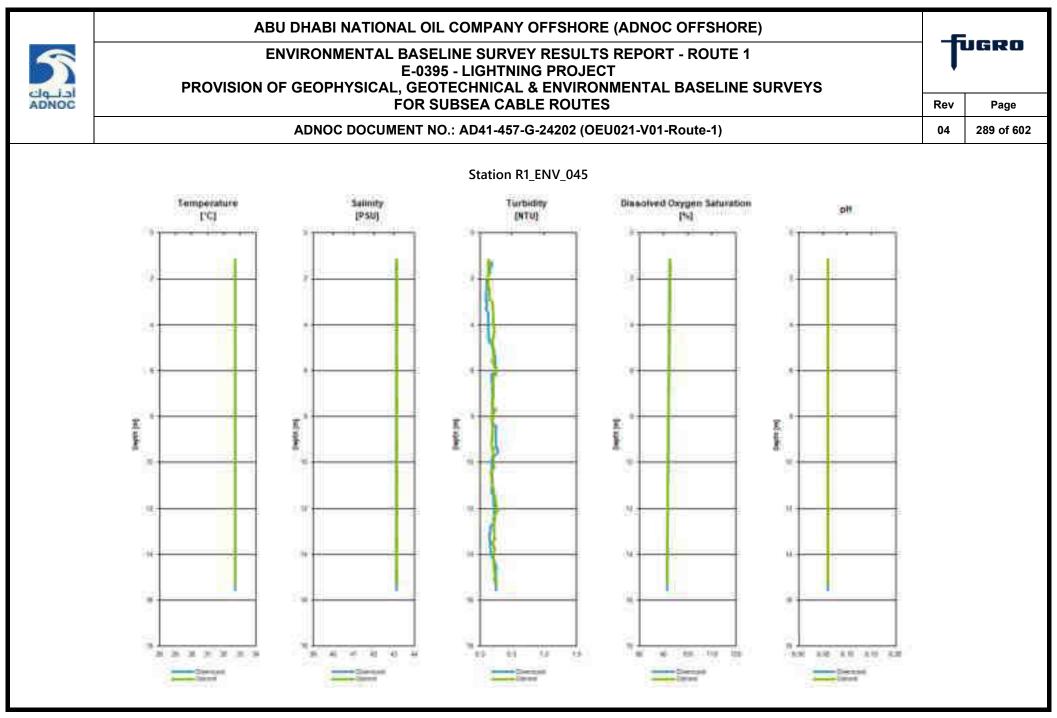


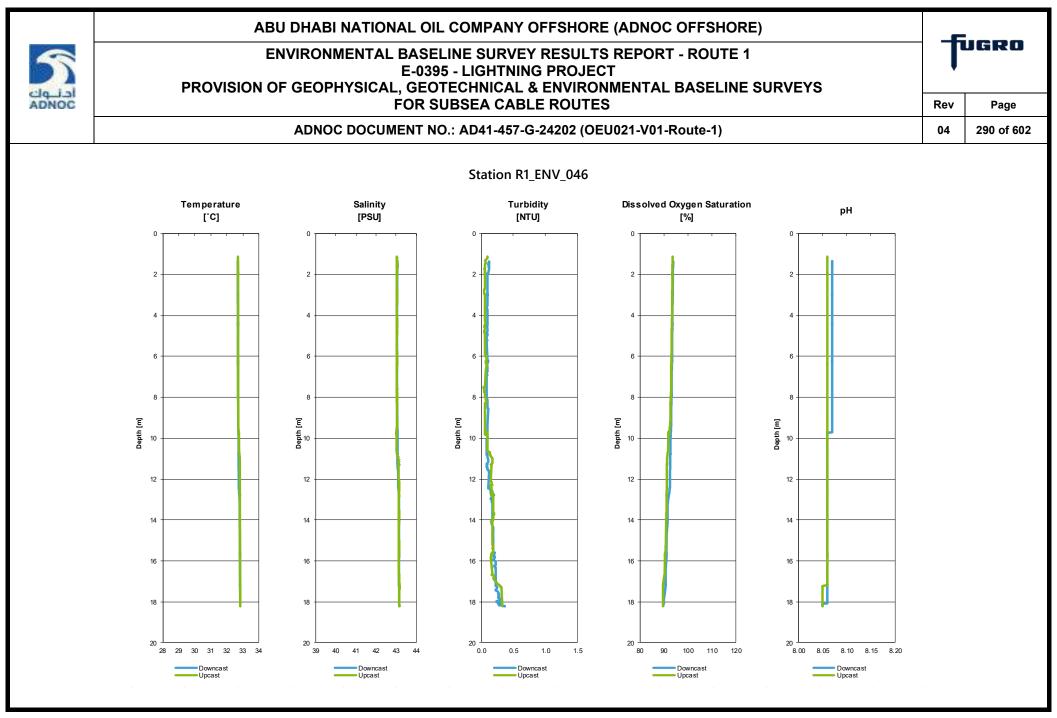


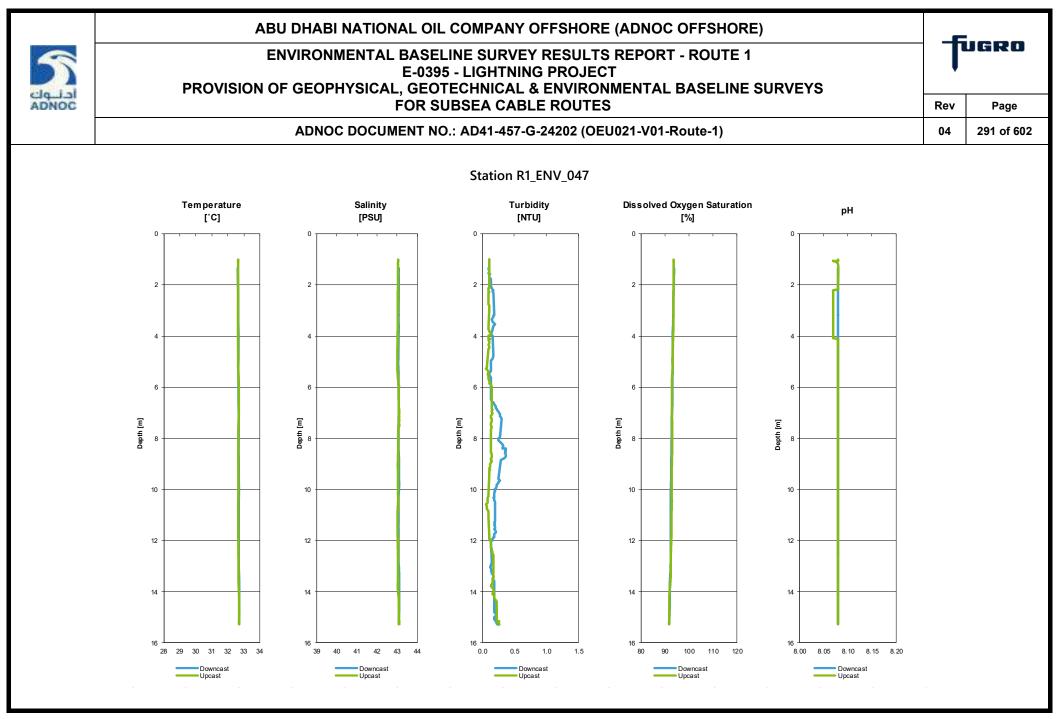


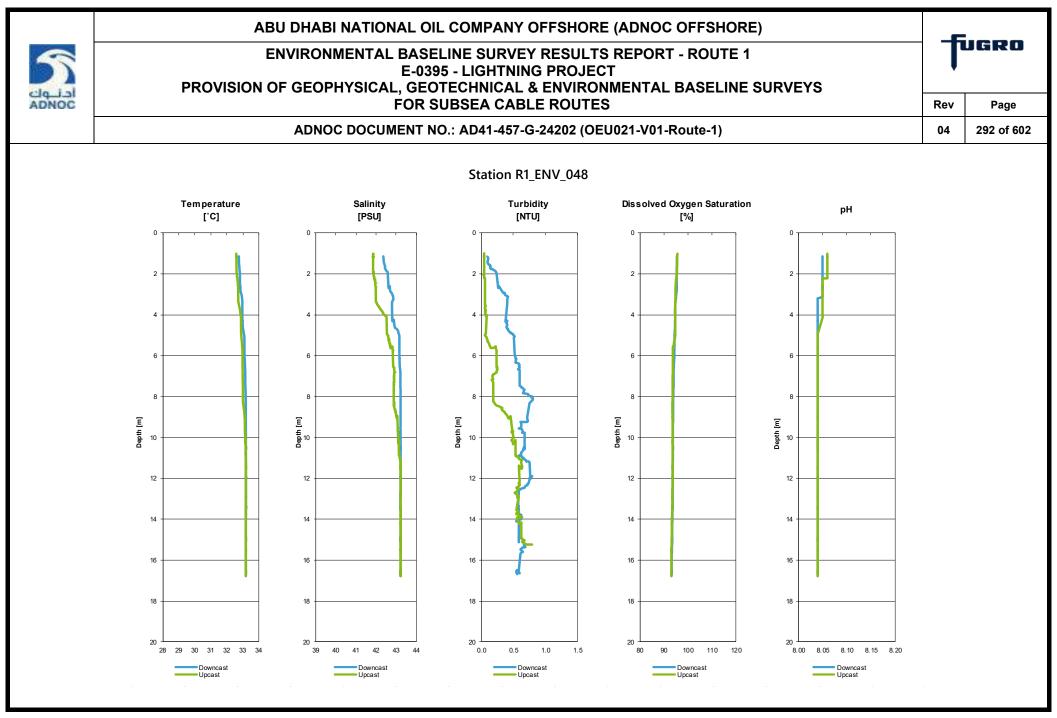


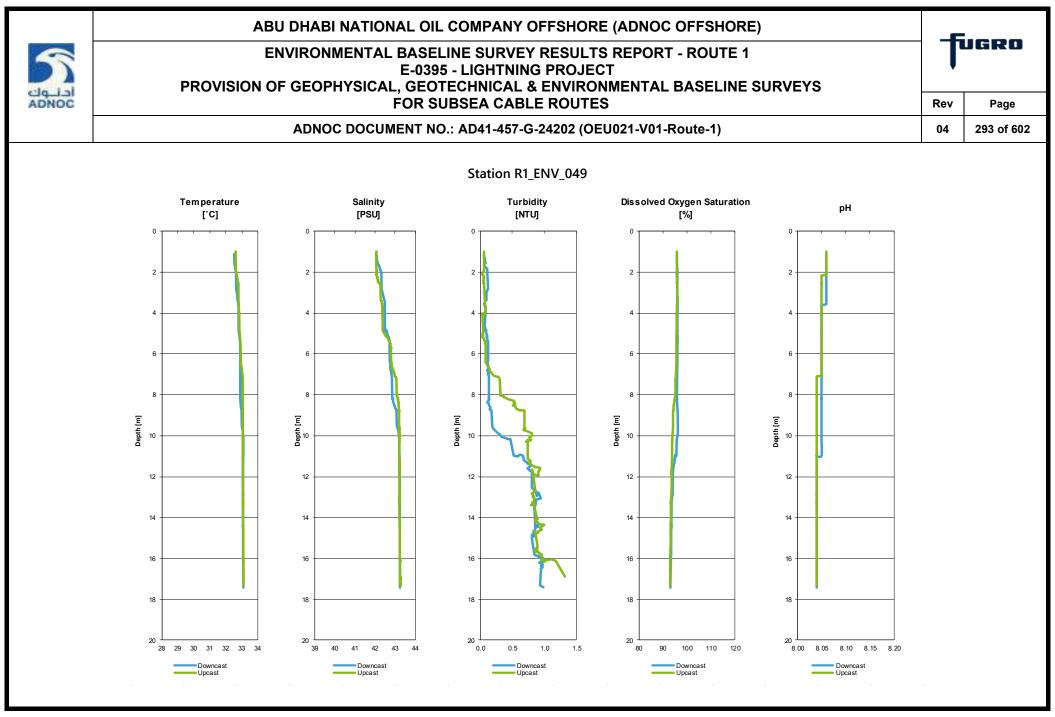


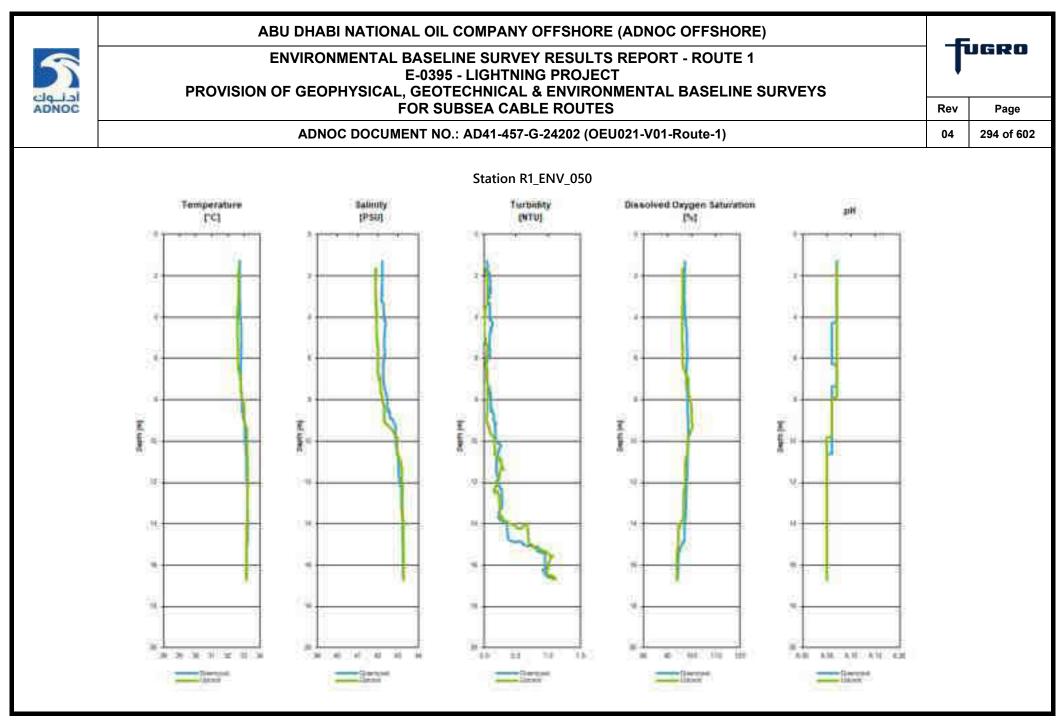


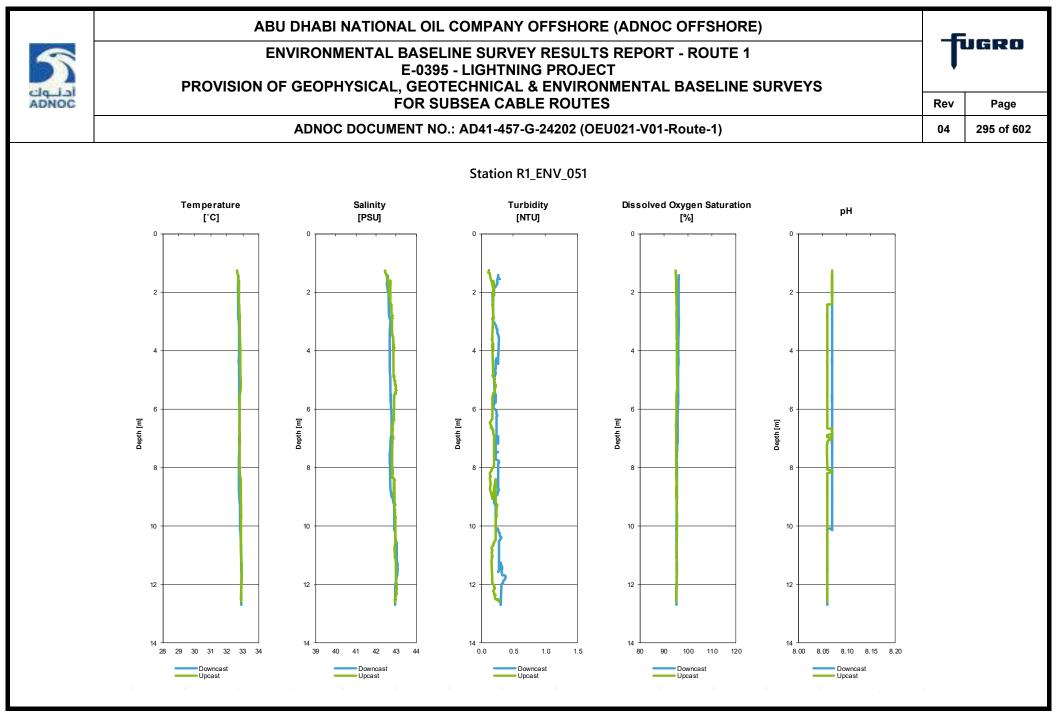

Page 285 of 602

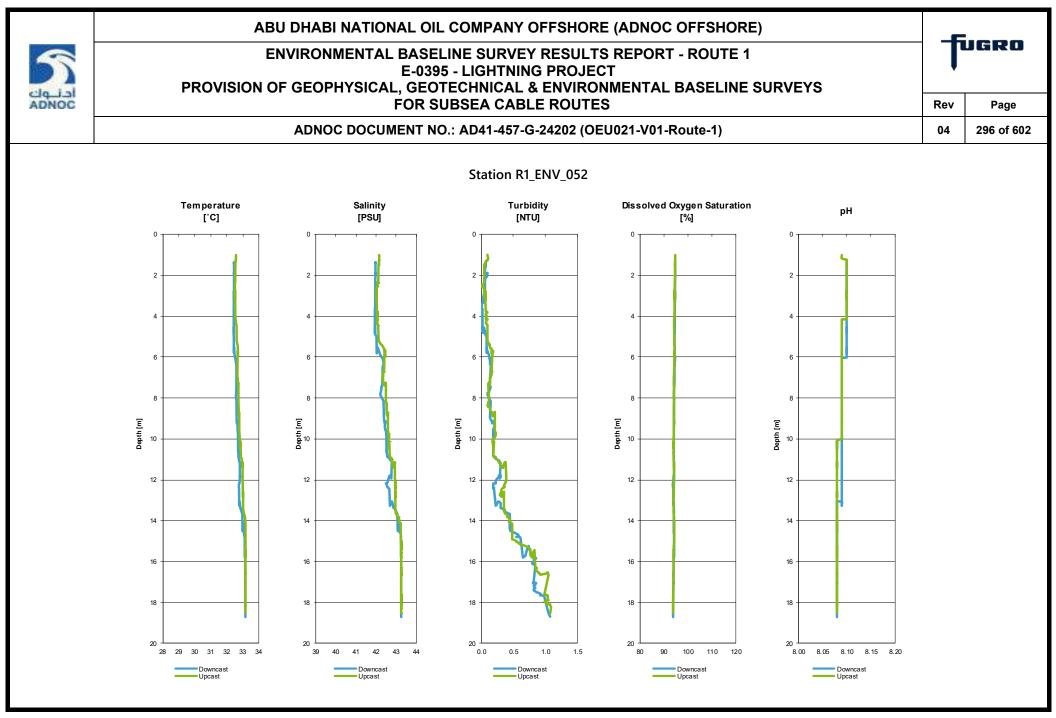


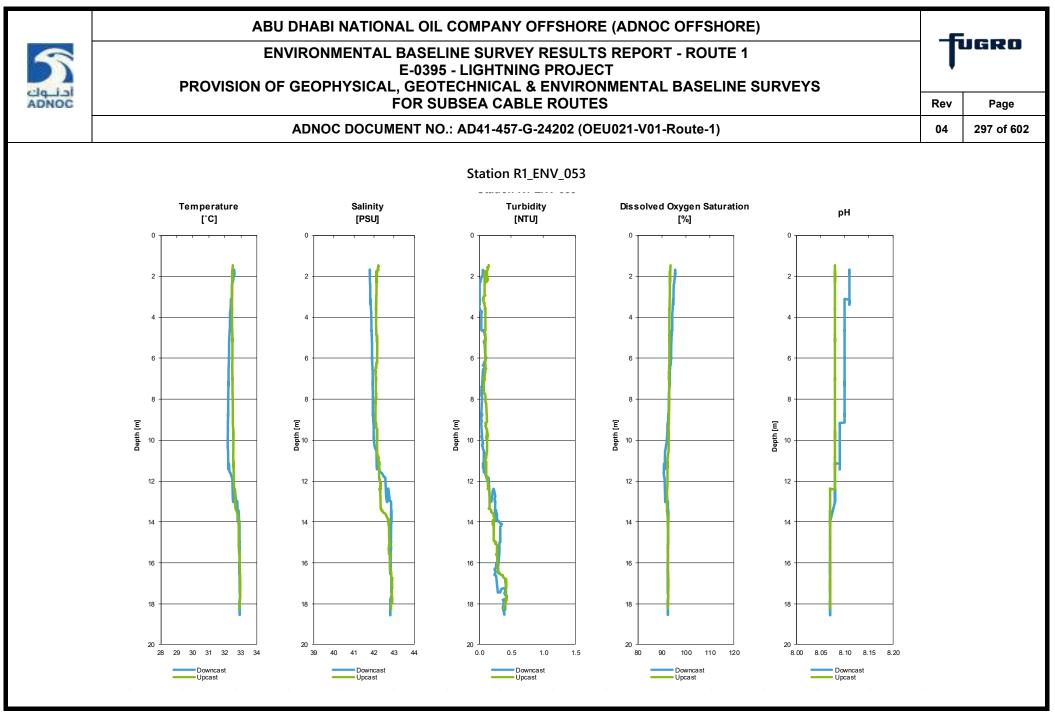


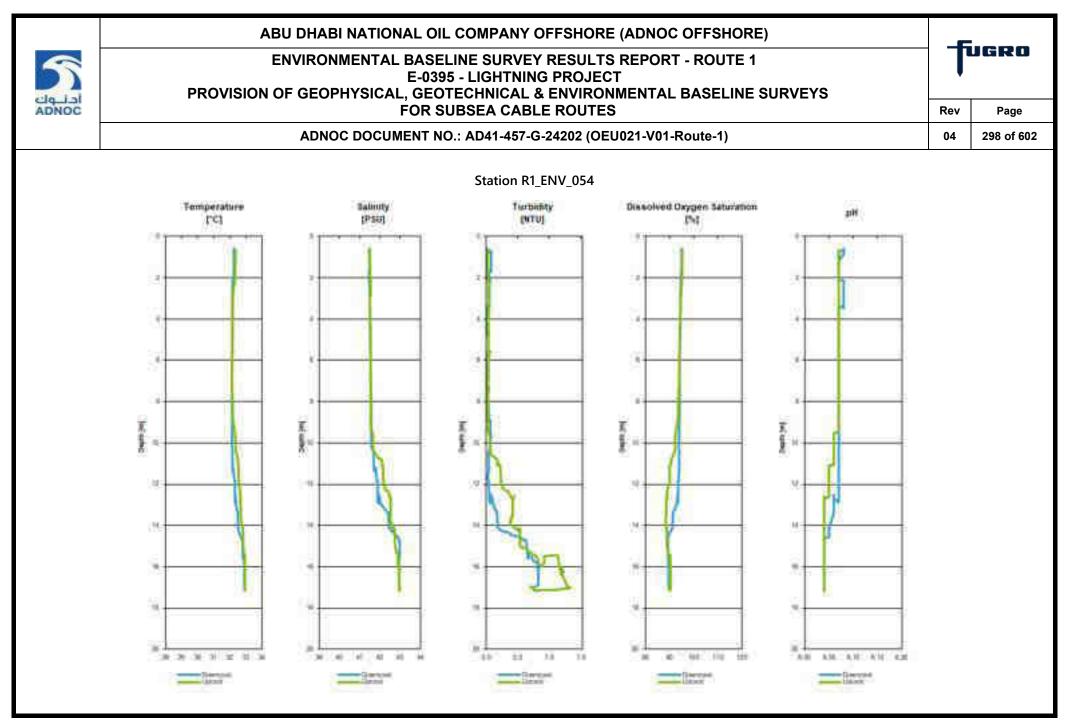


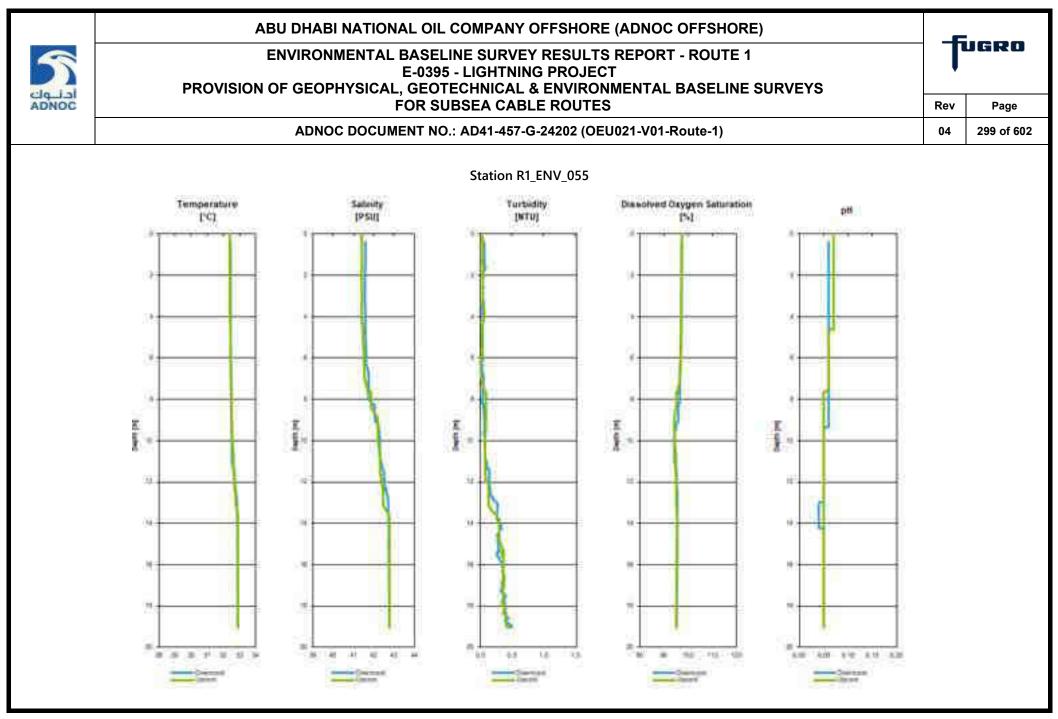


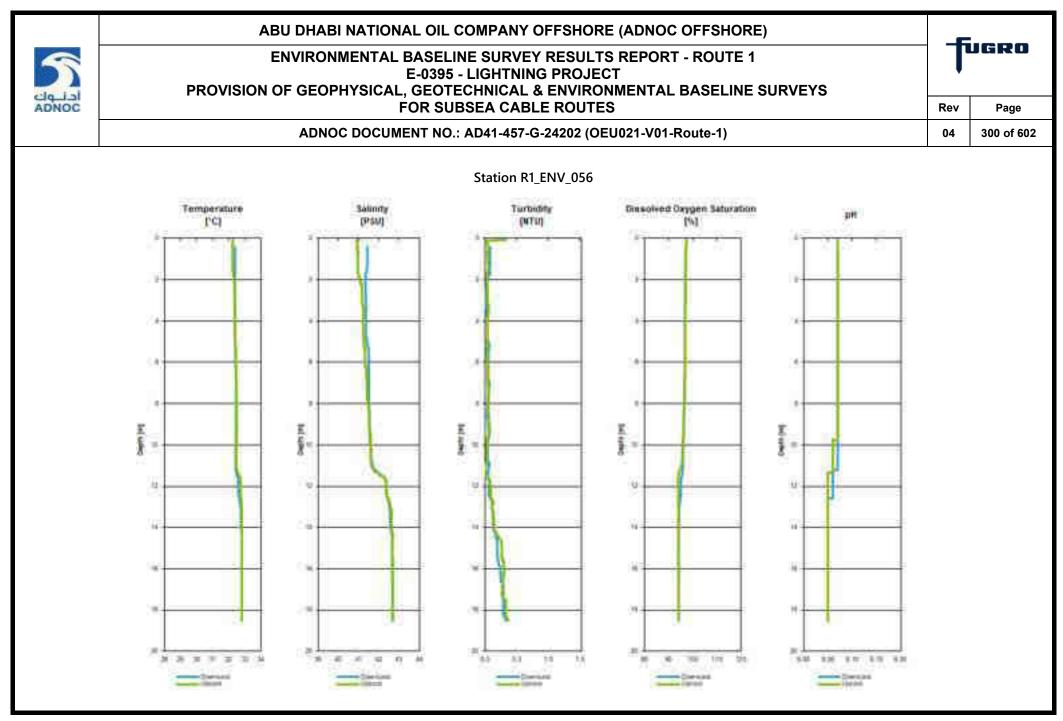


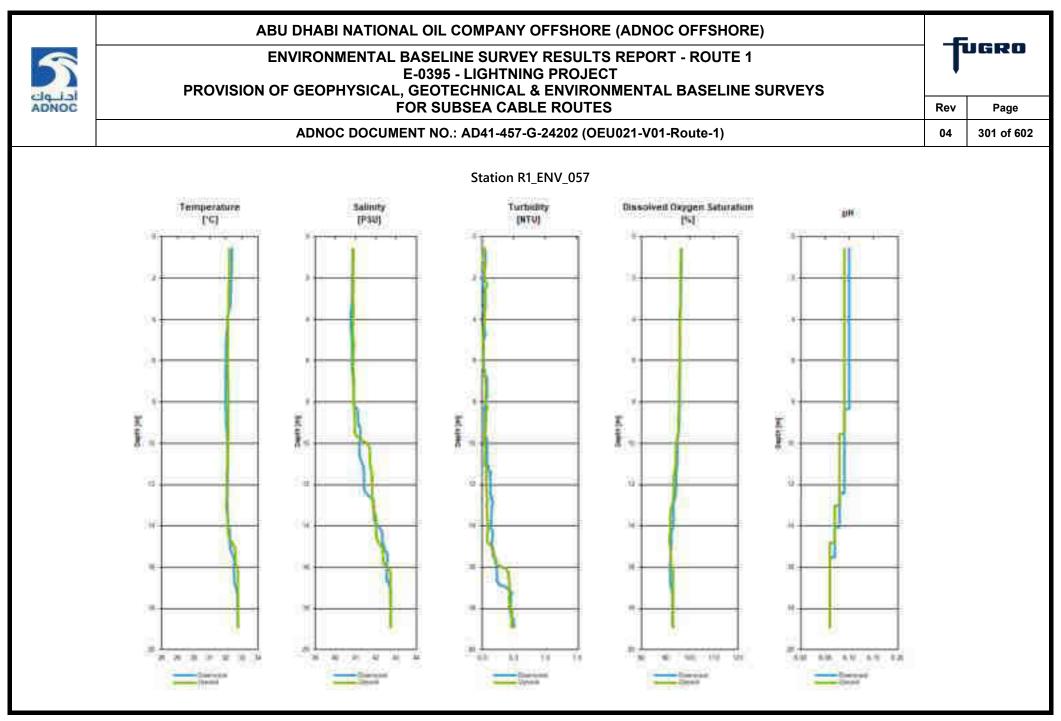


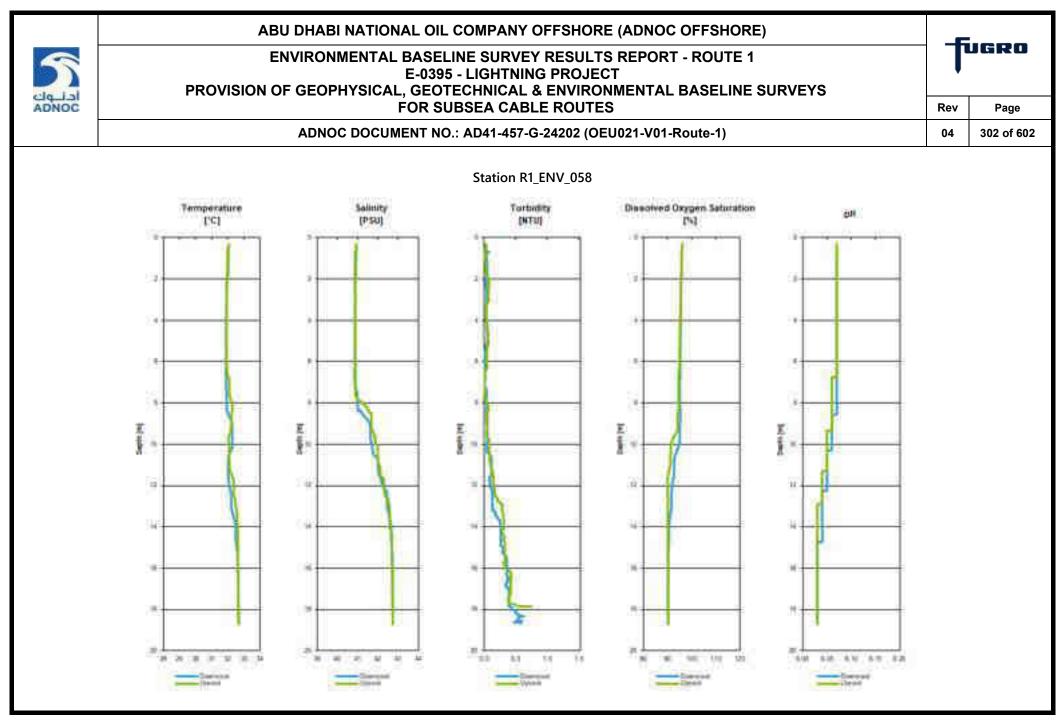


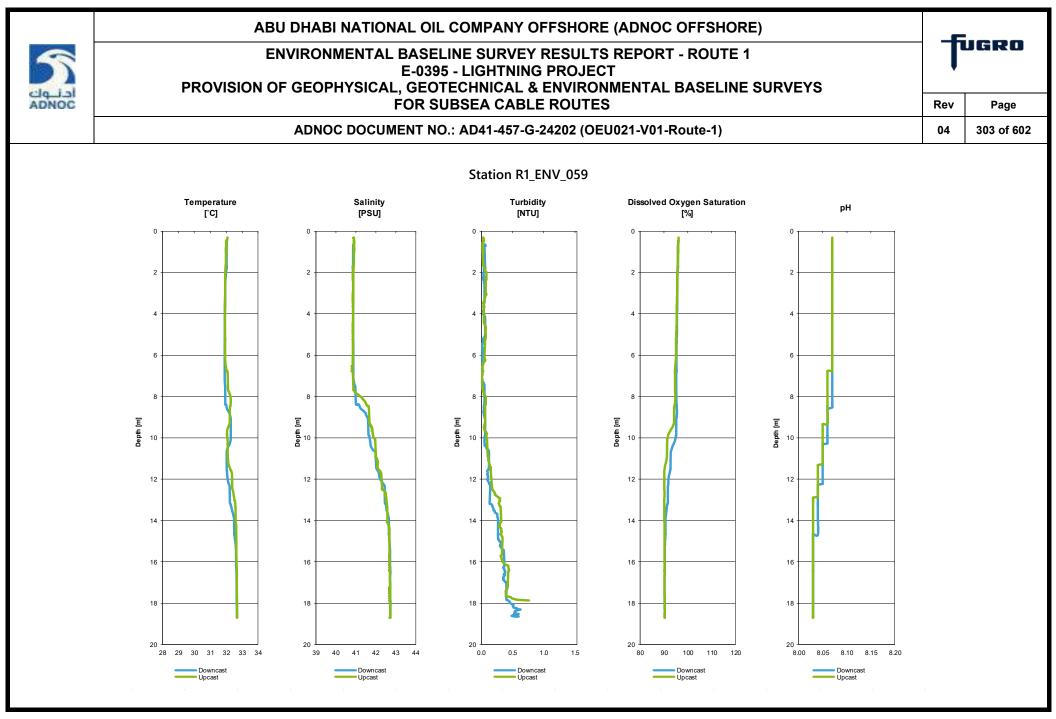


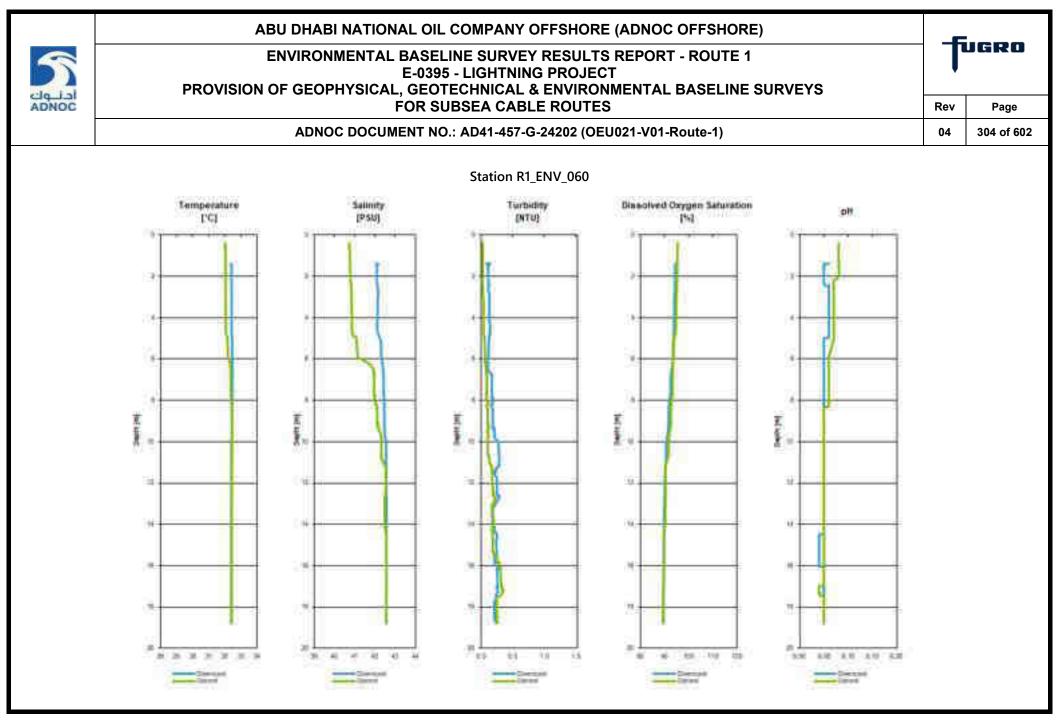


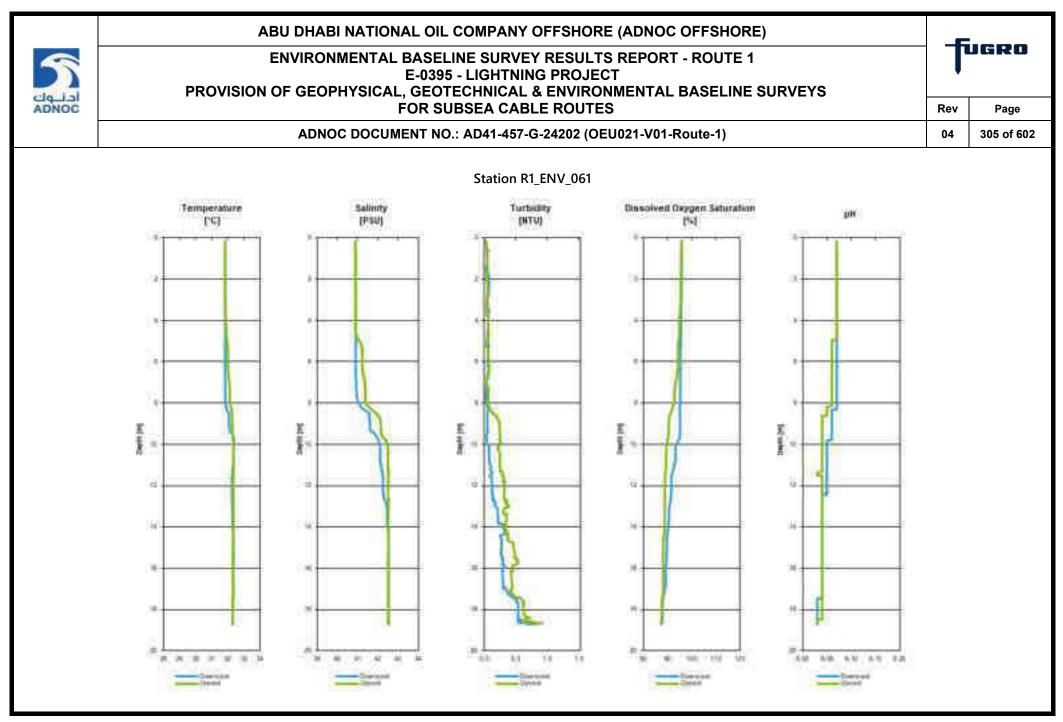


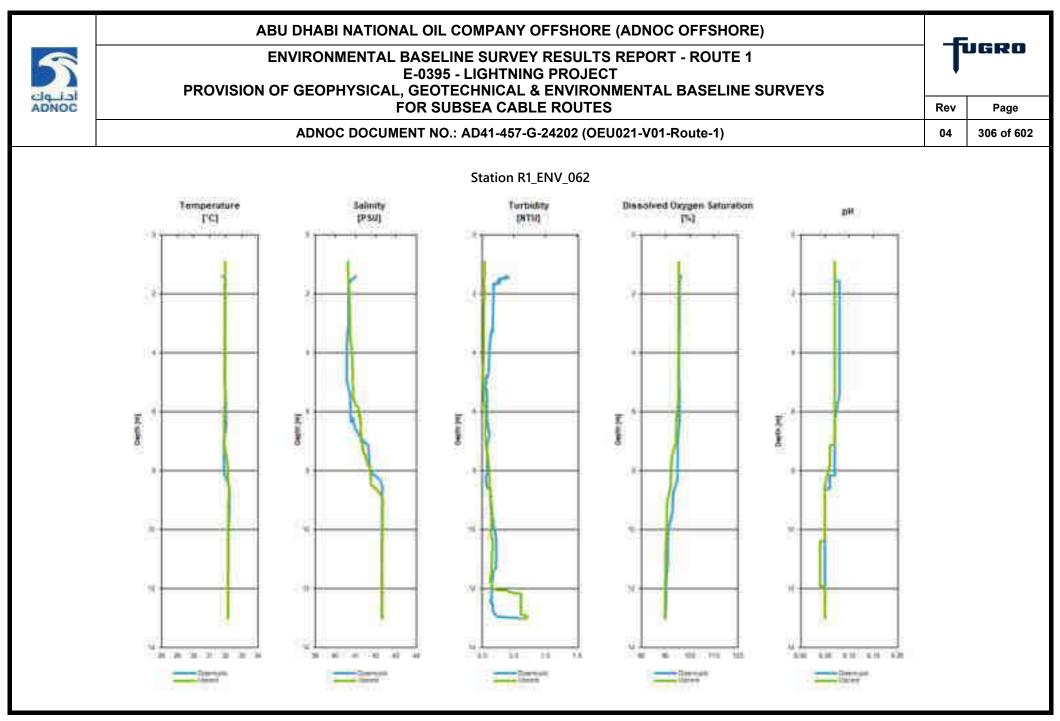


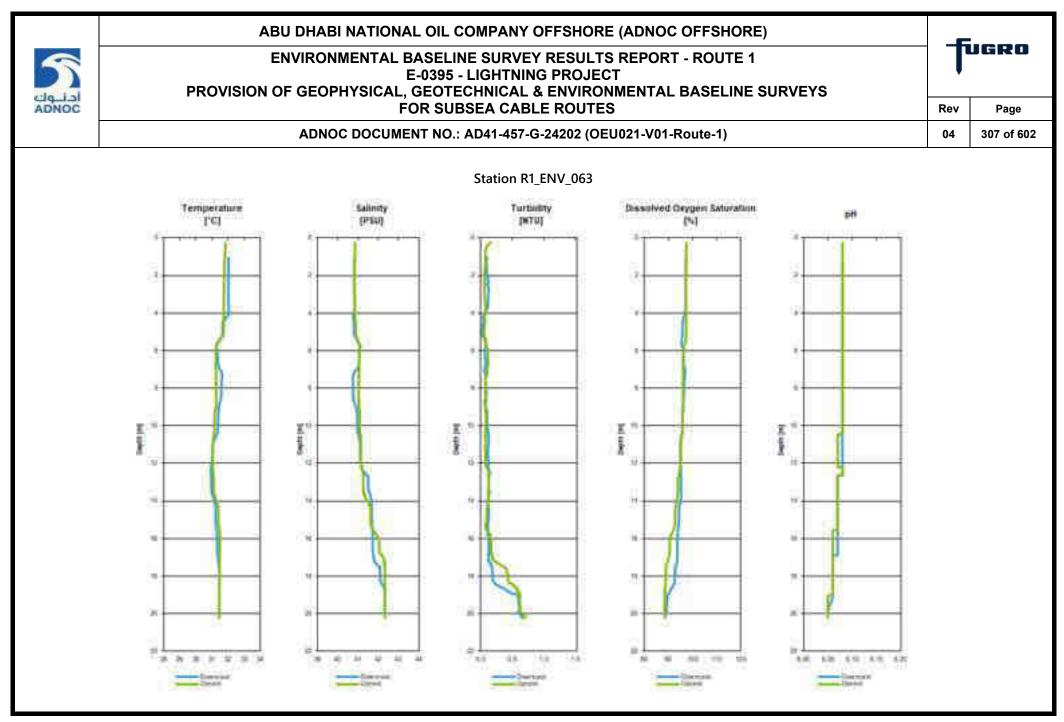


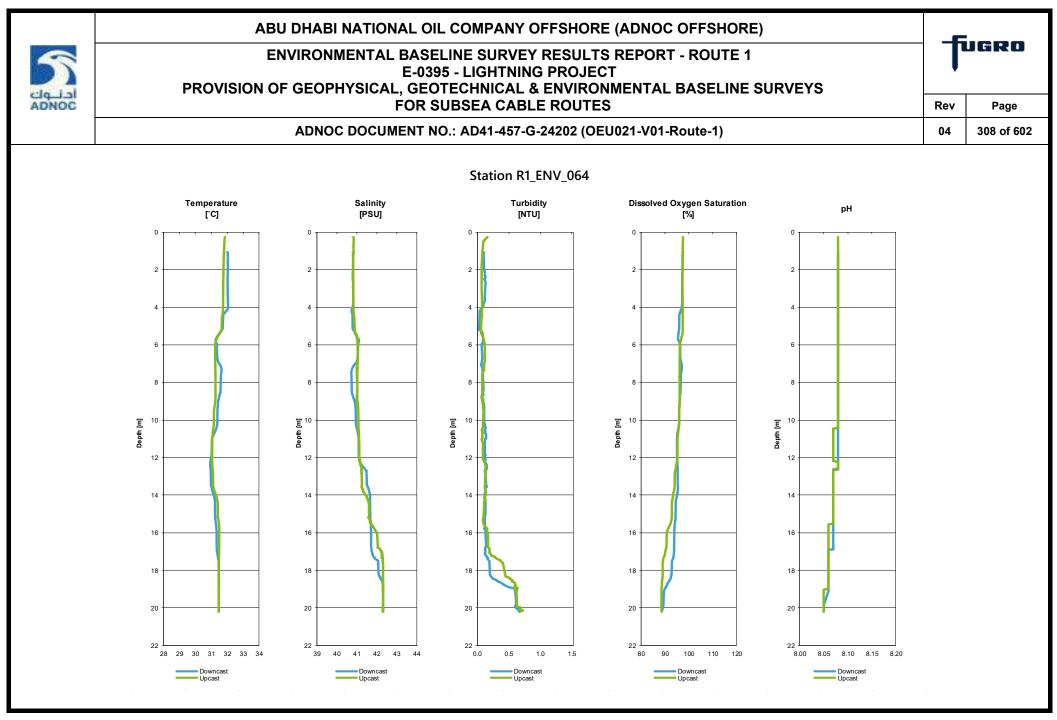











Page 303 of 602

