地球環境保全業務(GREEN)の対象分野

テーマ	大分類	中分類	個別技術
気候変動	エネルギー	化石燃料発電	排出削減措置が講じられている化石燃料発電
緩和	 供給(電力)	, a , , , , , , , , , , , , , , , , , ,	水素混焼発電
,,,,,			アンモニア混焼発電
			バイオマス混焼発電
		再工ネ発電	太陽光発電(ペロブスカイト、太陽熱含む)
			風力発電
			水力発電(揚水含む)
			地熱発電
			海洋発電(温度差、波力、潮力等)
			バイオマス発電
		原子力発電	
		核融合発電	
		低炭素代替燃料	水素専焼発電
		発電	アンモニア専焼発電
			燃料電池
		廃棄物発電	
		コジェネレーション	ンステム
		分散型電源	マイクログリッド (VPP (Virtual Power Plant)、V2H
			(Vehicle to Home)等)
		送配電	系統安定化設備・サービス、高性能グリッド接続設備
			高効率送電線(高圧送電、高圧直流送電、超電導送電
			等)
			統合監視制御システム(SCADA 等)
			送電系統広域監視制御システム(WASA等)
			スマートグリッド(スマートメーター(AMI)システム、デマ
			ンドレスポンス等)
			変圧器(低損失配電用変圧器、アモルファス変圧器等)
			蓄電池(NAS、レドックスフロー、高効率リチウムイオン、
			ニッケル水素、鉛蓄電池等)
			パワーエレクトロニクス
	エネルギー	再エネ熱利用	太陽熱、地熱、バイオマス熱等
	供給(燃料・	バイオ燃料製造	バイオエタノール、バイオメタノール、バイオディーゼル、
	熱)		バイオガス・バイオメタン、木質系燃料等
		水素系燃料製造	低炭素水素
			低炭素アンモニア

	1		
			メチルシクロヘキサン(MCH)
			メタノール
			水素吸蔵合金
			低炭素水素及びその化合物の製造・輸送・供給・利用
			合成メタン (e-methane)
			合成燃料(e-fuel)
	鉄鋼	低炭素	高炉水素還元(COURSE50、Super COURSE50等)
			水素直接還元
			高効率アーク炉
			電炉(電炉化、大型化等)
		省工ネ	微粉炭吹き込み(PCI)
			省エネルギー型石炭調湿設備(CMC)
			次世代コークス炉(SCOPE21 等)
			フェローコークス
			高効率焼結炉点火バーナー
			直接還元(DRI)
		省資源	ダストリサイクル
			スクラップ活用
			ケミカルリサイクル
			高炉スラグ利活用
		排熱・排ガス等の	コークス乾式消火設備(CDQ)
		有効利用	高炉炉頂圧発電(TRT)
			リジェネバーナー導入
			排熱・副生ガス回収利用(転炉、焼結炉、熱風炉、電炉
			等)
	セメント	低炭素	カーボンリサイクルセメント
			リサイクルコンクリート
		省工ネ	流動床キルン
			高効率クリンカクーラー
			高効率セパレータ
			竪型ローラーミルの導入
			高炉スラグミルの竪型化
			サスペンションプレヒーター(SP)による熱効率向上
			ニューサスペンションプレヒーター(NSP)による焼成効率
			の向上
		省資源	代替原燃料(AFR)の利用
			コンクリート微粉等のクリンカの原料化
		排熱・排ガス等の	セメントプラント排熱回収発電
			こハンドノ ノンドがが凹収光 电
		有効利用	

化学	低炭素	人工光合成
		カーボンリサイクル
		バイオリファイナリー
	省工ネ	イオン交換膜法食塩電解槽、高効率プロピレン分離装
		置、流動接触分解装置動力回収システム
非鉄金属•	省工ネ	高効率溶解・保持炉、プレ燃焼システム
アルミ	排熱・排ガス等の 有効利用	転化工程廃熱回収、リジェネバーナー
紙パルプ	省工ネ	高効率洗浄装置、高効率乾燥装置、低差圧クリーナー等
	省資源	高効率古紙パルプ製造技術
		ペーパースラッジ等燃料利用
		リグニンの分離・燃料化
		黒液のガス化・燃料化
	排熱・排ガス等の 有効利用	高温高圧型黒液回収ボイラ
運輸(自動	低炭素	低炭素自動車(EV、FCV等)
車)		低炭素自動車用インフラ(充電ステーション、水素ステー
		ション、走行中給電、交換式バッテリー等)
		EV 用蓄電池・モーターの性能向上
	省エネ	ハイブリッド自動車(HV、PHV 等)
	デジタル技術の	高効率・高機能交通輸送システム(高度道路交通システ
	利活用	ム(ITS)、道路交通情報システム(VICS)、ノンストップ自
		動料金収受システム(ETC)等)
運輸(鉄道)	低炭素	低炭素車両(再エネ電力活用、水素車両、次世代バイオ
		ディーゼル車両等)
		案内軌条式鉄道(AGT)、ライトレール(LRT)、磁気浮上
		式鉄道(HSST)、モノレール
	省工ネ	ハイブリッド機関車
運輸(船舶)	低炭素	電動船
		ゼロエミッション船舶
>= (/ / / / / / / / / / / / / / / / / / /	省エネ	省工ネ船
運輸(航空)	低炭素	SAF
		水素航空機
	da D	電動航空機
	省工ネ	ハイブリッド航空機
V-71-44 (41) 1-		炭素繊維複合材の利用等による燃費低減
運輸(物流・	デジタル技術の	スマート物流(自動倉庫、荷役自動化・機械化技術等)
荷役)	利活用	

運輸	モーダルシフト	低炭素な輸送手段(電力駆動等)への転換
2	(低炭素)	
	モーダルシフト	 効率的な輸送手段への転換
	(省工ネ)	
建設(住宅・	低炭素	Net Zero Energy Building (ZEB) 、Net Zero
ビル)		Energy House (ZEH) 、Life Cycle Carbon Minus
		(LCCM)住宅
		Low-E ガラス等の高断熱窓ガラス
		高性能断熱材、ガラス窓遮熱フィルム
	デジタル技術の	家庭用エネルギー管理システム(HEMS)、ビルエネル
	利活用	 ギー管理システム(BEMS)、工場エネルギー管理システ
		ム(FEMS)、地域エネルギー管理システム(CEMS)等
	空調(冷暖房)•冷	ヒートポンプ
	凍機器	地域冷暖房システム等
ゼロエミッシ	二酸化炭素回収•	CC, CCS, CCU, CCUS
ョン・ネガテ	利用•貯留	
ィブエミッシ	二酸化炭素吸収・	BECCS
ョン	除去	DAC, DACCS
		新規植林•再生林•森林保全
		土壌炭素貯留
		バイオ炭製造・利活用
分野横断型	低炭素	電化、低炭素代替燃料や低炭素材料等への転換
		電力利用設備・機器のエネルギー効率向上(高効率空
		調、高効率照明(LED、有機 EL 等)、トップランナー機
		器等)
	省エネ	化石燃料利用設備・機器のエネルギー効率向上
	省資源	リサイクル、資源効率向上技術(3R)
	排熱・排ガス等の	排熱利用、排熱発電、リジェネバーナー等
	有効利用	
	デジタル技術の	情報通信技術や遠隔操作技術(IT、ICT、IoT)、AI 技
	利活用	術等の利活用によるエネルギー効率化、資源効率化、環
		境負荷低減等
二酸化炭素	メタン削減	炭層メタン、石油随伴メタン等の排出抑制、回収処理
以外の温室		フレア放散低減
効果ガス対		有機系廃棄物発酵メタン、ランドフィルガス回収・焼却
策		畜産農業におけるメタン、土地利用変化に伴うメタン等の
		排出抑制、回収処理
	フロン類削減	フロン及び代替フロン処理・排出抑制、六フッ化硫黄
		(SF6)の漏洩防止及び利活用

	一酸化二窒素削	一酸化二窒素分解•排出抑制
	減	
気候変動緩和以外の地球	大気汚染防止	排ガス処理(脱硫・脱硝装置、粒子状物質除去装置、排
環境保全		煙浄化対策)
	水質汚染防止	廃水処理
	水供給	生活用水供給、工業用水供給
		海水淡水化処理
	土壤汚染防止	土壌・地下水汚染の除去、無害化処理
	廃棄物処理	廃棄物処理
	生物多様性と生	生物多様性と生態系の保全に寄与する事業(水域・森
	態系の保全	林·土壤等環境保全等)
		海洋プラスチック対策(生分解性プラスチック・ポリマー製
		造等)

【備考】脱炭素化に向けた取組方針(2050 年までのカーボンニュートラル宣言やそれに準ずる方針等)を有する企業等が、その取組方針の下で実施する事業への支援を可能とするべく、本リストの随時の見直し等の対応を図る。